已知x=(根号3-1)分之2,求2分之1乘x的立方-x的平方-x+1的值。
- 格式:docx
- 大小:22.53 KB
- 文档页数:9
初中数学(1)有理数(2)代数式与整式(3)一元一次方程(4)实数(5)平面直角坐标系(6)二元一次方程(7)不等式(组)(8)整式的乘除与因式分解(9)分式与分式方程(10)二次根式(11)一次函数(12)一元二次方程(13)二次函数(14)反比例函数(15)图形的初步认识(16)相交线与平行线(17 )三角形与多边形(18)全等三角形及其性质(19)轴对称与等腰三角形(20)勾股定理(21)平行四边形(22)图形的旋转(24)相似型(25)锐角三角函数(26)视图与投影(27)尺规作图与命题的证明(28)数据的收集,整理与描述(29)数据的分析(30)概率有理数有关概念有理数的四则运算有理数的乘方科学记数法近似数有理数定义分类性质分类整数分数正整数零负整数正分数负分数正有理数零负有理数负整数负分数正整数正分数绝对值数轴相反数原点正方向单位长度符号不同的两个数互为相反数,数字要一样0的相反数是零0数a的绝对值记作lal,读作a的绝对值,任何数都有绝对值0的绝对值是零0,一个正数的绝对值是它本身一个负数的绝对值,是它的相反数有理数的加减法加上一个数或减去一个数有理数的加法运算律加法交换律加法结合律两个数相加交换加数的位置和不变a+b=b+a三个数相加,先把前两个数相加,或者先把后两个数相加和不变(a+b)+c=a+(b+c)有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘任何数与零相乘都得零倒数一个正数的倒数仍是负数,一个负数的倒数仍是负数0没有倒数有理数的乘法运算律乘法交换律乘法结合律乘法分配律两个数相乘交换因数位置积相等ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等(ab)c=a(bc)一个数同两个数的和相乘同于把这个数分别同这两个数相乘,再把积相加a(b+c)=ab+ac有理数的除法除以一个不等于零的数,等于乘以这个数的倒数两数相除,同号得正异号得负,并把绝对值相除0,除以任何一个数不等于 0的数,都是01 零不能做除数2有理数的除法与乘法是互逆运算3在做除法运算时,根据同号得正,异号得负的法则,先确定符号,再把绝对值相除,若在算式中有带分数,则一般化成假分数进行计算,若不能整除除法运算,转化为乘法运算:有理数的乘方及表示方法求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在a的n次方中,a叫做底数,n叫做指数an读作a的n次方有理数乘方的计算步骤一,先将乘方运算转化为乘法运算二,根据乘方的符号法则,确定幂的符号三,计算幂的绝对值有理数的混合运算顺序含有有理数的加减乘除乘方五种基本运算的多种运算叫做有理数的混合运算先乘方,再乘除,最后加减科学计数法把一个数表示成a×10的N次方的形式近似数近似数就是与准确数很接近的数代数式整式整式的加减有理式(只有加减乘除乘方包括数字开方运算的代数式叫做有理式)无理式(还有关于字母开方运算的代数式,叫做无理式)整式分式多项式单项式代数式的书写要求1字母与字母相乘,数字与字母相乘,数字应写在字母前,乘号通常写作(.)或者省略不写2当代数式中出现除法律算式一般按照分数的写法来写3带分数与字母相乘,省略乘号时应把带分数化成假分数(分子等于分母或大于分母的叫假分数)4实际问题中需弄单位时,若代数式的最后结果含有加、减运算,则要将整个式子用括号括起来再写单位,否则可直接写单位单项式定义多项式定义几个单项式的和叫做多项式如X的2次方+二xy+y的二次方,a的二次方减去b的二次方在多项式中,每个单项是叫做多项式的项,只含十一像一a,二分之一平方米,一ab,2兀r,都是数或字母的积,这样的事实叫做单项式,特别的单独的一个数或一个字母也是单项式,单项式中只含乘除,不含加减同类项合并同类项去括号化简求值所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项?把多项式中的同类项合并成一项叫做合并同类项,一2a与5a合并同类项后为3a ,1/2x的二次方y与5x的二次方y合并为同类项后为11/2x的二次方y多项式的项合并同类项的步骤1准确找出同类项2利用法则把同类项的系数相加,字母和字母的指数不变3写出合并后的结果如3x的2次方y+4x的2次方y=(3+4)X的二次方y=7 X2次方y如果括号外的因数是正数去括号后原括号内各项的符号与原来的符号相同如果括号外的因数是负数去括号后原括号内各项的符号与原来的符号相反,如+(a+b一c,一(a+b一c)=一a一b+C化:通过去括号合并同将整式化简代::把已知的字母或某个整式的取值代入化简后的式子算:一句有理数的混合运算法则进行计算方程的有关概念解一元一次方程列一元一次方程解应用题用等号表示相等关系的式子叫做等式等式两边同时乘同一个数,或除以同一个数不为零的数,结果仍相等,等式两边同时加或减同一个数或40,结果仍相等只含有一个未知数,未知数的次数都是一等号,两边都是整数,这样的方程叫做一元一次方程一去分母,二去括号,三移项,四合并同类项,五系数化为一等积变形问题行程问题年龄问题工程问题利润率问题素质问题包括阅历中的数字规律储蓄问题配套问题长方体的体积等于长乘宽乘高圆柱体的体积等于兀R的二次方hH为高,r为底面圆半径变形前后体积相等相遇问题追及问题航行问题路程等于速度乘时间,时间等于路程除速度,速度整个路程除时间和上面一样快车行驶路程一去慢车行驶路程=原距离快车行驶距离十慢车行驶路程=远距离顺水速度=静水速度+上水流速度逆水速度=静水速度一水流速度路程=速度X时间大小两个年龄差不会变由题可知年龄增长一年为一岁工作量=工作效率x工作时间工作效率=工作量÷工作时间工作时间=工作量÷工作效率两个或几个工作效率不同的对象所完成的工作量和等于总工作量商品的利润率=商品进阶除以商品利率乘以100%商品利率=商品售价一商品进价(成本价)找出利润或利润率与其他量之间的关系设a,b分别为一个两位数的个位,十位上的数字,则这个两位数可表示为10b+1 抓住数字之间的新数原数之间的关系的关系利息=本金x利率x期数本息和=本金+利息=本金x(1+利率x期数)有题可知M件a产品与n件b产品配套a产品的数量xn= b产品的数量xm平方根的有关概念立方根的有关概念实数算术平方根平方根开平方平方根与算术平方根的区别与联系一般的,如果一个正数X的平方根等于a,即X的二次方等于a,那么这个正数x叫做a的算术平方根 0的算术平方根0非负数a的算术平方根记作根号a,读作根号a,其中a叫做被开方数如五的二次方等于25,那么五叫做25的算术平方根或者说25的算术平方根是5如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,如果x的二次方=a,那么x叫做a的平方根一个正数a有两个平方根,它们互为相反数,记住正负根号a0的平方根是零0负数没有平方根求一个数a(a≥0)的平方根的运算叫做开平方,用符号±根号a表示(±9)的二次方=81 ±根号81 =±9算术平方根平方根如果一个数x的平方根等于a,即x的二次方=a,那么这个数x叫做a的平方根或二次方根,即x=±根号a一个正数有两个平方根,它们互为相反数,0的平方根是0 负数没有平方根如果一个正数x的平方根等于a,即x=a,那么这个正数x叫做a的算术平方根,即x=根号a 正数只有一个算数平方根,且恒正,根号0=0 负数没有算数平方根立方根开立方立方根与平方根的区别无理数实数及其分类一般的,如果一个算数x的立方=a,即x的三次方=a,那么x叫做a的立方根或者三次方根数a的立方根数a的立方根记住三次根号a,其中a叫做被开方数如5三次方=125.5叫做125的立方根负数没有平方根,但有立方根求一个数a的立方根的运算叫做开立方,八的立方根为三次根号8=2平方根的指数2可以省略,立方根的指数3不能省略无限不循环的小数叫做无理数有理数和无理数统称为实数平面直角坐标系的有关概念点的坐标的有关性质有序数对有顺序的两个数a与b组成数对教有序数对记作(a,b)前列后排平面直角坐标系在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系,横坐标x,纵坐标y象限平面直角坐标系上的x轴和y轴把坐标平面分成四个部分,每个部分称为象限,按逆时针依次叫做第一象限,第二象限,第三象限,第四象限,从右上方开始各象限内点的坐标的符号特征第一象限十十,第二象限一十,第三象限一一,第四象限十一二元一次方程组的有关概念解二元一次方程组列二元一次方程组解应用题二元一次方程二元一次方程组含有两个未知数,并且含有未知数的项次数都是一像这样的方程,叫做二元一次方程方程组中有两个未知数,每个含有未知数的项的次数都是1二元一次方程的解二元一次方程的解都是成对的,两个数一般要用大括号联系表示如x=1 y=2是二元一次方程x+y=3的一组解二元一次方程组的解二元一次方程组的两个方程的共同点叫做二元一次方程组的解解二元一次方程组的解一般情况下是唯一的,但有的方程组有无数多个解或者无解消元思想二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为熟悉的一元一次方程,即可先解出一个未知数,然后求另一个未知数,这种将未知数的个数由多化少逐一解决的思想,叫做消元思想代入消元法打二元一次方程组中的一个方程的一个未知数,用含另一个未知数的式子表示出来,再代入另一个方程加减消元法当二元一次方程组的两个方程中,同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数整体消元法将方程组中的一个方程或方程的一部分看成一整体带入另一个方程中解二元一次方程组的步骤二元一次方程组(消元)一元一次方程(求解)求出一个未知数的值(回代)求出另一个未知数的值(联立)写出方程组的解列二元一次方程组解应用题的常见类型(1)和,差,倍,分,问题较大量=较小量+多余量,总量=倍数x一份的量(2)产品配套问题这类问题的基本等量关系是配套比相等(3)行程问题路程=速度x时间(4)航速问题 1顺流(风)速度=静水(无风)中的速度+水(风)速 2逆流(风)速度=静水(无风)中的速度一水(风)速(5)工程问题工作量=工作效率x工作时间(6)增长率问题原量x(1+增长率)=增长后的量,原量x(1一减少率)=减少后的量(7)银行利率问题免税利息=本金x利息x期数,税后利息=本金x利率x期数一本金乘利率x期数x税率不等式的有关概念及性质解一元一次不等式解一元一次不等式组列一元一次不等式组解应用题不等式不等式的解与解集用符号<或>表示大小关系的式子叫做不等式使不等式成立的未知数的值叫做不等式的解,不等式的解是一个具体的解,如x=1是x+2>1的解不等式的性质不等式两边加或减同一个数或式子不等号的式方向不变,不等式两边乘或除同一个正数不等式号方向不变,不等式两边同乘或除同一个负数不等式号方向改变一元一次不等式只含有一个未知数不等式的两边都是整式,这样的不等式叫做一元一次不等式,不等式中只含一个未知数,未知数的次数是1一元一次,不等式的解集与表示方法用数轴表示解一元一次不等式的一般步骤去分母去括号移项合并同类项系数化为1一元一次不等式组类似于方程组把两个含有相同未知数的一元一次不等式合起来,组成一个一元一次不等式组一元一次,不等式组的解集用数轴来表示几个不等式的解集的公共部分,通常利用数轴来确定列一元一次不等式组解应用题的关键语句至少,最多,超过,不低于,不大于,不高于,大于,多等幂的有关计算整式的乘除因式分解同底数幂的乘法,底数不变,指数相加如a的m次方xa的n次方=a的m+a次方幂的乘方底数不变,指数相乘,如(a的m次方)n次方=a的mn次方积的乘方把每一个因式分别乘方,再把所得的幂相乘如(ab)的N次方=a的N次方b的N次方(N为正整数),(xy)的三次方=X的三次方y的三次方同底数幂的除法同底数幂相除底数不变指数相减,如A的m次方÷a的N次方=a的m-n次方零指数幂任何不等于零的数的零次幂都等于1单项式与单项式的相乘把它们的系数同底数幂分别相乘,对于只在一个单项式里含的字母,连同它的指数作为积的一个因式,如(2ab的二次方)x(一3a的三次方bc的二次方)=〈2x(一3)〉(axa的三次方)x(b的二次方xb)xc的二次方=6a的四次方b的三次方c的二次方单项式与多项式相乘单项式去乘多项式的每一项,再把所有得的积相加,如m(a+b+c)=ma+mb+mc乘法公式平方差公式完全平方差公式(a+b)(a一b)=a的二次方一b二次方两个数的和与这两个数的差的积,等于这两个数的平方差两个数的和或差的平方等于它们的平方和加上或减去它们积的2倍,即(a+b)的二次方=a的二次方+2ab+b的二次方,(a一b)的二次方=a二次方一2ab+b的二次方这两个都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式添括号括号前面是+,括到括号里的各项都不变号,括号前面是一括号到括号里面的各项都变号单项式除以单项式把系数与同底数幂分别相除作为商的因式,对于只在被除数里出现了字母,连同它的指数作为商的一个因式,如4x的二次方y÷(2x)=(4÷2)(x的二次方÷x)xy=2xy多项式除以单项式多项式的每一项除以单项式如(ma+mb+mc)÷m=ma÷m+mb÷m十mc÷m=a+b+c整式的混合运算先乘方,再乘除,后加减,有括号时先算括号里的因式分解公因式多项式的各项都有一个公共的因式我们把这个因式叫做这个多项式,各项的公因式,如pa+pb+pc,p叫做这个多项式各项的公因式提公因式法公式法把一个多项式化成几个整式的积的形式,像这样的式子变形,叫做这个多项式的因式分解,这也叫做把这个多项式分解因式a的二次方一b的二次方→(因式分解)→(a+b)(a-b)→(整式乘法)→a的二次方一B的二次方6a的三次方b的二次方一4ab的二次方一2a的二次方b的三次方公因式是2ab第二次方平方差公式完全平方差公式两数的平方和加上或减去它们的积的2倍,等于两数和(差)的平方两个数的平方差等于这两个数的和与这两个数的差的积公式 a的二次方一b的二次方=(a+b)(a一b),其中a,b可以是单项式,也可以是多项式公式 a的二次方±2ab+b的二次方=(a±b)的二次方,其中ab可以是单项式或多项式因式分解的一般步骤1先看多项式的各项是否有公因式,若有则应先提公因式2根据多项式的项数判断是否能套用公式,若是二项式,看是否符合平方差公式的特征,若是三项式,则看是否符合完全平方公式的特征3多项式的项数多于三项时,可考虑先分组再进行因式分解4因式分解的结果一定要彻底分解到每个因式都不能再分解为止分式的有关概念分式的运算分式方程列分式方程解应用题分式的基本性质分式的分子与分母乘或除以同一个不等于零的整数,分式的值不变约分集约分法则把一个分式的分子与分母的公因式约去叫做分式的约分最简分式分子与分母没有公因式的分式叫做最简分式最简公分母取个分数系数的最小公倍数,与所有字母公式数的最高次幂的积作为公分母,这样的分母叫做最简公分母通分局通分法则根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式叫做分式的通分先求个各分式的最简公分母及各分母系数的最小公倍数相同,因数的最高次幂与所有不同因式积约分与通分的联系与区别区别;约分的分式个数是一个,通分的分式个数是两个或两个以上,约分的目的将分式化为最简的分式或整通分的目的十几个一分母的分式化为同分母的分式联系;依据是分式的基本性质,分式的值不变分式的乘方分式方程要把分子,分母分别乘方,如(A/b)的N次方=B的N次方/a的N次方分式的加减先通分变为同分母分式再加减分式的混合运算先算乘方,再算乘除,最后算加减,有括号的先算括号里的负整数指数幂任何不等于零的数的负N次方(n为正整数)次幂,等于这个数的n次幂的倒数,即a的负N次方=A的N次方/1(a≠0,n为正整数)科学计数法用ax10几次方?来表示分式方程分母中含有未知数的方程,叫做分式方程解分式方程的一般步骤1去分母2解整式方程3验算可化为一元一次方程的分式方程方程两边同乘一个数去分母列分式方程解应用题的常见题型行程问题有路程,时间和速度三个量,其关系是路程=速度x时间工程问题有工作效率,工作时间和工作总量三个量,其关系是工作总量=工作效率x工作时间增长率问题其等量关系式原谅乘(1+增长率)=增长率后的量,原量x(1一降低率)=降低后的量利润问题商品利率=商品售价一商品进价商品利率=商品利润÷商品进价x100% 售价=进价x(1+利润率),售价=标价x打折价二次根式的有关概念和性质二次根式的运算二次根式;形如根号a(a≥0)的式子叫做二次根式,其中符号根号叫做二次根号,二次根号下的数叫做被开方数使二次根式有意义的条件;当二次根式根号a中要求字母a必须满足条件a≥零0,给被开方数是非负的,所以当a≥ 0时,二次根式根号a有意义当a<0时,二次根式根号a无意义二次根式的性质;(根号a)的二次方= a(a≥0)根号a的二次方=|a|=a(a>0)0(a=)一a(a<)二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变积的算数平方根积的算术平方根等于积中各各因式的算数平方根的乘积商的算术平方根商的算术平方根等于被除数的算术平方根除以除数的算术平方根,即根号a/b=根号b分之根号a(a≥0,b>0)最简二次根式1被开方数的因数是整数,字母因式是整式2被开方数不含能开的,尽方的因数或因式二次根式的加减先将二次根式化成最简,二次根式再将被开方数相同的二次根式进行合并二次根式的混合运算二次根式的混合运算是指二次根式的加减乘除,乘方的混合运算(23)圆变量与函数一次函数的图像与性质一次函数与方程组不等式一次函数的实践与探索常量与变量常量在一个变化过程中,数值始终不变的量称为常量变量在某一变化过程中数值发生变化的量称为变量变量可以变化,而常量是已知数函数一般的一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值y都有一个唯一确定的值与其对应,那么我们说x是自变量y是x的函数函数自变量的取值范围函数自变量的取值范围是指函数有意义的自变量的全体函数值如果在自变量取值范围内给定一个值a函数,对应的值为b,那么b叫做当自变量取值为a时的函数值函数的解析式像y=50一0.1Ix这样,用关于自变量的数学式子表示,函数与自变量之间的关系是描述函数的常用方法,这种式子叫做函数的解析式函数的图像列表,描点,连线函数的表示方法列表法;打字变量x的一个系列值和函数y的对应值列成一个表解析式法;用含有自变量的代数式表示函数的方法叫做解析式法图像法正比例函数与一次函数待定系数法正比例函数的图像特征与性质一次函数的图像特征与性质k,b的符号与直线y=kx+b(k≠0)的关系如y=kx(K是常数,k≠0)的函数,叫做正比例函数,如y=1/3x,y=一3x等都是正比例函数如y=kx+b(K,b是常数k≠零)的函数叫做一次函数,如Y=2 x- 1,y=1 /2 x+1等都是一次函数一次函数一般形式(1)K不等于(2)x的次数是1(3)常数b可以为任何实数先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法叫做待定系数法丨当k>0时,函数y=kx的图像从左向右呈上升趋势,当k<0时,函数y=kx的图像从左向右呈向下降趋势正比例函数y=kx(k≠0)中丨k丨越大直线y=kx越靠近y轴,丨k丨越小直线y=kx越靠近x轴用图像来表示图像过第123象限,图像过134象限Y随x的增大而增大图像过124象限图像过234象限y随x增大而减小直线y=kx+b(k不等于零),令y=0,得x=-b/k,即直线y=kx+b与x轴交于(减b0/k)一次函数与一元一次方程当某个一次函数的值为零时,求自变量的值一次函数与二元一次方程组如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标一次函数与一元一次不等式从函数角度看解一元一次不等式,就是寻求使一元一次函数y=ax+b(a≠0)的值大于或(或小于)0的自变量x的取值范围从函数图像的角度看就是确定直线y=ax+b(a≠0)的在x轴上或下方部分的点的横坐标满足的条件函数值的大小问题转化为解方程或解不等式的问题加以解决一元二次方程的一般形式一元二次方程的根一元二次方程的有关概念一元二次方程的根解一元二次方程解一元二次方程应用题含一个未知数并且未知数的最高次数是二的整式方程,叫做一元二次方程等号左边是一个关于未知数的二次多项式等号,右边是0将此数带入这个一元二次方程的左右,两边看是否相等直接开平方解一元二次方程如X的二次方等于p或(MX+n)的二次方等于p (p≥0)配方法解,一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法一元二次方程根的判别式公式法解一元二次方程一般的四肢b的二次方一4AC叫做方程ax的次方加bx+c=0(a≠0)的根的判别式通常用希腊字母△表示,即△=b的二次方一4 acax的二次方+bx+c=0(a≠0)因式分解法解一元二次方程子主题使方程化为两个一次因式的乘积等于零的形式一元二次方程根与系数关系方程解应用题的一般步骤审设找列检验答列一元二次方程解应用题的常见类型数字问题若一个两位数,十位个位上的数字分别为a,b,则这个两位数表示为十a+b 若一个三位数百位,十位个位上的数字分别为ABC,则这三个数表示为100 a+10 b+c平均增长(降低)率问题设a为起始量,b为终止量,n为增长(降低)的次数,均增长率公式为a(1+x)的n次方=b(x为平均增长率)为,平均降低率公式为a(1 -x)的n次方=、b(x为平均降低率)面积体积问题将不规则图形分割或组合成规则图形,找出未知量与已知量在内再联系,根据面积(体积)公式列出一元二次方程传染问题传染源加第一轮被感染数+第二轮被感染数=第二轮被感染后的总数子主题销售利润问题利润=售价一进价利润率=进价/利润X100%=进价/售价一进价X100%售价=进价X(1加利润率)总利润等于总售价一总成本=单个利润X总销售量二次函数的有关概念二次函数的图像与性质二次函数的实践与探索二次函数如y=aX的二次方+bx+c(a,b,c是常数a≠0)的函数叫做二次函数,其中x是自变量ABC分别是函数表达式的二次项系数一次项系数和常数项二次函数的一般形式函数的关系是整式,自变量的最高次数是二,二次项系数不等于零二次函数的常见表达式式子表达二次函数的顶点坐标及其意义抛物线二次函数y=ax的二次方+bx+c(a不等于)的图像是以(- 2a/b,4a/4ac一b的二次方)为顶点,直线x=一2a/b为对称轴的抛物线二次函数的图像特征与性质轴对称的抛物线顶点坐标为原点(0,0)子主题反比例函数的有关概念比例函数的图像与性质反比例函数一般的弄y=x/k(K是常数,k≠0)的函数叫做反比例函数反比例函数的一般形式y=K/x(其中,k为常数x≠0),以分式形式呈现在分母中,x,指数为1待定系数法求反比例函数解析式的一般步骤1求反比例函数的解析式2求y的值3求x的值反比例关系与反比例函数的区别与联系反比例关系不一定是反比例函数双曲线他的两个分支分别位于第一,第三或第二,第四限反比例函数的图像特征与性质k>0;函数的图像在第一,第三象限在每个象限内y随x的增大而减小 k<0函数的图像在第二,第四象限在每个象限内y随x增大而增大反比例函数y=K/x (k≠0)中比例系数k的几何意义矩形的面积三角形的面积子主题子主题反比例函数图像的对称性其对称轴为直线y=x和y=一x,对称中心为原点反比例函数与正比例函数的联系与区别区别反比例函数正比例函数联系子主题空间图形直线射线线段直线及其表示方法直线没有尽头,是向两方无限延伸的,直线AB和直线BA ,字母无序射线及其表示方法o是这条线的端点,把线段oA,向一方无限延伸,端点的字母必须写在前面线段及其表示方法直线上两个点和它们之间的部分叫做线段角角的定义具有公共端点的两条射线组成角的表示方法角的度量用字母,大写字母,数字,希腊字母,表示度,分,秒角的和差角AOC是角aob与角BOC的和,角aob是角AOC与角COD的差角的平分线一个角从顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线余角和补角如果两个角的和等于90度,则这两个角互为余角,如果两个角的和等于180度,则这两个角互为补角方向角与方位角(1)方向角正北或正南方向线与目标方向线所成的小于90度的角叫做方向角(2)方位角从正北方向逆时针转到目标方向线的水平角,这叫做方位角,取0到360度,比如正东方向就是方位角为90度,正西方向就是方位角为270度相交线相交线中的角平行线图形的平移直线的位置关系在同一平面内不重合的两条直线的位置关系只有两种相交或平行垂线当两条直线相交所成的四个角中,有一个角是直角时说明这两条直线互相垂直,其中一条直线叫做另外一条直线的垂线,它们的交点叫做垂足垂线的性质在同一平面内过一点,有且只有一条直线与已知直线的垂直,垂线段最短对顶角有一个公共的顶点且一个角两边分别是另一个角的两边的反向延长线,对顶角相等邻补角两个角有一条公共边,且它们的另一边互为反向延长线,具有这种关系的两个角互为邻补角,两个角只有数量关系,没有位置关系和等于180度同位角内错角与同旁内角同位角在截线的同一侧,F形内错角在截线的两侧,z字形同旁内角在截线同一侧,c字形平行线的画法平行公理平行线的判定平行线的性质平行线的判定与性质的区别和联系一落二靠三移四画经过直线外一点有且只有一条直线与这条直线平行两条直线平行同位角相等两脚间的数量关系一一判定一一两直线间的位置关系一一性质一一两脚间的数量关系连接各组对应点的线段平移,或在同一直线上且相等三角形的性质多边形的有关概念和性质三角形的三边关系三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边,判断三条线是否能组成三角形,已知三角形的两边,求第三边的取值范围三角形的内角和定理角的和等于180度三角形的外角三角形的一个外角等于它不相邻的两个内角的和,三角形的一个外角大于与它不相邻的任何一个内角三角形的外角和三角形的外角和是360度三角形的稳定性除三角形外其他图形都不具备稳定性多边形及其组成要素边顶点内角外角对角线正多边形各边都相等,各角都相等组成多边形的各条线段叫做多边形的边每相邻两边的公共端点叫做多边形的顶点多边形相邻,两边所组成的多边形的内部的角叫做多边形的内角简称,多边形的角多边形的,一边和它的邻边的延长线组成的角角,多边形的外角连接多边形不相邻的两个顶点的线段叫做多边形的对角线凸多变形多边形分为凸多边形和凹多边形,整个图形都在这条直线的同一侧,这样的多边形称为凸多边形,整个多边形都不在这条直线的同一侧,我们称它为凹多边形多边形内角和定理N边形的内角和等于(n- 2〉×180%多边形外角和定理多边形的外角和内角和等于360度与边数无关四边形的不稳定性三角形的三边确定后,他们的大小形状就确定了,这是三角形的稳定性,但是四边形的四边确定后,它的形状不能确定,这就是四边形的不稳定性全等三角形及其性质全等三角形的判断角平分线的性质全等图形能够完全我的两个图形叫全等图形全等三角形能完全重合的两个三角形叫做全等三角形,用符号≌表示,读作全等于全等变换全等变换是指改变图形的位置,而不改变图形的形状和大小的变换全等三角形的性质全等三角形的对应,边相等全等三角形的对应角相等如△ABC≌A'B'C'边边边定理三遍对应相等的两个三角形全等(简写成边边边或sss)边角边定理两边及其夹角分别等于的两个三角形全等(简写成边角边或sas)角边角定理两个角及其夹边分别相等的两个三角形全等,(简写成角边角或asa)角角边定理两个及其中一个角的对边对应相等的两个三角形全等(简写成角角边或aas)斜边直角边定理斜边和一条直角边分别相等的两个直角三角形全等(简写成斜边直角边或HL)角平分线的性质定理望着点到角的两边的距离相等点在角平分线上的判定角的内部到角的两边的距离相等的点在角的平分线上三角形中角平分的性质三条边的距离相等图形的轴对称线段的垂直平分等腰三角形轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么这两个图形关于这条直线对称,也叫轴对称,折叠后重叠的河叫对应点叫做对称点,这条直线叫做对称轴轴对称图形如果一个平面图形沿着一条直线折叠直线两旁的部分,能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴对称轴图形和轴对称的区别与联系轴对称图形轴对称轴对称的性质如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线作轴对称图形的一般步骤1在原图形上找特殊点2做个个特殊点,关于已知直线的对称轴3按原图对应连接个对称点平面直角坐标系中的轴对画图表示射线的垂直平分线垂直于一条线段,并平分这条线段的直线,叫做这条线段的垂直平分线线段的垂直平分线的性质线上的点与这条线段两个端点的距离相等线段的垂直平分线的判定与线段两个端点距离相等的点,在这条线段的垂直平分线上三角形三边的垂直平分线的性质三边三角形的垂直平分线相交于一点,这个点到三个顶点的距离相等垂直平分线与角平分线的区别与联系角平分线垂直平分线等腰三角形等腰三角形的判断定理等边三角形的判定定理等边三角形及其性质有两条边相等的三角形就是等腰三角形等腰三角形的两个底角相等(简称等边对等角)如果一个三角形有两个角相等,那么这两个角所对的边也相等,(简写成等角对等边()三条边都相等的三角形叫做等边三角形,两边三角形的三边都相等,三个内角都相等,并且每一个内角都等于60度等边三角形的判定123直角三角形与勾股定理勾股定理的逆定理直角三角形的性质123勾股定理直角三角形两条直角边的平方和等于斜边的平方 a二次方=c的二次方一b的二次方,B二次方=c的二次方一a的二次方勾股数勾股定理的逆定理勾股定理与勾股定理的逆定理的区别与联系能构成直角三角形,,三条边长的三个正整数,称为勾股数如果三角形两边的平方和等于第三边的平方,那么该三角形是直角三角形勾股定理勾股定理的逆定理平行四边形中位线矩形菱形正方形平行四边形的性质定理子主题平行线间的距离两条平行线间的距离处处相等平行四边形的判定定理子主题平行四边形的对称性三角形的中位线连接三角形的两边中点的线段叫做三角形的中位线三角形中位线定理三角形的中位线平行于第三边,并且等于第三边的一半平行线等分线段定理如果一组平行线在一条直线上截得线段相等,那么在其他直线上截的线段也相等矩形有一个角是直角的平行四边形叫做矩形矩形的性质定理四个角都是直角,对角线相等矩形的判定定理矩形的对称性矩形是轴,对称图形有两条对称轴,且对称轴都是过对边中心的直线菱形有一组邻边相等的平行四边形叫做菱形菱形的性质定理子主题子主题菱形的判定定理1平行四边形加一组邻边相等,加一个角为直角2矩形加一组邻边相等2矩形加对角线互相垂直4菱形加一个角为直角5菱形加对角线相等图形的旋转中心对称绕着某一点旋转180度中心对称图形把一个图形绕着某一点旋转,180度,如果旋转后的图形能够与原来的图形重合,那么这个图形称为中心对称图形,这个点就是它的对称中心,中心对称图形是一种特殊的旋转对称图形中心对称图形的基本性质1中心对称的两个图形是全等图形2对称点所连线段都经过对称中心,而且被对称中心所平分3对应线段平行(或在同一直线上)且相等作已知图形成中心对称的图形的一般步骤1连接原图形上的所有关键点与对称中心2再将以上连线延长找对称点,使得关键点与其对称点到对称中心的距离相等3将对称点按原图形的形状顺次连接起来,即可得出与原图形成中心对称的图形关于原点对称的点的坐标在平面直角坐标系中,如果两个点关于原点对称,那么它们的坐标符号相反与圆的有关概念圆的基本性质与圆的位置关系与圆有关的基本概念弦直径弧半圆劣弧优弧同心圆和等圆同心圆:圆心相同半径不相等的两个圆叫做同心圆等圆:能够完全重合的两个圆叫做等圆半径相等的两个圆是等圆同圆或等圆的半径相等圆心圆和圆周角圆心角:顶点在圆心的角叫做圆心角圆周角:顶点在圆上,且两边都和圆相交的角叫做圆周角三角形的外接圆与外心1经过三角形三个顶点的圆,叫做三角形的外接圆,这个三角形叫做圆的内接三角形2三角形外接圆的圆心叫做三角形的外心,三角形的外心是三角形,三边垂直平分线的交点弓形,扇形弓形:由弦及其所对的弧组成的图形叫做弓形扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形圆的对称性圆的中心对称性圆的轴对称性垂经定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧圆心角,孤,弦,之间的关系在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等圆周角定理及其推论在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半圆内接四边形及其性质定理圆内接四边形的对角互补,并且任何一个外角都等于它的内对角点与圆的位置关系1点在圆内2点在圆上3点在圆外过己知点的圆直线与圆的位置关系直线与圆的位置关系的性质与判定切线的性质定理切线的判定定理切线长定理三角形的内切圆与内心相交相切相离直线与圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线直线和圆有唯一公共点时叫做直线和圆相切,这时直线叫做圆的切线为一的公共点叫做切点直线和圆没有公共点时,叫做直线和圆相离子主题圆的切线垂直于过切的半径经过半径的外端,并且垂直于这条半径的直线是圆的切线在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长与三角形各边都相切的圆叫做三角形的内切圆正多边形与圆的有关计算正多边形与圆的关系都有一个外地人和一个内切圆,这两个圆是同心圆正多边形的中心与中心角子主题正多边形的半径与边心距正多边形的有关计算子主题正多边形的对称性子主题弧长公式扇形面积公式圆柱侧面展开图圆锥侧面展开图比例线段及有关性质相似三角形相似多边形与位似图形两条线段的比比例线段比例的基本性质平行线分线段成比例定理如果选中同一长度单位的两条线段A,B的长分别是m和n,就说这两条线段的比是a:b=m:n,或写成a/b=m/n,合数的比一样,两条线段的比A:B中a角比的前列必较比的后列在四条线段中,如果其中两条线段比等于另外两条线段的比,那么这四条线段叫做成比例线段简称比例线段如A/b=c/d,那么AD=BC如果AD=BC,那么a/b=c/d(b,d≠0两条直线被一组平行线所截所得的对应线段成比例平行于三角形一边的直线与其他两边相交,截得的对应线段成比例相似图形把形状相同的图形叫做相似图形相似图形之间的互相变换,称为相似变换相似三角形角对应相等,边对应成比例的两个三角形叫做相似三角形相似比三相似三角形对应边的比叫做相似比相似三角形的判定三个角分别相等三条边成比例的两个三角形相似相似三角形的性质对应边成比例对应角相等相似多边形及其性质两个边数相同的多边形,如果他们的角分别相等边成比例,那么这两个多边形叫做相似多边形相似多边形的性质:12345相似多边形的判定如果两个边数相同的多边形的角对应相等边对应成比例,那么这两个多边形相似位似图形位似图形的性质图形不仅是相似图形,而且对应顶点的连线所在直线相交于一点,那么这两个图形叫做位似图形1234画位似图形的一般步骤1234位似变换的坐标特征一般的在平面直角坐标系中,如果以原点为位,似中心画出一个与原图形位似的图形,使它与原图形的相比为k,那么与原图形上的点xk对应的位似图形上的点的坐标为(Kx, ky)或(负kx,负ky)解直角三角形锐角三角函数解直角三角形已知元素求出所有未知元素的过程叫做解直角三角形解直角三角形的常见类型子主题解直角三角形应用题中的常见概念仰角,俯角方向角坡角,坡度解直角三角形应用题的一般步骤123正弦和余弦正切三角函数特殊角的三角函数值锐角三角函数的关系锐角三角函数的性质子主题投影三视图尺规作图命题证明收集数据与整理数据的描述数据的代表数据的波动概率的有关概念概率的计算方法投影用光线照射物体,在某个平面上得到的影子叫做物体的投影,其中,照射光线叫做投影线,投影所在的平面叫做投影面平行投影太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影平行投影的变化规律同一时刻,所有物体的影子与其高度成正比,一天之中影子的方向变化为正西,西北,正北,东北,正东,一天之中,影子的长度变化为长短长中心投影若一束光线是从一点发出的,这样的光线形成的投影称为中心投影,这个点就是中心,相当于物理上学习的点,光源生活中的点光源主要有探照灯,手电筒,路灯,台灯平行投影与中心投影的区别与联系正投影在平行投影中,如果投影线与投影面互相垂直,就称为正投影几何体的三视图行常见几何体的三视图行几何体三视图形的画法组合体的三视图当我们从某一个角度观察一个物体时,所看到的图形叫做物体的一个视图正方形长方形圆柱圆锥球123判断组合体的组成部分,然后按照画几何体三视图的方法正确画出它的三视图尺规作图把限定用无刻度的直尺和圆规的画图称作尺规作图基本作图123命题判断一件事的语句叫做命题真命题,假命题子主题逆命题把原命题的结论作为命题的条件,把原命题的条件作为命题的结论公理定理子主题互逆定理证明的含义通过推理来判断命题的结论是否成立的过程叫做证明证明的一般步骤辅助线综合与分析法反证法12345子主题子主题子主题数据的收集与整理全面调查和抽样调查总体个体样本与样本容量全面调查与抽样调查全面调查与抽样调查的区别与联系全面调查可直接精确地获得总体的情况,抽样调查的优点是调查范围小,节省时间,人力,物力,财力频数与频率组数与组距频数分布表条形统计图,扇形统计图与折线统计图条形统计图,扇形统计图与折线统计图的区别与联系频数分布直方图频数折线图算数平均数加权平均数算数平均数与加权平均数的区别与联系中位数众数平均数中位数众数的优缺点方差极差方差的应用方法利用样本方差估计总体方差的方法利润方差进行决策的方法方差与平均数,众数,中位数的综合应用确定性事件随机事件概率的定义几何概型列举法画树状图法列表法用频率估计概率公平的游戏模拟实验省略加号的和的形式在一个合适中,通常把各个加数的括号及前面的+号省略不写,写成省略加号和括号的和的形式如(一3)+(+2.5)+(一0.5)+(一6)=一3+2.5一0.5-6代数式用运算符号如加减乘除等将数或数的字母连接起来,所得的式子叫做代数式单独的一个数或者一个字母也叫做代数式t如3+2c,2 x-y ,AB, 2( 3+3 b),3a,8j/单项式的系数单项式中的数字因数五叫做这个单项式的系数(1)一个单项式只含有字母因数它的系数就是1或一1(2)一个单项式是一个常数。
20XX 年南湖区初中毕业生学业考试适应性练习一数学试题卷考生须知:1.全卷满分150分,考试时间120分钟.试题卷共6页,有三大题,共24小题.2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效.卷Ⅰ(选择题)一、选择题(本题有10小题,每小题4分,共40分.请选出各题中唯一的正确选项,不选、多选、错选,均不给分)1.3的倒数是(▲)(A )31(B )31(C )3(D )32.如图,该简单几何体的主视图是(▲)3.据统计,20XX 年到嘉兴市图书馆借阅图书的人约有322万人次.数322万用科学记数法表示为(▲)(A )3.22×106(B )3.22×105(C )322×104(D )3.22×1024.要反映20XX 年末嘉兴市各个县(区)常住人口占嘉兴市总人口的比例,宜采用(▲)(A )条形统计图(B )折线统计图(C )扇形统计图(D )频数直方图5.当x 分别取3,1,0,2时,使二次根式x 2的值为有理数的是(▲)(A )3(B )1(C )0(D )26.如图,点A ,B ,C 在⊙O 上.若⊙O 的半径为3,∠C=30°,则AB 的长为(▲)(A )12(B )(C )43(D )32主视方向(第2题图)(A )(B )(C )(D )O BAC(第6题图)(第7题图)ab(ABCDEF O(第8题图)O7.实数a ,b 在数轴上的位置如图所示,下列式子错误..的是(▲)(A )a >b(B )a <b(C )ab >0(D )a+b >08.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠CDO +∠CFO=98,则∠C 的度数为(▲)(A )40°(B )41°(C )42°(D )43°9.如图,在边长为1的正方形ABCD 中,将射线AC 绕点A 按顺时针方向旋转度(0<≤360)得到射线AE ,点M 是点D 关于射线AE 的对称点,则线段CM 长度的最小值为(▲)(A )12(B )0.5(C ) 1(D )1210.如图,在平面直角坐标系中,点A (2,2),分别以点O ,A 为圆心,大于OA 21长为半径作弧,两弧交于点P .若点P 的坐标为(m ,n+1)(0,1nm ),则n 关于m 的函数表达式为(▲)(A )1mn(B )2mn(C )1mn(D )2mn卷Ⅱ(非选择题)二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:a a2=▲ .12.在平面直角坐标系中,以点(2,1)为圆心,半径为1的圆与x 轴的位置关系是▲.(填“相切”、“相离”或“相交”)13.抛物线2(1)4yx的顶点坐标为▲ .14.已知□ABCD 中,AB=4,ABC 与DCB 的角平分线交AD 边于点E ,F ,且EF=3,则边AD 的长为▲ .15.当22x时,函数1kkx y (k 为常数且0k )有最大值3,则k 的值为▲.16.如图,矩形ABCD 中,21tanBAC,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,且EH ∥BC ,则AG ∶GH ∶HC =▲ .AB CD EM(第9题图)A POxy(第10题图)ABCDFGH(第16题图)E三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(1)计算:60cos 3)1(0. (2)化简:)2()2(2a a a .18.先化简:xxx 1112,然后从0≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.19.如图,等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ ,BP=CQ .(1)求证:△ABP ≌△ACQ.(2)判断△APQ 的形状,并说明理由.20. 数学复习课上,老师出示5张背面完全相同的卡片,卡片正面分别写有下列方程:(1)若把这5张卡片的背面朝上且搅匀,从中随机抽取一张卡片,则抽到卡片上有一元二次方程的概率是多少?(2)请按一定的规则把这5个方程分成两类,写出你的分类规则,并把分类结果分别填在下列两个大括号内(只需填方程的序号). ▲;▲友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔或钢笔将线条描黑.xx 320322xx32yyx321x①②③④⑤ABCPQ(第19题图)21.某商场对A 、B 两款运动鞋的销售情况进行了为期5天的统计,得到了这两款运动鞋每天的销售量及总销售额统计图(如图所示).已知第4天B 款运动鞋的销售量是A款的32.(1)求第4天B 款运动鞋的销售量.(2)这5天期间,B 款运动鞋每天销售量的平均数和中位数分别是多少?(3)若在这5天期间两款运动鞋的销售单价保持不变,求第3天的总销售额(销售额=销售单价×销售量).22.某农户共摘收水蜜桃1920千克,为寻求合适的销售价格,进行了6天试销,试销情况如下:第1天第2天第3天第4天第5天第6天售价x (元/千克)20 18 15 12 10 9 销售量y (千克)4550607590100由表中数据可知,试销期间这批水蜜桃的每天销售量y (千克)与售价x (元/千克)之间满足我们曾经学过的某种函数关系.若在这批水蜜桃的后续销售中,每天的销售量y (千克)与售价x (元/千克)之间都满足这一函数关系.8 611 93769 73 6 9 12 第1天第2天第3天第4天第5天日期销售量(双)A ,B 两款运动鞋每天销售量统计图AB第1天第2天第3天第4天第5天800160024003200 日期总销售额(元)A ,B 两款运动鞋每天总销售额统计图13002000图1图2(第21题图)(1)你认为y 与x 之间满足什么函数关系?并求y 关于x 的函数表达式.(2)在试销6天后,该农户决定将这批水密桃的售价定为15元/千克.①若每天都按15元/千克的售价销售,则余下的水蜜桃预计还要多少天可以全部售完?②该农户按15元/千克的售价销售20天后,发现剩下的水蜜桃过于成熟,必须在不超过2天内全部售完,因此需要重新确定一个售价,使后面2天都按新的售价销售且能如期全部售完,则新的售价最高可以定为多少元/千克?23. 如图,动直线m x (0m )分别交x 轴,抛物线x xy32和x xy 42于点P ,E ,F ,设点A ,B 为抛物线x xy 32,x xy 42与x 轴的一个交点,连结AE ,BF .(1)求点A ,B 的坐标. (2)当3m时,判断直线AE 与BF 的位置关系,并说明理由.(3)连结BE ,当21BFAE 时,求△BEF 的面积.OABxy PE F(第23题图)x=m24. 定义:对角线互相垂直的凸四边形叫做“垂直四边形”.(1)理解:如图1,已知四边形ABCD 是“垂直四边形”,对角线AC ,BD 交于点O ,AC=8,BD =7,求四边形ABCD 的面积. (2)探究:小明对“垂直四边形”ABCD (如图1)进行了深入探究,发现其一组对边的平方和等于另一组对边的平方和.即2222BC ADCDAB.你认为他的发现正确吗?试说明理由.(3)应用:①如图2,在△ABC 中,90ACB,AC=6,BC=8,动点P 从点A 出发沿AB 方向以每秒5个单位的速度向点B 匀速运动,同时动点Q 从点C 出发沿CA 方向以每秒6个单位的速度向点A 匀速运动,运动时间为t 秒(10t ),连结CP ,BQ ,PQ .当四边形BCQP 是“垂直四边形”时,求t 的值.②如图3,在△ABC 中,90ACB,AB =3AC ,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连结EG .请直接写出线段EG 与BC 之间的数量关系.ABCD O图1ACBPQ图2 (第24题图)ABCDEFG图320XX 年南湖区初中毕业生学业考试适应性练习一数学参考答案与评分标准一.选择题(本题有10小题,每题4分,共40分)BDACD BCBAA二.填空题(本题有6小题,每题5分,共30分)11.)1(aa ;12.相切;13.(1,4);14.5或11;15.32;16.3∶2∶3.三.解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(1)解:原式=1213…………3分=23…………4分(2)解:原式=aaa a24422…………6分=46a …………8 分18.解:11)1)(1(11111122xxx xxxxxxx ,…………5分当x=0时,原式=0+1=1 (答案不唯一)…………8分19.(1)∵△ABC 为等边三角形,∴AB=AC .∵∠ABP=∠ACQ ,BP=CQ ,∴△ABP ≌△ACQ (SAS ).…………4 分(2)解:△APQ 为等边三角形.……5分证明如下:∵△ABP ≌△ACQ .∴AP=AQ ,∠BAP=∠CAQ .∵∠BAC=∠BAP+∠P AC=60°,∴∠P AQ=∠CAQ+∠P AC=∠BAP+∠PAC=∠BAC=60°.∴△APQ 是等边三角形.…………8分20.(1)52…………4分(2)按整式方程和分式方程分类(答案不唯一)…………6分①②③⑤;④…………8分21.(1)解:4326(双)∴第4天B 款运动鞋的销售量是4双.………2分(2)解:B 款运动鞋每天销售量的平均数为8.5534976(双),中位数为 6 (双)………6分(3)解:设A 款运动鞋的销售单价为x 元/双,B 款运动鞋的销售单价为y 元/双. 由题意得:200068130037yxy x ,解得200100y x ………9分∴第3天的总销售额为2900200910011(元)………10分22. (1)y 与x 之间满足反比例函数关系.………2分y 关于x 的函数表达式为xy900.………4分(2)①解:试销6天共销售水蜜桃45+50+60+75+90+100=420千克……5分水密桃的售价定为15元/千克时,每天的销售量为60千克.……6分由题意得,25604201920(天).∴余下的水蜜桃预计还要25天可以全部售完.……8分②解:农户按15元/千克的售价销售20天后,还剩下水蜜桃30020601500(千克),……9分∵要在不超过2天内全部售完,∴每天的销售量至少为150千克……10分把y=150代入xy900中得x=6.∴新的售价最高可以定为6元/千克.……12分23.(1)解:把y=0分别代入x xy32和x xy 42中,得032xx,解得x=0或x=3;042xx,解得x=0或x=4∴点A 的坐标为(3,0),点B 的坐标为(4,0).……4分(2)直线AE 与BF 的位置关系是AE ∥BF .………5分理由如下:由题意得,点E 的坐标为(m ,m m32),点F 的坐标为(m ,m m 42).∴tan ∠P AE =m m m m PA PE 332,∴tan ∠PBF =m mm m PBPF 442,∴∠P AE=∠PBF ,∴AE ∥BF………8分(3)(Ⅰ)如图1,∵AE ∥BF ,∴△P AE ∽△PBF ,∴21BF AE PBPA ,即2143m m ,解得m=2.∴2222121PBEFSBEF.…10分(Ⅱ)如图2,∵AE ∥BF ,∴△P AE ∽△PBF ,∴21BF AE PBPA ,即2143m m ,解得m=310.∴910323102121PBEFSBEF.……12分24.(1)∵四边形ABCD 是“垂直四边形”,∴AC ⊥BD.∴四边形ABCD 的面积为OBAC ODAC 2121=28782121BD AC .……4分(2)∵四边形ABCD 是“垂直四边形”,∴AC ⊥BD.∴222222DO COBO AO CD AB 222222COBODO AO BC AD ∴2222BCADCDAB……8分(3)①过点P 作PD ⊥AC 于点D, ∵90ACB.∴108622AB,PD ∥BC.OABxy PE F(第23题图1)x=mOAB xyP E F(第23题图2)x=mABC D O(第24题图1)A CBP Q(第24题图2)D∴△P AD ∽△BAC ,∴ABAP BCPD ACAD .∵动点P 的速度为每秒5个单位,动点Q 的速度为每秒6个单位.∴AP=5t ,CQ=6t ∴10586t PD AD ,∴AD =3t ,PD=4t.∵四边形BCQP 是“垂直四边形”.∴2222BC PQ CQ BP . ∴222228)96()4()6()510(t t t t ,解得92t或t=0(舍去).∴当四边形BCQP 是“垂直四边形”时,t 的值为92. ……12分②2223BC EG(或BC EG26).……14分注:各题若有不同解法,酌情给分。
第二讲 整式(时间:45分钟)一、选择题1.下列从左到右的变形:(1)(x +1)(x -2)=x 2-x -2;(2)ax -ay -1=a(x -y)-1;(3)6x 2y 3=2x 2·3y 3;(4)x 2-4=(x +2)(x -2);(5)x 2-1=x ⎝ ⎛⎭⎪⎫x -1x ,属于因式分解的有( B ) A .0个 B .1个 C .2个 D .3个2.若单项式2x 2y a +b 与-13x a -b y 4是同类项,则a 、b 的值分别为( A ) A .a =3,b =1 B .a =-3,b =1C .a =3,b =-1D .a =-3,b =-13.下列计算正确的是( D )A .a 2·a 3=a 6B .2a 2+a 2=3a 4C .a 6÷a 3=a 2D .(ab 2)3=a 3b 64.下列计算正确的是( D )A .2x +3y =5xyB .(m +3)2=m 2+9C .(xy 2)3=xy 6D .a 10÷a 5=a 55.计算(x +1)(x +2)的结果为( B )A .x 2+2B .x 2+3x +2C .x 2+3x +3D .x 2+2x +26.(2018·乐山中考)已知实数a 、b,满足a +b =2,ab =34,则a -b =( C ) A .1 B .-52 C .±1 D .±527. 由于受H 7N 9禽流感的影响,某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/kg ,设3月份鸡的价格为m 元/kg ,则( D ) A .m =24(1-a%-b%)B .m =24(1-a%)b%C .m =24-a%-b%D .m =24(1-a%)(1-b%)8.图①是一个长为2m,宽为2n(m >n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空的部分面积是( C )图① 图②A .2mnB .(m +n)2C .(m -n)2D .m 2-n 29.分解因式:2x 2-4x +2=__2(x -1)2__. 10.(2018·达州中考)已知a m =3,a n =2,则a2m -n 的值为__4.5__. 11.若a +b =8,a 2b 2=4,则a 2+b 22-ab =__28或36__. 12.(2018·十堰中考)对于实数a 、b,定义运算“※”如下:a ※b =a 2-ab ,例如,5※3=52-5×3=10.若(x +1)※(x -2)=6,则x 的值为__1__.13.根据如图所示的程序计算函数y 的值,若输入的x 值是4或7时,输出的y 值相等,则b =__-9__.14.定义错误!)为二阶行列式,规定它的运算法则为错误!))=ad -bc,那么当x =1时,二阶行列式错误!))的值为__0__.三、解答题15.(2018·衡阳中考)先化简,再求值:(x +2)(x -2)+x(1-x),其中x =-1.解:原式=x 2-4+x -x 2=x -4.当x =-1时,原式=-1-4=-5.16.先化简,再求值:(1)(2018·乐山中考)(2m +1)(2m -1)-(m -1)2+(2m)3÷(-8m),其中m 是方程x 2+x -2=0的根;解:原式=4m 2-1-m 2+2m -1-m 2=2m 2+2m -2.∵m 是方程x 2-x -2=0的根,∴m 2+m -2=0,∴m 2+m =2,∴原式=2(m 2+m -1)=2×(2-1)=2.(2)(x -2y)2-(x -y)(x +y)-2y 2,其中4x =3y.解:原式=x 2-4xy +4y 2-(x 2-y 2)-2y 2=x 2-4xy +4y 2-x 2+y 2-2y 2=3y 2-4xy.∵4x =3y,∴原式=y(3y -4x)=0.17.若2x =61,4y =33,则2x +2y 的值为( D )A .94B .127C .129D .2 01318.已知a -1a =3,则4-12a 2+32a 的值为( D ) A .1 B .32 C .52 D .7219.多项式5x 2-4xy +4y 2+12x +25的最小值为__16__.20.(2018·宁波中考)在矩形ABCD 内,将两张边长分别为a 和b(a >b)的正方形纸片按图1、图2两种方式放置(图1、图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S 1,图2中阴影部分的面积为S 2.当AD -AB =2时,S 2-S 1的值为( B )A .2aB .2bC .2a -2bD .-2b21.选取二次三项式ax 2+bx +c(a≠0)中的两项,配成完全平方式的过程叫配方.例如:①选取二次项和一次项配方:x 2-4x +2=(x -2)2-2;②选取二次项和常数项配方:x 2-4x +2=(x -2)2+(22-4)x,或x 2-4x +2=(x +2)2-(4+22)x ;③选取一次项和常数项配方:x 2-4x +2=(2x -2)2-x 2.根据上述材料,解决下面问题:(1) 写出x 2-8x +4的两种不同形式的配方;(2) 已知x 2+y 2+xy -3y +3=0,求x y 的值.解:(1)①x 2-8x +4=x 2-8x +16-16+4=(x -4)2-12;②x 2-8x +4=(x -2)2+4x -8x =(x -2)2-4x ;(2)∵x 2+y 2+xy -3y +3=0,∴(x +12y)2+34(y -2)2=0.∴x +12y =0,y -2=0, ∴x =-1,y =2, 则x y =(-1)2=1.。
中考数学专题复习第一轮第二讲代数式★重点★代数式的有关概念及性质,代数式的运算一、重要概念分类:1.代数式、有理式、无理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母。
没有根号的代数式叫有理式。
如:a、。
22a b+2.整式和分式分母中含有字母的代数式叫做分式。
如:。
分母中不含有字母的代数式叫做整式。
1a整式和分式统称有理式,或含有加、减、乘、除、乘方运算的代数式叫做有理式。
3.单项式与多项式数字和字母之间,字母和字母之间只有乘除运算的代数式叫单项式。
如:,23a bc 。
单独的一个数或字母也是单项式。
如:、0、-3。
几个单项式的和或差,叫213a bc a做多项式。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
如为分式。
xx4.系数与指数区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同。
合并依据:乘法分配律6.根式表示方根的代数式叫做根式。
含有关于字母开方运算的代数式叫做无理式。
注意:①从外形上判断;②区别:、是根式,但不是无理式,是无理数。
377.各种方根的概念1.平方根:如果一个数的平方等于另一个数,那么这个数叫另一个数的平方根.即:2,a aχχχ==叫的平方根记作2.算术平方根:一个正数的平方等于另一个数,这个正数叫另个一数的算术平方根。
a单项式多项式整式分有理式无理式代数式配还发兄弟体活⑴正数a 的正的平方根([a≥0—与“平方根”的区别]);a ⑵算术平方根与绝对值①联系:都是非负数,=│a│2a ②区别:│a│中,a 为一切实数;中,a 为非负数。
a 3.立方根:一个数的立方等于另一个数,这个数叫另个一数的立方根。
如:3,a a χχχ==叫的立方根 记作 8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。
第一讲 实 数专项一 实数及有关概念知识清单1. 实数的分类⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎫⎨⎪⎨⎬⎪⎪⎩⎭⎩⎪⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正整数负整数实数分数有限小数或无限循环小数正无理数无理数无限不循环小数负无理数 2.规定了_____、_____和_____的直线叫做数轴.实数与数轴上的点具有______的关系.3.相反数、绝对值、倒数定 义 性 质 相反数 只有______不同的两个数互为相反数,0的相反数是______若a 与b 互为相反数,则a+b=______ 绝对值 数轴上表示数a 的点到原点的______叫做数a 的绝对值 |a|=(0)00(0)a a a a a ⎧⎪=⎨⎪-⎩>()< 倒数 乘积为______的两个数互为倒数.0是唯一没有倒数的数,倒数等于它本身的数是_____若a 与b 互为倒数,则ab=1 考点例析例1 (2021•模考 福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10 907米.假设以马里亚纳海沟所在海域的海平面为基准,记为 0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10 907米处,该处的高度可记为 米.分析:在一对具有相反意义的量中,规定其中一个为正,则另一个就用负表示,理解了“正”与“负”的意义后再根据题意作答即可.解:例2 (2021•模考 郴州)如图,表示互为相反数的两个点是( )A .点A 与点B B .点A 与点DC .点C 与点BD .点C 与点D分析:根据只有符号不同的两个数互为相反数可得答案.解:例3 (2021•模考 武威)下列实数是无理数的是( )A .-2B .16C .9D .11 分析:根据无理数的定义逐一分析.解:归纳:判断一个实数是不是无理数,关键是掌握几种常见的无理数:(1)含根号型,如322,等开方开不尽的数;⑵三角函数型:如sin60°,tan30°等;⑶特定结构型,如0.101 001 000 1…(每相邻两个1之间依次多一个0);⑷与π有关的数:如4π,π-1等.(注:在判断无理数时,不能只根据某些无理数的形式来判断,关键要看化简后的结果,如题中9含根号,但它是有理数)跟踪训练1.(2021•模考 无锡)-7的倒数是( )A .7B .17C .-17D .-7 2.(2021•模考 鄂尔多斯)实数-3的绝对值是( )A .3B .-33C .-3D .333.(2021•模考 天水)下列四个实数中,是负数的是( )A .-(-3) B. (-2)2 C. |-4| D.-54.(2021•模考 烟台)实数a ,b ,c 在数轴上对应点的位置如图所示,那么这三个数中绝对值最大的是( )A .aB .bC .cD .无法确定第4题图5.(2021•模考 株洲)一实验室检测A ,B ,C ,D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A B C D专项二 科学记数法知识清单科学记数法就是把一个数写成 的形式,其中a 的范围是 .当表示一个大于10 的数时,n 的值等于原数的整数位数减去1;当表示一个大于0小于1的数时,n 是负整数,且其绝对值等于原数左起第一个非零数前所有零的个数(包括小数点前的零).考点例析例1 (2021•模考 成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成,该卫星距离地面约36 000千米,将数据36 000用科学记数法表示为()A.3.6×103 B.3.6×104 C.3.6×105 D.36×104分析:根据科学记数法的表示方法表示即可.解:例2 (2021•模考滨州)冠状病毒的直径约为80~120纳米,1纳米=1.0×10-9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10-9米 B.1.1×10-8米 C.1.1×10-7米 D.1.1×10-6米分析:先将110纳米转化成110×10-9米,再根据科学记数法的表示方法移动小数点即可.解:归纳:对于含有计数(量)单位的数用科学记数法表示时,应先把计数(量)单位转化为数字,然后再表示为科学记数法的形式.常见的计数单位:1千可以表示为103 ,1万可以表示为104 ,1亿可以表示为108 ;常考的计量单位:1毫米可以表示为10-3 米,1纳米可以表示为10-9 米等.跟踪训练1.(2021•模考长沙)为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632 400 000 000元,其中632 400 000 000用科学记数法表示为()A.6.324×1011 B.6.324×1010 C.632.4×109 D.0.6324×10122.(2021•模考江西)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50 175亿元,比上年增长8.74%.将50 175亿用科学记数法表示为()A.5.017 5×1011 B.5.017 5×1012 C.0.501 75×1013 D.0.50 175×10143.(2021•模考苏州)某种芯片每个探针单元的面积为0.000 001 64 cm²,0.000 001 64用科学记数法可表示为()A.1.64×10-5 B.1.64×10-6 C.16.4×10-7 D.0.164×10-54.(2021•模考威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A.10×10-10 B.1×10-9 C.0.1×10-8 D.1×109专项三无理数的估算知识清单无理数的估算,最常见的就是对带根号的无理数的估算,通常用“夹逼法”,即将被开方数限定在两个连续的平方数之间,然后确定无理数的整数部分和小数部分.考点例析例1(2021•模考)A.3和4之间B.4和5之间C.5和6之间D.6和7之间,开方即可求得答案.解:例2 (2021•模考南通)若m<<m+1,且m为整数,则m=.分析:m的值.解:跟踪训练1.(2021•模考 黔东南州)实数 )A .4和5之间B .5和6之间C .6和7之间D .7和8之间2.(2021•模考 临沂)设a +2,则( )A .2<a <3B .3<a <4C .4<a <5D .5<a <63.(2021•模考 河南)请写出一个大于1且小于2的无理数 .4.(2021•模考 最接近的自然数是 .专项四 实数的大小比较知识清单实数的大小比较有以下几种常用方法:(1)在数轴上表示的两个数,右边的数总比左边的 ;(2)正数 零,负数 零,正数 负数;两个负数,绝对值大的 ;(3)作差比较法:若a-b>0,则a>b ;若a-b=0,则a=b ;若a-b<0,则a<b ;(4)平方比较法:,则a>b (a >0,b >0).考点例析例1 (2021•模考 聊城)在实数-10,41中,最小的实数是( )A .-1B .41 C .0 D 分析:思路一:把这几个数在数轴上表示出来,根据它们在数轴上的位置来比较大小;思路二:根据解:例2 (2021•模考 菏泽)下列各数中,绝对值最小的数是( )A .﹣5B .12C .﹣1 D分析:先求出四个数的绝对值,再进行比较即可得出结果.解:归纳:对含有无理数的实数在比较其大小时,可先估算出无理数的近似值,再和其他的有理数比较大小.跟踪训练1.(2021•模考 内江)下列四个数中,最小的数是( )A. 0B. 12020C. 5D. -12.(2021•模考 天门)下列各数中,比-2小的数是( )A .0B .-3C .-1D .|-0.6|3.(2021•模考 大庆)在﹣1,0 )A .﹣1B .0C .πD 4.(2021•模考 株洲)下列不等式错误的是( )A .﹣2<﹣1B C .52.13>0.3专项五 平方根、立方根知识清单1. 平方根:若一个数的____等于a ,则这个数叫做a 的平方根.一个正数有___个平方根,它们____,0的平方根是_____,负数____平方根.一个正数____的平方根,叫做它的算术平方根,0的算术平方根是 .2.立方根:若一个数的____等于a ,则这个数叫做a 的立方根.正数有一个____的立方根;负数有一个____的立方根;0的立方根是____.3.开平方:求一个非负数a 的______的运算,叫做开平方.4.开立方:求一个数a 的______的运算,叫做开立方.考点例析例1 (2021•模考 烟台)4的平方根是( )A .±2B .-2C .2D 分析:一个正数有两个平方根,它们互为相反数.例2 (2021•模考 常州)8的立方根是( )A .B .±C .2D .±2分析:根据立方根的定义求解即可.解:跟踪训练1.(2021•模考 0,则x 的值是( )A .﹣1B .0C .1D .22.(2021•模考 金昌)若一个正方形的面积是12,则它的边长是( )A .B .3C .D .43.(2021•模考 攀枝花)下列说法中正确的是( )A .0.09的平方根是0.3B 4C .0的立方根是0D .1的立方根是±14.(2021•模考 恩施州)9的算术平方根是 .5.(2021•模考 徐州)7的平方根是 .6.(2021•模考 的结果是 .专项六 实数的运算知识清单1. 实数的运算法则(1)加法:同号两数相加,取相同符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大数的绝对值减去较小数的绝对值;一个数同零相加仍得这个数.(2)减法:减去一个数,等于加上这个数的相反数.(3)乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,积为零.(4)除法:两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不为零的数都得零;除以任何一个不为零的数等于乘以这个数的倒数.2.求______________的运算,叫做乘方,乘方可以转化为乘法运算.3.用字母表示运算律:交换律:a+b=________,ab=________;结合律:(a+b )+c=a+(b+c )_________,(ab )c=________;乘法对加法的分配律m (a+b+c )=_________.4.实数的运算顺序:先算_____,再算______,最后算______;有括号的要先算_____;同级运算,要按________的顺序依次进行计算.5.若实数0≠a ,m 为整数,则0a =______,m a -=______.考点例析例1 (2021•模考 铜仁)计算:2÷12﹣(﹣1)20200. 分析:先根据除法法则、乘方的意义、算术平方根的定义、零指数幂的运算公式分别求得2÷12=4,(﹣1)2020=1=20=1,然后再进行实数的运算.解:归纳:在进行实数的运算时,一定要养成良好的习惯:运算前要认真审题,确定顺序(包括使用简便方法);运算过程中,要耐心细致;得出结果后,要认真检查,谨防出错.要特别注意a 0=1(a ≠0),(-1)2n+1=-1(n 是整数),(-1)2n =1(n 是整数).例2 (2021•模考 =0,则(a+b )2020= .分析:由非负数的意义,得a-2=0,b+1=0,求出a ,b 的值,代入计算即可.解:归纳:对非负数的考查是中考的一个热点,一个数的绝对值a ,一个非负数的算术平方根()0≥a a ,一个数的偶数次方n a 2是初中阶段常见的非负数.在解题时要正确理解并熟练应用非负数的性质:非负数有最小值(为零),但无最大值;如果几个非负数的和等于零,那么每一个非负数都等于零.例3 (2021•模考 娄底)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为( )A .135B .153C .170D .189分析:由前三个正方形可知规律为:左上方的数等于序号数,左下方的数比左上方的数大1,右上方的数是左下方数的2倍,右下方的数为左下方数与右上方数的乘积加上序号数,由此即可求得答案. 归纳:实数问题中的找规律问题是中考的常考内容,解题的关键是通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后进行归纳总结,得出一般的结论,从而将问题解决. 跟踪训练 1.(2021•模考 凉山州)-12020=( )A .1B .-1C .2020D .-20202.(2021•模考 咸宁)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( )A .3+(-2)B .3-(-2)C .3×(-2)D .(-3)÷(-2)3.(2021•模考 雅安)已知2a -+|b ﹣2a|=0,则a+2b 的值是( )A .4B .6C .8D .104.(2021•模考 连云港)我市某天的最高气温是4℃,最低气温是-1℃,则这天的日温差是 ℃.5.(2021•模考 常州)计算:|-2|+(π-1)0= .6.(2021•模考 随州)(-1)2+9= .7.(2021•模考 张家界)观察下面的变化规律:213⨯=1-13,235⨯=13-15,257⨯=15-17,279⨯=17-19,…根据上面的规律计算:213⨯+235⨯+257⨯+…+220192021⨯= . 8.(2021•模考 宜宾)计算:()()1020*******π-⎛⎫----+- ⎪⎝⎭. 专项七 数轴与数形结合知识清单数和形是数学研究的两个方面,数形结合实质就是把问题中的数量关系转化为图形的性质,或者把图形的性质转化为数量关系来解决问题,这样可以使复杂的问题简单化、抽象的问题具体化. 考点例析例1 (2021•模考 北京)实数a 在数轴上对应点的位置如图1所示,若实数b 满足-a <b <a ,则b 的值可以是( )A .2B .-1C .-2D .-3图1分析:根据数轴可得1<a <2,所以-2<-a <-1.如图1,在数轴上找出-a 的对应点,即可确定符合条件的b 的值.解:例2 (2021•模考 铜仁)实数a ,b 在数轴上对应的点的位置如图2所示,下列结论正确的是( )A.a>b B.﹣a<b C.a>﹣b D.﹣a>b图2分析:先由数轴,得-2<a<-1,0<b<1,所以1<-a<2,-1<-b<0,再根据实数的大小比较方法进行比较即可求解.解:归纳:实数与数轴上的点具有一一对应的关系,把数和点对应起来,也就是说把“数”和“形”结合起来,二者相互补充,相辅相成,把许多复杂问题转化为简单的问题.跟踪训练1.(2021•模考盐城)实数a,b在数轴上对应的位置如图所示,则()A.a>0 B.a>b C.a<b D.|a|<|b|第1题图2.(2021•模考福建)如图,数轴上两点M,N所对应的实数分别为m,n,则m-n的结果可能是()A.-1 B.1 C.2 D.3第2题图3.(2021•模考枣庄)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1﹣a>1第3题图参考答案专项一实数及有关概念例1 -10 907 例2 B 例3 D1.C 2.A 3.D 4.A 5.D专项二科学记数法例1 B 例2 C1.A 2.B 3.B 4.B专项三无理数的估算例1 B 例2 51.C 2.C 3.2专项四实数的大小比较例1 D 例2 B1.D 2.B 3.C 4.C专项五平方根、立方根例1 A 例2 C1.C 2.A 3.C 4.3 5 6.3专项六实数的运算例1 0.例2 1 例3 C1.B 2.C 3.D 4.5 5.3 6.4 7.202020218.1.专项七数轴与数形结合例1 B 例2 D1.C 2.C 3.D。
初一不等式难题-经典题训练(附答案)1.已知不等式 $3x-a\leq 0$ 的正整数解正好是 1,2,3,则$a$ 的取值范围是多少?2.已知关于 $x$ 的不等式组 $\begin{cases} x-a>\dfrac{1}{5-2x}-1 \\ 5-2x\geq -1 \end{cases}$ 无解,则 $a$ 的取值范围是多少?3.若关于 $x$ 的不等式 $(a-1)x-a+2>0$ 的解集为 $x<2$,则 $a$ 的值为多少?4.若不等式组 $\begin{cases} x-a>2 \\ b-2x>\dfrac{x+4}{x+1} \end{cases}$ 的解集为 $-1<x<1$,则$\dfrac{a+b}{b-2}$ 的值为多少?5.已知关于 $x$ 的不等式组的解集为 $\begin{cases}3x+2a<0 \\ x+a<2 \end{cases}$,若 $x<2$,则 $a$ 的取值范围是多少?6.若方程组 $\begin{cases} 4x+y=k+1 \\ x+4y=3\end{cases}$ 的解满足 $x+y<1$,则 $k$ 的取值范围是多少?7.不等式组 $\begin{cases} x+9m+1 \end{cases}$ 的解集是$x>2$,则 $m$ 的取值范围是多少?8.不等式 $(x+x)(2-x)<0$ 的解集是什么?9.当 $a>3$ 时,不等式 $ax+2<3x+b$ 的解集是 $x<2$,则$b$ 等于多少?10.已知 $a,b$ 为常数,若 $ax+b>0$ 的解集是$x<\dfrac{1}{3}$,则不等式 $bx-a<0$ 的解集是什么?11.不等式组 $\begin{cases} 7x-m\geq 0 \\ 6x-n\leq 0\end{cases}$ 的正整数解仅为 1,2,3,则合适的整数对$(m,n)$ 有多少个?12.已知非负数 $x,y,z$ 满足$\dfrac{x}{2}+\dfrac{3y}{4}+\dfrac{5z}{6}=\dfrac{1}{2}$,设$\omega=3x+4y+5z$,求 $\omega$ 的最大值和最小值。
化简二次根式练习题及答案化简二次根式练习题及答案21.ab=-2ab.…………………2.-2的倒数是3+2.23.=2.…4.ab、5.8x,13a3b、?2a是同类二次根式.… xb1,?x2都不是最简二次根式.1有意义. x?3填空题:6.当x__________时,式子7.化简-15821025÷=.712a38.a-a2?1的有理化因式是____________..当1<x<4时,|x-4|+x2?2x?1=________________.ab?c2d2ab?cd2210.方程2=x+1的解是____________.11.已知a、b、c为正数,d为负数,化简12.比较大小:-=______.127_________-14.13.化简:2000·2001=______________. 14.若x?1+y?3=0,则2+2=____________.15.x,y分别为8-的整数部分和小数部分,则2xy -y2=____________.选择题:16.已知x3?3x2=-xx?3,则………………x≤0x≤-3x≥-3-3≤x≤0222217.若x<y<0,则x?2xy?y+x?2xy?y =………………………2x2y-2x-2y 18.若0<x<1,则?4-?4等于 (x)22--2x2x xxa3得……………………………………………………………… 19.化简aa-a-?aa20.当a<0,b<0时,-a+2ab-b可变形为……………………………………… -2计算题:21.;22.23.÷a2b2; nma?babb?ab)÷.abab?bab?aa?求值:x3?xy23?2?225.已知x=,y=,求4的值.223xy?2xy?xy3?2?226.当x=1-2时,求xx?a?xx?a2222+2x?x2?a2x?xx?a222+1x?a22的值.六、解答题:27.计算.1?22?3?499?28.若x,y为实数,且y=?4x+4x?1+判断题:21、=|-2|=2.×.1xyxy.求?2?-?2?的值.yxyx2、1?2==-.×.3?4?223、=|x-1|,.两式相等,必须x≥1.但等式左边x 可取任何数.×.、13a3b、?2a化成最简二次根式后再判断.√. xb5、?x2是最简二次根式.×.填空题:6、x何时有意义?x≥0.分式何时有意义?分母不等于零.x≥0且x≠9.、-2aa.注意除法法则和积的算术平方根性质的运用.8、=a2-2.a+a2?1.a+a2?1.、x2-2x+1=2,x -1.当1<x<4时,x-4,x-1是正数还是负数?x-4是负数,x-1是正数.3.10、把方程整理成ax =b的形式后,a、b分别是多少?2?1,2?1.x=3+22. 11、c2d2=|cd|=-cd.ab+cd.∵ ab=2,∴ ab-c2d2=. 12、27=28,43=48.<.先比较28,48的大小,再比较-111,的大小,最后比较-与2848281的大小.813、2001=2000·[-7-52.]·=?[1.]-7-52.注意在化简过程中运用幂的运算法则和平方差公式. 14、40.x?1≥0,y?3≥0.当x?1+y?3=0时,x+1=0,y-3=0.15、∵<<4,∴ _______<8-<__________.[4,5].由于8-介于4与5之间,则其整数部分x=?小数部分y=?[x=4,y=4-]5.求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.选择题: 16、D.本题考查积的算术平方根性质成立的条件,、不正确是因为只考虑了其中一个算术平方根的意义. 17、∵ x<y<0,∴ x-y<0,x+y<0.∴x2?2xy?y2=2=|x-y|=y-x.x2?2xy?y2=2=|x+y|=-x-y.C.本题考查二次根式的性质a2=|a|.18、+4=2,2-4=2.又∵ 0<x<1, xxxx11∴ x+>0,x-<0.D.xx1<0. x本题考查完全平方公式和二次根式的性质.不正确是因为用性质时没有注意当0<x<1时,x-19、?a3=?a?a2=?aa2=|a|?a=-a?a.C.0、∵ a <0,b<0,∴ -a>0,-b>0.并且-a=2,-b=2,ab=. C.本题考查逆向运用公式2=a和完全平方公式.注意、不正确是因为a<0,b<0时,a、b都没有意义.计算题:21、将?看成一个整体,先用平方差公式,再用完全平方公式.原式=2-2=5-2+3-2=6-2.2、先分别分母有理化,再合并同类二次根式.原式=542--=4+---3+7=1.16?1111?79?7abnm1nm-)2mn+mmnabmn1nnmmmm-? mn?+mabma2b2nnmnn11a2?ab?1-+22=.2ababab23、先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.原式=求值:5、先将已知条件化简,再将分式化简最后将已知条件代入求值.∵ x=3?2=2=5+2,3?23?2y==2=5-26.3?2∴ x+y=10,x-y=46,xy=52-2=1.2xx?y46x3?xy26.====22432235xyxy1?10xy?2xy?xy本题将x、y化简后,根据解题的需要,先分别求出“x +y”、“x-y”、“xy”.从而使求值的过程更简捷.26、注意:x2+a2=2,∴ x2+a2-xx2?a2=x2?a2,x2-xx2?a2=-x.原式=xx?a2222-2x?x2?a2x22+1x?a22=x2?x2?a2?xxx?axx2?a22222222222222=x?2xx?a??xx?a?x=2?xx2?a2=xx2?a2x2?a2 xx2?a2=式”之差,那么化简会更简便.即原式=11.当x=1-2时,原式==-1-2.本题如果将前两个“分式”分拆成两个“分x1?21x2x?x2?a2-+2222x?ax11111=+?)-22等于A.2x+1B.1C.-1-2xD.1-2x2.下列等式成立的是A.2224263B.x=x2C.b-b?2b?1=-1D.x?x3.若21,则a的取值范围是A.2≤a≤B.a≥3或a≤2C.a≤2D.a≥34.化简a+2等于B.1C.1或-1D.2a-1或15.计算22的值是A.2-4a或4a-2B.0C.2-4aD.4a-26.当x3?3x2xx?3时,x的取值范围是A.x≤0B.x≤-C.x≥-D.-3≤x≤07.当2m+7 ?4m?1?9m26m?1化简为A.-5mB.mC.-m-2D.5m8.当a>0时,化简?ax3 的结果是A.xaxC.x?axD.-xax9.实数a,b在数轴上对应点的位置如图所示,则化简a 2 2ab?b2a2的结果为A.-bB.2a-bC.b-2aD.b10.计算22等于A.5-25B.1C.25-5D.25-111.下列二次根式中,是同类二次根式的是aa3caA.bcB.a3b2与abC.2a与4aD.b与a3b2二、填空题1.化简=____.2.2= .3.当a??2时,化简|1?2|得 .4.若三角形的三边a?b?c满足a2-4a+4+b?3=0,则笫三边c的取值范围是_____________.5.判断题若a2=a,则a一定是正数.若a2=-a,则a一定是负数.2=π-3.14.2∴2∵=5,?5,又525,?25.27?5.当a>1时,|a-1|+?2a?a 2=2a-2.2若x=1,则2x-x?4x?4?2x?2=2x-=x+2=1+2=3.若2=-xy≠0,则x、y异号.1m 2=1.x22x?1=x+1.322=0.当m>3时,9?6m?m2-m=-3.6.如果等式x=-x成立,则x的取值范围是________.7.当x_______时,1?2x?x2=x-1.8.若2=x+2,则x__________.39.若m m2m______.1x?2时,210.当2=________.x与它的绝对值之和为零,则x211.若?_________12.当a_________时,|a2-3a|=-4a.213.化简3=________.)4214.若a 2的结果为________. 的结果是________. ??12.15.化简a216.当a_______时,2a17.若a2|等于________.18.计算2?1=_____.19.已知:2?x?4,化简20.当x?0时,21.比较大小: 2x?1?2?|x?5|=_________.x=___________.5?2______2?37?2622.化简:6?1=________.23.设的整数部分a,小数部分为b,则a=______, b=______. 224.先化简再求值:当a=9时,求a+?2a?a的值,甲乙两?a href=“http:///fanwen/shuoshuodaquan/”target=“_blank” class=“keylink”>说慕獯鹑缦?2甲的解答为:原式=a+=a+=1;。
4题图5题图满洲里市2017-2018学年度(上)期末检测九年级数学试题姓名 班级_____得分_____温馨提示:1.本试卷共6页,满分为120分。
考试时间90分钟。
2.答卷前务必将自己的学校、班级、姓名、座位号填写在本试卷相应位置上。
一、 选择题(每小题3分,共36分.下列各题的选项中只有一个正确,请将正确答案选出来,并将其字母填入后面的括号内)1.下列图形中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.2. 一元二次方程02=+x x 的根是( )A. x 1=0,x 2=1B. x 1=0,x 2=-1C. x 1=1,x 2=-1D. x 1=x 2=-1 3. 用配方法将方程0182=--x x 变形为m x =-2)4(的过程中,其中m 的值正确的是( )A. 17B. 15C. 9D. 7 4.一条排水管的截面如图所示,已知排水管的半径OB=10, 水面宽AB=16,则截面圆心O 到水面的距离OC 是( ) A. 4 B. 5 C.36 D. 65.如图,⊙O 是△ABC 的外接圆,已知∠ABO=50°,则∠ACB 的大小为( )A. 40°B. 30°C. 45°D. 50°6.若抛物线c bx ax y ++=2与x 轴的两个交点坐标是(-1,0) 和(2,0),则此抛物线的对称轴是直线( )A.1-=xB.21-=xC.21=x D.1=x7.有6张写有数字的卡片,它们的背面都相同,现将它们背面朝上(如图),从中任意摸出一张是数字3的概率是( ) A. 61 B. 31 C. 21 D.328.如果矩形的面积为6,那么它的长y 与宽x 的函数关系用图象表示为( )A. B. C. D.9.如图,将Rt △ABC (其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在 同一条直线上,那么旋转角等于( )A. 55°B. 70°C. 125°D. 145°10.一次函数b ax y +=与二次函数c bx ax y ++=2在同一直角坐标系中的图象可能是( )A. B. C. D. 11.在一幅长80cm ,宽50cm 的矩形风景画的四周镶等宽的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400 cm 2,设金色纸边的宽为x cm ,根据题意所列方程正确的是( )A. 014001302=-+x xB. 0350652=-+x xC. 014001302=--x xD. 0350652=--x x17题图18题图12.如图,有一圆锥形粮堆,其侧面展开图是半径为6m 的半圆, 粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时,小猫正 在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的 最短路程长为( )X|k |B| 1 . c|O |mA .3m B..53 m D .4m 二、填空题(本题6个小题,每小题3分,共18分) 13.如果关于x 的方程052=+-k x x 没有实数根,那么k 的取值范围是 .14.圆内接正六边形的边长为10cm ,则它的边心距等于________cm . 15.在双曲线xk y 32+=上有三个点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3), 若x 1<x 2<0<x 3, 则y 1,y 2 ,y 3的大小关系是 .(用“<”连接) 16.已知抛物线12--=x x y 与x 轴的一个交点为(m ,0),则代数式20172+-m m 的值为________.17.如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点, 且∠AEB=60°,则∠P=________度.18.如图,将△ABC 绕点C 旋转60°得到△A ′B ′C ′, 已知AC=6,BC=4,则线段AB 扫过图形(阴影部分)的 面积为 (结果保留π).三、解答题(本题4个小题,每小题6分,共24分) 19.解方程:22)1(3-=-x x x20.在平面直角坐标系中,△ABC 的位置如图所示,(每个小方格都是边长 为1个单位长度的正方形).(1) 将△ABC 沿x 轴方向向左平移6个单位长度,画出平移后得到的△A 1B 1C 1; (2) 将△ABC 绕着点A 顺时针旋转90°,画出旋转后得到的△AB 2C 2, 并直接写出点B 2,C 2的坐标.21.已知抛物线2(3)2y a x =-+经过点(1,-2) (1)求a 的值;(2)若点A (m ,y 1)、B (n ,y 2)(m <n <3)都在该抛物线上, 试比较y 1与y 2的大小.22.如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底 面积为800平方厘米.求截去正方形的边长.12题图号四、(本小题7分)23.如图,△ABC 中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.求证:DE是⊙O切线.五、(本小题7分)24. 有A、B两组卡片共5张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,5.它们除了数字外没有任何区别.(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?六、(本题8分)25.如图,已知反比例函数xky=的图象与一次函数bxy+=的图象交于点A(1,4)、点B(-4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.座位七、(本题10分)26.某商场购进一批日用品,若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y (件)与价格x (元/件)之间满足一次函数关系. (1)试求:y 与x 之间的函数关系式;(2)若这批日用品购进时进价为4元,则当销售价格定为多少时,才能使每月的润最大?每月的最大利润是多少?八、(本题10分)27.如图,已知抛物线c bx x y ++-=2与x 轴、y 轴分别相交于点A (-1,0) 和B (0,3),其顶点为D . (1)求这条抛物线的解析式;(2)若抛物线与x 轴的另一个交点为E ,求△ODE 的面积;抛物线的对称轴 上是否存在点P 使得△PAB 的周长最短.若存在请求出点P 的坐标,若不 存在说明理由.2017.12期末检测九年级数学试题答案二、填空:13. 14. 5 15. y 2 < y 1 < y 3 16 201817. 60° 18.19.解: 3x (x ﹣1)=2x ﹣23x (x ﹣1)-2(x ﹣1)=0…………1分 (3x -2)(x ﹣1)=0…………3分 ∴3x -2=0或x ﹣1=0,…………5分 解得,,.…………6分20.解:(1)如图,△A 1B 1C 1即为所求.……2分(2) 如图,△AB 2C 2即为所求.……2分点B 2(4,-2),C 2(1,-3).……6分21.解:(1)∵抛物线2(3)2y a x =-+经过点(1,-2), ∴22(13)2a -=-+,解得a=-1;……3分(2)∵函数2(3)2y x =--+的对称轴为x=3,∴ A (m ,y 1)、B (n ,y 2)(m <n <3)在对称轴左侧,又∵抛物线开口向下,∴ 对称轴左侧y 随x 的增大而增大, ∵ m <n <3,∴ y 1<y 2.……6分22..解:设截去的小正方形的边长为xcm ,由题意,得 (60﹣2x )(40﹣2x )=800--------------------3分 解得:x 1=10,x 2=40(不合题意,舍去),---------------5分 答:矩形铁皮的面积是117平方米.-------------6分23.证明:连接AD ,OD ,∵AB 是直径,∴∠ADB=90°, ∵AB=AC ,∴BD=DC ,∵OB=OA ,∴OD 是△ABC 的中位线,∴OD ∥AC , 又∵DE ⊥AC ,∴∠AED=90°,∴∠ODE=∠AED=90° ∴DE 是⊙O 的切线. 备注:证法不唯一24. (1)解:P (抽到数字为2)=1/3-----------------2分(2)解:不公平,理由如下.画树状图如下:从树状图中可知共有6个等可能的结果,而所选出的两数之积为3的倍数的机会有4个.---------------5分∴P (甲获胜)= ,而P (乙获胜)= ,------------6分∵P (甲获胜)>P (乙获胜)∴这样的游戏规则对甲乙双方不公平-------------------7分25. 解:把A 点(1,4)分别代入反比例函数y= ,一次函数y=x+b , ∴解得k=4, b=3 -------2分 ∵点B (﹣4,n )在直线y=x+3上, ∴ n=-1 -------3分(2)∵直线y=x+3与y 轴的交点C 坐标为(0,3), ∴OC=3∴S △AOB =S △AOC +S △BOC = =---------------------------6分(3)根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值 ------8分26.解:(1)由题意,可设y=kx+b (k ≠0),…………1分把(5,30000),(6,20000)代入得:,解得:,…………4分所以y 与x 之间的关系式为:y=﹣10000x+80000;…………5分 (2)设利润为W 元,则W=(x ﹣4)(﹣10000x+80000)…………6分整理得 W=﹣10000(x ﹣6)2+40000 …………8分所以当x=6时,W 取得最大值,最大值为40000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为40000元…………10分27.解:(1)解:根据题意得,解得,∴抛物线解析式为y=﹣x2+2x+3----------------------3分(2)解:当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则E(3,0);--------4分∵抛物线y=﹣(x﹣1)2 + 4的顶点坐标D(1,4),∴S△ODE= 1/2×3×4=6;---------6分连接BE交直线x=1于点P,如图,由对称性知PA=PE,∴PA+PB=PE+PB=BE,此时PA+PB的值最小,----------7分求得直线BE的解析式为y=﹣x+3当x=1时,y=﹣x+3=3,----------------9分∴点P坐标(1,2)---------------10分。
专题21.25 解一元二次方程100题(基础篇)(专项练习)1.解下列方程.(1)x 2+2x =0; (2)2x 2-3x -1=0.2.解下列方程(1)220x x -= (2)2690x x -+=3.解方程: 21142x x x =--+.4.用适当的方法解下列方程:(1)()22242x x x -=- (2)()()124x x -+=5.解方程(1)x 2+4x ﹣2=0; (2)3(x ﹣2)2=x (x ﹣2).6.解方程(1)()242-9x = (2)()32180x -+=7.用适当的方法解方程:(1)()()215140x x ---+= (2)21x +=8.解方程. (1)3x 2﹣1=4x ; (2)(x +4)2=5(x +4).9.解方程: (1)222(3)9x x -=- (2)22310x x +-=(公式法)10.解方程(1)配方法解方程2x 2﹣12x ﹣12=0; (2)(x +2)(x +3)=111.解下列一元二次方程. (1)2247x x +=(2)()22239x x -=-12.解方程:(1)x 2+4x ﹣1=0 (2)x (x -2)+x -2=013.解下列方程: (1)x 2+4x +3=0; (2)3x 2﹣x ﹣1=0.14.用适当的方法解下列方程 (1)2(x -1)2=18; (2)x 2-2x =2x +115.用适当的方法解方程: (1)2430x x -+=; (2)23110x x -=16.用适当的方法解方程: (1)()231250x --= (2)2260x x --=17.解方程: (1)2314x x -=(2)()2(21)321x x +=+18.解方程: (1)2x 2﹣3x ﹣1=0. (2)x 2﹣7x =﹣10.19.解方程:(1)用配方法解方程:2640x x -+=;(2)解方程:2(3)2(3)x x x -=-.20.解方程:(1)解方程:9x 2﹣1=3. (2)用配方法解方程:x 2﹣10x +22=0.21.解方程: (1)2430x x --= (2)2450x x -=+22.用适当的方法解下列方程:①2x 2﹣2x ﹣1=0; ①x (2x ﹣5)=4x ﹣10;23.解方程: (1)22980x x -+=;(2)()()223423x x +=+.24.用适当的方法解方程 (1)2230x x +-= (2)2250x x -=25.解方程(1)()()22120211x -=-, (2)2450x x --=,(3)()72y 140y y -+-=,(4)22530x x --=26.解方程: (1)x 2+x ﹣1=0;(2)()()2424x x -=-.27.解方程(1)2560x x ++=.(2)2240x x --=28.解下列方程: (1) x 2 =2x(2)x 2-4x +1=0(用配方法求解)29.解下列方程: (1)(x +3)2-9=0; (2)x 2+2x -3=0.30.解下列一元二次方程: (1)2280x x -=;(2)()()21321x x x -=-;(3)()234x +=.31.解一元二次方程 (1)x 2﹣4x =0; (2)3x 2﹣x ﹣1=0.32.解方程: (1)x 2﹣4x ﹣5=0; (2)2x (x +1)=x +1.33.解方程: (1)2430x x -+=;(2)()()226280x x ---+=34.解方程(1)()2190x --= (2)2250x x --=35.解方程:(1)2280x x --=(2)()221160x --=(3)()()23530x x x ---=36.用适当的方法解下列一元二次方程 (1)()229x -=(2)()33x x x -+=(3)2314x x -=(4)()()22311-=-x x37.用公式法解下列方程: (1)22410x x --=;(2)2523x x +=;(3)(2)(35)1x x --=;(4)230.252x x +=.38.解方程:(1)27180x x --=; (2)2414x x +=.39.解方程: (1)x 2﹣5x +4=0;(2)x 2+x ﹣1=0.40.解方程:(1)23410x x ++=(公式法) (2)22730x x -+=(配方)(3)()2222x x -=-(4)()29140x --=41.解下列方程: (1)x 2﹣2x +1=25;(2)x 2﹣4x +1=0.42.解方程: (1)(2x ﹣1)2=9. (2)x 2﹣4x ﹣12=0.43.不解方程,求下列各方程的两根之和与两根之积:(1)2210x x ++=; (2)230x -=;(3)22237x x x +=+; (4)25564x x -=-.44.解下列方程: (1)x 2+4x ﹣1=0; (2)(x ﹣1)(x +3)=5(x ﹣1).45.解下列方程: (1)2289x x x -=-; (2)24490x x ++=.46.用直接开平方法解下列方程. (1)2160x -=;(2)2(2)9x -=.47.解方程:(1)22310x x --=,(2)34x 2﹣2x ﹣12=048.用适当的方法解下列方程. (1)x 2+4x =2; (2)2x (x ﹣3)=7(3﹣x ).49.解方程:(1)x (x -3)-5(3-x )=0(2)()()222230x x +-+-=50.解下列一元二次方程: (1)(2x +1)2+4(2x +1)+4=0;(2)(31)(1)(41)(1)x x x x --=+-.51.解方程:(1)22(2)180x +-=(2)22530x x --=52.解方程: (1)x 2﹣2x ﹣5=0;(2)(x +1)﹣2(x 2﹣1)=0.53.解下列一元二次方程: (1)3x (x ﹣1)=2﹣2x ; (2)2x 2﹣x ﹣1=0(配方法).54.解方程: (1)()2219x +=; (2)210240x x -+=.55.计算:解方程:(1)2(1)4x x +=;(2)2(4)5(4)x x +=+;56.解方程:(1)2412x x -=(2)2310x x -+=57.解方程(1)22-0x x =(2)x 2―6x +4=058.解方程: (1)2820x -=;(2)()22x x x -=-.59.解方程:(1)228100x x --=(2)()()22213x x -=+60.解方程:(1)210250x x ++=,(2)2410x x -+=.61.解方程: (1)230x x -=(2)2410x x --=62.解下列一元二次方程: (1)2(1)4x -=(2)(5)x x x +=63.解方程: (1)2660x x --=(2)22(3)(3)x x x =++64.解方程: (1)256x x -=(2)()()2333x x x -=-65.解方程: (1)24120x x +-=.(2)()()2454x x +=+.66.解方程: (1)24x 9=; (2)2x -x-20=.67.解方程 (1)2610x x --=(2)()()22213x x -=-68.用适当的方法解下列方程: (1)x 2-x -1=0;(2)3x (x -2)=x -2;(3)x 2-+1=0;(4)(x +8)(x +1)=-12.69.按要求完成下列各小题, (1)解方程:2(3)(21)(3)x x x -=--(2)解方程:2320x x -+=70.解方程: (1)x 2-2x -3=0 (2)(x ﹣3)2=2x ﹣671.解方程: (1)x 2-x -2=0; (2)3x (x -2)=2-x .72.解下列方程: (1)()()2121x x -=-;(2)()2322x x +=+.73.选择适当方法解下列方程: (1)220x x +=; (2)232x x +=.74.解下列方程:(1)2410x x -+=(配方法) (2)24630x x --=(运用公式法)(3)()()223523x x -=-(分解因式法)75.解一元二次方程: (1)()()31231x x x +=+ (2)23410x x --=76.解方程: (1)245x x -=(2)()()2312x x --=77.解下列方程 (1)22410x x -+=(2)()()21210x x x ---=.78.用合适的方法解下列方程 (1)2510x x -+=(2)()()22550x x x -+-=79.用适当的方法解下列方程: (1)2-430x x(2)()3-2-2x x x =80.用适当方法解下列方程: (1)3x 2﹣2x ﹣1=0;(2)x (x +2)=2x +4.81.请选择适当的方法解下列一元二次方程: (1)2x 2﹣x ﹣3=0;(2)(x +2)2=3(x +2).82.解方程: (1)22x x =(2)2450x x -=+83.解下列方程: (1)28x x =(2)3(1)22x x x -=-84.解方程: (1)x 2-2x -3=0(2)2x 2+1=3x85.解方程: (1)260x x -=;(2)24120x x --=.86.解方程: (1)24250x -=(2)2240x x --=87.解方程:(1)解方程:2420x x--=;(2)解方程:53 212x x=+-.88.解方程:(1)2420x x++=(配方法)(2)2551x x x+=--(公式法)89.解方程.(1)()222180x--=;(2)24810x x-+=.90.解方程,(1)2x2+2x-1=0(2)5(x+3)2=x2-991.用适当的方法解一元二次方程.(1)x(x-3)=-(x-3)(2)x2+4x-3=092.解方程:(1)x(x-2)+x-2=0(2)x2﹣8x+6=0(配方法)93.我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法,请你任意挑选择两个方程,并选择你认为适当的方法解方程.①210x x +-=;①2(1)2x -=;①2(1)(1)0x x +++=; ①222x x -=.94.用适当的方法解下列方程:(1)214x ()-=;(2)2340x x --=.95.解方程: (1)230x x +=;(2)212(1)x x -=+.96.解下列方程: (1)22350x x --=;(2)(32)23x x x -=-.97.解方程:(1)220x x -= (2)2310x x ++=98.用适当的方法解下列一元二次方程 (1)22730x x -+=(2)()2362x x -=-99.解方程: (1)2234x x -=(2)()252156x x -=-100.解方程: (1)241x x -=(2)()2133x x +=+参考答案1.(1)x 1=-2,x 2=0.(2)x 1,x 2【分析】(1)采用因式分解法即可求解; (2)直接用公式法即可求解. 解:(1)原方程左边因式分解, 得:(2)0x x +=, 即有:x 1=-2,x 2=0; (2)①24942(1)170b ac ⨯⨯>-=--=,①x =①1x =,2x =. 【点拨】本题考查了用因式分解法和公式法解一元二次方程的知识,掌握求根公式是解答本题的关键.2.(1)10x =,22x = (2)123x x ==【分析】 (1)直接利用因式分解法解方程即可;(2)用因式分解法解方程即可.(1)解:x (x −2)=0,x 1=0,x 2=2;(2)解: (x −3)2=0,x 1=x 2=3.【点拨】此题考查了一元二次方程的解法,解题的关键是熟练掌握各种解法.3.11x =,2=1x 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.解:去分母得:24(2)x x x =--- ,解得:11x =,2=1x经检验11x =,2=1x①原分式方程的解为11x =,2=1x【点拨】本题考查了解分式方程以及解一元二次方程,熟练掌握步骤是解题的关键,需要注意的是最后要记得检验是不是分式方程的解.4.(1)x 1=23,x 2=2(2):x 1=﹣3,x 2=2【分析】(1)移项后分解因式,即可得出两个一元一次方程,再求出方程的解即可;(2)整理后分解因式,即可得出两个一元一次方程,再求出方程的解即可.(1)解:(1)(x ﹣2)2=4x ﹣2x 2,(x ﹣2)2+2x (x ﹣2)=0,(x ﹣2+2x )(x ﹣2)=0,x ﹣2+2x =0或x ﹣2=0,解得:x1=23,x2=2;(2)解:(x﹣1)(x+2)=4,整理,得x2+x﹣6=0,(x+3)(x﹣2)=0,x+3=0或x﹣2=0,解得:x1=﹣3,x2=2.【点拨】本题考查了解一元二次方程,能选择适当的方法求解是解此题的关键,解一元二次方程的方法有直接开平方法,公式法,配方法,因式分解法等.5.(1)x1=﹣,x2=﹣2(2)x1=2,x2=3【分析】(1)先把常数项移到方程的右边,然后把方程进行配方得到(x+2)2=6,再直接开方即可;(2)先移项再提取公因式(x﹣2)得到(x﹣2)(x﹣3)=0,然后解两个一元一次方程即可.(1)解:①x2+4x﹣2=0①x2+4x=2①x2+4x+4=6①(x+2)2=6①x+2=①x1=﹣x2=﹣2;(2)解:①3(x﹣2)2=x(x﹣2)①(x﹣2)(3x﹣6﹣x)=0①(x﹣2)(x﹣3)=0①x﹣2=0或x﹣3=0①x1=2,x2=3.【点拨】此题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法、配方法、公式法、因式分解法;解题的关键是要根据方程的特点灵活选用合适的方法.6.(1)12x=或72x=(2)12x=-【分析】(1)先将二次项系数化为1,再根据平方根的定义即可求解;(2)先将常数项移到等式右边,再根据立方根的定义即可求解.(1)解:()242-9x =,二次项系数化1得:()292-4x =, 开平方得:322x -=±, 解得:12x =或72x =. (2)解:()32180x -+=移项得:()3218x -=-,开立方得:212x -=-, 解得:12x =-.【点拨】本题主要考查了利用平立方根及立方根解方程,解题的关键是熟记开平方及开立方的定义.7.(1)122,5x x == (2)1222x x ==-【分析】(1)用因式分解法解方程即可;(2)用配方法解方程即可.(1)解:()()215140x x ---+=, ()()14110x x ----=,()()520x x --=,20x -=,50x -=,122,5x x ==.(2)解:21x +=,21x -=-,2515x -+=-+,2(4x =,2x =±,1222x x ==-【点拨】本题考查了一元二次方程的解法,解题关键是熟练掌握因式分解法和配方法,准确解方程.8.(1)12x x ==x 1=-4,x 2=1 【分析】(1)先计算判别式的值,然后利用公式法解方程;(2)先移项得到(x +4)2-5(x +4)=0,然后利用因式分解法解方程.(1)解: 3x 2-4x -1=0,①a =3,b =-4,c =-1,①Δ=b 2-4ac =(-4)2-4×3×(-1)=16+12=28>0.①x ==,①12x x = (2)解:(x +4)2=5(x +4),(x +4)2-5(x +4)=0,(x +4)(x +4-5)=0,①x +4=0或x -1=0,①x 1=-4,x 2=1.【点拨】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.9.(1)13x =,29x =(2)1x =2x = 【分析】(1)先移项,然后利用平方差公式及因式分解法解方程即可得;(2)利用公式法解一元二次方程即可得.(1)解:()22239x x -=-,()()()223330x x x --+-=, ()()()32330x x x ⎡⎤---+=⎣⎦,()()390x x --=,∴30x -=或90x -=,∴13x =,29x =;(2)解:22310x x +-=,其中2a =,3b =,1c =-,∴()2243421170b ac =-=-⨯⨯-=>,x =,∴1x =2x =. 【点拨】题目主要考查解一元二次方程的方法:因式分解法与公式法,熟练掌握解方程的方法是解题关键.10.(1)x 1=x 2=3(2)x 1x 2【分析】(1)先将二次项系数化为1,再将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得;(2)利用公式法求解即可.(1)解:∵2x 2﹣12x ﹣12=0,∴x 2﹣6x ﹣6=0,∴x 2﹣6x =6,∴x 2﹣6x +9=6+9,即(x ﹣3)2=15,∴x ﹣3∴x 1=x 2=3(2)解:整理成一般式,得:x 2+5x +5=0,∴a =1,b =5,c =5,∴Δ=52﹣4×1×5=5>0,则x∴x 1x 2 【点拨】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.11.(1)1x =,2x =(2)13x =,29x =. 【分析】(1)用公式法解方程即可;(2)用因式分解法解方程即可.(1)解:2247x x +=化简得,22740x x -+=,274a b c ==-=,,,224(7)424170b ac -=--⨯⨯=>,方程有两个不相等的实数根,x ==1x =,2x =. (2)解:()22239x x -=-,()223(3)(3)0x x x ---+=, ()(3)90x x --=,3090x x -=-=,,13x =,29x =.【点拨】本题考查了一元二次方程的解法,解题关键是熟练运用公式法和因式分解法解方程.12.(1)x 1=﹣x 2=﹣22)x 1=2,x 2=-1【分析】(1)利用公式法解方程即可;(2)利用因式分解法解方程即可.解:(1)①x 2+4x ﹣1=0,①a =1,b =4,c =﹣1,①①=16+4=20,①x 2=-①12x =-22x =-(2)x (x -2)+x -2=0,因式分解得:(x ﹣2)(x +1)=0,可得x ﹣2=0或x +1=0,解得:x 1=2,x 2=﹣1.【点拨】本题主要考查了一元二次方程的求解,掌握解一元二次方程的方法与步骤,准确利用公式法和因式分解法解方程是关键.13.(1)121,3x x =-=-;(2)12x x == 【分析】(1)利用因式分解法解方程即可得;(2)利用公式法解方程即可得.解:(1)2430x x ++=,(1)(3)0x x ++=,10x +=或30x +=,1x =-或3x =-,即121,3x x =-=-;(2)2310x x --=,此方程中的3,1,1a b c ==-=-,则x =x =,12x x == 【点拨】本题考查了解一元二次方程,熟练掌握方程的解法是解题关键.14.(1)4x =或2x =-;(2)2x =2x =【分析】(1)根据题意利用直接开方法进行一元二次方程的求解即可;(2)根据题意利用配方法进行一元二次方程的求解即可.解:(1)2(x -1)2=182(1)9x -=所以13x -=或13x -=-,解得:4x =或2x =-;(2)x 2-2x =2x +12410x x --=2(2)410x ---=2(2)5x -=所以2x -=2x -=解得:2x =2x =【点拨】本题考查解一元二次方程,熟练掌握并适当地选择一元二次方程求解的方法是解题的关键.15.(1)11x =,23x =;(2)10x =,2113x =. 【分析】(1)利用十字相乘法解一元二次方程求解即可;(2)利用提公因式法解一元二次方程求解即可.解:(1)2430x x -+= ()()310x x --=30x -=或10x -=,解得:11x =,23x =;(2)23110x x -=()3110x x -=0x =或3110x -=,解得:10x =,2113x =.【点拨】本题考查了一元二次方程的解法.解题的关键是熟练掌握一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.16.(1)12x =,243x =-;(2)11x =,21x = 【分析】(1)先移项,然后利用开平方法解一元二次方程即可;(2)利用配方法解一元二次方程即可.解:(1)①()231250x --=,①()23125x -=,①315x -=±,①12x =,243x =-; (2)①2260x x --=,①226x x -=,①2217x x -+=即()217x -=,①1x -=①11x =21x =【点拨】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.17.(1)1x =2x =(2)112x =-,21x = 【分析】(1)用公式法解方程即可;(2)利用因式分解法解方程即可.解:(1)2314x x -=23410x x --= 341a b c ==-=-,,224=(4)43(1)28b ac ---⨯⨯-=x ==1x =2x =(2)()2(21)321x x +=+()2(21)3210x x +-+=(21)(213)0x x ++-=210x +=或220x -=112x =-,21x = 【点拨】本题考查了一元二次方程的解法,解题关键是熟练运用恰当的方法解一元二次方程.18.(1)x 1,x 22)x 1=2,x 2=5 【分析】(1)利用公式法求解即可;(2)先移项,然后利用因式分解法求解即可.解:(1)①22310x x --=,①a =2,b =﹣3,c =﹣1,①()()2243421170b ac ∆=-=--⨯⨯-=>,①x ==①x 1x =2x = (2)①x 2﹣7x =﹣10,①x 2﹣7x +10=0,则(x ﹣2)(x ﹣5)=0,①x ﹣2=0或x ﹣5=0,解得x 1=2,x 2=5.【点拨】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.19.(1)135x ,235x ;(2)13x =,21x =【分析】(1)根据配方法对方程进行配方再解出方程即可.(2)移项后提取公因式,用因式分解法求出两个解即可.解:(1)2640x x -+=,264x x ∴-=-,26949x x ∴-+=-+,即()235x -=, 则35x ,13x ∴=235x ; (2)()()2323x x x -=--,()()23230x x x ∴-+-=,则()()3330x x --=,30x ∴-=或330x -=,解得13x =,21x =.【点拨】本题考查用配方法,因式分解法解一元二次方程,掌握这些解题方法是解决本题的关键.20.(1)1222,33x x ==-;(2)1255x x ==【分析】(1)移项、合并,然后把二次项系数化为1,再开平方即可;(2)将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得.解:(1)9x 2﹣1=3,9x 2=4,x 2=49, ①x =23, ①x 1=23,x 2=﹣23;(2)x 2﹣10x +22=0,x 2﹣10x =﹣22,x 2﹣10x +25=﹣22+25,即(x ﹣5)2=3,①x ﹣5=①x 1=x 2=5【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.21.(1)12x =,22x = ;(2)15x =-,21x =.【分析】(1)首先把常数项移到右边,方程两边同时加上一次项系数一半的平方配成完全平方公式,然后开方求解即可;(2)根据十字相乘法解一元二次方程求解即可.解:(1)2430x x --=()222434434272x x x x x x -=-+=+-=-=解得:12x =22x =;(2)2450x x -=+()()510x x +-=解得:15x =-,21x =.【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.配方法的步骤:配方法的一般步骤为:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.22.①x 1x 2;①x 1=52,x 2=2 【分析】①用公式法解方程即可得出答案;①利用因式分解法解方程即可;解:①①a =2,b =﹣2,c =﹣1,①Δ=(﹣2)2﹣4×2×(﹣1)=12>0,则x ,即x 1x 2 ①①x (2x ﹣5)=4x ﹣10,①x (2x ﹣5)﹣2(2x ﹣5)=0,①(2x ﹣5)(x ﹣2)=0,则2x ﹣5=0或x ﹣2=0,解得x 1=52,x 2=2; 【点拨】本题考查了公式法解一元二次方程、因式分解法解一元二次方程,熟悉各方法并合理运用是解题的关键.23.(1)1x =2x =2)132x =-,212x = 【分析】(1)用公式法求解即可;(2)用因式分解法求解即可.解:(1)①a =2,b =-9,c =8①224(9)428170b ac ∆=-=--⨯⨯=>①x①1x =2x =(2)移项得:()()2234230x x +-+=左边分解因式得:(23)(21)0x x +-=①230x +=或210x -= ①132x =-,212x = 【点拨】本题考查解一元二次方程,要根据方程的特点选用恰当的方法来解. 24.(1)1231x x ,=-=;(2)120 2.5x x ==,【分析】(1)使用十字相乘法进行因式分解解方程;(2)使用提公因式法进行因式分解解方程;解:(1)2230x x +-=()()310x x +-=①3010x x +=-=;①1231x x ,=-=(2)2250x x -=()250x x -=①0250x x =-=;①120 2.5x x ==,【点拨】本题考查的是一元二次方程的解法,解题的关键是会选择合适的解法解方程.25.(1)x 1=2021,x 2=﹣2019;(2)x 1=﹣1,x 2=5;(3)y 1=﹣2,y 2=7;(4)x 1=﹣12,x 2=3【分析】(1)利用直接开平方法解一元二次方程即可求解;(2)利用因式分解法解一元二次方程即可求解;(3)利用因式分解法解一元二次方程即可求解;(4)利用因式分解法解一元二次方程即可求解;解:(1)直接开平方得:x ﹣1=±2020,①x 1=2021,x 2=﹣2019;(2)原方程化为:(x +1)(x ﹣5)=0,①x +1=0或x ﹣5=0,①x 1=﹣1,x 2=5;(3)原方程化为:(y +2)(y ﹣7)=0,①y +2=0或y ﹣7=0,①y 1=﹣2,y 2=7;(4)原方程化为:(2x +1)(x ﹣3)=0,①2x +1=0或x ﹣3=0,①x 1=﹣12,x 2=3. 【点拨】本题考查解一元二次方程,熟练掌握一元二次方程的解法并灵活运用是解答的关键.26.(1)1x =,2x =2)14x =,26x =. 【分析】 (1)直接利用公式法解方程得出答案.(2)移项后直接利用分解因式解方程即可;解:(1)210x x +-=,其中:1a =,1b =,1c =-,∴22=4=141-1=5b ac --⨯⨯(),①x =解得:1x ,2x =; (2)()()2424x x -=-(4)2(4)0x x ---=,()()460x x --=则40x -=或60x -=,解得:14x =,26x =.【点拨】此题主要考查了因式分解法以及公式法解方程,正确掌握相关解方程的方法是解题关键.27.(1)122,3x x =-=-(2)1211x x ==【分析】(1)用因式分解法解方程即可;(2)用配方法解方程即可.解:(1)2560x x ++=.(2)(3)0x x ++=,20,30x x +=+=,122,3x x =-=-(2)2240x x --=.224x x -=,2215x x -+=,2(1)5x -=,1x -=,1211x x ==【点拨】本题考查了一元二次方程的解法,解题关键是熟练运用因式分解法和配方法解方程.28.(1)120,2x x ==;(2)122x x ==【分析】(1)用因式分解法求解即可;(2)用配方法求解即可.解:(1)x 2=2x ,x 2﹣2x =0,x (x ﹣2)=0,解得:x 1=0,x 2=2;(2)x 2-4x +1=0,x 2-4x +4-3=0,(x -2)2=3,x -2=解得:x 1x 2=2【点拨】本题考查了因式分解法和配方法解解一元二次方程.掌握配方法的一般步骤是解答本题的关键.29.(1)x 1=-6,x 2=0;(2)x 1=-3,x 2=1.【分析】(1)根据题意直接利用因式分解法进行方程的求解即可;(2)根据题意直接进行十字交叉相乘利用因式分解法进行方程的求解即可.(1)解: (x +3+3)(x +3-3)=0.(x +6)x =0,x +6=0或x =0,①x 1=-6,x 2=0.(2)解: (x +3)(x -1)=0,x +3=0或x -1=0,①x 1=-3,x 2=1.【点拨】本题考查解一元二次方程,熟练掌握并灵活运用一元二次方程的各种解法是解题的关键.30.(1)10x =,24x =.(2)112x =,23x =.(3)15x =-,21x =- 【分析】(1)根据因式分解法解一元二次方程求解即可;(2)首先把等式右边的()321x -移到左边,然后根据因式分解法解一元二次方程求解即可;(3)首先把等式右边的4移到左边,然后根据因式分解法解一元二次方程求解即可. 解:(1)因式分解,得()240x x -=.于是有20x =或40x -=,①10x =,24x =.(2)原方程整理,得:(21)3(21)0x x x ---=,(21)(3)0x x --=, 210x -=或30x -=, ①221,32x x ==. (3)原方程整理,得()2340x +-=.因式分解,得()()32320x x +++-=.于是有50x +=或10x +=.①15x =-,21x =-.【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.31.(①)x 1=0,x 2=4;(①)x 1x 2【分析】(1)利用因式分解法求解即可;(2)利用公式法求解即可.解:(1)x 2﹣4x =0,分解因式得:x (x ﹣4)=0,解得:x 1=0,x 2=4;(2)3x 2﹣x ﹣1=0,①a =3,b =﹣1,c =﹣1,①①=b 2﹣4ac =1﹣4×3×(﹣1)=13,①x =①x 1x 2 【点拨】本题考查了解一元二次方程,灵活运用简便的方法来求解一元二次方程是解决本题的关键.32.(1)1x =5,2x =﹣1;(2)1x =-1,2x =0.5【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.解:(1)①2x ﹣4x =5,①2x ﹣4x +4=5+4,即2(2)x -=9,则x ﹣2=3±,①1x =5,2x =﹣1;(2)①2x (x +1)﹣(x +1)=0,①(x +1)(2x ﹣1)=0,则x +1=0或2x ﹣1=0,解得1x =-1,2x =0.5.【点拨】本题考查了一元二次方程的配方法,因式分解法求解,根据方程的特点,灵活选择解题方法是解题的关键.33.(1)13x =,21x =;(2)14x =,26x =【分析】(1)利用因式分解法求解一元二次方程即可;(2)将2x -看成整体,利用因式分解法求解一元二次方程即可.解:(1)2430x x -+=(3)(1)0x x --=解得:13x =,21x =(2)()()226280x x ---+= ()()22240x x ----=604)()(x x --=解得:14x =,26x =【点拨】此题考查了因式分解法求解一元二次方程,解题的关键是掌握因式分解的方法以及整体思想的利用.34.(1)14x =,22x =-,(2)11x =21x =【分析】(1)用直接开方法解方程即可;(2)用公式法解方程即可.解:(1)()2190x --= , ()219x -=,13x -=±,13x -=或13x -=-,14x =,22x =-,(2)2250x x --=,1=25a b c =-=-,,,224(2)41(5)24b ac -=--⨯⨯-=,22x ==11x =21x =【点拨】本题考查了一元二次方程的解法,解题关键是熟练运用直接开方法和公式法解一元二次方程.35.(1)2x =-或4x =;(2)52x =或32x =-;(3)3x =或52x =- 【分析】(1)根据十字相乘法解一元二次方程求解即可;(2)根据直接开方法解一元二次方程求解即可;(3)根据提公因式法解一元二次方程求解即可.解:(1)2280x x --= ()()240x x +-=20x ∴+=或40x -=,解得:2x =-或4x =;(2)()221160x --= ()22116x -=,214x ∴-=或214x -=-, 解得52x =或32x =-; (3)()()23530x x x ---=` 解:2(3)5(3)0x x x -+-=,(3)(25)0x x ∴-+=,30x ∴-=或250x +=,解得:3x =或52x =-. 【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.36.(1)15=x ,21x =-;(2)13x =,21x =-;(3)1x =2x =(4)10x =,212x = 【分析】(1)本题利用直接开平方法解方程即可;(2)本题将3移项到等号的左边,通过因式分解法解方程即可;(3)先将4x 移项到等号左边,化成一般式,利用公式法解方程即可;(4)将2(1)x -移项到等号左边,利用因式分解法解方程即可.解:(1)直接开平方得23x -=±,解得15=x ,21x =-;(2)由已知得(3)(3)0x x x -+-=,则(1)(3)0x x +-=,解得11x =-,23x =;(3)由已知得23410x x --=,2(4)43(1)28∆=--⨯⨯-=,①x =解得1x =,2x = (4)由已知得22(31)(1)0x x ---=,利用因式分解法可得2(42)0x x -=,解得10x =,212x =. 【点拨】本题考查解一元二次方程的方法,可以利用直接开平方法,公式法或因式分解法,选择正确的方法解方程是解题的关键.37.(1)1211x x ==(2)12312x x ==-,;(3)12x x ==(4)没有实数根.【分析】先把各方程整理成一般形式()200++=≠ax bx c a ,然后计算24b ac ∆=-,再用求根公式x =计算即可. (1)解:22410x x --=,①241a b c ==-=-,,,① ()()224442124b ac ∆=-=--⨯⨯-=,① x =,即:1211x x == (2)解:23520x x --=,①352a b c ==-=-,,,① ()()2245432=49b ac ∆=-=--⨯⨯-,① 576x ±=, 即:12312x x ==-,; (3)解:2311+90x x -=,①3119a b c ==-=,,,① ()22411439=13b ac ∆=-=--⨯⨯,① x =,①12x x == (4)2250015x x +-=,①21550a b c ==-=,,,① ()2241542501750b ac ∆=-=-⨯⨯=-<,①此方程没有实数根.【点拨】本题考查求根公式法解一元二次方程,比较基础.38.(1)129,2x x ==-;(2)1212x x ==【分析】找出a ,b ,c 的值,计算出根的判别式的值,代入求根公式计算即可求出解.(1)解:①1,7,18a b c ==-=-,①224(7)41(18)1210b ac -=--⨯⨯-=>,①7112x ±==, 即129,2x x ==-;(2)解:24410x x -+=,①4,4,1a b c ==-=,①224(4)4410b ac -=--⨯⨯=, ①(4)01242x --±==⨯, 即1212x x ==. 【点拨】此题考查了解一元二次方程−公式法,熟练掌握求根公式是解本题的关键.39.(1)11x =,24x =;(2)1x ,2x =. 【分析】(1)利用因式分解法解一元二次方程即可;(2)利用公式法解一元二次方程即可.解:(1)将左边分解因式得:()()140x x --=,①10x -=或40x -=,①11x =,24x =;(2)①1a =,1b =,1c =-,①()224141150b ac ∆=-=-⨯⨯-=>,①x ===,①1x =,2x =. 【点拨】本题考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键. 40.(1)121,13x x ;(2)12317,44x x =-=(3)1252,2x x ==(4)1215,33x x == 【分析】(1)先计算4,= 再利用求根公式计算即可;(2)把原方程化为:273022x x -+=,再配方可得:272544x ⎛⎫-= ⎪⎝⎭,再利用直接开平方法解方程即可;(3)先移项,再提取公因式:()2,x - 再解方程即可;(4)可移项后把方程化为:()2419x -=,再利用直接开平方法解方程即可. (1)解:由24b ac ∆=-=16-4×3×1=4>0,故原方程有两个不同的解.x =42,6x -±= 121,13x x ∴=-=- (2)解:273022x x -+= 222777302442x x ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭ 272544x ⎛⎫-= ⎪⎝⎭ 7542x ∴-=或75,42x -=- 12317,.44x x ∴=-= (3)解:()()22210x x ⎡⎤---=⎣⎦()()2250x x --=20x ∴-=或250,x -=1252,.2x x ∴== (4)解:()2419x -= 所以:213x -=± 1215,.33x x ∴== 【点拨】本题考查一元二次方程的各种解法,熟练掌握每种解法是解本题关键.41.(1)126,4x x ==-;(2)1222x x ==【分析】(1)根据配方法解一元二次方程的步骤计算可得答案;(2)移项后根据配方法解一元二次方程的步骤计算可得答案;.解:(1)22125x x -+=2(1)25x ∴-=15x ∴-=±126,4x x ∴==-;(2)①x 2﹣4x +1=0①2443x x -+=①()223x -=①2x -=①1222x x ==【点拨】本题考查解一元二次方程,涉及配方法等知识,是重要考点,难度较易,掌握相关知识是解题关键.42.(1)12x =,21x =-;(2)16x =,22x =-.【分析】(1)用直接开平方法求解即可;(2)根据分解因式法求解.解:(1)①(2x ﹣1)2=9,①2x ﹣1=3或2x ﹣1=﹣3,解得:12x =,21x =-;(2)x 2﹣4x ﹣12=0原方程可变形为()()620x x -+=,①x -6=0或x +2=0,①16x =,22x =-.【点拨】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.43.(1)12122,1x x x x +=-=;(2)12123x x x x +==-;(3)121213,55x x x x +=-=-;(4)121251,66x x x x +==. 【分析】(1)(2)是一般式,先根据判别式确定根的情况,再利用韦达定理即可;(3)(4)先整理成一般式,再根据判别式确定根的情况,然后利用韦达定理即可.解:(1)①1,2,1a b c ===,且24440b ac -=-=, ①12122,1b c x x x x a a+=-=-==;(2)①1,3a b c ===-,且24212140b ac -=+=>,①12123b c x x x x a a+=-===-; (3)方程化为2530x x +-=,①5,1,3a b c ===-,且24160610b ac -=+=>, ①121213,55b c x x x x a a +=-=-==-; (4)方程化为26510x x -+=,①6,5a b ==-,1c =,且24252410b ac -=-=>,①121251,66b c x x x x a a +=-===. 【点拨】本题考查了一元二次方程根的判别式及根与系数的关系,掌握相关公式是解决本题的关键.44.(1)x 1=﹣x 2=﹣22)x 1=1,x 2=2.【分析】(1)利用公式法求解即可;(2)利用因式分解法求解即可.解:(1)x 2+4x ﹣1=0,①a =1,b =4,c =﹣1,①①=42﹣4×1×(﹣1)=20>0,则x =﹣2即x 1=﹣x 2=﹣2(2)(x ﹣1)(x +3)=5(x ﹣1),(x ﹣1)(x +3)﹣5(x ﹣1)=0,(x ﹣1)(x ﹣2)=0,则x ﹣1=0或x ﹣2=0,解得x 1=1,x 2=2.【点拨】本题考查了一元二次方程的解法,解题关键是熟记求根公式,熟练运用因式分解法解一元二次方程.45.(1)121,9x x ==;(2)无解【分析】(1)先将原方程整理为一般式,然后运用公式法求解即可;(2)先求出原方程的根的判别式∆<0,即可求解.解:(1)原方程化为 21090x x -+= ,2241049640b ac ∆=-=-⨯=> ,由求根公式得,=x 1082±=, 所以原方程的解为121,9x x == ;(2)22444491280b ac ∆=-=-⨯⨯=-< ,∴原方程无实数根.【点拨】本题主要考查了解一元二次方程——公式法,理解运用公式法解一元二次方程时要先求出根的判别式以确定根的情况是解题的关键.46.(1)14x =,24x =-;(2)15=x ,21x =-【分析】(1)移项,得216x =,根据平方根的定义,得4x =±.即14x =,24x =-.(2)根据平方根的定义,得23x -=±,即15=x ,21x =-.解:(1)2160x -=①2=16x①4x =±解得14x =,24x =-(2)2(2)9x -=①23x -=±①15=x ,21x =-【点拨】本题主要考查了用开方法解一元二次方程,解题的关键在于能够熟练掌握开方法.47.(1)1x =,2x =;(2)12x x ==. 【分析】(1)先判断0∆>,然后利用公式法解一元二次方程,即可得到答案;(2)先整理方程,判断0∆>,然后利用公式法解一元二次方程,即可得到答案; 解:(1)22310x x --=,224(3)42(1)170b ac ∆=-=--⨯⨯-=>,①x =①1x =,2x =; (2)2312042x x --=,则23820x x --=224(8)43(2)6424880b ac ∆=-=--⨯⨯-=+=>,则x ,解得:124433x x ==. 【点拨】本题考查了公式法解一元二次方程,解题的关键是熟练掌握公式法解方程.48.(1)1222x x =-=-2)1273,2x x ==- 【分析】(1)利用配方法求解可得答案;(2)利用因式分解法求解即可.解:(1)①x 2+4x =2,①x 2+4x +4=2+4,即(x +2)2=6,①x +2=,①1222x x =-=-(2)①2x (x ﹣3)=7(3﹣x ),①2x (x ﹣3)+7(x ﹣3)=0,则(x ﹣3)(2x +7)=0,①x ﹣3=0或2x +7=0, ①1273,2x x ==-. 【点拨】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.49.(1)123,5x x ==-;(2)121,3x x ==-.【分析】根据因式分解法解一元二次方程的方法求解即可.解:(1)x (x -3)-5(3-x )=0()()3530x x x -+-=()()350x x -+=解得:123,5x x ==-.(2)()()222230x x +-+-= ()()23210x x +-++=()()130x x -+=解得:121,3x x ==-.【点拨】此题考查了因式分解法解一元二次方程的方法,解题的关键是熟练掌握因式分解法解一元二次方程的方法.50.(1)1232x x ==-;(2)11x =,22x =- 【分析】(1)可以用完全平方公式因式分解解一元二次方程;(2)可以用提公因式法解一元二次方程.解:(1)(2x +1)2+4(2x +1)+4=0,(2x +1+2)2=0.即2(23)0x +=,①1232x x ==-. (2)移项,得(3x -1)(x -1)-(4x +1)(x -1)=0,即 -(x -1)(x +2)=0,所以11x =,22x =-.【点拨】本题考查了一元二次方程的解法,熟练因式分解法解一元二次方程是解题的关键.51.(1)x 1=1,x 2=-5;(2)x 1=12-,x 2=3 【分析】(1)移项后利用直接开平方法求解可得;(2)利用公式法求解可得.解:(1)22(2)180x +-=,①22(2)18x +=,①2(2)9x +=,①23x +=或23x ,解得:x 1=1,x 2=-5;(2)22530x x --=,①a =2,b =-5,c =-3,①①=25-4×2×(-3)=49>0,①x 解得:x 1=12-,x 2=3. 【点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.52.(1)x 1=x 2=2)x 1=﹣1,x 2=32. 【分析】(1)利用配方法法解方程;(2)利用因式分解法解方程.解:(1)∵x 2﹣2x ﹣5=0,。
八年级数学竞赛试题一、选择题1、在一张纸上,两点A和B相距4cm,将这张纸对折,使得点A和B 重合,此时A点和B点的距离是多少?A. 2cmB. 4cmC. 8cmD. 16cm2、如果一个正方形的面积是400平方厘米,那么它的周长是多少?A. 100厘米B. 80厘米C. 60厘米D. 40厘米3、在一个等边三角形中,已知一条边的长度是5cm,那么这个三角形的面积是多少?A. 10平方厘米B. 12.5平方厘米C. 15平方厘米D. 25平方厘米二、填空题4、在一个直角三角形中,已知两条边的长度分别是3cm和4cm,斜边是5cm。
那么这个三角形的面积是________平方厘米。
41、如果一个菱形的两条对角线的长度分别是6cm和8cm,那么这个菱形的面积是________平方厘米。
411、一个正方形的周长是20cm,那么它的面积是________平方厘米。
三、解答题7.一个矩形的长是6cm,宽是4cm。
如果将这个矩形的长和宽都增加1cm,那么新的矩形的面积是多少?8.一个圆的半径是7cm,求这个圆的面积(π取3)。
9.一个等腰三角形的底边长是12cm,腰长是8cm。
求这个等腰三角形的周长和面积(假设这个三角形是一个等边三角形)。
在一个等腰三角形中,已知顶角为x度,两个底角为y度,用代数式表示它的内角和是()下列各组数中,不是互为相反意义的量的是()在数轴上,一只蚂蚁从原点出发,它先向右爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,然后向左爬了9个单位长度到达点C。
本文1)请在数轴上用点表示出A、B、C的位置;本文2)蚂蚁从点C回到原点最少要爬多少个单位长度?答案:(1)A:+2,B:+5,C:+5-9=-4;在一块长为30m,宽为10m的地面上,挖了一个深为5m的游泳池,这个游泳池的占地面积是____m²。
学校为了改善办学条件,从厂家购进了若干台电脑和电子白板,电子白板每台4800元,电脑每台2800元。
2.3立方根1.了解立方根的概念,会用根号表示一个数的立方根.2.了解开立方与立方运算互为逆运算,能用立方运算求某些数的立方根.通过学生的积极参与,培养学生独立思考的能力,提高数学表达和运算能力.1.了解数学运算是如何逐步拓展的.2.通过一些开立方运算的应用,体会数学应用的广泛性.【重点】立方根的概念及计算.【难点】能用开立方运算求某些数的立方根,了解开立方与立方运算互为逆运算.【教师准备】球形储气罐图片.【学生准备】复习平方根的概念和性质.导入一:传说很久很久以前,在古希腊的某个地方发生了大旱,地里的庄稼都旱死了,于是大家一起到神庙里去向神祈求,神说:“我之所以不给你们降水,是因为你们给我做的这个正方体的祭坛太小,如果你们做一个比它的体积大一倍的祭坛放在我面前,我就会给你们降水.”大家觉得这好办,于是很快做好一个新祭坛送到神那里,新祭坛的棱长是原祭坛棱长的2倍,可是神更加恼怒地说:“你们竟敢愚弄我!这个祭坛的体积根本不是原来那个体积的2倍,我要进一步惩罚你们!”【问题探究】(1)新做的祭坛的体积到底是原祭坛体积的多少倍?(2)要做一个体积是原来祭坛体积2倍的新祭坛,它的棱长应是原来的多少倍?导入二:【问题】(1)面积为2的正方形的边长为多少?(2)体积为2 的正方体的棱长是多少?请同学们回忆求解a2=2时的情境,那么a3=2呢?[设计意图]创新、新颖、有趣的问题情境,以故事的形式激发学生的学习兴趣,从而自然引出课题,并且为学生探究立方根的概念埋下伏笔.一、探索立方根的概念思路一来看一个实际问题:某化工厂使用半径为1 m的一种球形储气罐储藏气体.现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?如果储气罐的体积是原来的4倍呢?(球的体积公式为V=πR3,R为球的半径)【提问】怎样求出半径R ?思路二:体积为2 的正方体的棱长是多少?设正方体的棱长为a,则列出方程a3=2,如何求a呢?[设计意图]通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,又很快将问题归结为如何确定一个数,从而顺利引入新课.【提问】(1)什么叫一个数a的平方根?如何用符号表示数a(a ≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?(3)平方和开平方运算有何关系?(4)算术平方根和平方根有何区别与联系?【强调】一个正数的平方根有两个,且互为相反数;负数没有平方根;0的平方根是0.(5)为了解决前面情境中的问题,需要引入一个新的运算,你将如何定义这个新运算?类似于平方根(也叫做二次方根)的概念,我们定义:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root, 也叫做三次方根).[设计意图]学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时突出平方根与立方根的对比,以利于弄清两者的区别和联系.既复习了平方根的知识,又有利于学生用类比的学习方法学习立方根知识.【做一做】怎样求下列括号内的数?各题中已知什么数?求什么数?(1)()3=0.001;(2)()3=-;(3)()3=0;(4)23=();(5)()3=8;(6)(-3)3=().[设计意图]通过练习,使学生进一步了解求一个数的立方与求一个数的立方根是互为逆运算,感受一个数的立方根的唯一性,计算中对a的取值分别选为正数、负数、0,这种设计意在此过程中渗透分类讨论的思想方法.【议一议】(1)正数有几个立方根?(2)0有几个立方根?(3)负数有几个立方根?【学生小结】正数的立方根是正数;0的立方根是0;负数的立方根是负数.【想一想】类比开平方的概念,你能总结出开立方的概念吗?【学生总结】求一个数a的立方根的运算叫做开立方,a叫做被开方数.二、例题讲解求下列各数的立方根.(1)-27;(2);(3)0.216;(4)-5.解:(1)因为(-3)3=-27,所以-27的立方根是-3,即-=-3.(2)因为,所以的立方根是,即.(3)因为0.63=0.216,所以0.216的立方根是0.6,即=0.6.(4)-5的立方根是-.求下列各式的值.(1)-;(2); (3)-;(4)()3.解:(1)--=-2.(2).4.(3)-=-=-.(4)()3=9.[设计意图]例1着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟练以后可以简化写法.例2则巩固立方根的计算,引导学生思考立方根的性质.[知识拓展]平方根与立方根的区别与联系:1.区别:(1)在用根号表示平方根时,根指数2可以省略,而用根号表示立方根时,根指数3不能省略;(2)平方根只有非负数才有,而立方根任何数都有,并且每个数都只有一个立方根;(3)正数的平方根有两个,而正数的立方根只有一个.2.联系:(1)开平方与开立方运算都与相应的乘方运算互为逆运算;(2)都可归结为非负数的非负方根来研究,平方根主要通过算术平方根来研究,而负数的立方根也可转化为正数的立方根来研究,即-=-;(3)0的平方根和立方根都是0.1.了解立方根的概念,会用三次根号表示一个数的立方根,能用开立方运算求一个数的立方根.2.在学习中应注意以下5点:(1)符号中的根指数“3”不能省略;(2)对于立方根,被开方数没有限制,正数、零、负数都有一个立方根;(3)平方根和立方根的区别:正数有两个平方根,但只有一个立方根;负数没有平方根,但却有一个立方根;(4)灵活运用公式:()3=a, =a,-=-;(5)立方与开立方也互为逆运算.我们可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根.1.求下列各数的立方根.(1)0.001;(2)-512;(3).解:(1)0.1. (2)-8. (3).2.(本课时引例)某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?如果储气罐的体积是原来的4倍呢?解:设原来的半径为r,现在的半径为R,则π=8·π,则=2, 同理,如果储气罐的体积是原来的4倍时,.3.求下列各式的值.(1);(2)-;(3); (4).解:(1)0.5. (2)-4. (3)5. (4)16.4.一个正方体大木块,现在把它锯成8块大小相同的正方体小木块,那么小木块的棱长是原来的几分之几?解:设大正方体的棱长a,则它的体积为a3,锯成8块后小木块的棱长为x,则x3=,则x= ,所以小木块的棱长是原来的.2.3立方根1.探索立方根概念.引例定义性质2.例题讲解.一、教材作业【必做题】教材随堂练习第1,2题.【选做题】教材习题2.5第3题.二、课后作业【基础巩固】1.填空.(1)一个正方体的体积变为原来的8倍,它的棱长变为原来的倍;(2)体积变为原来的n倍,它的棱长变为原来的倍;(3)当x 时,有意义;(4)若x是64的立方根,则x的平方根是;(5)若x是64的平方根,则x的立方根是.2.求下列各数的立方根.-1,,8000.3.若x2=25,y3=(-5)3,求x+y的值.【能力提升】4.(1)填表.(2)由上表你发现了什么规律?(请你用语言叙述出来);(3)根据发现的规律填空:①已知=1.442,则=;②已知=0.07697,则=.【拓展探究】5.观察下列各式.(1) =2 ;(2) =3 ;(3) =4 .探究①:判断上面各式是否成立.(1);(2);(3).探究②:猜想=.探究③:用含有n的式子将规律表示出来,说明n的取值范围,并用数学知识说明你所写式子的正确性.拓展: =2 , =3 , =4 ……根据观察上面各式的结构特点,归纳一个猜想,并验证你的猜想.【答案与解析】1.(1)2(2)(3)为任意数(4)±2(5)±2(解析:(4)x是64的立方根,则x为4,4的平方根是±2;(5)x是64的平方根,则x为±8,±8的立方根是=±2.)2.解:-=-1, ,=20.3.解:因为x2=25,y3=(-5)3,所以x=±5,y=-5,当x=5,y=-5时,x+y=0;当x=-5, y=-5时,x+y=-10.4.解:(1)从左到右依次填入:0.01,0.1,1,10,100.(2)从表中发现被开方数小数点向右移动三位,立方根向右移动一位.(3)①14.42②7.6975.解:探究①:(1)成立(2)成立(3)成立探究②:5 探究③:-=n-(n≥2,且n为整数).理由如下:-= --= -=n-.拓展猜想:-= ---=n-.本课时注意渗透类比的思想方法,通过类比思想方法的使用让学生省时省力,在学习新知的同时巩固已学的知识,通过新旧对比更好地掌握知识.对“议一议”“想一想”“比一比”的探究情况和学生练习的完成情况关注度不够,没有足够关注学生是否理解立方和开立方是互为逆运算的,是否会用根号正确地表示一个数的立方根.在探究与思考中,将平方根、立方根的求法拓展到求四次方根、五次方根的学习.随堂练习(教材第31页)1.解:=0.5,-=-4,=5,()3=16.2.解:设这个正方体的棱长为x cm,则x3=8×33,所以x3=63,所以x==6.所以这个正方体的棱长为6 cm.习题2.5(教材第32页)1.解:它们的立方根依次是0.1,-1,-,20,,-8.2.解:它们的值依次是2,,-3,125,-3.3.解:如下表:4.解:(1)对于正数k,随着k值的增大,它的算术平方根增大. (2)对于正数k,随着k值的增大,它的立方根增大.如果k是一个负数,随着k值的增大,它的立方根增大.5.解:设小木块的棱长为x cm,则8x3=1000,解得x=5.答:小木块的棱长是5 cm.6.提示:2倍;3倍;10倍;倍.将一个体积为125 cm3的铜块改铸成8个相同大小的小立方体铜块,求每个小立方体铜块的表面积.解:设每个小立方体铜块的边长为x cm,则x3×8=125,解得x=2.5,所以每个小立方体铜块的表面积为6×2.52=37.5(cm2).。
【期末复习提升卷】浙教版2022-2023学年七上数学第5章 一元一次方程 测试卷1(解析版)一、选择题(本大题有10小题,每小题3分,共30分) 下面每小题给出的四个选项中,只有一个是正确的. 1.已知①x=1;②x 2﹣2x=0;③x ﹣3=5;④6﹣x ;⑤2x+y=3;⑥xy=2,其中一元一次方程有( ) A .1个 B .2个 C .3个 D .4个 【答案】B【解析】①x=1是一元一次方程; ②x 2﹣2x=0是一元二次方程; ③x ﹣3=5是一元一次方程; ④6﹣x 是多项式;⑤2x+y=3是二元一次方程; ⑥xy=2是二元二次方程, 故选:B .2.已知代数式8x ﹣7与6﹣2x 的值互为相反数,那么x 的值等于( ) A .16 B .﹣ 16 C .1310 D .﹣ 1310【答案】A【解析】根据题意得:(8x ﹣7)+(6﹣2x )=0,解得:x= 16.故答案为:A.3.下列变形正确的是( )A .若3x −1=2x +1,则3x +2x =1+1B .若3(x +1)−5(1−x)=0,则3x +3−5−5x =0C .若1−3x−12=x ,则2−3x −1=xD .若x+10.2−x 0.3=10,则x+12−x 3=1【答案】D【解析】A 、若3x -1=2x+1,则3x -2x=1+1,故A 不符合题意;B 、若3(x+1)-5(1-x )=0,则3x+3-5+5x=0,故B 不符合题意;C 、若1-3x−12=x ,则2-3x+1=2x ,故C 不符合题意;D 、若x+10.2−x 0.3=10,则x+12−x 3=1,故D 符合题意. 故答案为:D.4.已知关于x 的方程2x+4=m ﹣x 的解为负数,则m 的取值范围是( ) A .m <43 B .m >43C .m <4D .m >4【答案】C【解析】由2x+4=m ﹣x 得, x= m−43,∵方程有负数解, ∴m−43<0,解得m <4. 故选C .5.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x= b a;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 x3 •a= x 2 ﹣ 16 (x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1 【答案】A【解析】去分母得:2ax=3x ﹣(x ﹣6),去括号得:2ax=2x+6移项,合并得,x= 3a−1,因为无解;所以a ﹣1=0,即a=1. 故选A .6.松桃县对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设这段公路的长是x 米,则根据题意列出方程正确的是( )A .x 5+1+21=x 6+1B .x 5+1−21=x 6+1C .x+15+21=x+16D .x+15−21=x+16【答案】B【解析】设这段公路的长是x 米,则x 5+1−21=x 6+1故答案为:B【分析】设这段公路的长是x 米, 根据“ 如果每隔5米栽1棵,则树苗缺21棵"可得树苗总数有(x5+1−21)棵;根据“ 如果每隔6米栽1棵 ”可得树苗总数有(x6+1),利用树苗总数不变列出方程即可. 7.若不论 k 取什么实数,关于 x 的方程 2kx+a 3−x−bk 6=1 ( a 、 b 常数)的解总是 x =1 ,则 a +b 的值是( ) A .−0.5 B .0.5 C .−1.5 D .1 【答案】A【解析】∵关于x 的方程 2kx+a 3−x−bk 6=1 的解总是 x =1∴2k+a 3−1−bk 6=1∴4k +2a −1+bk =6 ∴(4+b)k =7−2a∴{4+b =07−2a =0解得: {a =72b =−4 ∴a +b =72−4=−12故答案为:A.8.某超市为了回馈顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物付款合并一次性付款可节省( ) A .18元 B .16元 C .18或46.8元 D .46.8元 【答案】C 【解析】(1)若第二次购物超过300元, 设此时所购物品价值为x 元,则 90%x=288, 解得x=320,两次所购物价值为180+320=500>300, 所以享受9折优惠,因此应付 500×90%=450(元),这两次购物付款合并一次性付款可节省: 180+288-450=18(元),(2)若第二次购物没有超过300元, 两次所购物价值为180+288=468(元), 这两次购物付款合并一次性付款可节省: 468×10%=46.8(元), 故答案为:C .9.方程|x+1|+|x -3|=4的整数解有( )A .2个B .3个C .5个D .无穷多个 【答案】C【解析】根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值可得, 方程中的未知数x 表示到-1与3的距离的和等于4的整数值,所以x 1=−1,x 2=0,x 3=1,x 4=2,x 5=3,共有五个整数解. 故答案为:C.10.如图,在长方形ABCD 中,AB =4cm ,BC =3cm ,E 为CD 的中点,动点P 从A 点出发,以每秒1cm 的速度沿A→B→C→E 运动,最终到达点E .若点P 运动的时间为x 秒,则当△APE 的面积为5cm 2时,x 的值为( )A .5B .3或5C .103D .103或5【答案】D【解析】∵ 长方形ABCD 中,AB =4cm ,BC =3cm ,E 为CD 的中点,∴AB =CD =4,BC =AD =3,CE =12CD =2, 当P 在AB 上时,AP =x(0≤x ≤4),∴12x ·3=5, ∴x =103,当P 在BC 上时,BP =x −4(4<x ≤7),CP =3−(x −4)=7−x ,∴12(2+4)×3−12×4(x −4)−12×2(7−x)=5, 解得:x =5,当P 在CE 上时,如图,CP =x −7(7<x ≤9),PE =2−(x −7)=9−x ,∴12×3(9−x)=5, 解得:x =173,经检验不符合题意,舍去,所以当△APE 的面积为5cm 2时,x 的值为5s 或103s ,故答案为:D二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.已知x ,y ,z 满足x+43=y+32=z+84,且x −2y +z =12,则x = .【答案】14【解析】设x+43=y+32=z+84=t ,则x =3t −4,y =2t −3,z =4t −8,代入x −2y +z =12得:3t −4−2×(2t −3)+4t −8=12 解得:t =6, x =3t −4=14. 故答案为:14.12.x 是实数,若1+x +x 2+x 3+x 4+x 5=0,则x 6= . 【答案】1【解析】∵1+x +x 2+x 3+x 4+x 5=0① , ∴ 两边同时乘以 x ,x +x 2+x 3+x 4+x 5+x 6=0 ,∴1+x +x 2+x 3+x 4+x 5+x 6=1 , ∵1+x +x 2+x 3+x 4+x 5=0②, ②-①得 ∴x 6=1 , 故答案为:1. 13.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱。
第八章 二元一次方程(组)8.1 二元一次方程(组)的相关概念(能力提升)【要点梳理】知识点一、二元一次方程含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式.要点二、二元一次方程的解一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释:(1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2,5.x y =⎧⎨=⎩. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程.要点三、二元一次方程组把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如⎩⎨⎧=-=+52013y x x 也是二元一次方程组.要点四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释:(1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成x ay b=⎧⎨=⎩的形式.(2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组2526x y x y +=⎧⎨+=⎩无解,而方程组1222x y x y +=-⎧⎨+=-⎩的解有无数个.【典型例题】 类型一、二元一次方程例1.已知方程(m ﹣2)x n ﹣1+2y |m﹣1|=m 是关于x 、y 的二元一次方程,求m 、n 的值.【答案与解析】解:∵(m ﹣2)x n ﹣1+2y |m﹣1|=m 是关于x 、y 的二元一次方程,∴n ﹣1=1,|m ﹣1|=1, 解得:n=2,m=0或2,若m=2,方程为2y=2,不合题意,舍去, 则m=0,n=2. 举一反三:【变式1】已知方程3241252m nx y +--=是二元一次方程,则m= ,n= . 【答案】-2,14【变式2】方程(1)(1)0a x a y ++-=,当______a a ≠=时,它是二元一次方程,当时,它是一元一次方程.【答案】1±;11-或 类型二、二元一次方程的解 例2.已知是方程2x ﹣6my+8=0的一组解,求m 的值.【答案与解析】 解:∵是方程2x ﹣6my+8=0的一组解,∴2×2﹣6m ×(﹣1)+8=0,解得m=﹣2. 举一反三:【变式】已知方程2x-y+m-3=0的一个解是11x m y m =-⎧⎨=+⎩,求m 的值.【答案】 解:将11x m y m =-⎧⎨=+⎩代入方程2x-y+m-3=0得2(1)(1)30m m m --++-=,解得3m =.答:m 的值为3.例3.写出二元一次方程204=+y x 的所有正整数解. 【答案与解析】解:由原方程得x y 420-=,因为y x 、都是正整数, 所以当4321, , , =x 时,481216, , , =y . 所以方程204=+y x 的所有正整数解为:⎩⎨⎧==161y x , ⎩⎨⎧==122y x , ⎩⎨⎧==83y x , ⎩⎨⎧==44y x .举一反三: 【变式1】已知是关于x 、y 的二元一次方程ax ﹣(2a ﹣3)y=7的解,求a 的值.【答案】 解:把代入方程ax ﹣(2a ﹣3)y=7,可得:2a+3(2a ﹣3)=7, 解得:a=2.【变式2】在方程0243=-+y x 中,若y 分别取2、41、0、-1、-4,求相应的x 的值.【答案】将0243=-+y x 变形得342yx -=. 把已知y 值依次代入方程的右边,计算相应值,如下表:类型三、二元一次方程组及解 例4.甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①②由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩.乙看错了方程②中的b .得到方程组的解为54x y =⎧⎨=⎩.试计算:20112010110a b ⎛⎫+- ⎪⎝⎭的值.【答案与解析】 解:把31x y =-⎧⎨=-⎩代入②,得-12+b =-2,所以b =10.把54x y =⎧⎨=⎩代入①,得5a+20=15,所以a =-1, 所以201120112010201011(1)101(1)01010ab ⎛⎫⎛⎫+-=-+-⨯=+-= ⎪ ⎪⎝⎭⎝⎭.举一反三:【变式】已知关于,x y 的二元一次方程组41323x ay x by x y +==⎧⎧⎨⎨+==-⎩⎩的解是 , 求的值a b +. 【答案】解:将13x y =⎧⎨=-⎩代入原方程组得:134332a b -=⎧⎨-+=⎩ ,解得113a b =-⎧⎪⎨=⎪⎩,所以23a b +=-.【巩固练习】一、选择题1.一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) A .5 个 B. 6 个 C.7 个 D.8 个2.方程2x ﹣=0,3x+y=0,2x+xy=1,3x+y ﹣2x=0,x 2﹣x+1=0中,二元一次方程的个数是( )A .5个B .4个C .3个D .2个3.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m 的值为( ) A .4B .﹣4C .D .﹣4.若5x -6y =0,且xy ≠0,则的值等于( )A .23 B. 32C.1D. -1 5.若x 、y 均为非负数,则方程6x=-7y 的解的情况是( ) A .无解 B.有唯一一个解 C.有无数多个解 D.不能确定6.在早餐店里,王伯伯买5个馒头,3个包子,老板少拿2元,只要50元.李太太买了11个馒头,5个包子,老板以售价的九折优待,只要90元.若馒头每个x 元,包子每个y 元,则下列哪一个二元一次联立方程式可表示题目中的数量关系? ( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩ D .53502115900.9x y x y +=-⎧⎨+=÷⎩二、填空题 7.已知方程3241252m nxy +--=是二元一次方程,则m =________,n =_________. 8.若方程组的解为,则点P (a ,b )在第象限.9.在13,72x y ⎧=⎪⎪⎨⎪=⎪⎩ 04x y =⎧⎨=⎩,21x y =⎧⎨=⎩,33x y =⎧⎨=⎩这四对数值中,是二元一次方程组32823x y x y +=⎧⎨-=⎩的解的是________ .10. 方程2x+3y=10 中,当3x-6=0 时,y=_________; 11. 方程|a |+|b |=2 的自然数解是_____________; 12.若二元一次方程组的解中,则等于____________.三、解答题13.请你写出一个二元一次方程组,使它的解是.14.甲、乙二人共同解方程组2623mx y x ny +=-⎧⎨-=-⎩①②由于看错了方程①中的m 值,得到方程组的解为32x y =-⎧⎨=-⎩;乙看错了方程②中的n 的值,得到方程组的解为52x y =-⎧⎨=⎩,试求代数式22m n m n ++的值.15.某球迷协会组织36名球迷租乘汽车赴比赛场地,为中国国家男子足球队呐喊助威,可租用的汽车有两种:一种是每辆车可乘8人,另一种是每辆车可乘4人.要求租用的车子不留空座,也不超载.(1)请你给出三种不同的租车方案;(2)若8个座位的车子租金是300元/天,4个座位的车子租金是200元/天,请你设计费用最少的租车方案,并简述你的理由.【答案与解析】一、选择题1. 【答案】B;2. 【答案】D;【解析】解:2x ﹣=0是分式方程,不是二元一次方程;3x+y=0是二元次方程;2x+xy=1不是二元一次方程;3x+y﹣2x=0是二元一次方程;x2﹣x+1=0不是二元一次方程.故选:D.3.【答案】【解析】把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.4. 【答案】A;【解析】将5x=6y代入后面的代数式化简即得答案.5. 【答案】B;【解析】76x y=-可知:,x y异号或均为0,所以不可能同时为正,只能同时为0.6. 【答案】B;【解析】根据题意知,x,y同时满足两个相等关系:①老板少拿2元,只要50元;②老板以售价的九折优待,只要90元,故选B.二、填空题7. 【答案】-2,14;【解析】由二元一次方程的定义可得:31241mn+=⎧⎨-=⎩,所以214mn=-⎧⎪⎨=⎪⎩8.【答案】四【解析】:将x=2,y=1代入方程组得:,解得:a=2,b=﹣3,则P(2,﹣3)在第四象限.9. 【答案】21 xy=⎧⎨=⎩;【解析】把4组解分别代入方程组验证即可.10.【答案】2;【解析】将2x=代入2x+3y=10中可得y值.11.【答案】;12.【答案】-3∶4;【解析】将代入中,得,即;将代入,得,即,即.三、解答题13.【解析】解:答案不唯一,例如:∵,∴x+y=5, x-y=-1,∴所求的二元一次方程组可以是.14.【解析】解:将32xy=-⎧⎨=-⎩代入②中2(3)23n⨯-+=-,32n=.将52xy=-⎧⎨=⎩代入①中-5m+4=-6,m=2.∴229374344 m n mn++=++=.15.【解析】解:(1)设8个座位的车租x辆,4个座位的车租y辆.则8x+4y=36,即2x+y=9.∵ x,y必须都为非负整数,∴ x可取0,1,2,3,4,∴ y的对应值分别为9,7,5,3,1.因此租车方案有5种,任取三种即可.(2)因为8个座位的车座位多,相对日租金较少,所以要使费用最少,必须尽量多租8个座位的车.所以符合要求的租车方案为8个座位的车租4辆.4个座位的车租1辆,此时租车费用为4×300+1×200=1400(元).。
初二数学下册知识点《二次根式的化简求值150题含解析》一、选择题(本大题共34小题,共102.0分)1.满足的整数x的个数是( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】本题主要考查的二次根式的化简,将不等式的左边分子分母同乘以(),将不等式的右边分子分母同乘以(),最后对化简后的根式进行估计其整数范围,进而求出问题的解,本题解题关键是二次根式的化简以及常见根式的值.【解答】解:将不等式的左边分子分母同乘以,右边分子分母同乘以,得:,即<x<,,满足<x<的整数x只有4、5、6、7、8、9,即满足的整数x的个数有6个,故选C.2.若,,则a2b-ab2的值是( )A. 6B.C.D. 17【答案】B【解析】【分析】本题主要考查的是代数式的值,因式分解的应用,二次根式的化简求值的有关知识,由题意将给出的式子进行变形,然后代入求值即可.【解答】解:原式=ab(a-b),把,代入原式,原式===,故选B.3.已知m、n是方程x2+2x+1=0的两根,则代数式的值为()A. 9B. ±3C. 3D. 5【答案】C【解析】解:∵m、n是方程x2+2x+1=0的两根,∴m+n=-2,mn=1,∴====3.故选C.根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到m+n=-2,mn=1,再变形得,然后把m+n=-2,mn=1整体代入计算即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两根分别为x1,x2,则x1+x2=-,x1•x2=.也考查了二次根式的化简求值.4.化简的结果是( )A. 6x-6B. -6x+6C. -4D. 4【答案】D【解析】【分析】本题考查了因式分解-运用公式法,二次根式的化简,完全平方公式的运用等相关知识点.熟练掌握完全平方公式解本题的关键.【解答】解:∵有意义∴3x-5≥0∴3x-1>0原式==3x-1-3x+5=4故选D.5.下列计算:①;②;③;④.其中结果正确的个数为( )A. 1B. 2C. 3D. 4【答案】D【解析】【分析】本题考查了二次根式的乘法、二次根式的化简求值、平方差公式的知识点,解题关键点是熟练掌握这些运算法则.根据二次根式的性质对(1)(2)(3)进行判断;根据二次根式的乘法和平方差公式对(4)进行计算后判断.【解答】解:①,计算结果正确;②,计算结果正确;③,计算结果正确;④,计算结果正确.∴正确的个数有4个.故选D.6.已知a=2,b=-1,则代数式的值为( )A. B. C. D.【答案】C【解析】【分析】本题考查的是二次根式的化简求值有关知识,解决本题的关键是先根据二次根式的性质对其进行化简.首先对该式进行化简,然后再代入求值即可.【解答】解:∵a=2,b=-1,∴原式====.故选C.7.若,则的值为( )A. 1B. -1C. ±1D. 以上结果均不正确【答案】A【解析】【分析】本题主要考查的是二次根式的化简求值的有关知识,由题意将式子进行变形,最后代入求值即可.【解答】原式==,把代入原式,原式====1.故选A.8.若,,则的值为( )A. B. C. D.【答案】D【解析】【分析】本题考查的根式的化简求值,掌握好化简求值的方法是解题关键.因为,所以可以先求y-x和xy的值,再整体代入求值即可.解:∵,,∴y-x=,xy=,,故选D.9.设,,用含a,b的式子表示,下列表示正确的是( )A. B. 3ab C. D.【答案】A【解析】【分析】此题主要考查二次根式的化简,直到被开方数开不尽为止.先把化为、的形式,再把a、b代入计算即可.【解答】解:∵=0.3,∵=a,=b,∴=0.3ab=.故选A.10.若,x≥1,则( )A. ±2B.C.D.【答案】C【解析】【分析】本题主要考查了二次根式的化简求值,理解完全平方公式的结构,根据已知求得()2是解题的关键.把=两边平方求得的值,然后求得()2的值,最后开方即可.【解答】解:∵,∴,即,∴,∴,∵x≥1,∴,∴.11.若,则的值为()A. B. C. D. 或【答案】A【解析】【分析】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式混合运算顺序和运算法则.先根据已知代入x2-x=1,再整体代入所求计算.【解答】解:∵∴x2-x=(x-1)x===1∴原式===.故选A.12.若a=1+,b=1-,则代数式的值为()A. 3B. ±3C. 5D. 9【答案】A【解析】【分析】本题考查了二次根式的化简求值,正确对所求的式子进行变形是关键.首先把所求的式子化成的形式,然后代入数值计算即可.【解答】解:原式====3.故选A.13.已知x=,y=,则x2+xy+y2的值为()A. 16B. 20C. 2D. 4【答案】A【解析】解:∵x=,y=,∴x+y=2,xy=()()=4,由题可知:=x2+y2+2xy-xy,=(x+y)2-xy,=(2)2-4=16.故选:A.先把所求式子变形为完全平方式,再把题中已知条件代入即可解答.本题考查了二次根式的化简求值,需要同学们对完全平方公式灵活运用能力.14.已知,,,则的结果是A. B. C. D.【答案】B【解析】解:∵x+y=-5,xy=3,∴x<0,y<0,∴原式=x+y=+(x<0,y<0)=+=-2,当xy=3时,原式=-2.故选B.由x+y=-5,xy=3可得到x<0,y<0,再利用二次根式的性质化简得到原式=+=-2,然后把xy=3代入计算即可.本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.15.已知,则的值为()A. 5B. 6C. 3D. 4【答案】A【解析】【分析】此题主要考查代数式求值以及二次根式的混合运算.首先把a和b化简,然后代入计算即可.【解答】解:∵a==,b==,∴==5.故选A.16.若,,则代数式的值为A. B. C. D. 4【答案】B【解析】解:∵a+=6,0<a<1,∴-<0,则(-)2=a-2=6-2=4,∴-=-2;故选B.根据a+=6,0<a<1,判断出-<0,再把要求的式子进行配方,即可求出答案.此题考查了二次根式的化简求值,关键是根据已知条件判断出-<0,从而得出正确答案.17.化简的结果是:()A. 1B. 2x-3C. 3D. 3-2x【答案】A【解析】【分析】本题主要考查了二次根式的非负性、二次根式的化简的知识点,解题关键点是熟练掌握这些计算法则.先利用二次根式的非负性得出x≤1,从得可知x-2≤-1,再进行化简,即可解答.【解答】解:∵1-x≥0,∴x≤1,∴x-2≤-1,∴原式=-(x-2)-(1-x)=-x+2-1+x=1.故选A.18.已知,则的值为()A. a2-2B. a2C. a2-4D. 不确定【答案】A【解析】解:∵∴()2=a2即x+2+=a2∴x+=a2-2故选A.把已知的式子两边同时平方即可求解.本题主要考查了二次根式的化简和完全平方公式,对公式的正确理解运用是解决本题的关键.另外,本题还可对x+进行配方来解答,即.所以在二次根式的化简求值题中,若能根据题目的特点灵活选择适当的方法,将会给解题带来很大的简便.19.已知则 =()A. B. ﹣ C. D.【答案】C【解析】【分析】本题主要考查完全平方公式及二次根式的化简求值,由平方关系:()2=()2-4,先代值,再开平方.【解答】解:∵,∴()2=()2-4=()2-4=7-4=3,∴=,故选C.20.若,0<x<1,则()A. B. -2 C. ±2 D.【答案】A【解析】【分析】本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.把已知条件两边平方得到(+)2=6,再根据完全平方公式得到(-)2+4=6,则利用二次根式的性质得|-|=,然后根据0<x<1,去绝对值即可.【解答】解:∵+=,∴(+)2=6,∴(-)2+4=6,∴|-|=,∵0<x<1,∴-=-.故选A.21.已知,则的值是( )A. B. 2 C. 1 D. -1【答案】A【解析】【分析】本题考查的是二次根式的定义有关知识,首先根据题意求出x,y,然后再进行计算即可解答.【解答】解:由题意可得:,解得x=1,把x=1代入求出y=2,原式=.故选A.22.一次函数y=ax+b在直角坐标系中的图象如图所示,则化简-|a+b|的结果是()A. 2aB.C. 2bD.【答案】D【解析】【分析】本题考查了一次函数图象与系数的关系以及二次根式的化简求值,观察函数图象找出a >0、b<0、a+b>0是解题的关键.根据一次函数图象与系数的关系结合当x=1时y>0,即可得出a>0、b<0、a+b>0,进而可得出a-b>0,依此即可得出-|a+b|=(a-b)-(a+b)=-2b,此题得解.【解答】解:观察函数图象可知:a>0,b<0,a+b>0,∴a-b>0,∴-|a+b|=(a-b)-(a+b)=-2b.故选D.23.若a=,b=,则a2+b2+ab的值是()A. 2B. 4C. 5D. 7【答案】B【解析】解:∵a=,b=,∴a+b=+=,ab=•=1,∴a2+b2+ab=(a+b)2-ab=()2-1=5-1=4,故选B.根据a、b的值可以求得a+b和ab的值,从而可以解答本题.本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.24.阅读下面的解题过程:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,即,,则(a≥b).根据上述的方法化简为()A. B. C. D.【答案】A【解析】【分析】此题主要考查了二次根式的化简,正确应用完全平方公式是解题关键.直接利用完全平方公式化简求出答案.【解答】解:===.故选A.25.已知x=-6,则代数式x2+5x-6的值为()A. 2+3B. 5-5C. 3-2D. 5-7【答案】D【解析】解:∵x=-6,∴x2+5x-6=(x+6)(x-1)=(-6+6)×(-6-1)=×(-7)=5-7.故选:D.直接把x的值代入进而求出答案.此题主要考查了二次根式的化简求值,正确应用公式是解题关键.26.已知a=2,则代数式的值等于()A. -3B. 3-C. 4-3D. 4【答案】A【解析】解:当a=2时,=2-=2-=2-3-2=-3.故选A.27.已知x+y=+,xy=,则x2+y2的值为()A. 5B. 3C. 2D. 1【答案】A【解析】【分析】本题考查了二次根式的化简求值,解答本题的关键在于先对原式进行恰当的化简然后代入求值,由(x+y)2=x2+y2+2xy,得出x2+y2=(x+y)2-2xy,再带入已知数据求解即可.【解答】解:x2+y2=(x+y)2-2xy=()2-2=3+2+2-2=5.故选A.28.计算的值是()A. -2B. 2或-2C. 4D. 2【答案】D【解析】解:=2,故选:D.直接利用二次根式的性质化简求出答案.此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.29.当x=-1时,代数式x2-1的值是()A. 1B. 2C. 2-D. -2【答案】C【解析】解:当x=-1时,x2-1=(-1)2-1=3-2-1=2-2.故选C.先把x的值代入x2-1中,然后利用完全平方公式计算.本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.30.已知,则的值为()A. B. C. D.【答案】D【解析】【分析】本题考查了代数式的值,根据可得,再求平方根可得答案.【解答】解:根据可得,则的值为.故选D.31.如图,数轴上与1,对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为x,则|x-|+=()A. B. C. D. 2【答案】C【解析】解:由题意得:x=1-(-1)=2-,∴原式=-x+=-2++=2-2+=2-2+=2-2+=2-2+2+=3.故选:C.根据对称的性质:对称点到对称中心的距离相等,得到x的值后代入代数式化简求值.要能根据对称的性质确定x的值,熟练进行绝对值的化简和二次根式的分母有理化以及加减乘除运算.32.设S1=1,S2=1+3,S3=1+3+5,…,S n=1+3+5+…+(2n﹣1),S=,其中n为正整数,用含n的代数式表示S为()A. nB.C. n2D.【答案】D【解析】【分析】本题考查了二次根式的化简求值,求出S1,S2,S3,…的值,代入后根据二次根式的性质求出每一部分的值,再求出最后结果即可【解答】解:∵S1=1,S2=1+3=4,S3=1+3+5=9,…,S n=1+3+5+…+(2n﹣1),∴S=,=,=,=,故选D.33.如果等式()2=x成立,那么x为()A. x≤0B. x=0C. x<0D. x≥0【答案】B【解析】【分析】本题考查了二次根式的概念和偶次方的非负性.式子叫二次根式,运用定义可以求出x≤0,又因为平方具有非负性,因此x≥0,所以可得x=0,从而得出答案.【解答】解:∵成立,∴,∴x=0,故选B.34.已知a=2+,则(a-1)(a-3)的值为()A. 24B.C. 2D. 4【答案】D【解析】解:∵a=2+,∴(a-1)(a-3)=a2-4a+3=(a-2)2-1=(2+-2)2-1=5-1=4,故选D.先根据多项式乘以多项式进行计算,再根据完全平方公式变形,最后代入求出即可.本题考查了整式的乘法,二次根式的混合运算的应用,主要考查学生的化简和计算能力,题目比较典型,难度适中.二、填空题(本大题共29小题,共87.0分)35.当-1<a<0时,则________.【答案】2a【解析】【分析】本题主要考查因式分解的应用和二次根式的化简求值。
分式方程教学后记第一篇:分式方程教学后记“分式方程(二)”教学后记本节课是在学习了分式方程(一)的基础上来进行的,学生对分式方程的定义已经学习,能够在具体的应用题中列出相应的分式方程,如何来解分式方程是本节课的学习任务。
本节课我先通过一元一次方程的解法的复习,使学生在回顾解一元一次方程的步骤的基础上,为把解分式方程的基本思想:化分式方程为整式方程作好准备。
然后通过例1“解方程:1=3.”使学生明确如何来解分式方程以及解分式x-2x方程的步骤,在仿照例1的前提下,学生自己尝试在练习本来解例2“解方程:300-480=4”x2x,我来回巡视发现学生解题中的问题,然后师生共同解答。
通过两个例题使学生会解分式方程,明确解分式方程的一般步骤,并能够解简单的分式方程,从而完成本节课的重点。
在学生会解分式方程后,及时的给出“议一议”“解方程:2-x=x-31-2”,可让学生在练习本上完成,发现有和小3-x亮同样解法的同学,可用实物投影仪显示他的解法,并一块分析、讨论,倾听同学们的想法,与学生一同总结出“在解分式方程时,我们在分式方程两边都乘以最简公分母才得到整式方程.如果整式方程的根使得最简公分母的值为零,那么它就相当于分式方程两边都乘以零,不符合等式变形时的两个基本性质,得到的整式方程的解必将使分式方程中有的分式分母为零,也就不适合原方程了.”给出增根的定义以及检验的方法。
使学生明白分式方程检验的重要性,检验是解分式方程必不可少的步骤。
从而突破本节课的难点。
最后通过随堂练习检验学生对本节课知识的掌握情况,发现学生存在的问题可以通过师生帮助、学生互助及时的解决,完成本节课的教学任务。
本节课的成功之处:我对教材理解的透彻,教学设计符合学生的实际情况,重点突出,难点及时得到突破,时间安排合理,教学中一边引导学生积极思考,一边调动学生及时练习,对所学的知识得到巩固,教学效果好,达到了备课所设想的目标。
教学中选择“探索发现法”,学生在我的引导下,探索分式方程是如何转化为整式方程,并发现解分式方程验根的必要性.符合学生的实际学情和心理特点,教学语言得当,有一定的启发性和趣味性,调动了学生学习的积极性,学生学的主动积极,满足了学生对知识的需求,教学过程中体现了学生是学习的主人,充分发挥了学生在学习过程中的主体作用。
先化简,再求值:((x²-3x-1)-2)÷1x-1,其中x满足x²-2x-3=0。
先化简,再求值:((x²-3/x-1)-2)÷1/x-1,其中x满足x²-2x-3=0。
原式=(x²-3-(2x-2))/(x-1)·x-1=x²-2x-3+2=0+2=2希望对你有帮助!(x²-3/x-1 -2)÷1/x-1,其中x满足x²-2x-3=0原式=(x^2-3/x-1-2)*(x-1)=x^2*(x-1)-3/x-1*(x-1)+(-2)*(x-1)=x^3-x^2-3-2x+2=x^3-x^2-2x-1x^2-2x-3=0两别同乘以x,x^3-2x^2-3x=0所以原式=x^2+x-1=(2x+3)+x-1=3x+2因为x^2-2x-3=0,所以x=-1,x=3代入化简后的式子,得原式=-1或11(X-1/X-X-2/X+1)÷(2X²-X/X²+2X+1) 其中X满足X²-X-1=0 先化简再求值解:原式=[(x-1)/x-(x-2)/(x+1)]÷[(2x²-x)/(x²+2x+1)]={(x-1)(x+1)/[x(x+1)]-x(x-2)/[x(x+1)]}÷[x(2x-1)/(x+1)²]={(x²-1-x²+2x)/[x(x+1)]}×{(x+1)²/[x(2x-1)]}={(2x-1)/[x(x+1)]}×{(x+1)²/[x(2x-1)]}=(x+1)/x²∵x²-x-1=0∴x²=x+1∴原式=x²/x²=1先化简,再求值:x²+2x+3(x²-2/3x)其中x=-1/2x²+2x+3(x²-2/3x)=x²+2x+3x²-2x=4x²=4×¼=1先化简再求值x²(x-1)-x(x²+x-1)其中x=0.5x²(x-1)-x(x²+x-1)=x³-x²-x³-x²+x=-2x²+x当x=1/2时原式=-1/2+1/2=0先化简,再求值:(1+x+1/1)÷x²-1/1-(x-2),其中x=-3/2 您好:(1+x+1/1)÷x²-1/1-(x-2)=x²-1+x-1-x+2=x²=(-3/2)²=9/4如果本题有什么不明白可以追问,如果满意请点选“采纳为满意回答”如果有其他问题请采纳本题后另发点击向我求助,答题不易,请谅解,谢谢。
七年级动点专题2:数轴上的动点:最值问题(说明:本专题包括解题方法导引、阅读探究、变式训练的牛刀小试和课后探究的素养提升三个栏目,先是学案,后面附有参考答案。
)【方法导引】本专题主要讨论在数轴上动点的最值问题,主要方法是数形结合与零点分段法。
【问题背景】在学习绝对值时,老师教过我们绝对值的几何含义,表示、在数轴上对应的两点之间的距离;,所以表示、在数轴上对应的两点之间的距离;,所以表示在数轴上对应的点到原点的距离,一般地,点、在数轴上分别表示有理数、,那么、之间的距离可表示为.()点、、在数轴上分别表示有理数、、,那么到的距离表示为______________________________(用含绝对值的式子表示).如果,那么为______________________________.()利用数轴探究:①找出满足的的所有整数值是____________________;②设,当的值取在不小于且不大于的范围时,的值是不变的,而且是的最小值,这个最小值是____________________;()求的最小值为____________________,此时的值为____________________.【牛刀小试】如图,数轴上A、B两点分别对应有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是,数轴上表示2和﹣10两点之间的距离是;(2)数轴上,x和﹣2两点之间的距离是;(3)若x表示一个有理数,则|x﹣1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.【素养提升】1.根据数轴和绝对值的知识回答下列问题(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。
例如,数轴上4和1两点之间的距离是________.数轴上-3和2两点之间的距离是________.(2)数轴上表示数a的点位于-4与2之间,则│a+4│+│a-2│的值为_____________.(3)当a为何值时,│a+5│+│a-1│+│a-4│有最小值?最小值为多少?2.如图,数轴上A、B两点分别对应有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是,数轴上表示2和﹣10两点之间的距离是;(2)数轴上,x和﹣2两点之间的距离是;(3)若x表示一个有理数,则|x﹣1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.3.根据数轴和绝对值的知识回答下列问题(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。
已知x=(根号3-1)分之2,求2分之1乘x的立方-x的平方-x+1的值。
第一篇:已知x=(根号3-1)分之2,求2分之1乘x的立方-x的平方-x+1的值。
已知x=2/(根号3-1),求1/2乘x的立方-x的平方-x+1的值。
解:由题意得x=根号3+1.原式=1/2乘x的立方-x的平方-x+2-1=(1/2x-1)(x的平方-2)-1=2-1=1第二篇:已知一个数的几分之几是多少求这个数解决问题(1)课题解决问题(1)课型新授课设计说明用分数除法解决“已知一个数的几分之几是多少,求这个数”的应用题教学是整个小学阶段应用题教学的难点之一,为了突破这个难点,教材鼓励学生用方程法解这类简单的分数除法问题。
本课时在教学设计上有如下几个特点:1.有效利用线段图,理清题中的数量关系。
因为题中的等量关系是列方程的依据,所以能否弄清题中的数量关系是正确列方程的关键。
借助线段图理解题意,不但生动、形象,而且题里存在的数量关系也令人一目了然。
2.适时引导,鼓励解法多样性。
对用除法解决问题的同学,借助画线段图帮助理清解题思路,鼓励学生用方程法和算术法两种方法解决此类问题。
学习目标1.使学生掌握解答“已知一个数的几分之几是多少,求这个数”的应用题的方法,能熟练地列方程解答这类应用题。
2.进一步培养学生自主探索、解决问题的能力和分析、推理和判断等思维能力,提高解答应用题的能力。
学习重点弄清单位“1”的量,会分析题中的数量关系。
学习难点分析题中的等量关系学习准备教具准备:PPT课件学具准备:直尺课时安排1课时教学环节导案学案达标检测一、创设情境,复习导入。
(7分钟)复习:根据测定,成人体内的水分约占体重的23,而儿童体内的水分约占体重的45,六年级学生小明的体重为35kg,他体内的水分有多少千克?先确定题中的单位“1”确定数量关系,然后独立计算,并汇报解答过程。
二、合作交流,探究新知。
(20分钟)“已知一个数的几分之几是多少,求这个数”的实际问题的解法。
1.读题分析。
课件出示教材37页例4,指导学生读题,并理解题意。
2.画图分析。
(1)指导学生画线段图。
(2)引导学生结合线段图写出等量关系式。
(3)这道题与复习题相比有什么相同点和不同点?(4)引导学生根据数量关系式,列方程来解决问题。
(5)启发学生应用算术法来解答应用题。
3.指名列式计算。
1.认真读题,交流题中的数学信息的含义。
2.(1)找出解决问题所需的条件,根据条件画出线段图,表示出已知条件和问题。
(2)借助线段图,理解题中的数量关系,写出数量关系式:小明的体重×4/5=体内水分的质量。
(3)比较例题与复习题的区别。
(相同点是它们的数量关系是一样的;不同点是已知条件和问题变了)(4)找到题中的单位“1”,即所求问题,设其为x,然后根据数量关系,列方程解答。
(5)小组讨论算术解法,并汇报解题思路。
根据数量关系式:小明的体重×4/5=体内水分的质量,推导出:体内水分的质量÷4/5=小明的体重。
3.独立列式并解答,汇报解答过程。
3.六(1)班有三好学生7人,正好占全班人数的1/6,全班有多少人?7÷1/6=42(人)。
答:全班有42人。
三、训练深化。
(9分钟)教材第39页第1~3题。
(第2题注意引导学生发现250mL的鲜牛奶是多余条件)1.借助画线段图解决问题。
先分析数量关系式,然后确定单位“1”,最后再进行解答。
2.独立思考写在练习本上,然后与同桌交流,并进行评价。
4.一本书看了45页,刚好看了这本书的35,还有多少页没看?45÷35=75(页)75-45=30(页)答:还有30页没看。
四、总结收获。
(5分钟)1.老师总结本课时的学习内容。
2.布置作业。
学生谈本节课的收获。
教学过程中教师的疑问:五、教学板书六、教学反思本节课引入画线段图帮助分析题目中的数量关系这一内容,在具体教学时我注意引导学生学会这一分析问题的方法,提高学生分析问题的能力。
此处,本节课还涉及列方程、解方程的有关知识,有的学生可能已经遗忘,而这一知识又是进行本节课教学的基础,故在教学时有意识地去回忆旧知学习新课,从而顺利完成教学目标。
教师点评和总结:第三篇:已知一个数的几分之几是多少求这个数教案教学内容:课本第43~44页例1、例2的算术解法,练习十一的第6~10题。
教学目的:使学生掌握“已知一个数的几分之几是多少,求这个数”的算术解答方法,并通过练习,使学生能熟练地运用列方程或算术解答进行解题,开拓学生的思路,提高学生的解题能力。
教学过程:一、复习。
1.口算:练习十一第6题。
2.说出下面各题中谁是单位“1”。
(1)已经修了全长的。
(2)宽是长的。
(3)男生的人数是女生人数的。
(4)上旬完成了月计划任务的。
(5)一桶油用去了。
2.分数除法的意义是什么?3.根据,写出两道除法算式。
二、新授。
1.教学用算术解法来解答例1。
(1)出示例1。
(2)教师讲解:这是前节课我们学习过的例1。
问:这道题把谁看作单位“1”?数量关系式是什么?根据数量关系式我们可以列出什么样的方程?(学生回答,列出方程)问:这里的单位“1”是已知的还是未知的?如果我们不列方程,能不能直接列出算式计算出来?启发学生想:在数量关系式中,已知积和其中一个因数,求另一个;根据分数除法的意义可以直接列出除法算式来解答。
(3)让学生列出除法算式进行计算,指名板演。
(4)让学生比较算术解法和方程解法。
通过比较,使学生懂得,方程解法和算术解法这两种方法的思路是相同的,都是根据题中数量间的相等关系,一个列出方程,一个列出除法算式。
2.要求学生用算术解法解答例2,做完集体订正。
3.小结:解答“已知一个数的几分之几是多少,求这个数”的应用题,根据题中的数量间的关系式,可以列方程进行解答,也可以直接列出除法算式进行解答。
三、巩固练习。
1.练习十一第7题。
让学生说一说它们有什么联系各和区别。
2.练习十一第8题。
引导学生认真读题。
初步了解互相咬合的两个齿轮之间齿数与转数的关系。
3.练习十一第9、10题。
第四篇:已知一个数比另一个数多(少)几分之几求这个数解决问题(2)课题解决问题(2)课型新授课设计说明上节课教学了“已知一个数的几分之几求这个数”的解决方法,这节课在此基础上,继续借助“小明和爸爸体重”的素材,教学“已知一个数比另一个数少(多)几分之几及另一个数的值,求这个数是多少”的复杂分数除法应用题。
在解题方法的处理上,教材提倡先借助线段图抓住数量关系,然后用方程的方法解决问题,降低学生理解的难度。
学习目标1.理解“一个数比另一个数多(少)几分之几”的含义,能够根据已知的另一个数的值,独立分析数量关系,求解这个数的值,并学会解答此类应用题。
2.沟通新旧知识间的联系,提高解答应用题的能力。
学习重点能独立分析数量关系,会解答此类应用题。
学习难点分析题中的数量关系。
学习准备教具准备:PPT课件学具准备:直尺课时安排1课时教学环节导案学案达标检测一、复习导入。
(7分钟)1.多媒体出示:小明的体重是35kg,他的体重是爸爸体重的715。
小明爸爸的体重是多少千克?(教师随机板书)2.如果将这道题中的条件“小明的体重是爸爸体重的7/15”换成“小明的体重比爸爸的体重轻8/15”,又该如何计算呢?学生独立思考后说出是如何计算的。
二、合作探究,学习新知。
(20分钟)“已知比一个数多(少)几分之几的数是多少,求这个数”的实际问题的解法。
1.课件出示教材第38页例5,指导学生分析题意。
2.引导学生复述题意,找出已知条件和所求问题。
3.引导学生,通过画线段图理清题中的数量关系。
4.引导学生根据画图的过程理解“小明的体重比爸爸的体重轻8/15”这句话的含义。
5.引导学生在分析线段图的基础上,探究解题思路和解题方法。
6.要求学生独立解答例题。
7.师生共同总结解题方法。
(先找准单位“1”,再按题中的数量关系列方程解答)1.认真观察课件,明确题意。
2.交流从题中获取信息。
已知:小明的体重是35kg,比爸爸的体重轻8/15。
所求问题:爸爸的体重是多少千克?3.在小组内画线段图,运用线段图帮助分析,寻找解题方法。
并写出数量关系式,根据关系式列方程解答。
数量关系式:(1)爸爸的体重-小明比爸爸轻的部分=小明的体重(2)爸爸的体重×(1-8/15)=小明的体重4.小组内讨论、交流,对关键句的理解:把爸爸的体重看作单位“1”,小明的体重轻,相当于爸爸体重15等份中的(15-8)份,即小明的体重相当于爸爸的715。
2.一瓶油吃了3/5,正好是300g,这瓶油重多少克?300÷3/5=500(克)答:这瓶油重500克。
3.写出题中的等量关系式。
(1)红花有20朵,比黄花多1/4,黄花有多少朵?红花的朵数-黄花的朵数=红花朵数的1/4(2)一批货物,运走了3/10,还剩下7/10t,这批货物重多少吨?原货物-原货物的3/10=7/10t4.妈妈每月的工资是2500元,比爸爸的工资少15。
爸爸每月的工资是多少元?解:设爸爸每月的工资为x元。
x-1/5x=2500x=31255.在小组内讨论、交流解题思路和解题方法,汇报讨论结果。
6.根据数量关系式自主解答例题。
7.同教师共同总结解题方法。
答:爸爸每月的工资为3125元。
5.一种药品现在的售价是12元,价格比原来降低了5/6。
这种药品原价是多少元?解:设这种药品原价是x元。
x-5/6x=12x=48答:这种药品原价是48元。
三、训练深入。
(9分钟)教材第40页第8题(引导学生先找出单位“1”,再根据数量关系式进行计算)独立思考并写在练习本上,然后同桌交流,并进行评价。
6.有两袋米,第一袋重21kg,比第二袋少47,第二袋重多少千克?解:设第二袋重x千克。
方法一:1-47x=21x=49方法二:x-47x=21x=49答:第二袋重49千克。
四、总结收获。
(4分钟)1.老师总结本课时的学习内容。
2.布置作业。
学生谈本节课的收获。
教学过程中老师的疑问:五、教学板书六、教学反思线段图对学生学习分数应用题、解决分数应用题有很大的帮助。
教学时借助线段图清晰地表示出数量关系,再讲解出画线段图要注意的地方,有助于学生的解答。
同时,我做到适时引导与学生的自主探究相结合,使学生真正成为了“学习的主人”。
教师点评和总结:第五篇:“已知一个数的几分之几是多少,求这个数”教学反思“已知一个数的几分之几是多少,求这个数”教学反思分数除法应用题历来是六年级内容的重点和难点,每学到这部分内容,学生往往出错,不知道该乘还是该除。
今天我讲这部分内容,由分数乘法应用题入手,让学生直接把单位“1”变成要求的问题,然后根据数量关系找出等量关系,依据等量关系列方程解答,这样仍然是从乘法的角度思考问题,对学生来讲没有一点难度。