人教版七年级数学下册 利用方程组与不等式组解应用题专题训练(含答案)
- 格式:docx
- 大小:128.08 KB
- 文档页数:9
七年级下册不等式组《方案选择》专题1、为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A 和B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A 类学校和1所B 类学校共需资金5400万元。
(1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划改扩建A 、B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担。
规定若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的改扩建资金分别为每所300万元和500万元。
请问共有哪几种改扩建方案?解:(1)设改扩建1所A 类学校需资金x 万元,改扩建1所B 类学校需资金y 万元则依题意可得⎩⎨⎧=+=+54003780032y x y x∴⎩⎨⎧==18001200y x ∴改扩建1所A 类学校需资金1200万元,改扩建1所B 类学校需资金1800万元 (2)设改扩建A 类学校m 所,则改扩建B 类学校(10-m )所依题意可得:()()()()⎩⎨⎧≥-+≤--+-400010500300118001050018003001200m m m m∴⎩⎨⎧≥-+≤-+4000500500030011800130013000900m m m m ∴⎩⎨⎧≤≥53m m∴53≤≤m ∵m 是正整数 ∴m=3或4或5 即共有3种方案方案一:改扩建A 类学校3所,B 类学校7所 方案二:改扩建A 类学校4所,B 类学校6所 方案三:改扩建A 类学校5所,B 类学校5所2、某房地产开发公司计划建A、B两种户型的住房共80套。
该公司所筹资金不少于2090万元,但不超过2096万元。
且所筹资金全部用于建房,两种户型的建房成本和售价如下表(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a 万元(a>0),且所建的两种住房可全部售出,该公司如何建房获得利润最大?解:(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套根据题意,得()()⎩⎨⎧≤-+≥-+20968028252090802825xxxx,解得48≤x≤50∵x取非负整数,∴x为48,49,50(2由题意知:W=5x+6(80-x)=480-x∵k=-1,W随x的增大而减小∴当x=48时,即A型住房建48套,B型住房建32套获得利润最大(3)根据题意,得W=5x+(6-a)(80-x)=(a-1)x+480-80a∴当0<a<l时,x=48,W最大,即A型住房建48套,B型住房建32套当a=l时,a-1=0,三种建房方案获得利润相等当1<a<6时,x=50,W最大,即A型住房建50套,B型住房建30套3、某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册。
人教版七年级下册数学不等式与不等式组应用题训练1.列方程组或不等式解决问题:2022年北京冬奥会、冬残奥会已圆满结束,活泼敦厚的“冰墩墩”,喜庆祥和的“雪容融”引起广大民众的喜爱.王老师想要购买两种吉祥物作为本次冬奥会的纪念品,已知购买2件“冰墩墩”和1件“雪容融”共需150元,购买3件“冰墩墩”和2件“雪容融”共需245元.(1)求“冰墩墩”和“雪容融”的单价;(2)学校现需一次性购买上述型号的“冰墩墩”和“雪容融”纪念品共100个,要求购买的总费用不超过5000元,则最多可以购买多少个“冰墩墩”?2.为支援上海抗击新冠肺炎,甲地捐赠多批救援物资并联系了一家快递公司进行运送.快递公司准备安排A、B两种车型把这批物资从甲地快速送到上海.其中,从甲地到上海,A型货车1辆、B型货车1辆,一共需补贴油费1000元;A型货车10辆、B 型货车6辆,一共需补贴油费8400元.(1)从甲地到上海,A、B两种型号的货车,每辆车需补贴的油费分别是多少元?(2)如果需派出20辆车,并且预算油费补贴不超过9600元,那么该快递公司至多能派出几辆A型货车?3.开学前夕,某书店计划购进A、B两种笔记本共350 本.已知A种笔记本的进价为12 元/本,B种笔记本的进价为15 元/本,共计4800 元.(1)请问购进了A种笔记本多少本?(2)在销售过程中,A、B两种笔记本的标价分别为20元/本、25元/本.受疫情影响,两种笔记本按标价各卖出m本以后,该店进行促销活动,剩余的A种笔记本按标价的七折全部售出,剩余的B种笔记本按成本价清货,若两种笔记本的总利润不少于2348元,请求出m的最小值.4.抗击新型冠状肺炎疫情期间,84消毒液和酒精都是重要的防护物资.某药房根据实际需要采购了一批84消毒液和酒精,共花费11000元,84消毒液和酒精的进价和售价如下:(1)该药房销售完这批84消毒液和酒精后共获利5400元,则84消毒液和酒精各销售了多少瓶?(2)随着疫情的发展,结合药房实际,该药房打算用不超过6600元钱再次采购84消毒液和酒精共300瓶,已知84消毒液和酒精价格不变,则第二批最多采购84消毒液多少瓶?5.小玉计划购买A、B两种饮料,若购买8瓶A种饮料和5瓶B种饮料需用220元;若购买4瓶A种饮料和6瓶B种饮料需用152元.(1)求每瓶A种饮料和B种饮料各多少元;(2)小玉决定购买A种饮料和B种饮料共15瓶,总费用不超过260元,那么最多可以购买多少瓶A种饮料?6.小明家新买了一套住房,打算装修一下,春节前住进去.现有甲、乙两家装修公司可供选择,这两家装修公司提供的信息如下表所示:若设需要x天装修完毕,请解答下列问题:(1)请分别用含x的代数式,写出甲、乙两家公司的装修总费用;(2)当装修天数为多少时,两家公司的装修总费用一样多?(3)根据装修天数x讨论选择哪家装修公司更合算(提示:结合(2)中的结论进行分类解决问题).7.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)公司决定购买甲、乙两种型号的设备共10台,且该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司甲种型号的设备至多购买几台?8.为庆祝“元旦”,光明学校统一组织合唱比赛,七、八年级共92人(其中七年级的人数多于八年级的人数,且七年级的人数不足90人)准备统一购买服装参加比赛.如表是某服装厂给出服装的价格表:(1)如果两个年级分别单独购买服装一共应付5000元,求七、八年级各有多少学生参加合唱比赛;(2)如果七年级参加合唱比赛的学生中,有10名同学抽调去参加绘画比赛,不能参加合唱比赛,请你为两个年级设计一种最省钱的购买服装方案.9.某电器超市销售每台进价分别为140元、100元的A、B两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入一进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市准备用不多于6500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过2850元的目标?若能,请给出相应的采购方案:若不能,请说明理由.10.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;购进A种商品6件和B种商品8件需440元.(1)A、B两种商品每件的进价分别为多少元?(2)若该商店A种商品每件的售价为48元,B种商品每件的售价为31元,该商店准备购进A、B两种商品共50件,且这两种商品全部售出后总获利不低于344元,则至少购进多少件A种商品?11.学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.(1)购买一件A道具和一件B道具各需要多少元?(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.求道具A最多购买多少件?12.对于企业来说:科学技术永远是第一生产力,在长沙市里程最长、站点最多的地铁6号线建设过程中,某知名运输集团承包了地铁6号线多标段的土方运输任务,该集团为了出色完成承接任务,拟派出该集团自主研发的A、B两种新型运输车运输土方.已知4辆A型运输车与3辆B型运输车一次共运输土方64吨,2辆A型运输车与4辆B型运输车一次共运输土方52吨.(1)请问一辆A型运输车和一辆B型运输车一次各运输土方多少吨?(2)该运输集团决定派出A、B两种型号新型运输车共18辆参与运输土方,若每次运输土方总量不小于169吨,且B型运输车至少派出4辆,则有哪几种派车方案?13.某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;若购进A种商品6件和B种商品8件需440元.(1)求A、B两种商品每件的进价分别为多少元?(2)商店准备用不超过1615元购进50件这两种商品,求购进A种商品最多是多少件?14.某超市共用24000元同时购进甲、乙两种型号书包各200个,购进甲型号书包40个比购进乙型书包30个少用100元.(1)求甲、乙两种型号书包的进价各为多少元?(2)若超市把甲、乙两种型号书包均按每个90元定价进行零售,同时为扩大销售,拿出一部分书包按零售价的8折进行优惠销售.商场在这批背包全部售完后,若总获利不低于10200元,则超市用于优惠销售的书包数量最多为多少个?15.某工艺品店购进A,B两种工艺品,已知这两种工艺品的单价之和为200元,购进2个A种工艺品和3个B种工艺品需花费520元.(1)求A,B两种工艺品的单价;(2)该店主欲用9600元用于进货,且最多购进A种工艺品36个,B种工艺品的数量不超过A种工艺品的2倍,则共有几种进货方案?16.每年的4月22日是世界地球日.某校为响应“携手为保护地球投资”的号召计划购入,A B两种规格的分类垃圾桶,用于垃圾分类.若购买A种垃圾桶30个和B种垃圾桶20个共需1020元;若购买A种垃圾桶50个和B种垃圾桶40个共需1860元.(1),A B两种垃圾桶的单价分别是多少元?(2)若该校最多有4360元用于购买这两种规格的垃圾桶共200个,则B种垃圾桶最多可以买________个.17.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元.(1)A,B两种商品的单价分别是多少元?(2)已知该商店购买A,B两种商品共30件,要求购买B商品的数量不高于A商品数量的2倍,且该商店购买的A,B两种商品的总费用不超过276元,那么该商店有几种购买方案?18.每年一度的中考牵动着数万家长的心,为了给考生一个良好的环境,某市教委规定每个考场安排考生数是固定的人数,该市A 区的9000 名考生安排的考场数比B 区3000人安排的考场数多200个.(1)求每个考场安排固定考生的人数;(2)该市C区共有可作为考场的大小教室共300 间,由于今年疫情影响,该市教委要求大教室按原固定人数的80%安排考生,小教室按原固定人数的50%安排考生,若该市C 区共有考生6300 人,则至少需要有多少间大教室.19.2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时,就深受大家的喜欢.某供应商今年2月购进一批冰墩墩和雪容融,已知一个冰墩墩的进价比一个雪容融的进价多40元,并且购买20个冰墩墩和30个雪容融的价格相同.(1)问每个冰墩墩和雪容融的进价分别是多少元?(2)根据市场实际,供应商计划用20000元购进这两种吉祥物200个,则他本次采购时最多可以购进多少个冰墩墩?20.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.已知工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?参考答案:1.(1)“冰墩墩”和“雪容融”的单价分别为55元,40元(2)最多可以购买66个“冰墩墩”2.(1)每辆A型货车补贴油费600元,每辆B型货车补贴油费400元.(2)该快递公司至多能派出8辆A型货车.3.(1)购进了A种笔记本150本;(2)m的最小值128.4.(1)84消毒液销售了200瓶,酒精销售了300瓶;(2)120瓶5.(1)每瓶A种饮料20元,每瓶B种饮料12元(2)10瓶6.(1)甲公司的总费用为(900x+2700)元,乙公司的总费用为(960x+1500)元;(2)当装修天数为20天时,两家公司的装修总费用一样多;(3)当x<20时,乙装修公司更合算;当x=20时,两家装修公司一样;当x>20时,甲装修公司更合算.7.(1)甲、乙两种型号设备每台的价格分别为12万元和10万元(2)至多购买5台8.(1)七年级52人,八年级40人;(2)两个年级一起买91套时最省钱;9.(1)A、B两种型号的电风扇的销售单价分别为200元和150元(2)A种型号的电风扇最多能采购37台(3)能实现利润超过2850元的目标,相应方案有两种:方案一:购买A种型号的电风扇36台,购买B种型号的电风扇14台;方案二:购买A种型号的电风扇37台,购买B种型号的电风扇13台10.(1)A种商品每件的进价为40元,B种商品每件的进价为25元(2)至少购进22件A种商品11.(1)购买1件A道具需要15元,1件B道具需要5元(2)道具A最多购买32件12.(1)一辆A型运输车一次运土10吨,一辆B型运输车一次运土8吨(2)有两种派送方案,方案一:派出A型号的新型运输车13辆,B型号的新型运输车5辆;方案二:派出A型号的新型运输车14辆,B型号的新型运输车4辆.13.(1)A种商品每件进价40元,B种商品每件进价25元(2)24件14.(1)A、B两种型号书包的进货单价各为50元、70元;(2)商场用于优惠销售的书包数量为100个.15.(1)A种工艺品的单价为80元,B种工艺品的单价为120元(2)共有3种进货方案16.(1)A种垃圾桶的单价熟练掌握18元,B种垃圾桶的单价是24元.(2)12617.(1)A种商品的单价为16元、B种商品的单价为4元(2)有四种方案,方案一:购买A商品的件数为10件,购买B商品的件数为20件;方案二:购买A商品的件数为11件,购买B商品的件数为19件;方案三:购买A商品的件数为12件,购买B商品的件数为18件;方案四:购买A商品的件数为13件,购买B商品的件数为17件.18.(1)每个考场安排固定考生的人数为30人;(2)至少需要有200间大教室.19.(1)今年2月第一周每个冰墩墩的进价为120元,每个雪容融的进价为80元(2)最多可以购进100个冰墩墩20.共有如下四种方案:A种21件,B种39件;A种20件,B种40件;A种19件,B种41件;A种18件,B种42件。
人教版数学七年级下册第九章不等式与不等式组测试卷附解析一、单选题(共10题;共30分)1.x =3是下列不等式( )的一个解.A. x +1<0B. x +1<4C. x +1<3D. x +1<5 2.下列不等式求解的结果,正确的是( )A. 不等式组 {x ≤−3x ≤−5 的解集是 x ≤−3B. 不等式组 {x >−5x ≥−4 的解集是 x ≥−5C. 不等式组 {x >5x <−7 无解 D. 不等式组 {x ≤10x >−3 的解集是 −3≤x ≥103.在数轴上表示-2≤x <1正确的是( ) A.B.C. D.4.关于x 的不等式 2x +m >−6 的解集是 x >−3 ,则m 的值为( ) A. 1. B. 0. C. -1. D. -25.若m >n ,则下列不等式正确的是( )A. m -4<n -4B. m4>n4 C. 4m <4n D. -2m >-2n 6.已知关于x 、y 的方程组 {x +y =1−a x −y =3a +5 ,满足 x ≥12y ,则下列结论:① a ≥−2 ;② a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组 {x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( )A. 1个B. 2个C. 3个D. 4个 7.若代数式4x - 32 的值不大于代数式3x +5的值,则x 的最大整数值是( ) A. 4 B. 6 C. 7 D. 88.如果关于x 的不等式组 {5x −2a >07x −3b ≤0 的整数解仅有7,8,9,那么适合这个不等式组的整数a ,b 的有序数对(a ,b )共有( )A. 4对B. 6对C. 8对D. 9对9.某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打( )A. 6折B. 7折C. 8折D. 9折10.运行程序如图所示,从“输入实数 x”到“结果是否<18”为一次程序操作,若输入 x 后程序操作仅进行了三次就停止,那么 x 的取值范围是( )A. x ≥329B. 329≤x ≤143C. 329<x ≤143D. x ≤143二、填空题(共8题;共24分)11.如果关于 x 的不等式 2x −m <0 的正整数解恰有2个,则 m 的取值范围是________. 12.“x 与y 的平方和大于8. ”用不等式表示: ________. 13.若 y =2x −6 ,当 x ________时, y >0 ;14.某校规定把期中考试成绩的40%与期末考试成绩的60%的和作为学生的总成绩.该校李红同学在期中考试中数学考了86分,她希望自己这学期数学总成绩不低于92分,她在期末考试中数学至少应得多少分?设她在期末考试中数学考了 x 分,则可列不等式________.15.关于 x 的不等式 bx <a 的解集为 x >−2 ,写出一组满足条件的实数 a ,b 的值:a= ________,b= ________.16.如果不等式组 {x2+a ≥22x −b <3的解集是 0≤x <1 ,那么 a +b 的值为________.17.按下面的程序计算,若开始输入的值 x 为正整数:规定:程序运行到“判断结果是否大于10”为一次运算,例如当 x =2 时,输出结果等于11,若经过2次运算就停止,则 x 可以取的所有值是________.18.关于 x,y 的方程组 {x −y =1+3mx +3y =1+m 的解 x 与 y 满足条件 x +y ≤2 ,则 4m +3 的最大值是________.三、计算题(共1题;共10分)19.解下列不等式(1)4x-2+1x−5>1x−5+3x +2 (2)7x−62x+3>2四、解答题(共7题;共54分)20.(6分)解不等式组: {x −3(x −2)≥42x−15<x+12 并求该不等式组的非负整数解.21.(7分)解不等式 1−2x 3+x+22≥1 ,并把解集在数轴上表示出来.22.(7分)已知关于x ,y 的二元一次方程组 {3x −y =ax −3y =5−4a 的解满足 x <y ,试求a 的取值范围.23.(7分)某居民小区污水管道里积存污水严重,物业决定请工人清理.工人用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,若工人抽污水每小时的工钱是60元,那么抽完污水最少需要支付多少元?24.(8分)新冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂共同完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天,问至少应安排两个工厂共同工作多少天才能完成任务25.(9分)北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?26(10分).对x,y定义了一种新运算T,规定T(x,y)= ax+by2x+y(其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1,已知T(1,﹣1)=﹣2,T(4,2)=1.(1)求a,b的值;(2)若关于m的不等式组{T(2m,5−4m)≤4T(m,3−2m)>p恰好有3个整数解,求p的取值范围.答案解析部分一、单选题 1.【答案】 D【解析】【解答】解:A 、3+1=4>0,故A 不成立; B 、3+1=4,故B 不成立; C 、3+1=4>3,故C 不成立; D 、3+1=4<5,故D 成立; 故答案为:D.【分析】直接将x=3代入各个不等式,不等式成立的即为所选. 2.【答案】 C【解析】【解答】解:A 、不等式组 {x ≤−3x ≤−5 的解集根据“同小取较小”的原则可知,此不等式组的解集为x≤-5;B 、不等式组 {x >−5x ≥−4 的解集是根据“同大取较大”的原则可知,此不等式组的解集为x≥-4;C 、不等式组 {x >5x <−7 根据“大大小小解为空”的原则可知,此不等式组无解;D 、不等式组 {x ≤10x >−3 的解集根据“小大大小中间找”的原则可知,-3<x≤10.故答案为:C .【分析】根据不等式组解集的确定方法分别求出各不等式组的解集即可. 3.【答案】 D【解析】【解答】解:解:x≥-2表示-2右边的部分,含-2这点,应为实心点,x<1表示1左边的部分,不含1这点,应为空心点,则正确的是D .【分析】根据不等式解集的表示法,在数轴上表示出两个不等式即可. 4.【答案】 B【解析】【解答】解: 2x +m >−6 , 2x >−6−m ,x >−6+m2由题知x >-3, 则 −6+m 2=−3 ,解得:m=0, 故答案为:B .【分析】解不等式求出 x >−6+m 2,结合 x >−3 ,从而得出 −6+m 2=−3 ,解之可得.5.【答案】 B【解析】【解答】解:A 、∵m >n ∴m-4>n-4,故A 不符合题意; B 、∵m >n ∴m4>n4 , 故B 符合题意; C 、∵m >n∴4m >4n ,故C 不符合题意; D 、∵m >n∴-2m <-2n ,故D 不符合题意; 故答案为:B.【分析】利用不等式的性质1,可对A 作出判断;利用不等式的性质2可对B ,C 作出判断,利用不等式的性质3,可对D 作出判断。
人教版七年级下册数学不等式与不等式组应用题专项训练1.某班开展植树活动,欲购买甲、乙两种树苗.已知购买25棵甲种树苗和10棵乙种树苗共需1250元,购买15棵甲种树苗和5棵乙种树苗共需700元.(1)求购买的甲、乙两种树苗的单价.(2)经商量、决定用不超过1600元的费用购买甲、乙两种树苗共40棵,其中乙种树苗的数量不少于甲种树苗数量的13,求购买的甲种树苗数量的取值范围.2.为满足广大居民的常态性防疫需求,我市某药店需储备一定数量的医用酒精和医用口罩.已知每箱医用酒精比每箱医用口罩的进价多100元.该药店用3600元去购买医用酒精的箱数恰好与用2700元去购买医用口罩的箱数相同.(1)求每箱医用酒精和每箱医用口罩的进价各是多少元?(2)由于疫情紧张,该药店为了帮助大家共渡难关,决定再次购买医用酒精和医用口罩共50箱用于储备,此时,每箱医用口罩的进价已经增长了20%,每箱医用酒精的进价也已经增长了10%,如果再次购买两种防护用品的总费用不超过19400元,那么该药店最多可购进多少箱医用酒精?3.某商店需要购进甲、乙两种商品共120件,其进价和售价如下表:(1)若商店计划销售完这批商品后能获利1000元,请问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4000元,且销售完这批商品后获利多于1135元,请问有哪几种购货方案?并指出获利最大的购货方案.4.红星中学计划从某公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据红星中学实际情况,需从某公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的13.请你通过计算,求出红星中学从某公司购买A、B两种型号的小黑板有哪几种方案?5.某医院准备派遣医护人员协助西安市抗击疫情,现有甲、乙两种型号的客车可供租用,已知每辆甲型客车的租金为280元,每辆乙型客车的租金为220元,若医院计划租用6辆客车,租车的总租金不超过1530元,那么最多租用甲型客车多少辆?6.某工人制造机器零件,如果每天比预定的多做一件,那么80天所做的零件数超过1000件;如果每天比预定的少做一件,那么80天所做的零件数不到900件,这个工人预定每天做几件零件?7.为了防控“新冠肺炎”疫情,某校积极进行校园环境消毒,购买了甲、乙两种消毒液共100瓶,其中甲种8元/瓶,乙种12元/瓶.(1)如果购买这两种消毒液共用1040元,求甲,乙两种消毒液各购买多少瓶?(2)该校准备再次购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍少4瓶,且所需费用不多于1200元,求甲种消毒液最多能再购买多少瓶?8.在某官方旗舰店购买3个冰墩墩和6个雪融融毛绒玩具需1194元;购买1个冰墩墩和5个雪融融毛绒玩具需698元.(1)求冰墩墩、雪融融毛绒玩具单价各是多少元?(2)某单位准备用不超过3000元的资金在该官方旗舰店购进冰墩墩、雪融融两种毛绒玩具共20个,问最多可以购进冰墩墩毛绒玩具多少个?9.要开学了,学校计划购买一些篮球、足球.若购买6个篮球和8个足球共花费1700元,且购买一个篮球比购买一个足球多花50元.(1)求购买一个篮球,一个足球各需多少元;(2)今年学校计划购买这种篮球和足球共10个,恰逢商场在促销活动,篮球打九折,足球打八五折,若此次购买两种球的总费用低于1150元,则最多可购买多少个篮球?10.截至12月25日,全国累计报告接种新型冠状病毒疫苗超过12亿剂次.为了满足市场需求,某公司计划投入10个大、小两种车间共同生产同一种新型冠状病毒疫苗,已知1个大车间和2个小车间每周能生产疫苗共35万剂,2个大车间和1个小车间每周能生产疫苗共40万剂,每个大车间生产1万剂疫苗的平均成本为90万元,每个小车间生产1万剂疫苗的平均成本为80万元.(1)该公司每个大车间、小车间每周分别能生产疫苗多少万剂?(2)若投入的10个车间每周生产的疫苗不少于135万剂,请问一共有几种投入方案,并求出每周生产疫苗的总成本最小值?11.嘉琪到某水果店购买苹果梨,他发现购买1千克苹果和2千克梨需要26元,购买3千克苹果和1千克梨需要28元.(1)妈妈让嘉琪去购买苹果和梨各1千克,给他发了20元红包,够用吗?说明理由;(2)到家后妈妈问嘉琪:“如果给你100元购买苹果和梨,当购买的苹果重量是梨的2倍时,最多能买多少千克苹果(千克只取整数)?”请用不等式的知识帮助嘉琪解决这个问题.12.某班到毕业时有经费1800元,决定拿出不少于270元但不超过300元的资金为老师买纪念品,其余资金用于给50名同学每人买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元?(2)有几种购买文化衫和相册的方案?13.某工厂接受了15天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工8个G型装置或4个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4个G型装置.请问至少需要补充多少名新工人?14.一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售(整箱配货),预计每箱水果的盈利情况如下表:(1)如果按照“甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱”的方案配货,请你计算出经销商能盈利多少元?(2)如果按照“甲、乙两店盈利相同配货”的方案配货,请写出一种配货方案:A种水果甲店______箱,乙店______箱;B种水果甲店______箱,乙店______箱,并根据你填写的方案计算出经销商能盈利多少元?(3)在甲、乙两店各配货10箱,甲店配的A种水果与乙店配的B种水果箱数相同,且保证乙店盈利不小于115元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少元?15.在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品40件,B种物品50件,共需840元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共600件,总费用不超过6500元,那么A种防疫物品最多购买多少件?16.某工人加工零件,若每小时加工50个,则6小时就可按时完成.(1)工人需要加工多少个零件?(2)若他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?17.某电器超市销售进价分别为200元/台,170元/台的A、B两种型号的电风扇.下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市准备采购电风扇共30台,并打算销售完这批电风扇实现利润不低于1320元,则A种型号的电风扇至少要采购多少台?18.为建设京西绿色走廊,改善永定河水质,某治污公司决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格与月处理污水量如下表:(1)经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.求x、y的值;(2)如果治污公司购买污水处理设备的资金不超过105万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2040吨,为了节约资金,请为该公司设计一种最省钱的购买方案.19.采购甲、乙两种抗疫物资共540吨,甲物资单价为4万元/吨,乙物资单价为3万元/吨,采购两种物资共花费1920万元.(1)求甲、乙两种物资各采购了多少吨?(2)现在计划安排A,B两种不同型号的卡车共50辆来运输这批物资.甲物资7吨和乙物资3吨可装满一辆A型卡车;甲物资5吨和乙物资7吨可装满一辆B型卡车。
人教版七年级下册数学不等式与不等式组应用题训练1.随着夏季的到来,某床上用品店准备新进A,B两种不同型号的凉席.在进货时,发现购进10件A种凉席和15件B种凉席的费用是4250元;购进22件A种凉席和30件B种凉席的费用是8900元.(1)求A,B两种凉席每件进价是多少元?(2)已知A种凉席每件的售价是300元,B种凉席每件的售价是220元,现在准备购进A种和B种凉席共60件,若使全部售完后获取的利润不低于5000元,则最少需要购进A种凉席多少件,并说明理由.2.立体书兼具了传统书的内容和形式,也拥有玩具的趣味和功能.某工厂生产了一款立体书,按标价销售此立体书,每本可获利30元;若按标价的八折销售6本此立体书与将标价降低10元销售3本此立体书获得的利润相同.(1)该工厂生产的这款立体书的标价与成本分别为多少元?(2)该工厂原计划按标价销售这款立体书共600本,销售一部分后发现生意火爆,于是将每本立体书提价10元,很快全部销售完,最后发现总利润不低于22000元,求提价前最多销售多少本此款立体书?3.某汽车租赁公司要购买轿车和面包车共10辆,已知轿车每辆7万元,面包车每辆4万元,其中轿车至少要购买3辆,且公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有哪几种?(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么该租赁公司应选择以上哪种购买方案?4.莆田市校园阅读研究中心开展“教师共读”活动:计划购买甲乙两种书籍共100套,其中甲种书籍每套售价120元,乙种书籍每套售价80元.(1)如果购买甲乙两种书籍一共花费了9600元,求购买甲乙两种书籍各多少套?(2)设购买甲种书籍m套,如果购买乙种书籍的套数不超过甲种书籍的2倍,并且总费用不超过9440元,问购买甲乙两种书籍共有几种方案?哪种方案所需总费用最少?最少总费用是多少?5.某零食店销售牛轧糖、雪花酥2种糖果,如果用800元可购买5千克牛轧糖和4千克雪花酥,用760元可购买7千克牛轧糖和2千克雪花酥.(1)求牛轧糖、雪花酥每千克的价格分别为多少元?(2)已知该零食店在12月共售出牛轧糖50千克、雪花酥30千克.春节将近,1月份超市将牛轧糖每千克的售价提升43m元,雪花酥的价格不变,结果与12月相比,牛轧糖只销售了45千克,雪花酥销量上升1m5千克,销售总额超过了12月份销售总额;求m的取值范围.6.某地面对形势异常严峻的新冠疫情,遵从党和国家部署,最大程度保障人民群众的健康,将所在区域划分为封控区、管控区和防范区. 现要将一批蔬菜运往封控区,已知用3辆A型车和1辆B型车装满蔬菜一次可运26吨;用1辆A型车和2辆B型车装满蔬菜一次可运22吨.(1)求一辆A型车和一辆B型车装满蔬菜分别可运多少吨?(2)若一辆A型车的租金是180元,一辆B型车的租金是220元,该地计划租用A型车和B型车共7辆,且租金不超过1400元,问最多可租用几辆B型车?7.为了减少疫情带来的损失,某市决定加快复工复产.该市一企业需要运输一批物小货车一次可运输650箱物资.(1)1辆大货车与1辆小货车一次分别可运输多少箱物资?(2)该企业计划用这两种货车共12辆一次性运输这批物资,每辆大货车运输一次需5000元运费,每辆小货车运输一次需3000元运费.若运输物资不少于1500箱,且总费用小于53000元.请你列出所有运输方案,并指出哪种方案所需要费用最少,最少费用是多少元?8.用甲、乙两种原料配制成某种饮料,已知两种原料的维生素C 的含量以及购买这两种原料的价格如下表所示:现配制这种饮料10kg ,所需乙种原料的质量为()kg 0x x ≠.(1)当配制成的饮料,维生素C 的含量不少于4200单位,求配制这种饮料需乙种原料的质量范围;(2)在(1)的条件下,为了称量方便,所需甲、乙两种原料的质量均为整数,请你判断配制这种饮料共有几种方案,并计算哪种方案所需费用较少.9.国内某航空公司为提高经济效益,准备一次性购买国内A 品牌飞机和国际B 品牌飞机若干架.若购买2架国内A 品牌飞机和3架国际B 品牌飞机共需36亿元;购买4架国内A 品牌飞机和1架国际B 品牌飞机共需32亿元.(1)求购买一架国内A 品牌飞机与一架国际B 品牌飞机各需多少亿元;(2)根据该航空公司的实际情况,需一次性购买国内A 品牌飞机和国际B 品牌飞机共10架(两种品牌飞机均需购买),要求购买国内A 品牌飞机和国际B 品牌飞机的总费用不超过64亿元,共有哪几种购买方案?10.某水果店主计划采购A、B两种水果100kg进行销售,其中A水果的进货量(取整数)不小于28kg,下表为这两种水果的进货价、销售价及损耗率:经预算,该店主准备采购的总资金不高于950元.(1)请你为店主设计有几种采购方案,请写出具体方案;(2)设采购A水果akg,请用含有a字母的代数式(化简后)表示采购A、B两种水果销售后所获取的利润;在(1)方案中,最多获取利润是多少元?11.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,并写出各种方案.12.张家口市某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰雪运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元.(1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?(2)若该校购进两种冰鞋共50双,其中花滑冰鞋的数量不少于速滑冰鞋的数量,且用于购置两种冰鞋的总经费不超过8900元,则该校本次购买两种冰鞋共有哪几种方案?13.历经7年艰辛努力,北京冬奥会、冬残奥会胜利举办,激发了亿万人民的体育热情,推动了我国体育业发展.某校为了普及推广冰雪活动进校园,准备购买滑雪镜和滑雪手套用于开展冰雪运动,已知购买20副滑雪镜和60副滑雪手套共需7800元,购买40副滑雪镜和50副滑雪手套共需10000元.(1)求滑雪镜和滑雪手套每副购买的价格分别为多少元?(2)学校准备购买滑雪镜和滑雪手套共100副,购买的总费用不能超过12000元,则该校最多购买滑雪镜多少副?14.2022年冬奥会吉祥物“冰墩墩”与冬残奥会吉祥物“雪容融”深受人们的喜爱.某玩具店预购进这两款吉祥物玩具100个进行销售.若购进20个“冰墩墩”和10个“雪容融”共需1000元;若购进10个“冰墩墩”和20个“雪容融”共需950元.(1)求“冰墩墩”和“雪容融”单价;(2)若购买“冰墩墩”不少于60个,所需费用总额不超过3310元,请你求出满足要求的所有进货方案,并直接写出最省钱的进货方案.15.某商场在“双11”前准备从供货商家处新选购一批商品,已知按进价购进1件甲种商品和2件乙种商品共需320元,购进3件甲种商品和2件乙种商品共需520元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)若甲种商品的售价为每件120元,乙种商品的售价为每件140元,该商场准备购进甲、乙两种商品共50件,且这两种商品全部售出后总利润不少于1350元,不高于1375元.若购进甲种商品m件,请问该商场共有哪几种进货方案?(3)根据往年销售情况,商场计划在“双11”当天将现有的甲、乙两种商品共46件按(2)中的售价全部售完.但因受拉尼娜现象形成的冷空气持续影响,当天出现的雨雪天气使得46件商品没有全部售完,两种商品的实际销售利润总和为1220元.那么,“双11”当天商场至少卖出乙种商品多少件?16.篮球赛单循环赛一般按积分确定名次.胜一场得2分,负一场得1分.如果积分相同,再比较相互间胜负记录.某次篮球联赛中,太阳队与蓝天队要争夺一个出线权,太阳队目前的战绩是12胜8负(与蓝天队无比赛),后面还要比赛5场(其中与蓝天队有一场比赛);蓝天队目前的战绩是10胜10负,后面还要比赛5场.探究以下问题:(1)为确保出线,太阳队在后面的比赛中至少要胜多少场?(2)如果太阳队在后面的比赛中3胜2负,未能出线,那么蓝天队后续战果如何?17.河南某校为做好新型冠状病毒感染的预防工作,计划为教职工购买一批洗手液(每人1瓶).学校派王老师去商场购买,他在商场了解到,某个牌子的洗手液,售价为每瓶14元,有两种优惠活动:活动一:一律打9折;活动二:当购买量不超过50瓶时,按原价销售;当购买量超过50瓶时,超过的部分打8折.如果该校共有m名教职工,请你帮王老师设计最省钱的购买方案.18.炎炎夏日,雪糕成为降暑解渴的必需品,小王通过市场调查,准备购进甲乙两种口味的雪糕进行销售.已知购进30支甲种口味雪糕和25支乙种口味雪糕共需215元;购进40支甲种口味雪糕和50支乙种口味雪糕共需370元.(1)求两种雪糕的进价分别为每支多少元?(2)甲种口味雪糕售价为每支4.5元,乙种口味雪糕售价为每支7元,在销售过程中,小王发现甲种口味的雪糕更受人们喜爱,所以打算再次购进两种雪糕共800支,并且乙种口味雪糕的数量不多于甲种口味雪糕数量13,则乙种口味雪糕最多购进多少支?此时的利润是多少元?19.疫情期间为了满足口罩需求,某药店计划购买同一品牌的甲型口罩和乙型口罩.已知购买1个甲型口罩和2个乙型口罩需花费8元,购买2个甲型口罩和3个乙型口罩需花费13元.(1)求购买该品牌一个甲型口罩、一个乙型口罩各需花费多少元?(2)如果药店需要甲型口罩的个数是乙型口罩个数的2倍还多8个,且该药店购买甲型口罩和乙型口罩的总费用不超过5000元,那么该药店最多可购买多少个该品牌乙型口罩?20.随着“一带一路”的进一步推进,我国瓷器更是“一带一路”沿线人民所推崇的,某商户看准这一商机,准备经销瓷器茶具,计划购进青瓷茶具和白瓷茶具共80套.已知青瓷茶具每套280元,白瓷茶具每套250元,设购进x套青瓷茶具,购进青瓷茶具和白瓷茶具的总费用为y.(1)求出y与x之间的函数关系式;(2)该商户想要用不多于20900元的钱购进这两种茶具,且购买白瓷茶具的数量不超过青瓷茶具的两倍,请问有哪几种购进方案.。
初一数学方程组与不等式组试题答案及解析1.如图2,天秤中的物体a、b、c使天秤处于平衡状态,则物体a与物体c的重量关系是A.2a=3c B.4a=9c C.a=2c D.a=c【答案】B【解析】根据图形得出2a=3b,2b=3c,根据等式性质得出4a=6b,6b=9c,推出4a=6b=9c,即可求出答案.解:∵由图可知:2a=3b,2b=3c,∴4a=6b,6b=9c,∴4a=6b=9c,即4a=9c,故选B.本题考查了对等式的性质的应用,关键是能根据等式的性质得出4a=6b,6b=9c,题目比较好,但是一道比较容易出错的题目.2.下图是一个数值转换机的示意图,若输入的值为3,的值为-2时,则输出的结果为:________.【答案】5【解析】略3.(1)化简(2)先化简,再求值:,其中,【答案】(1)(2)12【解析】(1)化简2分4分5分(2)先化简,再求值:,其中,1分2分3分4分="12 " 5分解方程4.的与7的差不小于3,用不等式表示为:.【答案】【解析】的与7的差不小于3,用不等式表示为:.【考点】列不等式.5.解方程组(每题5分,共10分)(1)(2)【答案】(1);(2)【解析】按照解二元一次方程组的解法求解即可.试题解析:(1)由②×2-①×3得6x-16y-10-6x+21y+24=0.解得y=把y=代入①得x=;故方程组的解为:(2)化简得解得:【考点】解二元一次方程组6.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对题.【答案】22.【解析】设他至少要答对x题,则5x-(30-x)>100,解得x>,即至少要答对22题.故答案为:22.【考点】列不等式解应用题.7.如果x=2是方程x+a=-1的解,那么a的值是.【答案】—2.【解析】把x值代入此式,解关于a的一元一次方程,1+a=-1,所以a=-2.【考点】解简单的一元一次方程.8.不等式组的解集是()A.x<-3B.x<-2C.-3<x<-2D.无解【答案】A.【解析】解不等式-x>3得:x<-3,小小取较小,故取解集x<-3,或者在数轴上表示出两个解集,取公共部分,为x<-3,故选A.【考点】确定不等式组的解集.9.解方程组和不等式(组):(9分,每题3分)(1)(2)解不等式2x-1<4x+13,并将解集在数轴上表示出来:(3)【答案】(1)(2)>-7 (3)<【解析】(1)用加减消元法或代入消元法均可;(2)先移项,然后合并同类项,系数化为1时注意是否改变不等号的方向,最后在数轴上表示解集;(3)把两个不等式都解出来,取他们的公共部分,如没有公共部分,则无解.试题解析:(1)用加减消元法:将方程①两边同时乘以3得:3x-3y=9,③,③-②得:5y=-5,∴y=-1,把y=-1代入①得:x=2,∴此方程组的解是:;(2)移项:2x-4x<13+1,合并同类项:-2x<14,系数化为1时要变号:x>-7.(3)解不等式①得:x<,解不等式②得:x≤15;∴此不等式组的解集是x<.【考点】1.解二元一次方程组;2.解一元一次不等式并在数轴上表示解集;3.解不等式组.10.(本题满分10分)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==2b-1.(1)已知T(1,﹣1)=﹣2,T(4,2)=3.①求a,b的值;②若关于m的不等式组恰好有2个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?【答案】(1)①a=,b=;②;(2)a="2b" ;【解析】(1)①按题意的运算可得方程组,即可求得a、b的值;②按题意的运算可得不等式组,即可求得p的取值范围;(2)由题意可得ax+2by-1= ay+2bx-1,从而可得a="2b" ;试题解析:(1)①由题意可得,解得;②由题意得,解得,因为原不等式组有2个整数解,所以,所以;(2)T(x,y)="ax+2by-1," T(y,x)="ay+2bx-1" ,所以ax+2by-1= ay+2bx-1,所以(a-2ba)x-(a-2b)y=0,(a-2b)(x-y)=0,所以a="2b" ;【考点】1.新定义题;2.阅读理解题.11.已知x、y满足方程组,则x-y的值是()A.-1B.0C.1D.2【答案】A【解析】②-①得:x-y=7-8=-1,故选A.【考点】解二元一次方程组.12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5 %,则至多可打折.【答案】七【解析】设至多打x折,则1200×- 800≥800×5%,解得x≥7,即最多可打7折.故答案为:7.【考点】一元一次不等式的应用.13.电脑公司销售一批计算机,第一个月以5 500元/台的价格售出60台,第二个月起降价,以5 000元/台的价格将这批计算机全部售出,销售总额超过55万元,这批计算机至少有台.【答案】104.【解析】设这批计算机有x台,由题意得,5500x×60+5000(x-60)>550000,解得x≥104,所以这批计算机至少有104台.故答案为:104.【考点】一元一次不等式的应用.14.解方程:.【答案】x=-3【解析】按照解方程的基本步骤:去分母,去括号,移项、合并同类项,系数化为1计算即可.试题解析:去分母,得:2(2x+1)﹣(5x﹣1)=6去括号,得:4x+2﹣5x+1=6移项、合并同类项,得:﹣x=3方程两边同除以﹣1,得:x=﹣3.【考点】解一元一次方程.15. 2015年2月1日宿迁市最高气温是8℃,最低气温是-2℃,则当天宿迁市气温变化范围t (℃)是()A.t>8B.t<2C.-2<t<8D.-2≤t≤8【答案】D【解析】根据题意可知,最高气温为8℃,最低气温为-2℃,因此当天宿迁市气温变化范围为-2≤t≤8.故选D【考点】不等式16.如果不等式组无解,那么m的取值范围是()A.m>8B.m≥8C.m<8D.m≤8【答案】B【解析】根据不等式组的解集的求法:都大取较大,都小取较小,大小小大取中间,大大小小无解.由不等式组无解可知m≥8.故选B【考点】不等式组的解集17.一个三角形的3边长分别是xcm、(x+2)cm、(x+4)cm,它的周长不超过20cm,则x 的取值范围是()A.2<x<B.2<x≤C.2<x<4D.2<x≤4【答案】B【解析】根据题意可知x+(x+2)+(x+4)≤20,求得x≤,且根据三角形的三边关系可知x+(x+2)<x+4,解得x>2,因此可知x的取值范围为2<x≤.故选B【考点】三角形的三边关系,三角形的周长18.在方程2x+y=3中,用含x的代数式表示y为_________________.【答案】y=-2x+3.【解析】移项即可得答案.【考点】二元一次方程的变形.19.(1)(2)【答案】(1)(2)【解析】本题根据加减消元法进行求二元一次方程组.试题解析:(1)①、②,①+②得:7m=14,解得:m=2将m=2代入②得:8+2n=9 解得:n=∴原方程组的解为:(2)①②①×2+②×5得:26x=39 解得:x=将x=代入①得:3×-5y=7解得:y=-∴原方程组的解为:【考点】解二元一次方程组.20.如图,两根铁棒直立于桶底水平的木桶,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,求此时木桶中水的深度.如果设一根铁棒长xcm,另一根铁棒长ycm,则可列方程组为()A.B.C.D.【答案】B.【解析】设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为220cm,所以可得方程x+y=220,又知两棒未露出水面的长度相等,又可得方程,把两个方程联立,组成方程组即可.故答案选B.【考点】二元一次方程组的应用.21.已知是方程2x+ay=6的解,则a= .【答案】2【解析】将x和y的值代入方程,列出关于a的一元一次方程,从而求出a的值.【考点】解一元一次方程.22.(本题满分10分)学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车1辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总的租车费用不超过2300元,求最省钱的租车方案.【答案】(1)大、小车每辆的租车费分别是400元和300元.(2)最省钱的租车方案是大车4辆小车2辆,总租车费用2200元.【解析】(1)此题用二元一次方程组求解,设租用一辆大车的租车费是x元,租用一辆小车的租车费是y元,根据租用1辆大车2辆小车共需租车费1000元,租用2辆大车1辆小车共需租车费1100元,建立方程组求解;(2)由题意可知,若每辆车上至少要有一名教师,学校6名教师,最多有6台车,共有240人,又因为240÷45=,即使全租大车也超过5台,所以共租6台车,根据6台车所载的人数不能少于240人,6台车的费用不超过2300元,列不等式组求解集,讨论其正整数解及最省钱的租车方案.试题解析:(1)此题用二元一次方程组求解,设租用一辆大车的租车费是x元,租用一辆小车的租车费是y元,根据租用1辆大车2辆小车共需租车费1000元,租用2辆大车1辆小车共需租车费1100元,建立方程组得:,解得:.∴大、小车每辆的租车费分别是400元和300元;(2)由题意可知,若每辆车上至少要有一名教师,学校6名教师,最多有6台车,又因为240÷45=,即使全租大车也超过5台,所以共租6台车,根据6台车所载的人数不能少于240人,6台车的费用不超过2300元,列不等式组求解集,,解之得:4≤x≤5.∵x是正整数,∴x=4或5,于是有两种租车方案,方案1:大车4辆小车2辆,总租车费用:400×4+300×2=2200元,方案2:大车5辆小车1辆,总租车费用=400×5+300×1=2300元,2300元>2200元,可见最省钱的是方案1.∴最省钱的租车方案是大车4辆小车2辆,总租车费用2200元.【考点】1.二元一次方程组的实际应用;2.讨论一元一次不等式组的正整数解.23.(3分)小亮解方程组的解为由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为.【答案】—2,8.【解析】把x=5代入2x﹣y=12得2×5﹣y=12,解得y=﹣2,再把x=5,y=﹣2代入2x+y=●,可得●=8,所以这两个数分别为—2,8.【考点】二元一次方程组的解.24.解不等式组:.【答案】3<x≤5【解析】求不等式组的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.首先分别求出两个不等式的解集,然后根据原则求出方程组的公共解.试题解析:解不等式(1)得:x>3.解不等式(2)得:x≤5.∴原不等式组的解为3<x≤5.【考点】解一元一次不等式组25.(8分)解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【答案】不等式组的解集为:﹣1≤x<3.数轴表示见解析;不等式组的非负整数解为2,1,0.【解析】分别计算出两个不等式的解集,再确定不等式组的解集即可,再找出解集范围内的非负整数即可.试题解析:由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.【考点】1.解一元一次不等式组;2.在数轴上表示不等式的解集;3.一元一次不等式组的整数解.26.若方程ax﹣5y=3的一个解是,则a的值是()A.﹣13B.13C.7D.﹣7【答案】A【解析】把x与y的值代入方程计算,即把代入方程得:﹣a﹣10=3,解得:a=﹣13,故选A.【考点】二元一次方程的解27.(10分)解方程组:(1);(2).【答案】(1)(2)【解析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.试题解析:(1),把①代入②得:3y﹣6+2y=﹣1,解得:y=1,把y=1代入①得:x=﹣1,则方程组的解为;(2),①×5+②×3得:22x=55,即x=,把x=代入①得:y=﹣2,则方程组的解为.【考点】解二元一次方程组.28.(10分)商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折,现有27元钱,最多可以购买该商品多少件?【答案】10件【解析】易得27元可购买的商品一定超过了5件,关系式为:5×原价+超过5件的件数×打折后的价格≤27,把相关数值代入计算求得最大的正整数解即可.设可购买该商品x件。
不等式(组)与方程(组)的综合应用1.方程组或不等式出现字母系数时可将字母当数字,解方程组成不等式的参数解。
2.解决不等式(组)或方程(组)的问题可运用整体思想、转化思想、消元思想。
【例1】若方程组3133x y k x y +=+⎧⎨+=⎩解为x ,y ,且2<k <4,则x -y 的取值范围是( ) A.102x y -<<B.01x y -<<C.31x y ---<<D.11x y --<<【例2】若关于x ,y 的二元一次方程组323225x y m x y m -=+⎧⎨-=-⎩的解满足x >y ,求m 的取值范围。
【例3】若2a +b =12,其中a ≥0,b ≥=0,又P=3a +2b ,试确定P 的最小值和最大值。
【例4】若关于x ,y 的二元一次方程组25x y a x y +=⎧⎨-=⎩的解满足1x >,1y ≤,其中a 是满足条件的最小整数,求a 2+1的值。
【例5】已知关于x,y的方程组2232 4x y mx y m-=⎧⎨+=+⎩①②的解满足不等式组3050x yx y+≤⎧⎨+⎩>,求满足条件的m的整数值。
1.已知关于x,y的方程组2121x y ax y a-=+⎧⎨+=-⎩的解满足不等式21x y->,求a的取值范围。
2.已知x、y同时满足三个条件:①324x y p-=-,②4x-3y=2+p,③x>y,则()A.p>-1B.p<1C.1p-< D.1p>3.若30x y z++=,350x y z+-=,x、y、z皆为非负数,求M=5x+4y+2z的取值范围。
4.在关于x ,y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值在数轴上应表示为( )5.已知关于x ,y 的方程组213252x y k x y k +=+⎧⎨-=-⎩的解满足5035x y x y -⎧⎨-+≥-⎩>,求整数k 的值。
人教版七年级数学下册专题训练(含参考答案与解析)说明:本套训练题包含以下7个专题解题技巧专题:一元一次不等式(组)中含字母系数的问题 考点综合专题:一元一次不等式(组)与学科内知识的综合 难点探究专题:平面直角坐标系中的变化规律 解题技巧专题:平面直角坐标系中的图形面积 解题技巧专题:平行线中作辅助线的方法 思想方法专题:相交线与平行线中的思想方法 解题技巧专题:解二元一次方程组解题技巧专题:一元一次不等式(组)中含字母系数的问题——类比不同条件,体会异同◆类型一 已知解集求字母系数的值或取值范围1.(2017·毕节中考)关于x 的一元一次不等式m -2x3≤-2的解集为x ≥4,则m 的值为( )A.14B.7C.-2D.22.(2017·金华中考)若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x <m 的解集是x <5,则m 的取值范围是【易错11】( )A.m ≥5B.m >5C.m ≤5D.m <53.已知关于x 的不等式组⎩⎪⎨⎪⎧x ≥-a -1①,-x ≥-b ②的解集在数轴上表示如图所示,则a b 的值为 .4.若不等式组⎩⎪⎨⎪⎧2x -a <1,x -2b >3的解集为-1<x <1,求代数式(b -1)a +1的值.◆类型二 已知整数解的情况求字母系数的取值范围5.关于x 的不等式x -b >0恰有两个负整数解,则b 的取值范围是( ) A.-3<b <-2 B.-3<b ≤-2 C.-3≤b ≤-2 D.-3≤b <-26.对于任意实数m ,n ,定义一种新运算m ※n =mn -m -n +3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5-3-5+3=10.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是 W.7.(2017·黄石中考)已知关于x 的不等式组⎩⎪⎨⎪⎧5x +1>3(x -1)①,12x ≤8-32x +2a ②恰好有两个整数解,求实数a 的取值范围.◆类型三 已知不等式组有、无解求字母系数的取值范围8.若关于x 的不等式组⎩⎪⎨⎪⎧5-3x ≥0,x -m ≥0有实数解,则实数m 的取值范围是( )A.m ≤53B.m <53C.m >53D.m ≥539.已知关于x 的不等式组⎩⎪⎨⎪⎧x -a ≥0,5-2x >1无解,则实数a 的取值范围是 .10.若关于x 的不等式组⎩⎪⎨⎪⎧x +1<a ①,3x +5>x -7②有解,求实数a 的取值范围.【易错11】参考答案与解析1.D 2.A3.1 解析:由不等式②得x ≤b ,由数轴可得,原不等式组的解集是-2≤x ≤3,∴⎩⎪⎨⎪⎧-a -1=-2,b =3,解得⎩⎪⎨⎪⎧a =1,b =3,∴a b =13=1. 4.解:⎩⎪⎨⎪⎧2x -a <1①,x -2b >3②,解不等式①得x <a +12 .解不等式②得x >2b +3.根据题意得⎩⎪⎨⎪⎧a +12=1,2b +3=-1,解得⎩⎪⎨⎪⎧a =1,b =-2,则(b -1)a +1=(-3)2=9. 5.D6.4≤a <5 解析:根据题意得2※x =2x -2-x +3=x +1.∴a <x +1<7,即a -1<x <6.又∵解集中有两个整数解,∴3≤a -1<4,∴a 的取值范围为4≤a <5.7.解:解不等式①得x >-2,解不等式②得x ≤4+a .∴不等式组的解集是-2<x ≤4+a .∵不等式组恰好有两个整数解,∴0≤4+a <1,解得-4≤a <-3.8.A 9.a ≥210.解:解不等式①得x <a -1.解不等式②得x >-6.∵不等式组有解,∴-6<a -1,∴a >-5.考点综合专题:一元一次不等式(组)与学科内知识的综合——综合运用,全面提升◆类型一 不等式(组)与平面直角坐标系1.(2017·江岸区模拟)已知点P (2a +1,1-a )在第一象限,则a 的取值范围在数轴上表示正确的是( )2.(2017·贵港中考)在平面直角坐标系中,点P (m -3,4-2m )不可能在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知点M (3a -9,1-a )在第三象限,且它的横、纵坐标都是整数,则a 的值是 W.4.在平面直角坐标系中,点A (1,2a +3)在第一象限.(1)若点A 到x 轴的距离与到y 轴的距离相等,求a 的值; (2)若点A 到x 轴的距离小于到y 轴的距离,求a 的取值范围.◆类型二 不等式(组)与方程(组)的综合5.(2017·宜宾中考)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x -y =2m -1,x +3y =3的解满足x +y >0,则m 的取值范围是 W.6.(2017·南城县模拟)已知不等式组⎩⎪⎨⎪⎧x +1<2a ,x -b >1的解集是2<x <3,则关于x 的方程ax+b =0的解为 W.7.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =2m +1①,x -2y =4m -3②的解是一对正数.(1)试确定m 的取值范围;(2)化简|3m -1|+|m -2|.◆类型三 不等式(组)与新定义型问题的综合8.(2017·东胜区二模)我们定义⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,例如⎪⎪⎪⎪⎪⎪2345=2×5-3×4=10-12=-2,则不等式组1<⎪⎪⎪⎪⎪⎪1x 34<3的解集是 W. 9.(2017·龙岩模拟)定义新运算“⊕”如下:当a >b 时,a ⊕b =ab +b ;当a <b 时,a ⊕b =ab -b .若3⊕(x +2)>0,则x 的取值范围是( )A.-1<x <1或x <-2B.x <-2或1<x <2C.-2<x <1或x >1D.x <-2或x >210.(2017·杭州模拟)阅读以下材料:对于三个数a ,b ,c ,用M {a ,b ,c }表示这三个数的平均数,用min{a ,b ,c }表示这三个数中最小的数.例如:M {-1,2,3}=-1+2+33=43;min{-1,2,3}=-1;min{-1,2,a }=⎩⎪⎨⎪⎧a (a ≤-1),-1(a >-1).(1)填空:若min{2,2x +2,4-2x }=2,则x 的取值范围是 ; (2)如果M {2,x +1,2x }=min{2,x +1,2x },求x 的值.参考答案与解析1.C 2.A3.2 解析:由题意得⎩⎪⎨⎪⎧3a -9<0,1-a <0,解得1<a <3.∵横、纵坐标都是整数,∴a 必为整数,∴a =2.4.解:(1)∵点A 到x 轴的距离与到y 轴的距离相等,且点A 在第一象限,∴2a +3=1,解得a =-1.(2)∵点A 到x 轴的距离小于到y 轴的距离,点A 在第一象限,∴⎩⎪⎨⎪⎧2a +3>0,2a +3<1,解得-32<a <-1.5.m >-1 6.x =-127.解:(1)①+②,得2x =6m -2,x =3m -1.①-②得4y =-2m +4,则y =-12m +1.依题意有⎩⎪⎨⎪⎧3m -1>0,-12m +1>0,解得13<m <2.(2)由(1)知13<m <2,∴3m -1>0,m -2<0,∴|3m -1|+|m -2|=3m -1+[-(m -2)]=3m -1-m +2=2m +1.8.13<x <1 9.C 解析:当3>x +2,即x <1时,由题意得3(x +2)+x +2>0,解得x >-2,∴-2<x <1;当3<x +2,即x >1时,由题意得3(x +2)-(x +2)>0,解得x >-2,∴x >1.综上所述,x 的取值范围是-2<x <1或x >1,故选C.10.解:(1)0≤x ≤1 解析:由题意得⎩⎪⎨⎪⎧2x +2≥2,4-2x ≥2,解得0≤x ≤1.(2)方法一:M {2,x +1,2x }=2+x +1+2x3=x +1.当x ≥1时,则min{2,x +1,2x }=2,则x +1=2,∴x =1.当x <1时,则min{2,x +1,2x }=2x ,则x +1=2x ,∴x =1(舍去).∴x =1.方法二:∵M {2,x +1,2x }=2+x +1+2x3=x +1=min{2,x +1,2x },∴⎩⎪⎨⎪⎧2≥x +1,2x ≥x +1,∴⎩⎪⎨⎪⎧x ≤1,x ≥1,∴x =1.难点探究专题:平面直角坐标系中的变化规律——掌握不同规律,以不变应万变◆类型一 沿坐标轴方向运动的点的坐标规律探究1.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2016次运动后,动点P 的坐标是________.2.(2017·阿坝州中考)如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,-1),P 5(2,-1),P 6(2,0),…,则点P 2017的坐标是________.◆类型二 绕原点呈“回”字形运动的点的坐标规律探究3.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.如图,由里向外数第2个正方形开始,分别是由第1个正方形各顶点的横坐标和纵坐标都乘2,3,…得到的,请你观察图形,猜想由里向外第10个正方形四条边上的整点个数共有( )A .10个B .20个C .40个D .80个第3题图 第4题图4.(2017·温州中考)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧P 1P 2︵,P 2P 3︵,P 3P 4︵,…得到斐波那契螺旋线,然后顺次连接P 1P 2,P 2P 3,P 3P 4,…得到螺旋折线(如图),已知点P 1(0,1),P 2(-1,0),P 3(0,-1),则该折线上的点P 9的坐标为( )A .(-6,24)B .(-6,25)C .(-5,24)D .(-5,25)◆类型三 图形变化中的点的坐标探究5.(2017·河南模拟)如图,点A(2,0),B(0,2),将扇形AOB沿x轴正方向做无滑动的滚动,在滚动过程中点O的对应点依次记为点O1,点O2,点O3…,则O10的坐标是()A.(16+4π,0) B.(14+4π,2)C.(14+3π,2) D.(12+3π,0)6.如图,在直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1变换成三角形OA2B2,第三次将三角形OA2B2变换成三角形OA3B3.已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换后的三角形有何变化,找出规律,按此变换规律再将三角形OA3B3变换成三角形OA4B4,则A4的坐标是__________,B4的坐标是__________;(2)若按(1)中找到的规律将三角形OAB进行了n次变换,得到三角形OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测点A n的坐标是__________,点B n的坐标是__________.参考答案与解析1.(2016,0)解析:结合图象可知,当运动次数为偶数次时,P点运动到x轴上,且横坐标与运动次数相等.∵2016为偶数,∴运动2016次后,动点P的坐标是(2016,0).2.(672,1)解析:由已知得P7(2,1),P13(4,1),所以P6n+1(2n,1).因为2017÷6=336……1,所以P2017(336×2,1),即P2017(672,1).3.C解析:每个正方形四个顶点一定为整点,由里向外第n个正方形每条边上除顶点外的整点个数如下表所示:可见,第n个正方形每条边上除顶点外还有(n-1)个整点,四条边上除顶点外有4(n-1)个整点,加上4个顶点,共有4(n-1)+4=4n(个)整点.当n=10时,4n=4×10=40,即由里向外第10个正方形的四条边上共有40个整点.故选C.4.B解析:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离为21+5=26,所以P9的坐标为(-6,25),故选B.5.C6.(1)(16,3)(32,0)(2)(2n,3)(2n+1,0)解析:(1)∵A1(2,3),A2(4,3),A3(8,3),∴A4的横坐标为24=16,纵坐标为3.故点A4的坐标为(16,3).又∵B1(4,0),B2(8,0),B3(16,0),∴B4的横坐标为25=32,纵坐标为0.故点B4的坐标为(32,0).(2)由A1(2,3),A2(4,3),A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故点A n的坐标为(2n,0).由B1(4,0),B2(8,0),B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故点B n的坐标为(2n+1,0).解题技巧专题:平面直角坐标系中的图形面积——代几结合,突破面积及点的存在性问题◆类型一直接利用面积公式求图形的面积1.如图,在平面直角坐标系中,三角形ABC的面积是()A.2 B.4 C.8 D.6第1题图第2题图2.如图,在平面直角坐标系xOy中,已知A(-1,5),B(-1,0),C(-4,3),则三角形ABC的面积为________.◆类型二利用分割法求图形的面积3.如图,在平面直角坐标系中,点A(4,0),B(3,4),C(0,2),则四边形ABCO的面积为________.4.观察下图,图中每个小正方形的边长均为1,回答以下问题:【方法14】(1)写出多边形ABCDEF各个顶点的坐标;(2)线段BC,CE的位置各有什么特点?(3)求多边形ABCDEF的面积.◆类型三利用补形法求图形的面积5.在如图所示的正方形网格中,每个小正方形的边长均为1,三角形ABC的三个顶点恰好是正方形网格的格点.【方法14】(1)写出三角形ABC各顶点的坐标;(2)求出此三角形的面积.◆类型四与图形面积相关的点的存在性问题6.(2017·定州市期中)如图,A(-1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求三角形ABC的面积;(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案与解析1.B 2.1523.11 解析:过点B 作BD ⊥x 轴于D .∵A (4,0),B (3,4),C (0,2),∴OC =2,BD =4,OD =3,OA =4,∴AD =OA -OD =1,则S 四边形ABCO =S 梯形OCBD +S 三角形ABD =12×(4+2)×3+12×1×4=9+2=11. 4.解:(1)A (-2,0),B (0,-3),C (3,-3),D (4,0),E (3,3),F (0,3).(2)线段BC 平行于x 轴(或线段BC 垂直于y 轴),线段CE 垂直于x 轴(或线段CE 平行于y 轴).(3)S多边形ABCDEF =S三角形ABF +S长方形BCEF +S三角形CDE =12×(3+3)×2+3×(3+3)+12×(3+3)×1=6+18+3=27.5.解:(1)A (3,3),B (-2,-2),C (4,-3).(2)如图,分别过点A ,B ,C 作坐标轴的平行线,交点分别为D ,E ,F .S 三角形ABC =S 正方形DECF-S 三角形BEC -S 三角形ADB -S 三角形AFC =6×6-12×6×1-12×5×5-12×6×1=352.6.解:(1)点B 在点A 的右边时,-1+3=2,点B 在点A 的左边时,-1-3=-4,所以点B 的坐标为(2,0)或(-4,0).(2)S 三角形ABC =12×3×4=6.(3)存在这样的点P .设点P 到x 轴的距离为h ,则12×3h =10,解得h =203.点P 在y 轴正半轴时,P ⎝⎛⎭⎫0,203,点P 在y 轴负半轴时,P ⎝⎛⎭⎫0,-203,综上所述,点P 的坐标为⎝⎛⎭⎫0,203或⎝⎛⎭⎫0,-203.解题技巧专题:平行线中作辅助线的方法——形成思维定式,快速解题。
1000{y = 100 { {x = 2y-9 y = 5647 解得 9 160 x+ 60y = 150ꎬ {« 不等式与不等式组» 专题训练卷列不等式解应用题班级:姓名:1.(17山西) “ 春种一粒粟ꎬ秋收万颗子” ꎬ唐代诗人李绅这句诗中的“ 粟” 即谷子( 去皮后则称为“ 小米”) ꎬ被誉为中华民族的哺育作物. 我省有着“ 小杂粮王国” 的美誉ꎬ谷子作为我省杂粮谷物中的大类ꎬ其种植面积已 连续三年全国第一、2016 年全国谷子种植面积为 2000 万亩ꎬ年总产量为 150 万吨ꎬ我省谷子平均亩产量为 160kgꎬ国内其他地区谷子的平均亩产量为 60kgꎬ请解答下列问题:(1) 求我省 2016 年谷子的种植面积是多少万亩. (2)2017 年ꎬ若我省谷子的平均亩产量仍保持 160kg 不变ꎬ要使我省谷子的年总产量不低于 52 万吨ꎬ那么ꎬ 3.某厂为了丰富大家的业余生活ꎬ组织了一次工会活动ꎬ准备一次性购买若干钢笔和笔记本( 每支钢笔的价格相同ꎬ每本笔记本的价格相同) 作为奖品. 若购买 2 支钢笔和 3 本笔记本共需 62 元ꎬ购买 5 支钢笔和 1 本笔 记本共需 90 元.(1) 购买一支钢笔和一本笔记本各需多少元? (2) 工会准备购买钢笔和笔记本共 80 件作奖品ꎬ根据 规定购买的总费用不超过 1100 元ꎬ则工会最多可以购买多少支钢笔?解:( 1 ) 设一支钢笔需 x 元ꎬ一本笔记本需 y 元ꎬ由题意得{2x+3y = 62ꎬ解得:{x = 16今年我省至少应再多种植多少万亩的谷子?5x+y = 90 y = 10解:(1) 设我省 2016 年谷子的种植面积是 x 万亩ꎬ其他地区谷子的种植面积是 y {x+y = 2000 答:一支钢笔需 16 元ꎬ一本笔记本需 10 元ꎻ(2) 设购买钢笔的数量为 xꎬ则笔记本的数量为 80-xꎬ由题意得: 16x+10(80-x) ≤1100ꎬ解得:x≤50ꎬx = 300 解得 y = 1700.1000 10004.蔬菜经营户老王ꎬ近两天经营的是青菜和西兰花.答:我省 2016 年谷子的种植面积是 300 万亩. (2) 设我省应种植 z 万亩的谷子ꎬ依题意有: 160z≥52ꎬ解得 z≥325ꎬ∴ 325-300 = 25( 万亩). 答:今年我省至少应再多种植 25 万亩的谷子.2.为加强中小学生安全和禁毒教育ꎬ某校组织了“ 防溺水、交通安全、禁毒” 知识竞赛ꎬ为奖励在竞赛中表现优异的班级ꎬ学校准备从体育用品商场一次性购买若干个足球和篮球( 每个足球的价格相同ꎬ每个篮球的价格相同) ꎬ购买 1 个足球和 1 个篮球共需 159 元ꎻ足 球单价是篮球单价的 2 倍少 9 元.(1) 昨天的青菜和西兰花的进价和售价如表ꎬ老王用600 元批发青菜和西兰花共 200 市斤ꎬ当天售完后老王一共能赚多少元钱?(2) 今天因进价不变ꎬ老王仍用 600 元批发青菜和西兰花共 200 市斤.但在运输中青菜损坏了 10%ꎬ而西兰花没有损坏仍按昨天的售价销售ꎬ要想当天售完后所赚的钱不少于昨天所赚的钱ꎬ请你帮老王计算ꎬ应怎样给青 菜定售价? ( 精确到 0.1 元)解:(1) 设批发青菜 x 市斤ꎬ西兰花 y 市斤ꎻ (1) 求足球和篮球的单价各是多少元?(2) 根据学校实际情况ꎬ需一次性购买足球和篮球共 x+y = 200根据题意得:2.8x+3.2y = 600ꎬ解得:{x = 100ꎬ20 个ꎬ但要求购买足球和篮球的总费用不超过 1550 元ꎬ学校最多可以购买多少个足球?解:(1) 设一个足球的单价 x 元、一个篮球的单价为 y 元ꎬ根据题意 x+y = 159 x = 103 得 ꎬ解得: ꎬ答:一个足球的单价 103 元、一个篮球的单价 56 元ꎻ (2) 设可买足球 m 个ꎬ则买蓝球(20-m) 个ꎬ根据题意得: 103m+56(20-m) ≤1550ꎬ解得:m≤9 7ꎬ即批发青菜 100 市斤ꎬ西兰花 100 市斤ꎬ∴ 100×(4-2.8) +100×(4.5-3.2) = 120+130 = 250( 元) ꎻ 答:当天售完后老王一共能赚 250 元钱ꎻ (2) 设给青菜定售价为 a 元/ 市斤ꎻ根据题意得: 100×(1-10%) a+100×4.5-600≥250ꎬ :a≥ 40≈4.44ꎻ答:给青菜定售价为不低于 4.5 元/ 市斤.∵m 为整数ꎬ∴m 最大取 9. 答:学校最多可以买 9 个足球.万亩ꎬ依题意有: 答:工会最多可以购买 50 支钢笔.5.为了鼓励市民节约用水ꎬ某市居民生活用水按阶梯式水价计费下表是该市居民“ 一户一表” 生活用水阶梯式计费价格表的一部分:( 说明:①每户产生的污水量等于该户的用水量ꎻ② 水费=自来水费+污水处理费)已知小王家2016年4月份用水20吨ꎬ交水费66元ꎻ5月份用水25吨ꎬ交水费91元.(1)求aꎬb的值ꎻ6.修筑高速公路经过某村ꎬ需搬迁一批农户ꎬ为了节约土地资源和保持环境ꎬ政府统一规划搬迁建房区域ꎬ规划要求区域内绿色环境占地面积不得少于区域总面积的20%ꎬ若搬迁农民建房每户占地150m2ꎬ则绿色环境面积还占总面积的40%ꎻ政府又鼓励其他有积蓄的农户到规划区域建房ꎬ这样又有20户加入建房ꎬ若仍以每户占地150m2计算ꎬ则这时绿色环境面积只占总面积的15%ꎬ为了符合规划要求ꎬ又需要退出部分农户.问:(1)最初需搬迁的农户有多少户?政府规划的建房区域总面积是多少?(2)为了保证绿色环境占地面积不少于区域总面积的20%ꎬ至少需要退出农户几户?解:(1)设最初需搬迁的农户有x户ꎬ政府规划建房区域总面积是(2)随着夏天的到来用水量将增加ꎬ为了节约开支ꎬym2y-150x=40%yx=48小王计划把6月份水费控制在家庭月收入的2%ꎬ若小王家月收入为9200元ꎬ则小王家6月份最多能用水多少吨?{17(a+0.8)+3(b+0.8)=66{a=2.2ꎬ由题意得:{y-150(x+20)=15%yꎬ解得{y=12000答:最初需搬迁的农户有48户ꎬ政府规划的建房区域总面积是12000m2ꎻ(2) 设需退出z户ꎬ则有解:(1)由题意ꎬ得17( a+0.8) +8( b+0.8) =91ꎬ解得b=4.2ꎬ12000-150(48+20-z)≥12000×20%ꎬ解得z≥4.(2) 当用水量为30吨时ꎬ水费为:17×3+13×5=116元ꎬ9200×2%=184元ꎬ∵ 116﹤184ꎬ∴小王家六月份的用水量超过30吨ꎬ设小王家6月份用水量为x吨ꎬ由题得:17×3+13×5+6.8(x-30)≤184ꎬ解得x≤40.∴小王家六月份最多用水40吨.答:至少需要退出农户4户.3 7.为提高饮水质量ꎬ越来越多的居民选购家用净水器. 一商场抓住商机ꎬ从厂家购进了 A、B 两种型号家用净水器共 160 台ꎬA 型号家用净水器进价是 150 元/ 台ꎬB 型号家用净水器进价是 350 元/ 台ꎬ购进两种型号的家用净水器共用去 36000 元.(1) 求 A、B 两种型号家用净水器各购进了多少台ꎻ (2) 为使每台 B 型号家用净水器的毛利润是 A 型号的 2 倍ꎬ且保证售完这 160 台家用净水器的毛利润不低于 11000 元ꎬ求每台 A 型号家用净水器的售价至少是多 少元.( 注:毛利润= 售价-进价)8.某小区为了绿化环境ꎬ计划分两次购进 A、B 两种花草ꎬ第一次分别购进 A、B 两种花草 30 棵和 15 棵ꎬ共花费 675 元ꎻ第二次分别购进 A、B 两种花草 12 棵和 5 棵.两次共花费 940 元( 两次购进的 A、B 两种花草价格均分别相同).(1) A、B 两种花草每棵的价格分别是多少元? (2) 若购买 A、B 两种花草共 31 棵ꎬ且 B 种花草的数量少于 A 种花草的数量的 2 倍ꎬ请你给出一种费用最省的方案ꎬ并求出该方案所需费用.解:(1) 设A 种花草每棵的价格x 元ꎬB 种花草每棵的价格y 元ꎬ根解:(1) 设 A 种型号家用净水器购进了 x 台ꎬB 种型号家用净水器 {30x+15y = 675 {x = 20购进了 y 台ꎬ据题意得:12x+5y = 940-675ꎬ解得: y = 5 ꎬ{x+y = 160 {x = 100∴A 种花草每棵的价格是 20 元ꎬB 种花草每棵的价格是 5 元.由题意得150x+350y = 36000ꎬ解得y = 60 .(2)设A 种花草的数量为m 株ꎬ则B 种花草的数量为(31-m)株ꎬ 答:A 种型号家用净水器购进了 100 台ꎬB 种型号家用净水器购进了 60 台.(2) 设每台 A 型号家用净水器的毛利润是 a 元ꎬ则每台 B 型号家用净水器的毛利润是 2a 元ꎬ由题意得 100a+60×2a≥11000ꎬ解得 a≥50ꎬ 150+50 = 200( 元).答:每台 A 型号家用净水器的售价至少是 200 元.∵B 种花草的数量少于 A 种花草的数量的 2 倍ꎬ ∴ 31-m<2mꎬ解得:m> 31ꎬ∵m 是正整数ꎬ∴m最小值 = 11ꎬ设购买树苗总费用为 W = 20m+5(31-m) = 15m+155ꎬ ∴当 m = 11 时ꎬW最小值 = 15×11+155 = 320( 元). 答:购进 A 种花草的数量为 11 株、B 种 20 株ꎬ费用最省ꎻ最省费用是 320 元.6{解得 {9.某公交公司有 AꎬB 型两种客车ꎬ它们的载客量和租金如下表:红星中学根据实际情况ꎬ计划租用 AꎬB 型客车共 5 辆ꎬ同时送七年级师生到基地校参加社会实践活动ꎬ设租用 A 型客车 x 辆ꎬ根据要求回答下列问题:(1) 用含 x 的式子填写下表:(2) 若要保证租车费用不超过 1900 元ꎬ求 x 的最大 值ꎻ(3) 在(2) 的条件下ꎬ若七年级师生共有 195 人ꎬ写出所有可能的租车方案ꎬ并确定最省钱的租车方案.解:(1) 填:30(5-x) ꎻ280(5-x).(2) 根据题意ꎬ400x+280(5-x) ≤1900ꎬ解得:x≤4 1ꎬ 10.学校书法兴趣小组准备到文具店购买 A、B 两种类型的毛笔ꎬ文具店的销售方法是:一次性购买 A 型毛笔不超过 20 支时ꎬ按零售价销售ꎻ超过 20 支时ꎬ超过部 分每支比零售价低 0.4 元ꎬ其余部分仍按零售价销售. 一次性购买 B 型毛笔不超过 15 支时ꎬ按零售价销售ꎻ超过 15 支时ꎬ超过部分每支比零售价低 0.6 元ꎬ其余的部分仍按零售价销售.(1) 如果全组共有 20 名同学ꎬ若每人各买 1 支型毛笔和 2 支B 型毛笔ꎬ共支付 145 元ꎻ若每人各买 2 支A 型毛笔和 1 支 B 型毛笔ꎬ共支付 129 元ꎬ这家文具店的 A、B型毛笔的零售价各是多少?(2) 为了促销ꎬ该文具店对 A 型毛笔除了原来的销售方法外ꎬ同时又推出了一种新的销售方法:无论购买多少支ꎬ一律按原零售价( 即(1) 中所求得的 A 型毛笔的零售价)90%出售.现要购买 A 型毛笔 a 支( a> 20) ꎬ在新的销售方法和原来的销售方法中ꎬ应选择哪种方法购买花钱较少并说明理由.解:(1) 设这家文具店的 A 型毛笔零售价为每支 x 元ꎬB 型毛笔的零售价为每支 y 元ꎬ则根据题意得:∴x 的最大值为 4ꎻ(3) 由(2) 可知ꎬx≤4 1ꎬ故 x 可能取值为 0、1、2、3、4ꎬ20x+15y+25( y-0.6)= 145 20x+20( x-0.4) +15y+5( y-0.6) = 129 ꎬ :x = 2y = 3 6①A 型 0 辆ꎬB 型 5 辆ꎬ租车费用为 400×0+280×5 = 1400 元ꎬ但载客量为 45×0+30×5 = 150<195ꎬ故不合题意舍去ꎻ ②A 型 1 辆ꎬB 型 4 辆ꎬ租车费用为 400×1+280×4 = 1520 元ꎬ但载客量为 45×1+30×4 = 165<195ꎬ故不合题意舍去ꎻ ③A 型 2 辆ꎬB 型 3 辆ꎬ租车费用为 400×2+280×3 = 1640 元ꎬ但载客量为 45×2+30×3 = 180<195ꎬ故不合题意舍去ꎻ ④A 型 3 辆ꎬB 型 2 辆ꎬ租车费用为 400×3+280×2 = 1760 元ꎬ但载客量为 45×3+30×2 = 195 = 195ꎬ符合题意ꎻ⑤A 型 4 辆ꎬB 型 1 辆ꎬ租车费用为 400×4+280×1 = 1880 元ꎬ但载客量为 45×4+30×1 = 210ꎬ符合题意ꎻ故符合题意的方案有④⑤两种ꎬ最省钱的方案是A 型3 辆ꎬB 型2 辆.答:这家文具店 A 型毛笔的零售价为每支 2 元ꎬB 型毛笔的零售价为每支 3 元.(2) 如果按原来的销售方法购买 a 支 A 型毛笔共需 m 元ꎬ则 m = 20×2+( a-20) ×(2-0.4) = 1.6a+8ꎬ 如果按新的销售方法购买 a 支 A 型毛笔共需 n 元. 则 n =a×2×90% = 1.8aꎬ 当 n =m 时ꎬ1.8a = 1.6a+8ꎬ∴a = 40ꎬ 当 n>m 时ꎬa>40ꎬ当 n<m 时ꎬa<40ꎬ可见ꎬ当 a>40 时ꎬ用旧的方法购买得的 A 型毛笔花钱少ꎻ当 a = 40 时ꎬ新旧方法一样ꎻ当 20<a<40 时ꎬ用新的方法花钱少.。
初一数学方程组与不等式组试题答案及解析1.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是 ( )A.55cm B. 65cm C.75 m D.85【答案】C【解析】解:设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,由第一个图形可知桌子的高度为:h-y+x=80,由第二个图形可知桌子的高度为:h-x+y=70,两个方程相加得:(h-y+x)+(h-x+y)=150,解得:h=75cm.故选C.2.若一个二元一次方程的一个解为,则这个方程可以是_______________(只要求写出一个).【答案】x+y=1,答案不唯一【解析】方程的解是,把x=2,y=1代入方程,方程的左右两边一定相等,这个方程可能是:x+y=1,答案不唯一.3.解方程组或不等式(组)(每题6分共30分)(2)(3)(1)(4)(5)【答案】(1)(2)(3)(4)(5)不等式组无解【解析】(1)①2+②得5x=15解得x=3代入①得3+y=3解得y=0所以方程组的解为(2)②去分母整理得-4x+6y=-13与①相加得3y=-6解得y=-2代入①得x=所以方程组的解为(3)①-②得x-z=-1与③相加得2x=2解得x=1代入①得y=0代入③得z=2所以方程组的解为(4)去括号整理得-6x<-28解得x>(5)解①得x<,解②得x>所以不等式组无解4.(1)化简(2)先化简,再求值:,其中,【答案】(1)(2)12【解析】(1)化简2分4分5分(2)先化简,再求值:,其中,1分2分3分4分="12 " 5分解方程5.比较下列各数的大小,并用“<”号将它们连接起来._______________________________________【答案】【解析】试题考查知识点:比较大小思路分析:可以在数轴上描点,这些数对应的点,自左向右,越来越大。
人教版七年级数学下册利用方程组与不等式组解应用题专题训练1.某校计划购买篮球、排球共20个购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.篮球和排球的单价各是多少元?若购买篮球不少于8个,所需费用总额不超过800元请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.2.某小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.5万元;新建3个地上停车位和2个地下停车位共需1.1万元(1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?(2) 若该小区投资超过10万元的金额新建停车位,且地上的停车位要求不少于30个,问共有几种建造方案?(3) 对(2)中的几种建造方案中,哪一种方案的投资最少?并求出最少投资金额?3.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?4. 某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元.已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元?(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌的足球50个,正好赶上商场对商品价格进行调整,A种品牌的足球售价比第一次购买时提高4元,B种品牌的足球按第一次购买时售价的九折出售,如果学校此次购买A、B两种品牌的足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌的足球不少于23个,则这次学校有哪几种购买方案?5.某中学为达到校园足球特色学校的要求,准备一次性购买一批训练用足球和比赛用足球.若购买3个训练用足球和2个比赛用足球共需500元,购买2个训练用足球和3个比赛用足球共需600元.(1)购买1个训练用足球和1个比赛用足球各需多少元?(2)某中学实际需要一次性购买训练用足球和比赛用足球共96个,要求购买训练用足球和比赛用足球的总费用不超过6000元,问这所中学最多可以购买多少个比赛用足球?6.为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A,B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7 800万元,改扩建3所A类学校和1所B类学校共需资金5 400万元.( 1 )改扩建1所A类学校和1所B类学校所需资金分别是多少万元?( 2 )该县计划改扩建A,B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A,B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?7.我区注重城市绿化提高市民生活质量,新建林荫公园计划购买甲、乙两种树苗共800株,甲种树苗每株12元,乙种树苗每株15元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去10500元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.8.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中的A,B,C三种粗粮的成本价之和.已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,求该电商销售甲、乙两种袋装粗粮的数量之比。
(商品的利润率=商品的售价-商品的成本价 商品的成本价×100%)9. 水是人类生命之源.为了鼓励居民节约用水,相关部门实行居民生活用水阶梯式计量水价政策.若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,每立方米污水处理费不变.甲用户4月份用水8立方米,缴水费27.6元;乙用户4月份用水12立方米,缴水费46.3元.(注:污水处理的立方数=实际生活用水的立方数)(1)求每立方米的基本水价和每立方米的污水处理费各是多少元?(2)如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水多少立方米?10“世界杯”期间,某足球迷一行56人从旅馆乘出租车到球场为中国队加油.现有A 、B 两个出租车队,A 队比B 队少3辆车,若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排坐B 队的车,每辆坐4人,车不够,每辆坐5人,有的车未坐满,求A 队出租车的辆数11.某电器商城销售A 、B 两种型号的电风扇,进价分别为160元、120元,下表是近两周的销售情况:(1)求A 、B 两种型号的电风扇的销售单价;(2)若商城准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商城销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由。
12.为了更好地保护环境,某区污水处理厂决定购买A ,B 两种型号污水处理设备,其中每台的价格、月处理污水量如下表.已知购买一台A 型设备比购买一台B 型设备多2万元,购买2 台A 型设备比购买3台B 型设备少6万元.(1)求a,b的值;(2)某区污水处理厂决定购买污水处理设备的资金既不少于108万元也不超过110万元,问有几种购买方案?每月最多能处理污水多少吨?13.“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1560元,20本文学名著比20本动漫书多360元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于74本,总费用不超过2100,请求出所有符合条件的购书方案.14.春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A 型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?15.友谊商店A型号笔记本电脑的售价是a元/台,最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案,方案一:每台按售价的九折销售,方案二:若购买不超过5台,每台按售价销售,若超过5台,超过的部分每台按售价的八折销售,某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二方案更合算,求x的范围.答案:1.解: 设篮球每个x 元,排球每个y 元,依题意,得,解得, ,答:篮球每个50元,排球每个30元;设购买篮球m 个,则购买排球 个,依题意,得.解得 ,又 , .篮球的个数必须为整数, 只能取8、9、10,满足题意的方案有三种: 购买篮球8个,排球12个;购买篮球9,排球11个;购买篮球10个,排球10个,以上三个方案中,方案 最省钱.2.略3. 解:(1)设橱具店购进电饭煲x 台,电压锅y 台,依题意得,解得,所以,20×+10×=1400(元).答:橱具店在该买卖中赚了1400元;(2)设购买电饭煲a 台,则购买电压锅(50﹣a )台,依题意得,解得 22≤a ≤25.又∵a 为正整数,∴a 可取23,24,25.故有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲25台,则购买电压锅25台.(3)设橱具店赚钱数额为W 元,当a=23时,W=23×+27×=2230;当a=24时,W=24×+26×=2240;当a=25时,W=25×+25×=2250;综上所述,当a=25时,W 最大,此时购进电饭煲、电压锅各25台.4. 解:(1)设购买一个A,B 品牌的足球分别要x 元与y 元,由题意可得 ⎩⎨⎧+==+3045002550x y y x 得⎩⎨⎧==8050y x答: 一个A 种品牌和一个B 种品牌的足球分别需要50元与80元(2)设再次购进A 品牌的足球m 个,购进B 品牌的足球)50(m -辆, 由题意可得: ⎩⎨⎧≥-⨯≤-⨯⨯++2350%704500)50(9.080)450(m m m 解得2725≤≤m ∵m 取自然数 ∴27,26,25=m ∴存在以下三种购买方案:①A 种品牌足球25个,B 种品牌足球25个;②A 种品牌足球26个,B 种品牌足球24个;③A 种品牌足球27个,B 种品牌足球23个5.解:(1)设一个训练用足球x 元、一个比赛用足球为y 元,根据题意得,解得:,答:一个训练用足球60元、一个比赛用足球为160元;(2)设可买训练用足球m 个,则比赛用足球(96﹣m )个,根据题意得:60m +160(96﹣m )≤6000,解得:m ≥93.6,∵m 为整数,∴m 最大取94.则96﹣m=2.答:这所中学最多可以购买2个比赛用足球.6.(1)设改扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元,由题意,得解得答:改扩建一所A 类学校和一所B 类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A 类学校a 所,则改扩建B 类学校( 10-a )所,由题意,得 - - - -解得3≤a ≤5,∵x 取整数,∴x=3,4,5. 即共有3种方案:方案一:改扩建A 类学校3所,B 类学校7所;方案二:改扩建A 类学校4所,B 类学校6所;方案三:改扩建A 类学校5所,B 类学校5所.7. 解:(1)设购买甲种树苗x 株,则乙种树苗y 株,由题意得:,解得,答:购买甲种树苗500株,乙种树苗300株.(2)设甲种树苗购买z 株,由题意得:85%z +90%≥800×88%,解得z ≤320.答:甲种树苗至多购买320株.(3)设购买两种树苗的费用之和为m ,则m=12z +15=12000﹣3z ,在此函数中,m 随z 的增大而减小所以当z=320时,m 取得最小值,其最小值为12000﹣3×320=11040元答:购买甲种树苗320株,乙种树苗480株,即可满足这批树苗的成活率不低于88%,又使购买树苗的费用最低,其最低费用为11040元.8.由题意,甲种粗粮成本价为58.5÷(1+30%)=45(元),∴1千克B 粗粮和1千克C 粗粮的成本价=45-3×6=27(元),∴乙种粗粮每袋成本价为6+2×27=60(元).设该电商销售甲种袋装粗粮x 袋,乙种袋装粗粮y 袋,依题意得45×30%x +60×20%y =(45x +60y )×24%,∴x ∶y =8∶9.9.. 解:(1)设每立方米的基本水价是x 元,每立方米的污水处理费是y 元,⎩⎪⎨⎪⎧27.6=8x +8y ,46.3=10x +2×2x +12y ,解得⎩⎪⎨⎪⎧x =2.45,y =1, 答:每立方米的基本水价是2.45元,每立方米的污水处理费是1元;2)设该用户7月份可用水t 立方米(t >10),10×2.45+(t -10)×4.9+t ≤64,解得t ≤15.答:如果某用户7月份生活用水水费计划不超过64元,该用户7月份最多可用水15立方米.10.设A 车队有x 辆车,则B 车队有(x +3)辆车,由题意可得⎩⎪⎨⎪⎧5x <56<6x ,4(x +3)<56<5(x +3),解得⎩⎪⎨⎪⎧283<x <11.2,8.2<x <11,∴283<x <11,∵x 为整数,∴x =10 11.略12.(1) 根据题意,得 2 326a b b a -=⎧⎨-=⎩解得: 12 10a b =⎧⎨=⎩答: 的值是 , 的值是(2) 设购买A 型设备 x 台,则B 型设备(10x -)台,根据题意得:1210(10)1081210(10)110x x x x --≥⎧⎨--≤⎩解得:45x ≤≤, ∵x 为正整数, ∴有两种购买方案,方案 :购买A 型设备 台,则B 型设备 台;方案 :购买A 型设备 台,则B 型设备 台;当时,,则最多能处理污水 吨. 13.解:(1)设每本文学名著x 元,动漫书y 元,可得:⎩⎨⎧=-=+360202015604020y x y x 解得:⎩⎨⎧==2038y x 答:每本文学名著和动漫书各为38元和20元;(2)设学校要求购买文学名著a 本,动漫书为(a +20)本,根据题意可得:⎩⎨⎧≤++≥++2100)20(20387420a a a a 解得:2985026≤≤a 因为取整数,所以x 取27,28,29;方案一:文学名著27本,动漫书47本;方案二:文学名著28本,动漫书48本;方案三:文学名著29本,动漫书49本.14.解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得⎩⎪⎨⎪⎧8x +5y =220,4x +6y =152,解得⎩⎪⎨⎪⎧x =20,y =12. 答:每个A 型放大镜和每个B 型放大镜分别为20元,12元;(2)设购买A 型放大镜a 个,根据题意可得20a +12×(75-a )≤1180,解得a ≤35.答:最多可以购买35个A 型放大镜.15.解:设购买A 型号笔记本电脑x 台时的费用为w 元,(1)当x =8时,方案一:w =90%a ×8=7.2a ,方案二:w =5a +(8-5)a ×80%=7.4a ,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元;2)∵若该公司采用方案二购买更合算,∴x>5,方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x-5)a×80%=5a+0.8ax-4a=a+0.8ax,则0.9ax>a+0.8ax,x>10,∴x的取值范围是x>10.。