abaqus四面体单元类型
- 格式:docx
- 大小:36.23 KB
- 文档页数:1
ABAQUS中单元的选取总结实体单元的选择1. 如果不需要模拟非常大的应变或进行复杂的需改变接触条件的问题,则应采用二次减缩积分单元(CAX8R、CPE8R、CPS8R、C3D20R等);2. 如果存在应力集中,则在局部应采用二次完全积分单元(CAX8、CPE8、CPS8、C3D20等)。
它们可用最低费用提供应力梯度最好的解答。
3. 涉及到非常大的网格扭曲问题(大变形分析),建议采用细网格剖分的线性减缩积分单元(CAX4R、CPE4R、CPS4R、C3D8R等);4. 对接触问题采用线性减缩积分单元或细分的非协同单元(CAX4I、CPE4I、CPS4I、C3D8I等);5. 尽可能的减少网格变形的扭歪,形状扭歪的粗网格线性单元会导致非常差的结果。
壳单元的选择1.当要求解十分精确时,可使用线性、有限薄膜应变、完全积分的四边形壳单元(S4),这个壳单元十分适合于要考虑膜作用或有弯曲模式沙漏的问题,也适合于有平面弯曲的问题;2.线性、有限薄膜应变、减缩积分、四边形壳单元(S4R)较流行,适合于各类问题的应用;3.线性、有限薄膜应变、三角形壳单元(S3/S3R)可作为一般的壳单元来使用。
因为在单元内部是常应变应力场,求解弯曲变形和高应变梯度时需要精细的网格剖分;4.考虑到在复合材料层合壳模型中剪切柔度的影响,可应用厚壳单元(S4、S4R、S3、S3R、S8R)来模拟它,此时需检验平面假定是否满足;5.四边形或三角形的二次壳单元,对于一般的小变形薄壳来说是很有效的,它们对于剪力锁闭和薄膜锁闭不敏感;6.如果在接触问题中一定要用二阶单元,不要选用二阶三角形壳单元(STRI65),而要采用9节点的四边形壳单元(S9R5);7.对于几何线性的,但规模又非常大的模型,线性薄壳单元(S4R5)通常将比一般壳单元效率更高。
梁单元的选择1. 对任何涉及到接触的分析,应使用一阶的、有剪切变形的梁单元(B21、B31);2. 对于结构刚度非常大或非常柔软的结构,在几何非线性分析中应当使用杂交梁单元(B21H、B32H等);3. Euler-Benoulli三次梁单元(B23、B33)在模拟承受分布荷载作用的梁,包括动态的振动分析时,会有很高的精度。
Definition element for use in plotting定义了一个四节点,用于绘制二维虚拟单元CAABSF 同上DQUAD4 无Tetra4CTETRA—Four-sided Solid Element with four or ten gridpoints Defines the connections of the CTETRA element 定义了CTETRA单元的连接DTETRA4 无Pyramid5CPYRA_S3/S3R 单元可以作为通用壳单元使用。
由于单元中的常应变近似,需要划分较细的网格来模拟弯曲变形或高应变梯度。
S4R 单元性能稳定,适用范围很广对于复合材料,为模拟剪切变形的影响,应使用适于厚壳的单元(例如S4、S4R、S3、S3R、S8R),并要注意检查截面是否保持平面。
对于几何非线性分析,在ABAQUS/Standard中的小应变壳单元(S4R5,S8R,S8R5, S8RT,S9R5, STRI3, 和STRI65)使用总体拉格朗日应变算法,应力应变可以相对于参考构型的材料方向改定.垫片单元是小应变小位移单元,默认情况下其应力应变值也是以初始参考构型定义的行为方向输出。
对于有限膜应变单元(所有的膜单元以及S3/S3R,S4,S4R,SAX,和SAXA单元)和在ABAQUS/Explicit 中的小应变单元,其材料方向是随着曲面的平均刚性旋转运动而变以形成当前构型的材料方向。
此时这些单元的应力应变则是根据当前的参考构型中的材料方向给出的。
(更详细地说明可以参考ABAQUS相关手册)。
用户可以决定与*section print和*section file相关的局部坐标系统是固定不动还是随着曲面的平均刚性运动而旋转.。
CAABSF 同上DQUAD4 无Tetra4CTETRA—Four-sidedSolid Element withfour or ten gridpointsDefines the connections of the CTETRA element定义了CTETRA 单元的连接DTETRA4 无Pyramid5CPYRA_S3/S3R 单元可以作为通用壳单元使用。
由于单元中的常应变近似,需要划分较细的网格来模拟弯曲变形或高应变梯度。
S4R 单元性能稳定,适用范围很广对于复合材料,为模拟剪切变形的影响,应使用适于厚壳的单元(例如S4、S4R、S3、S3R、S8R),并要注意检查截面是否保持平面。
对于几何非线性分析,在ABAQUS/Standard 中的小应变壳单元(S4R5, S8R, S8R5, S8RT, S9R5, STRI3, 和STRI65)使用总体拉格朗日应变算法,应力应变可以相对于参考构型的材料方向改定。
垫片单元是小应变小位移单元,默认情况下其应力应变值也是以初始参考构型定义的行为方向输出。
对于有限膜应变单元(所有的膜单元以及S3/S3R, S4, S4R, SAX,和SAXA 单元)和在ABAQUS/Explicit 中的小应变单元,其材料方向是随着曲面的平均刚性旋转运动而变以形成当前构型的材料方向。
此时这些单元的应力应变则是根据当前的参考构型中的材料方向给出的。
(更详细地说明可以参考ABAQUS 相关手册)。
用户可以决定与*section print 和*section file 相关的局部坐标系统是固定不动还是随着曲面的平均刚性运动而旋转。
ABAQUS中单元的选择宝典1.完全积分是指当单元具有规则形状时,所用的高斯积分点可以对单元刚度矩阵中的多项式进行精确地积分。
2.剪力自锁将使单元变得“刚硬”,只影响受弯曲荷载的完全积分线性(一阶)单元,这些单元功能在受直接或剪切荷载时没有问题。
二次单元的边界可以弯曲,没有剪力自锁的问题。
3.只有四边形和六面体单元才能采用减缩积分。
所有的楔形、四面体和三角形实体单元采用完全积分。
减缩积分单元比完全积分单元在每个方向上少用一个积分点。
4.只有四边形和六面体单元才能采用减缩积分。
所有的楔形、四面体和三角形实体单元采用完全积分。
减缩积分单元比完全积分单元在每个方向上少用一个积分点。
5.非协调单元:只有四边形和六面体单元才能采用减缩积分。
所有的楔形、四面体和三角形实体单元采用完全积分。
减缩积分单元比完全积分单元在每个方向上少用一个积分点。
6.ABAQUS对非协调单元采用了增强位移梯度形式。
在弯曲问题中,用非协调单元可得到与二次单元相当的结果,且计算费用明显降低。
对单元扭曲很敏感。
7.ABAQUS对非协调单元采用了增强位移梯度形式。
在弯曲问题中,用非协调单元可得到与二次单元相当的结果,且计算费用明显降低。
对单元扭曲很敏感。
8.杂交单元:ABAQUS对非协调单元采用了增强位移梯度形式。
在弯曲问题中,用非协调单元可得到与二次单元相当的结果,且计算费用明显降低。
对单元扭曲很敏感。
9.一般情况下应采用二次减缩积分单元(CAX8R,CPE8R,CPS8R,C3D20R)。
在应力集中局部采用二次完全积分单元(CAX8,CPE8,CPS8,C3D20)。
对含有非常大的网格扭曲模拟(大应变分析),采用细网格划分的线性减缩积分单元(CAX4R,CPE4R,CPS4R,C3D8R)。
对接触问题采用线性减缩积分单元或非协调单元(CAX4I,CPE4I,CPS4II,C3D8I等)的细网格划分。
10.采用非协调单元时应使网格扭曲减至最小。
ABAQUS中的网格划分方法应该是所有通用有限元分析软件中最强大的。
本文将对其网格划分做较全面的叙述。
首先介绍一下网格划分技术,包括:结构化网格、扫掠网格、自由网格:1)结构化网格技术(STR UCTUR ED):将一些标准的网格模式应用于一些形状简单的几何区域,采用结构化网格的区域会显示为绿色(不同的网格划分技术会对相应的划分区域显示特有的颜色标示)。
2)扫掠网格技术(S WEEP):对于二维区域,首先在边上生成网格,然后沿着扫掠路径拉伸,得到二维网格;对于三维区域,首先在面上生成网格,然后沿扫掠路径拉伸,得到三维网格。
采用扫掠网格的区域显示为黄色。
3)自由网格划分技术(FREE):自由网格是最为灵活的网格划分技术,几乎可以用于任何几何形状。
采用自由网格的区域显示为粉红色。
自由网格采用三角形单元(二维模型)和四面体单元(三维模型),一般应选择带内部节点的二次单元来保证精度。
4)不能划分网格:如果某个区域显示为橙色,表明无法使用目前赋予它的网格划分技术来生成网格。
这种情况多出现在模型结构非常复杂的时候,这时候需要把复杂区域分割成几个形状简单的区域,然后在划分结构化网格或扫掠网格。
注意:使用结构化网格或扫掠网格划分技术时,如果定义了受完全约束的种子(SE ED),网格划分可能不成功,这时会出现错误信息们,可以忽略错误信息,允许ABAQ US去除对这些种子的约束,从而完成对网格的划分。
使用Quad单元或He x单元划分网格时,有两种可供选择的算法:Media lAxi s(中性轴算法)和A dvanc ing F ront(进阶算法)。
Abaqus单元的选择2015-03-06 有限元在线如果想要以合理的费用得到高精度的结果,那么正确的选择单元是非常关键的。
对于ABAQUS经验丰富的使用者,毫无疑问都会自己的单元选择指南来处理各种具体的应用。
但是,在刚开始使用ABAQUS 时,下面的指导是非常有用的。
1、实体单元选择以下单元选择的建议适用于ABAQUS/Standard和ABAQUS/Explicit:(1)尽可能的减小网格的扭曲。
使用扭曲的线性单元的粗糙网格会得到相当差的结果。
(2)对于模拟网格扭曲过分严重的问题,应用网格细划的线性、减缩积分单元(CAX4R,CPE4R,CPS4R,C3D8R等)。
(3)对三维问题应尽可能地采用六面体单元。
它们以最低的成本给出最好的结果。
当几何形状复杂时,采用六面体单元划分网格可能是非常困难的,因此,还需要楔形和四面体单元。
这些单元(C3D4和C3D6)的一阶模式是较差的单元(需要细划网格以取得较好的精确度)。
(4)某些前处理器包含了自由划分网格算法,用四面体单元划分任意几何体的网格。
对于小位移无接触的问题,在ABAQUS/Standard中的二次四面体单元(C3D10)能够给出合理的结果。
这个单元的另一种模式是修正的二次四面体单元(C3D10M),它适用于ABAQUS/Standard和ABAQUS/Explicit,对于大变形和接触问题,这种单元是强健的,展示了很小的剪切和体积自锁。
但是,无论采用何种四面体单元,所用的分析时间都长于采用了等效网格的六面体单元。
(5)对于ABAQUS/Standard求解器,除非需要模拟非常大的应变或者模拟一个复杂的、接触条件不断变化的问题,对于一般的分析工作,应采用二次、减缩积分单元(CAX8R,CPE8R,CPS8R, C3D20R 等)。
(6)对于ABAQUS/Standard求解器,在存在应力集中的局部区域,采用二次、完全积分单元(CAX8, CPE8, CPS8, C3D20等)。
Abaqus中的单元选择在有限元分析中,为了能够得到较为精确的收敛解,一方面取决于所用模型的误差,另一方面取决于模拟计算的误差。
一个好的有限元模型,不仅需要较高的网格质量,还需要拥有合适的单元类型。
ABAQUS为用户提供了丰富的单元库,几乎可以模拟实际工程中任意几何形状的有限元模型,在对一个问题进行分析时,可以根据情况选择使用。
如何才能选取出适合于分析的单元类型呢?我认为首先要了解ABAQUS中对于单元的分类,每种单元特定的使用范围,各种单元类型的节点数目、单元形状、插值函数阶次以及单元构造的方式。
然后再根据分析类型和具体问题合理选择。
ABAQUS中最常用的单元包括实体(Solid)单元、壳(Shell)单元和梁(Beam)单元。
下面就根据自己对于ABAQUS应用实体单元的学习,将这些单元的特点和使用简单总结如下:实体单元主要包括完全积分、减缩积分、非协调以及杂交这四种常见的单元模式。
(1)完全积分单元:单元具有规则形状(边是直线并且边与边相交成直角)时,所用的Gauss积分点的数目足以对单元刚度矩阵中的多项式进行精确积分。
完全积分的线性单元在每一个方向上采用2个积分点;完全积分的二次单元在每一个方向上采用3个积分点。
如图不足:完全积分的线性单元存在“剪切自锁”问题,原因是线性单元的边不能弯曲。
在复杂应力状态下,完全积分的二次单元也有可能发生剪切自锁。
(2)减缩积分单元:减缩积分单元比完全积分单元在每个方向上少用一个积分点。
完全积分的线性单元只在单元的中心有一个积分点不足:线性减缩积分单元存在“沙漏模式”的数值问题,有可能过于柔软。
ABAQUS通过绘制伪应变能(ALLAE)和内能(ALLIE)来评价沙漏模式对计算结果的影响。
(3)非协调单元:优点:可以克服完全积分,一阶单元中的剪力自锁问题。
特点:在一阶单元中引入一个增强单元变形梯度的附加自由度。
这种对变形梯度的增强允许一阶单元在单元域上对于变形梯度有一个线性变化。
4. 应用实体单元在ABAQUS中,应力/位移单元的实体(continuum)单元族是包含最广泛的。
ABAQUS/Standard和ABAQUS/Explicit的实体单元库多少有所不同。
ABAQUS/Standard实体单元库ABAQUS/Standard的实体单元库包括二维和三维的一阶(线性)插值单元和二阶(二次)插值单元,它们应用或者完全积分或者减缩积分。
二维单元有三角形和四边形;在三维单元中提供了四面体、三角楔形体和六面体(砖型)。
也提供了修正的二阶三角形和四面体单元。
此外,在ABAQUS/Standard中还有杂交和非协调模式单元。
ABAQUS/Explicit实体单元库ABAQUS/Explicit的实体单元库包括二维和三维的减缩积分一阶(线性)插值单元,也有修正的二阶插值三角形和四面体单元。
在ABAQUS/Explicit中没有完全积分或者规则的二阶单元。
关于可选用的实体单元的详细信息,请参阅ABAQUS分析用户手册第14.1.1节“Solid (continumm) elements”。
当做出所有这些各种选项的排列,发现可供使用的实体单元的总数是相当大的,仅就三维模型而言就超过了20种。
模拟的精度将很大程度上依赖于在模型中采用的单元类型。
在这些单元中选择哪一个最适合于你的模型,可能是一件令人苦恼的事情。
特别是在初次使用时。
然而,你会逐渐认识到这种在20多件工具组中的选择,为你提供一种能力,对于一个特殊的模拟能够选择恰当正确的工具或单元。
本章讨论了不同的单元数学描述和积分水平对于一个特定分析的精度的影响,也给出了一些关于选择实体单元的一般性指导意见,这些为你积累ABAQUS的应用经验,并建立自己的知识库提供了的基础。
本章末尾的例子,当你建立和分析一个连接环构件模型时,将允许你应用这些知识。
4.1 单元的数学描述和积分通过考虑一个静态分析的悬臂梁,如图4-1所示,将演示单元阶数(线性或二次)、单元数学描述和积分水平对结构模拟的精度的影响。
Abaqus单元的选择2015-03-06 有限元在线如果想要以合理的费用得到高精度的结果,那么正确的选择单元是非常关键的。
对于ABAQUS经验丰富的使用者,毫无疑问都会自己的单元选择指南来处理各种具体的应用。
但是,在刚开始使用ABAQUS 时,下面的指导是非常有用的。
1、实体单元选择以下单元选择的建议适用于ABAQUS/Standard和ABAQUS/Explicit:(1)尽可能的减小网格的扭曲。
使用扭曲的线性单元的粗糙网格会得到相当差的结果。
(2)对于模拟网格扭曲过分严重的问题,应用网格细划的线性、减缩积分单元(CAX4R,CPE4R,CPS4R,C3D8R等)。
(3)对三维问题应尽可能地采用六面体单元。
它们以最低的成本给出最好的结果。
当几何形状复杂时,采用六面体单元划分网格可能是非常困难的,因此,还需要楔形和四面体单元。
这些单元(C3D4和C3D6)的一阶模式是较差的单元(需要细划网格以取得较好的精确度)。
(4)某些前处理器包含了自由划分网格算法,用四面体单元划分任意几何体的网格。
对于小位移无接触的问题,在ABAQUS/Standard中的二次四面体单元(C3D10)能够给出合理的结果。
这个单元的另一种模式是修正的二次四面体单元(C3D10M),它适用于ABAQUS/Standard和ABAQUS/Explicit,对于大变形和接触问题,这种单元是强健的,展示了很小的剪切和体积自锁。
但是,无论采用何种四面体单元,所用的分析时间都长于采用了等效网格的六面体单元。
(5)对于ABAQUS/Standard求解器,除非需要模拟非常大的应变或者模拟一个复杂的、接触条件不断变化的问题,对于一般的分析工作,应采用二次、减缩积分单元(CAX8R,CPE8R,CPS8R, C3D20R 等)。
(6)对于ABAQUS/Standard求解器,在存在应力集中的局部区域,采用二次、完全积分单元(CAX8, CPE8, CPS8, C3D20等)。
S3/S3R 单元可以作为通用壳单元使用。
由于单元中的常应变近似,需要划分较细的网格来模拟弯曲变形或高应变梯度。
S4R 单元性能稳定,适用范围很广对于复合材料,为模拟剪切变形的影响,应使用适于厚壳的单元(例如S4、S4R、S3、S3R、S8R),并要注意检查截面是否保持平面。
对于几何非线性分析,在ABAQUS/Standard 中的小应变壳单元(S4R5, S8R, S8R5, S8RT, S9R5,STRI3,和STRI65 )使用总体拉格朗日应变算法,应力应变可以相对于参考构型的材料方向改定。
垫片单元是小应变小位移单元,默认情况下其应力应变值也是以初始参考构型定义的行为方向输出。
对于有限膜应变单元(所有的膜单元以及S3/S3R, S4, S4R, SAX,和SAXA单元)和在ABAQUS/Explicit 中的小应变单元,其材料方向是随着曲面的平均刚性旋转运动而变以形成当前构型的材料方向。
此时这些单元的应力应变则是根据当前的参考构型中的材料方向给出的。
(更详细地说明可以参考ABAQUS相关手册)。
用户可以决定与*section print 和*section file 相关的局部坐标系统是固定不动还是随着曲面的平均刚性运动而旋转。
ABAQUS单元小结K单元表征单元族,鱼元名字里开始的字母标忠着这种单元属于哪一个单元族. C3D8I是实体单元;S4R星壳单元;CINPE4是无眼元:梁单元:刚体単元;膜单元;特殊戸的单元,例如弹簧.粘壶和质量:幡架尊元“自电度dM(和单元族直接相关人每一节点处的平动和转动11方向的平动22方向的平动33方向的邛动4绕1轴的转动5绕2轴的转动6绕3轴的转动7开口截面梁单元的翘曲8声压或孔隙压力g 电势j11度(或物质扩散分析中归一化浓度)12+袈和壳厚度上其它点的温度轴对称单元L T方向的平动2 z方向的平动6 r-z方向的转动书点数:决定单元播值的阶数数学描述:定义卑元行为的数学理论积分:应用数值方法在每一单元的体积上对不同的变量进行积分。
ABAQUS 入门教程1.什么是有限元对于连续的实体,或者流体,如果形状,边界条件较复杂,是不能得到位移或者应力应变的解析解的,因此提出了利用有限个单元(Finite Element)的集合来离散(Discretize)表示结构的实际几何形状,如下图,该实体由六面体单元和四面体单元(Element)组成,每一个单元代表这个实际结构的一个离散部分。
单元由节点构成,单元和单元之间通过共有的节点(Node)连接。
节点与单元的集合称为网格(Mesh)。
在一个特定网格中的单元数目称为网格密度(Mesh Density),可以很轻易地得到网格密度是和计算精度密切相关的,但是过密的网格会导致庞大的计算量,因此需要根据情况合理确定网格尺寸。
各种单元类型,不同的单元类型适用于不同的情况。
有限元求解方法:隐式方法(Implicit)由胡克定理得:=-F Kx其中F代表力矩阵,K为刚度矩阵,由每个单元的局部刚度矩阵结合得到,x为位移矩阵,代表每个节点的各个方向的位移。
隐式方法主要就是求解该方程。
位移法步骤如下:1.结构离散2.单元分析,形成单元刚度矩阵3.结构分析,形成总刚度矩阵(包含所有单元刚度矩阵)4.约束处理5.求解线性方程组,求得节点位移(求得所有节点的位移)6.根据节点位移求出各个单元的内力和应变如下图所示,桁架及其离散化模型:显示方法(explicit)显示方法与隐式方法不同,例如应用在ABAQUS/Explicit中的显示方法,并不需要求解一套方程组或计算整体刚度矩阵。
求解式通过动态方法从一个增量步前推到下一个增量步得到的,简单来说,就是假设有一个炸弹爆炸的过程,将该过程分成很多个时间增量步,从初始炸弹只有一个点开始,根据增量步一步步递推计算炸弹的冲击波膨胀的过程。
ABAQUS/Explicit适用于求解复杂非线性动力学问题和准静态问题,特别是模拟短暂、瞬时的动态时间,如冲击和爆炸问题。
2.Abaqus简介ABAQUS是国际上最先进的大型通用有限元计算分析软件之一,具有惊人的广泛的模拟能力。
4. 应用实体单元在ABAQUS中,应力/位移单元的实体(continuum)单元族是包含最广泛的。
ABAQUS/Standard和ABAQUS/Explicit的实体单元库多少有所不同。
ABAQUS/Standard实体单元库ABAQUS/Standard的实体单元库包括二维和三维的一阶(线性)插值单元和二阶(二次)插值单元,它们应用或者完全积分或者减缩积分。
二维单元有三角形和四边形;在三维单元中提供了四面体、三角楔形体和六面体(砖型)。
也提供了修正的二阶三角形和四面体单元。
此外,在ABAQUS/Standard中还有杂交和非协调模式单元。
ABAQUS/Explicit实体单元库ABAQUS/Explicit的实体单元库包括二维和三维的减缩积分一阶(线性)插值单元,也有修正的二阶插值三角形和四面体单元。
在ABAQUS/Explicit中没有完全积分或者规则的二阶单元。
关于可选用的实体单元的详细信息,请参阅ABAQUS分析用户手册第14.1.1节“Solid (continumm) elements”。
当做出所有这些各种选项的排列,发现可供使用的实体单元的总数是相当大的,仅就三维模型而言就超过了20种。
模拟的精度将很大程度上依赖于在模型中采用的单元类型。
在这些单元中选择哪一个最适合于你的模型,可能是一件令人苦恼的事情。
特别是在初次使用时。
然而,你会逐渐认识到这种在20多件工具组中的选择,为你提供一种能力,对于一个特殊的模拟能够选择恰当正确的工具或单元。
本章讨论了不同的单元数学描述和积分水平对于一个特定分析的精度的影响,也给出了一些关于选择实体单元的一般性指导意见,这些为你积累ABAQUS的应用经验,并建立自己的知识库提供了的基础。
本章末尾的例子,当你建立和分析一个连接环构件模型时,将允许你应用这些知识。
4.1 单元的数学描述和积分通过考虑一个静态分析的悬臂梁,如图4-1所示,将演示单元阶数(线性或二次)、单元数学描述和积分水平对结构模拟的精度的影响。
基于Abaqus研究单元类型及网格对三维接触计算的影响李慧镖,陈晓岚,李昂(北京电子工程总体研究所,复杂产品智能制造系统技术国家重点实验室,北京 100856)摘要:本文选取一圆筒状对接连接结构作为三维接触计算的模型,基于Abaqus 软件,依据单元类型及网格的不同设计三种网格模型进行三维接触的计算,通过比较几种网格模型的计算时间、位移、应力以及螺钉载荷等结果研究单元类型及网格对三维接触计算时间及结果的影响。
关键词:Abaqus;单元类型;接触引言接触广泛存在于工程实际中,接触问题属于典型的非线性问题。
Abaqus是国际公认的最好的CAE软件之一,以求解各种复杂的非线性问题助长,且计算精度高。
本文选取一圆筒状对接连接结构(分为前舱、后舱)作为三维接触计算的模型,基于Abaqus软件,依据单元类型及网格的不同设计了三种网格模型进行三维接触的计算:a)六面体网格,单元C3D8I(接触计算通常选用的单元);b)四面体网格,单元C3D10M(使用Simlab进行网格划分,保证了接触区域网格节点的重合);c)四面体网格,单元C3D10M(使用Abaqus自由网格划分)。
以六面体网格计算模型结果为基准,通过比较几种网格模型的计算时间、位移、应力以及螺钉载荷等结果研究单元类型及网格对三维接触计算时间及结果的影响。
1模型概述筒状对接连接结构如图-1所示,由前后两个舱构成,对接面螺钉个数为12,螺钉规格为M10,螺钉等级为10.9级;舱体材料均为铝合金,弹性模量为68GPa。
图- 1三维接触计算模型对接局部2计算工况选取一典型工况。
约束前舱最左端端面,在后舱最右端端面施加横向剪切面力,大小为1MPa,合力为19156N。
3有限元模型采用Abaqus有限元软件进行模型的分析,不考虑几何非线性及材料的弹塑性,仅考虑接触非线性。
对接面、螺钉钉头与舱体卡槽、螺钉柱面与舱体对接孔柱面均采用无摩擦的接触设置。
3.1六面体模型六面体模型整体采用C3D8I单元,单元总数为622534个。
ABAQUS单元2012-01-13 22:37:01| 分类:abaqus | 标签:|字号大中小订阅以C为开头的单元为实体CONTINUUM单元,如:C3D4,CPE4,C3D20R,CPS2E;以S为开头的单元为壳SHELL单元,如:S4R,S8R5,SAX2,SC8R;以B为开头的单元为梁BEAM单元,如:B21,B22H,B31,B31H;以T为开头的单元为桁架TRUSS单元,如:T2D2,T2D2E,T2D3T;以R为开头的单元为刚性RIGID单元,如:R2D2,R3D3,R3D4,RAX2;以M为开头的单元为膜MEMBRANE单元,如:M3D3,M3D4R,MAX2;以F为开头的单元为流体FLUID单元,如:F2D2,F3D4,FAX2;以AC为开头的单元为声学ACOUSTIC单元,如:AC1D3,AC3D20,ACAX6;以GK为开头的单元为衬垫GASKET单元,如:GK2D2,GK3D18N,GKAX4;另外,ABAQUS还提供了点质量单元MASS,管单元PIPE,积分单元IT,连接单元JOINT,线弹性单元LS,无限元CIN,等以适应不同模型的需要.2D,3D表示二维,三维PE表示平面应变单元,PS表示平面应力单元AX表示轴对称单元2D,3D,PE,PS,AX后面的数字一般指单元所具有的节点个数(梁单元,轴对称膜单元和轴对称壳单元除外,这些单元名称中标明了插值的阶数,如B31表示一阶三维梁单元,B32表示二阶三维梁单元,MAX2表示3节点二次轴对称膜单元,SAX1表示2节点线性轴对称壳单元)以R结尾的单元为缩减积分单元以H结尾的单元为杂交单元以E结尾的单元为考虑压电效应的单元以T结尾的单元为考虑热效应的耦合单元完全积分单元只有确信载荷只会在模型中产生很小的弯曲时,才可以采用完全积分的线性单元。
因为剪力自锁(shear locking)会造成很大误差。
这是存在于所有完全积分,一阶实体单元中的问题。
abaqus 中surface单元用法-回复Abaqus中的Surface单元用法Abaqus是一种通用的有限元软件,广泛应用于求解结构力学问题。
而Surface单元是Abaqus中的一种特殊单元类型,用于描述结构体的表面或者接触面。
本文将以Abaqus中Surface单元的用法作为主题,一步一步地回答。
第一步:Surface单元的定义和基本属性Surface单元是将结构体的表面或接触面建模为一个特殊类型的单元。
在Abaqus中,常见的Surface单元有以下几种:S4R(四边形单元)、S8R(八边形单元)、S3(三角形单元)和S6(六边形单元)。
Surface单元通常是由节点通过有限单元中的连接方式形成的。
这些连接方式可以是直接连接,也可以是通过边、面或者曲面来连接。
在定义Surface单元时,一般需要指定单元的节点编号和节点连接关系。
除了节点信息,Surface单元还有一些其他基本属性,例如材料属性和边界条件。
在Abaqus中,可以将Surface单元与材料属性和加载条件进行关联。
这些属性可以影响模型的行为和响应。
第二步:在Abaqus中创建Surface单元在Abaqus中,可以通过多种方式创建Surface单元。
以下是几种常见的创建Surface单元的方法:1.手动创建:在Abaqus的Preprocessing模块中,可以手动输入Surface单元的节点编号和连接关系,然后通过网格划分功能生成Surface单元。
2.导入外部文件:Abaqus支持导入外部文件,如IGES、STEP、CAD文件等。
可以在外部建模软件中创建Surface单元,并将其导入到Abaqus 中进行后续分析。
3.自动生成:Abaqus还提供了自动创建Surface单元的功能。
通过设置一些参数,Abaqus可以根据几何形状自动生成合适的Surface单元。
这种方式可以节省手动建模的时间和精力。
第三步:Surface单元的应用Surface单元在Abaqus中有多种应用,下面将介绍其中几种常见的应用场景:1.接触分析:当两个结构体之间发生接触时,Surface单元可以用于描述接触面。
1.完全积分是指当单元具有规则形状时,所用的高斯积分点可以对单元刚度矩阵中的多项式进行精确地积分。
2.剪力自锁将使单元变得“刚硬”,只影响受弯曲荷载的完全积分线性(一阶)单元,这些单元功能在受直接或剪切荷载时没有问题。
二次单元的边界可以弯曲,没有剪力自锁的问题。
3.只有四边形和六面体单元才能采用减缩积分。
所有的楔形、四面体和三角形实体单元采用完全积分。
减缩积分单元比完全积分单元在每个方向上少用一个积分点。
4.只有四边形和六面体单元才能采用减缩积分。
所有的楔形、四面体和三角形实体单元采用完全积分。
减缩积分单元比完全积分单元在每个方向上少用一个积分点。
5.非协调单元:只有四边形和六面体单元才能采用减缩积分。
所有的楔形、四面体和三角形实体单元采用完全积分。
减缩积分单元比完全积分单元在每个方向上少用一个积分点。
6.ABAQUS对非协调单元采用了增强位移梯度形式。
在弯曲问题中,用非协调单元可得到与二次单元相当的结果,且计算费用明显降低。
对单元扭曲很敏感。
7.ABAQUS对非协调单元采用了增强位移梯度形式。
在弯曲问题中,用非协调单元可得到与二次单元相当的结果,且计算费用明显降低。
对单元扭曲很敏感。
8.杂交单元:ABAQUS对非协调单元采用了增强位移梯度形式。
在弯曲问题中,用非协调单元可得到与二次单元相当的结果,且计算费用明显降低。
对单元扭曲很敏感。
9.一般情况下应采用二次减缩积分单元(CAX8R,CPE8R,CPS8R,C3D20R)。
在应力集中局部采用二次完全积分单元(CAX8,CPE8,CPS8,C3D20)。
对含有非常大的网格扭曲模拟(大应变分析),采用细网格划分的线性减缩积分单元(CAX4R,CPE4R,CPS4R,C3D8R )。
对接触问题采用线性减缩积分单元或非协调单元(CAX4I,CPE4I,CPS4II,C3D8I等)的细网格划分。
10.采用非协调单元时应使网格扭曲减至最小。
三维情况应尽可能采用块状单元(六面体)。
abaqus四面体单元类型
Abaqus有几种四面体单元类型,其中常用的包括:
1. C3D4:普通四面体单元,具有4个节点和4个积分点。
2. C3D4H:压力四面体单元,具有4个节点和4个积分点,用于模拟固体中的流体流动。
3. C3D10:高阶四面体单元,具有10个节点和4个积分点,比普通四面体具有更高的准确性。
4. C3D10M:由于升级的四面体单元,具有更好的形状函数属性。
它具有10个节点和4个积分点。
5. C3D10H:采用四面体单元H積分法。
它具有10个节点和4个积分点,用于模拟固体中的流体流动。
6. C3D10M:由于升级的高阶四面体单元,具有10个节点和4个积分点。
它通过改进形状函数来提高准确性。
7. C3D10H:采用四面体单元H積分法。
它具有10个节点和4个积分点,用于模拟固体中的流体流动。
这些四面体单元类型具有不同的节点数、积分点数和准确性,可根据具体模拟需求选择合适的单元类型。