(新)湖北省武汉市2018届高三数学上学期期中试题理
- 格式:doc
- 大小:1.21 MB
- 文档页数:12
2017-2018学年湖北省武汉市华中师大一附中高一(下)期中数学试卷试题数:22,总分:1501.(单选题,5分)两个平面重合的条件是()A.有两个公共点B.有能组成三角形的三个公共点C.有三个公共点D.有无穷多个公共点2.(单选题,5分)等差数列{a n}的前n项和为S n,若a1= 1,S4=20,则S6=()2A.16B.24C.36D.483.(单选题,5分)某工厂去年12月份的产值是去年1月份产值的m倍,则该厂去年产值的月平均增长率为()A. m11B. m1212 -1C. √m11 -1D. √m4.(单选题,5分)如图,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的投影可能是()A. ① ②B. ① ③C. ② ④D. ② ③5.(单选题,5分)数列1,12,22,13,23,33,…,1n,2n,3n,…,nn,…的前25项和为()A. 20714B. 20914C. 21114D. 10676.(单选题,5分)若三角形ABC的内角A,B,C满足6sinA=4sinB=3sinC,cosB=()A. 34B. 1116C. √154D. 3√15167.(单选题,5分)已知各项均为正数的等比数列{a n}满足a7=a6+2a5,若存在两项a m,a n使得√a m a n =4a1,则1m + 4n的最小值为()A. 32B. 53C. 94D. 2568.(单选题,5分)首项为-24的等差数列,从第10项起开始为正数,则公差d的取值范围是()A. d>83B. 83≤d≤3C. 83≤d<3D. 83<d≤39.(单选题,5分)已知数列{a n}是等比数列,数列{b n}是等差数列,若a1•a5•a9=-8,b2+b5+b8=6π,则sin b4+b61−a3a7的值是()A. 12B. −12C. √32D. −√3210.(单选题,5分)已知在△ABC中,角A,B,C所对的边分别为a,b,c,bcosC=a,点M 在线段AB上,且∠ACM=∠BCM.若b=6CM=6,则cos∠BCM=()A. √104B. 34C. √74D. √6411.(单选题,5分)给出下列命题:① 若b<a<0,则|a|>|b|;② 若b<a<0,则a+b<ab;③ 若b<a<0,则ba + ab>2;④ 若b<a<0,则a2b<2a-b;⑤ 若b<a<0,则2a+ba+2b >ab;⑥ 若a+b=1,则a2+b2≥ 12.其中正确的命题有()A.2个B.3个C.4个D.5个12.(单选题,5分)已知a,b∈R,且a是2-b与-3b的等差中项,则ab2|a|+|b|的最大值为()A. 19B. 29C. 23D. 4313.(填空题,5分)若关于x的不等式ax2+3x+a≥0的解集为空集,则实数a的取值范围是___ .14.(填空题,5分)有一块多边形的花园,它的水平放置的平面图形的斜二测直观图是如图所示的直角梯形ABCD ,其中∠ABC=45°,AB=AD=2米,DC⊥BC ,则这块花园的面积为___ 平方米.15.(填空题,5分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,下列四个论断正确的是___ (把你认为正确论断的序号都写上) ① 若sinA a = cosBb,则B= π4;② 若B= π4 ,b=2,a= √3 ,则满足条件的三角形共有两个;③ 若a ,b ,c 成等差数列,sinA ,sinB ,sinC 成等比数列,则△ABC 为正三角形; ④ 若a=5,c=2,△ABC 的面积S △ABC =4,则cosB= 35.16.(填空题,5分)已知数列{a n }的通项公式为 a n ={(12)n−12,n 为奇数(12)n 2,n 为偶数,则数列{3a n +n-3}的前2n 项和的最小值为___ .17.(问答题,10分)已知x ,y∈R +,且x 2+y 2=x+y . (1)求 1x +1y 的最小值; (2)求x+y 的最大值.18.(问答题,12分)如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱AB 、BC 、CC 1、C 1D 1的中点.(1)判断直线EF 与GH 的位置关系,并说明理由; (2)求异面直线A 1D 与EF 所成的角的大小.19.(问答题,12分)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且2asinB= √3 b.(1)求角A;(2)已知a=2,求△ABC的面积的取值范围.20.(问答题,12分)已知单调递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(Ⅰ)求数列{a n}的通项公式;a n,求数列{b n}的前n项和S n.(Ⅱ)设b n=a n log1221.(问答题,12分)如图,某镇有一块空地△OAB,其中OA=2km,OB=2√3km,∠AOB=90°.当地镇政府规划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖△OMN,其中M,N都在边AB上,且∠MON=30°,挖出的泥土堆放在△OAM地带上形成假山,剩下的△OBN地带开设儿童游乐场.为安全起见,需在△OAN的周围安装防护网.(1)当AM=1km时,求防护网的总长度;(2)为节省资金投入,人工湖△OMN的面积要尽可能小,设∠AOM=θ,问:当θ多大时△OMN的面积最小?最小面积是多少?22.(问答题,12分)已知常数a≠0,数列{a n}的前n项和为S n,a1=2,a n= S nn+a(n-1).(1)求数列{a n}的通项公式;(2)若b n=3n+(-1)n a n,且数列{b n}是单调递增数列,求实数a的取值范围;(3)若a= 12,c n= a n−1a n+2018,对于任意给定的正整数k,是否都存在正整数p、q,使得c k=c p c q?若存在,试求出p、q的一组值(不论有多少组,只要求出一组即可);若不存在,请说明理由.2017-2018学年湖北省武汉市华中师大一附中高一(下)期中数学试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)两个平面重合的条件是()A.有两个公共点B.有能组成三角形的三个公共点C.有三个公共点D.有无穷多个公共点【正确答案】:B【解析】:在A中,这两个平面可能相交于过这两个公共点的一条直线;在B中,如果两个平行有有能组成三角形的三个公共点,则这两个平面一定重合;在C中,这两个平面可能相交于过这三个公共点的一条直线;在D中,这两个平面可能相交于过这无穷多个公共点的一条直线.【解答】:解:在A中,如果两个平面有两个公共点,则这两个平面可能相交于过这两个公共点的一条直线,故A不能确定两个平面重合;在B中,如果两个平面有有能组成三角形的三个公共点,则这两个平面一定重合,故B能确定两个平面重合;在C中,如果两个平面有三个公共点,则这两个平面可能相交于过这三个公共点的一条直线,故C不能确定两个平面重合;在D中,如果两个平面有无穷多个公共点,则这两个平面可能相交于过这无穷多个公共点的一条直线,故D不能确定两个平面重合.故选:B.【点评】:本题考查两个平面重合的条件的判断,考查空间中两个平面的位置关系的判定定理、性质定理等基础知识,考查运算求解能力,是基础题.,S4=20,则S6=()2.(单选题,5分)等差数列{a n}的前n项和为S n,若a1= 12A.16B.24C.36D.48【正确答案】:D【解析】:结合已知条件,利用等差数列的前n项和公式列出关于d的方程,解出d,代入公式,即可求得s6.,S4=20,【解答】:解:∵ a1=12∴S4=2+6d=20,∴d=3,∴S6=3+15d=48.故选:D.【点评】:本题考查了等差数列的前n项和公式,熟记公式是解题的关键,同时注意方程思想的应用.3.(单选题,5分)某工厂去年12月份的产值是去年1月份产值的m倍,则该厂去年产值的月平均增长率为()A. m11B. m1212 -1C. √m11 -1D. √m【正确答案】:D【解析】:先假设增长率为p,再根据条件可得(1+p)11=m,从而可解.11−【解答】:解:由题意,该厂去年产值的月平均增长率为p,则(1+p)11=m,∴ p=√m 1,故选:D.【点评】:本题考查函数模型的选择,利用了有关增长率问题的函数模型,属于简单题.4.(单选题,5分)如图,在正方体ABCD-A1B1C1D1中,P为BD1的中点,则△PAC在该正方体各个面上的投影可能是()A. ① ②B. ① ③C. ② ④D. ② ③【正确答案】:A【解析】:分析△PAC在该正方体各个面上的投影图形即可.【解答】:解:由正投影知识知,在四个侧面的正投影为图① ,在上、下底面的投影为② .所以△PAC在该正方体各个面上的投影可能是① ② .故选:A.【点评】:本题考查了平行投影及平行投影作图法问题,同一图形在不同投影面上的投影可能不同.5.(单选题,5分)数列1,12,22,13,23,33,…,1n,2n,3n,…,nn,…的前25项和为()A. 20714B. 20914C. 21114D. 1067【正确答案】:B【解析】:直接利用数列的通项公式的应用求出结果.【解答】:解:数列1,12,22,13,23,33,…,1n,2n,3n,…,nn,…的前25项和为:T25=1+12+22+13+23+33+…+ 16+26+36+46+56+66+ 17+27+37+47,= 20914故选:B.【点评】:本题考查的知识要点:数列的关系式的应用,主要考查学生的运算能力和转换能力,属于基础题型.6.(单选题,5分)若三角形ABC的内角A,B,C满足6sinA=4sinB=3sinC,cosB=()A. 34B. 1116C. √154D. 3√1516【正确答案】:B【解析】:由正弦定理可得6a=4b=3c,进而可用a表示b,c,代入余弦定理化简可得答案.【解答】:解:∵6sinA=4sinB=3sinC,由正弦定理asinA =bsinB=csinC.∴由正弦定理可得6a=4b=3c.∴b= 32a,c=2a,由余弦定理可得cosB= a 2+c2−b22ac= a2+4a2−94a22a•2a=114a24a2=1116.故选:B.【点评】:本题考查正弦定理,余弦定理的应用,是基础题.7.(单选题,5分)已知各项均为正数的等比数列{a n}满足a7=a6+2a5,若存在两项a m,a n使得√a m a n =4a1,则1m + 4n的最小值为()A. 32B. 53C. 94D. 256【正确答案】:A【解析】:由 a7=a6+2a5求得q=2,代入√a m a n=4a1求得m+n=6,利用基本不等式求出它的最小值.【解答】:解:由各项均为正数的等比数列{a n}满足a7=a6+2a5,可得a1q6=a1q5+2a1q4,∴q2-q-2=0,∴q=2.∵ √a m a n=4a1,∴q m+n-2=16,∴2m+n-2=24,∴m+n=6,∴ 1 m +4n=16(m+n)(1m+4n)=16(5+nm+4mn)≥16(5+4)=32,当且仅当nm= 4mn时,等号成立.故1m +4n的最小值等于32,故选:A.【点评】:本题主要考查等比数列的通项公式,基本不等式的应用,属于基础题.8.(单选题,5分)首项为-24的等差数列,从第10项起开始为正数,则公差d的取值范围是()A. d>83B. 83≤d≤3C. 83≤d<3D. 83<d≤3【正确答案】:D【解析】:先设数列为{a n}公差为d,则a1=-24,根据等差数列的通项公式,分别表示出a10和a9,进而根据a10>0,a9≤0求得d的范围.【解答】:解:设数列为{a n}公差为d,则a1=-24;a10=a1+9d>0;即9d>24,所以d>83而a9=a1+8d≤0;即d≤3所以83<d≤3故选:D.【点评】:本题主要考查了等差数列的性质.属基础题.9.(单选题,5分)已知数列{a n}是等比数列,数列{b n}是等差数列,若a1•a5•a9=-8,b2+b5+b8=6π,则sin b4+b61−a3a7的值是()A. 12B. −12C. √32D. −√32【正确答案】:C【解析】:分别运用等差数列和等比数列的性质,结合三角函数的诱导公式,计算可得所求值.【解答】:解:数列{a n}是等比数列,若a1•a5•a9=-8,由a1a9=a52,即有a53=-8,可得a5=-2,则a3a7=a52=4,数列{b n}是等差数列,若b2+b5+b8=6π,由b2+b8=2b5,即有3b5=6π,即b5=2π,b4+b6=2b5=4π,则sin b4+b61−a3a7 =sin 4π1−4=-sin 4π3=sin π3= √32,故选:C.【点评】:本题主要考查等差数列和等比数列的性质,考查方程思想和运算能力,属于基础题.10.(单选题,5分)已知在△ABC中,角A,B,C所对的边分别为a,b,c,bcosC=a,点M 在线段AB上,且∠ACM=∠BCM.若b=6CM=6,则cos∠BCM=()A. √104B. 34C. √74D. √64【正确答案】:B【解析】:运用正弦定理可得B= π2,设∠ACM=∠BCM=α,由S△ABC=S△ACM+S△BCM,运用三角形的面积的公式,化简整理,结合a=cosα,解方程即可得到所求值.【解答】:解:bcosC=a,由正弦定理可得sinBcosC=sinA=sin(B+C)=sinBcosC+cosBsinC,即有cosBsinC=0,由sinC>0,可得cosB=0,由0<B<π,可得B= π2,设∠ACM=∠BCM=α,由S△ABC=S△ACM+S△BCM,且b=6CM=6,可得12•6asin2α= 12•6•1•sinα+ 12asinα,即为12acosα=6+a,在直角三角形BCM中,a=cosα,则12cos2α-cosα-6=0,解得cosα= 34或- 23(舍去),故选:B.【点评】:本题考查三角形的正弦定理和面积公式的运用,考查方程思想和运算能力,属于中档题.11.(单选题,5分)给出下列命题:① 若b<a<0,则|a|>|b|;② 若b<a<0,则a+b<ab;③ 若b<a<0,则ba + ab>2;④ 若b<a<0,则a2b<2a-b;⑤ 若b<a<0,则2a+ba+2b >ab;⑥ 若a+b=1,则a2+b2≥ 12.其中正确的命题有()A.2个B.3个C.4个D.5个【正确答案】:D【解析】:利用不等式的基本性质和基本不等式逐一判断即可.【解答】:解: ① ∵b <a <0,∴|b|>|a|,故 ① 不正确; ② ∵b <a <0,∴ab >0,∴a+b <ab ,故 ② 正确; ③ ∵b <a <0,∴ a b>0,b a>0 ,∴ b a+ a b>2,故 ③ 正确; ④ ∵b <a <0,∴a 2+b 2>2ab ,∴a 2>b (2a-b ),∴a 2b<2a −b ,故 ④ 正确;⑤ ∵b <a <0,∴b 2+2ab >a 2+2ab ,∴b (2a+b )>a (a+2b ),∴ 2a+ba+2b > ab ,故 ⑤ 正确; ⑥ ∵ a 2+b 2≥(a+b )22,a+b=1,∴a 2+b 2≥ 12 ,当且仅当a=b= 12时取等号,故 ⑥ 正确.故选:D .【点评】:本题考查了不等式的基本性质和基本不等式,属中档题.12.(单选题,5分)已知a ,b∈R ,且a 是2-b 与-3b 的等差中项,则 ab2|a|+|b| 的最大值为( ) A. 19 B. 29 C. 23 D. 43【正确答案】:A【解析】:若 ab2|a|+|b| 取得最大值,则a ,b 同号,由条件可得 ab2|a|+|b| = ab2a+b = a (1−2a )b2−3b(0<b < 12 )然后令t=2-3b ,换元后用基本不等式求出最大值即可.【解答】:解:由a 是2-b 与-3b 的等差中项,得2a=2-b-3b ,即a+2b=1. 若 ab 2|a|+|b| 取得最大值,则a ,b 同号, 不妨取a ,b 均大于0,∴当 ab2|a|+|b| 取得最大值时, ab2|a|+|b| = ab2a+b = a (1−2a )b 2−3b (0<b < 12). 令t=2-3b ,则b= 2−t 3 ( 12<t <2), ∴ ab2|a|+|b| = 19 •−2t 2+5t−2t = 59−29(t +1t ) ≤ 59−29•2√t •1t =19 .当且仅当t= 1t ,即t=1,也就是a=b= 13 时上式“=”成立. ∴ ab2|a|+|b| 的最大值为 19 . 故选:A .【点评】:本题考查基本不等式的应用,考查数学转化思想方法,训练了利用换元法求最值,属中档题.13.(填空题,5分)若关于x 的不等式ax 2+3x+a≥0的解集为空集,则实数a 的取值范围是___ .【正确答案】:[1](-∞,- 32 )【解析】:讨论a=0和a≠0时,利用判别式列不等式组求出a 的取值范围.【解答】:解:a=0时,不等式ax 2+3x+a≥0化为3x≥0,解得x≥0,解集不是空集,不满足题意;a≠0时,应满足 {a <0△<0 ,即 {a <09−4a 2<0 ,解得a <- 32 ;所以实数a 的取值范围是(-∞,- 32 ). 故答案为:(-∞,- 32 ).【点评】:本题考查了不等式解集的判断问题、不等式的解法,是基础题.14.(填空题,5分)有一块多边形的花园,它的水平放置的平面图形的斜二测直观图是如图所示的直角梯形ABCD ,其中∠ABC=45°,AB=AD=2米,DC⊥BC ,则这块花园的面积为___ 平方米.【正确答案】:[1] 8+2√2【解析】:求出直观图中,DC ,BC ,S 梯形ABCD ,然后利与用平面图形与直观图形面积的比是2 √2 ,求出平面图形的面积.【解答】:解:DC=ABsin 45°= √2,BC=ABsin 45°+AD= √2 +2,S梯形ABCD= 12(AD+BC)DC= 12(2+ √2+ 2)× √2 =2 √2 +1,这块花园的面积S=√2S梯形ABCD=8+2 √2.故答案为:8+2 √2.【点评】:本题考查斜二测画法,直观图与平面图形的面积的比例关系的应用,考查计算能力.15.(填空题,5分)在△ABC中,角A、B、C的对边分别为a、b、c,下列四个论断正确的是___ (把你认为正确论断的序号都写上)① 若sinAa = cosBb,则B= π4;② 若B= π4,b=2,a= √3,则满足条件的三角形共有两个;③ 若a,b,c成等差数列,sinA,sinB,sinC成等比数列,则△ABC为正三角形;④ 若a=5,c=2,△ABC的面积S△ABC=4,则cosB= 35.【正确答案】:[1] ① ③【解析】:根据正余弦定理和三角形内角和定理依次判断即可得答案.【解答】:解:对于① :由正弦定理:asinA =bsinB,可得cosBsinA=sinBsinA,即cosB=sinB,0<B<π,∴B= π4.① 对.对于② :由余弦定理可得:b2=a2+c2-2accosB,即c2- √6 c-1=0,可得c= √6+√102,三角形只有1个;∴ ② 不对.对于③ :a,b,c成等差数列,即2b=a+c,sinA,sinB,sinC成等比数列,即sin2B=sinAsinC.正弦定理,可得b2=ac.∴△ABC为正三角形;∴ ③ 对.对于④ :a=5,c=2,△ABC的面积S△ABC= 12 acsinB=4,即sinB= 45,∵ √22<45<√32,∴ 2π3<B <3π4或π4<B<π3.∴cosB= ±35.④ 不对故答案为:① ③ .【点评】:本题考查了正余弦定理的灵活运用和计算能力,角的判断.属于中档题.16.(填空题,5分)已知数列{a n }的通项公式为 a n ={(12)n−12,n 为奇数(12)n2,n 为偶数,则数列{3a n +n-3}的前2n 项和的最小值为___ . 【正确答案】:[1] 32【解析】:由题意可得:a 2k-1= (12)k−1 ,a 2k = (12)k,k∈N *.可得数列{3a n +n-3}的前2n 项和=3[1+ 12 + (12)2 +……+ (12)n−1+ 12 + (12)2 +……+ (12)n]-2-1-0+1+……+(2n-3),利用单调性即可得出.【解答】:解:由题意可得:a 2k-1= (12)k−1 ,a 2k = (12)k,k∈N *.∴数列{3a n +n-3}的前2n 项和=3[1+ 12 + (12)2 +……+ (12)n−1 + 12 + (12)2 +……+ (12)n]-2-1-0+1+……+(2n-3) =3×[1−(12)n 1−12+12(1−12n )1−12]+2n (−2+2n−3)2=9(1- 12n )+2 (n−54)2 - 258 =f (2n ).n∈N *.可知f (2n )单调递增,∴最小值为f (2)=9× 12 -3= 32 . 故答案为: 32【点评】:本题考查了等差数列与等比数列的通项公式求和公式、分组求和,考查了推理能力与计算能力,属于中档题.17.(问答题,10分)已知x ,y∈R +,且x 2+y 2=x+y . (1)求 1x +1y 的最小值; (2)求x+y 的最大值.【正确答案】:【解析】:(1) 1x+1y =x+y xy=x 2+y 2xy≥2xy xy=2 ;(2)由重要不等式可得2x 2+2y 2≥x 2+2xy+y 2=(x+y )2,则2(x+y )≥(x+y )2,解出即可.【解答】:解:(1)∵x ,y∈R +,x 2+y 2=x+y ∴ 1x +1y =x+y xy=x 2+y 2xy≥2xy xy=2 ,当且仅当x 2+y 2=x+y 且x=y 即x=y=1时取等号, ∴求 1x +1y 的最小值为2; (2)∵x 2+y 2≥2xy∴2x 2+2y 2≥x 2+2xy+y 2=(x+y )2 又∵x 2+y 2=x+y ∴2(x+y )≥(x+y )2 即0≤x+y≤2右边取等条件为 {x ,y ∈R +x 2+y 2=x +y x =y 即x=y=1∴x+y 的最大值为2.【点评】:本题主要考查重要不等式和基本不等式的应用,要注意取等条件,属于基础题. 18.(问答题,12分)如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱AB 、BC 、CC 1、C 1D 1的中点.(1)判断直线EF 与GH 的位置关系,并说明理由; (2)求异面直线A 1D 与EF 所成的角的大小.【正确答案】:【解析】:(1)法一:取CD 的中点I ,推导出CF ∥=12 EI ,在平面ABCD 中,延长EF 与DC必交于C 右侧一点P ,且PC=CI ,同理,在平面CC 1D 1D 中,延长HG 与DC 必交于C 右侧一点Q,且QC=CI,由P与Q重合,得到直线EF与GH相交.法二:推导出EBC1H是平行四边形,从而EH ∥= BC1,再由FG ∥=12BC1,得EH || FG,EH≠FG,由此能推导出直线EF与GH相交.(2)推导出ACC1A1是平行四边形,AC || A1C1,EF || AC,从而EF || A1C1,A1D与EF所成的角即为A1D与A1C1所成的角,再由△A1C1D为等边三角形,能求出由直线A1D与EF所成的角的大小.【解答】:解:(1)解法一:取CD的中点I,∵E、F、I分别是正方形ABCD中AB、BC、CD的中点,∴CF ∥=12EI,∴在平面ABCD中,延长EF与DC必交于C右侧一点P,且PC=CI同理,在平面CC1D1D中,延长HG与DC必交于C右侧一点Q,且QC=CI,∴P与Q重合进而,直线EF与GH相交.解法二:∵在正方体ABCD-A1B1C1D1中,E、H分别是AB、C1D1的中点,∴EB ∥=12CD ∥=HC1,∴EBC1H是平行四边形,∴EH ∥=BC1,又∵F、G分别是BC、CC1的中点,∴FG ∥=12BC1,∴EH || FG,EH≠FG,∴EF、GH是梯形EFGH的两腰,∴直线EF与GH相交.(2)解:∵在正方体ABCD-A1B1C1D1中,AA1∥=CC1,∴ACC1A1是平行四边形,∴AC || A1C1,又∵E、F分别是AB、BC的中点,∴EF || AC,∴EF || A1C1,∴A1D与EF所成的角即为A1D与A1C1所成的角,∴A1D与EF所成的角即为∠DA1C1及其补角中的较小角,又∵在正方体ABCD-A1B1C1D1中,△A1C1D为等边三角形∴∠DA1C1=60°,∴由直线A1D与EF所成的角为60°.【点评】:本题考查两直线位置关系的判断,考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.(问答题,12分)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2asinB= √3 b . (1)求角A ;(2)已知a=2,求△ABC 的面积的取值范围.【正确答案】:【解析】:(1)由正弦定理进行转化求解即可(2)结合三角形的面积公式求出面积的表达式,求出角的范围结合三角函数的有界性进行求解即可.【解答】:解:(1)由2asinB= √3 b 得2sinAsinB= √3 sinB 又∵sinB >0,sinA= √32 ,又∵△ABC 是锐角三角形,∴A= π3 ; (2)由正弦定理得2R= asinA = √3∴S △ABC = 12 bcsinA= 12 (2RsinB )(2RsinC )sinA= √3 sinBsinC= √3 cos (2B- 2π3 )+ √3又∵△ABC 是锐角三角形,A= π3 , ∴ {0<B <π20<2π3−B <π2 ,即 π6 <B < π2 , ∴2B - 2π3 ∈(- π3 , π3 ), ∴cos (2B- 2π3)∈( 12,1],△ABC 的面积的取值范围(2√33, √3 ]. 【点评】:本题主要考查解三角形的应用,利用正弦定理以及三角形的面积公式进行化简是解决本题的关键.20.(问答题,12分)已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =a n log 12a n ,求数列{b n }的前n 项和S n .【正确答案】:【解析】:(I )根据a 3+2是a 2,a 4的等差中项和a 2+a 3+a 4=28,求出a 3、a 2+a 4的值,进而得出首项和a 1,即可求得通项公式;(II )先求出数列{b n }的通项公式,然后求出-S n -(-2S n ),即可求得的前n 项和S n .【解答】:解:(I )设等比数列{a n }的首项为a 1,公比为q∵a 3+2是a 2,a 4的等差中项∴2(a 3+2)=a 2+a 4代入a 2+a 3+a 4=28,得a 3=8∴a 2+a 4=20∴ {a 1q +a 1q 3=20a 3=a 1q 2=8∴ {q =2a 1=2 或 {q =12a 1=32 ∵数列{a n }单调递增∴a n =2n(II )∵a n =2n∴b n = 2n •log 122n =-n•2n∴-s n =1×2+2×22+…+n×2n ①∴-2s n =1×22+2×23+…+(n-1)×2n +n2n+1 ②∴ ① - ② 得,s n=2+22+23+…+2n-n•2n+1=2n+1-n•2n+1-2【点评】:本题考查了等比数列的通项公式以及数列的前n项和,对于等差数列与等比数列乘积形式的数列,求前n项和一般采取错位相减的办法.21.(问答题,12分)如图,某镇有一块空地△OAB,其中OA=2km,OB=2√3km,∠AOB=90°.当地镇政府规划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖△OMN,其中M,N都在边AB上,且∠MON=30°,挖出的泥土堆放在△OAM地带上形成假山,剩下的△OBN地带开设儿童游乐场.为安全起见,需在△OAN的周围安装防护网.(1)当AM=1km时,求防护网的总长度;(2)为节省资金投入,人工湖△OMN的面积要尽可能小,设∠AOM=θ,问:当θ多大时△OMN的面积最小?最小面积是多少?【正确答案】:【解析】:(1)在△OAB中求出∠OAB=60°,在△OAM中,由余弦定理得OM2=22+12-2×2×1×cos60°=3即OM=√3,再求出∠AOM=30°则△OAN为正三角形,其周长为6km(2)在△OAM中求出OM=√3sin(120°−θ),在△OAN中,求出ON=√3cosθ,写出面积表达式,从而得出θ=15°时,△OMN的面积取最小值为(6−3√3)km2【解答】:解:(1)∵在△OAB中,OA=2,OB= 2√3,∠A0B=90°,∴∠OAB=60°.又∵在△OAM中,OA=2,AM=1,∴由余弦定理得OM2=22+12-2×2×1×cos60°=3,即OM=√3,∴OM2+AM2=OA2即OM⊥AN.∴∠AOM=30°∴△OAN为正三角形,其周长为6km.∴防护网的总长度为6km.……………………………………………………………………(5分)(2)由题得0°<θ<60°在△OAM中,OMsin60°=2sin(120°−θ),即OM=√3sin(120°−θ);在△OAN中,ONsin60°=2sin[180°−(θ+30°+60°)]即ON=√3cosθ;∴ S△OMN=12•OM•ON•sin∠MON = 12•√3sin(120°−θ)•√3cosθ•sin30° =2sin(120°−2θ)+√3.又∵0°<θ<60°,即0°<120°-2θ<120°,∴当且仅当120°-2θ=90°,即θ=15°时,△OMN的面积取最小值为(6−3√3)km2.………………………………………………(12分)【点评】:本题主要考查了解三角形的实际应用,以及三角函数求最值.考查了学生的数学建模思想,以及运算能力,属于中档题.22.(问答题,12分)已知常数a≠0,数列{a n}的前n项和为S n,a1=2,a n= S nn+a(n-1).(1)求数列{a n}的通项公式;(2)若b n=3n+(-1)n a n,且数列{b n}是单调递增数列,求实数a的取值范围;(3)若a= 12,c n= a n−1a n+2018,对于任意给定的正整数k,是否都存在正整数p、q,使得c k=c p c q?若存在,试求出p、q的一组值(不论有多少组,只要求出一组即可);若不存在,请说明理由.【正确答案】:【解析】:(1)由已知可得:na n=S n+na(n-1).利用递推关系、等差数列的通项公式.(2)由即(-1)n[1+a(2n-1)]<3n,对n分类讨论,利用单调性即可得出.(3)由(1).假设对任意k∈N*,总存在正整数p、q,使c k=c p c q,可得.令q=k+1,或q=2k,即可得出.【解答】:解:(1)∵a n= S nn+a(n-1).∴na n=S n+an(n-1),∴(n-1)a n-1=S n-1+a (n-1)(n-2),相减得na n -(n-1)a n-1=a n +2a (n-1),即(n-1)a n -(n-1)a n-1=2a (n-1),其中n≥2,∴a n -a n-1=2a 为定值,∴{a n }是以2为首项2a 为公差的等差数列,∴a n =2+(n-1)2a=2a (n-1)+2;方法二:∵a n = S n n +a (n-1).∴S n -S n-1= Sn n +a (n-1), ∴ (n−1)S n n -S n-1=a (n-1),其中n≥2,∴ S n n - S n−1n−1 =a 为定值,∴{ S n n }是以2为首项a 为公差的等差数列,∴ S n n =2+(n-1)a∴a n = Sn n +a (n-1)=2a (n-1)+2; (2)由{b n }是单调递增数列,得b n <b n+1即3n +(-1)n [2a (n-1)+2]<3n+1+(-1)n+1(2an+2),即(-1)n a < 3n −(−1)n ×22n−1, 1°若n 为正奇数则-a < 3n +22n−1 在n 为正奇数时恒成立,设f (n )= 3n +22n−1, 则f (n )-f (n+2)= 3n +22n−1 -3n+2+22n+3 =- 4[(4n−3)•3n −2](2n−1)(2n+3) <0, ∴f (1)<f (3)<f (5)<…,∴-a <f (1)=5即a >-5,方法二:则f (n )-f (n+1)= 3n +22n−1 -3n+1+22n+1=- 4[(n−1)3n −1](2n−1)(2n+1) , 它在n=1时为正,在n≥2为负,∴f (1)>f (2)<f (3)<f (4)<f (5)<…∴-a <min{f (1),f (3)}=min{5, 295 }=5即a >-5,2°若n 为正偶数,则a < 3n −22n−1 在n 为正偶数时恒成立,设g (n )= 3n −22n−1 ,∴g (n+2)-g (n )= 3n+2−22n+3 - 3n −22n−1 = 4[(4n−3)3n +2](2n+1)(2n+3) >0, ∴g (2)<g (4)<g (6)<…,∴a <g (2)= 73 ,方法二:则g (n+1)-g (n )= 3n+1−22n+1 - 3n −22n−1 4[(n−1)3n +1](2n−1)(2n+1) >0, ∴g (1)<g (2)<g (3)<g (4)<…,∴a <g (2)= 73 ,综合1°2°及a≠0得-5<a < 73 且a≠0;(3)由(1)得a n =n+1,∴c n = n n+2009 ,∴c k =c p c q 可化为k k+2019 = p p+2019 • q q+2019 , 方法一:即p= k (q+2019)q−k = 1×(kq+2019k )q−k = k (q+2019)q−k, 令 {q −k =1p =kq +2019k 得 {p =k 2+2020k q =k +1(或令 {q −k =k p =q +2019 得 {p =2k +2019q =2k,或交换前两组p ,q 的值,能够确定的有四组), ∴存在满足要求的p ,q ,且有一组值为得 {p =k 2+2020k q =k +1, 方法二:即pq-kp-kq=2019k 即(p-k )(q-k )=k (k+2019)=1×(k 2+2019k )=k×(k+2019),令 {p −k =1q −k =k 2+2019k 即 {p =k +1q =k 2+2020k, (或令 {p −k =k q −k =k +2019 即 {p =2k q =2k +2019,或交换前两组p ,q 的值,共能确定四组), ∴存在满足要求的p ,q ,且有一组值为即 {p =k +1q =k 2+2020k .【点评】:本题考查了数列递推关系、等差数列的定义通项公式、数列的单调性,考查了推理能力与计算能力,属于中档题.。
2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)一、选择题(本大题共12小题,共60.0分)1.若复数z满足zi=1+2i,则z的共轭复数的虚部为()A.i B.﹣i C.﹣1D.12.下列四个结论:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;②若p∧q是真命题,则¬p可能是真命题;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减其中正确的是()A.①④B.②③C.①③D.②④3.已知集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},若B⊆A,则实数m的取值范围是()A.(﹣3,3]B.[﹣3,3]C.(﹣∞,3]D.(﹣∞,3)4.已知函数,则以下说法正确的是()A.f(x)的对称轴为B.f(x)的对称中心为C.f(x)的单调增区间为D.f(x)的周期为4π5.已知数列{a n}的前n项之和S n=n2﹣4n+1,则|a1|+|a2|+…+|a10|的值为()A.61B.65C.67D.686.在△ABC中,内角A、B、C的对边分别为a、b、c,若b=acosC+c,则角A为()A.60°B.120°C.45°D.135°7.若均α,β为锐角,=()A.B.C.D.8.等差数列{a n}的前9项的和等于前4项的和,若a1=1,a k+a4=0,则k=()A.3B.7C.10D.49.已知函数f(x)=e x﹣2mx+3的图象为曲线C,若曲线C存在与直线y=垂直的切线,则实数m的取值范围是()A.()B.(]C.()D.(]10.已知(x+y+4)<(3x+y﹣2),若x﹣y<λ+恒成立,则λ的取值范围是()A.(﹣∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)11.若a,b,c>0且(a+c)(a+b)=4﹣2,则2a+b+c的最小值为()A.﹣1B. +1C.2+2D.2﹣212.已知函数f(x)=,x∈(0,+∞),当x2>x1时,不等式<0恒成立,则实数a的取值范围为()A.(﹣∞,e]B.(﹣∞,e)C.D.二、填空题(本大题共4小题,共20.0分)13.已知数列{a n}满足a1=1,a n﹣a n+1=2a n a n+1,且n∈N*,则a8=.14.已知向量的模为1,且,满足|﹣|=4,|+|=2,则在方向上的投影等于.15.设实数x,y满足,则的取值范围是.16.设P是边长为a的正△ABC内的一点,P点到三边的距离分别为h1、h2、h3,则;类比到空间,设P是棱长为a的空间正四面体ABCD内的一点,则P点到四个面的距离之和h1+h2+h3+h4=.三、解答题(本大题共6小题,共70.0分)17.设函数f(x)=,其中=(2sin(+x),cos2x),=(sin(+x),﹣),x∈R(1)求f(x)的最小正周期和对称轴;(2)若关于x的方程f(x)﹣m=2在x∈[]上有解,求实数m的取值范围.18.在△ABC中,角A,B,C的对边分别是a,b,c,且(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.19.已知首项为1的等差数列{a n}中,a8是a5,a13的等比中项.(1)求数列{a n}的通项公式;(2)若数列{a n}是单调数列,且数列{b n}满足b n=,求数列{b n}的前项和T n.20.已知等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.21.(2分)已知函数f(x)=ax+lnx(a∈R)(1)若a=2,求曲线y=f(x)在x=1处的切线方程;(2)求f(x)的单调区间和极值;(3)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求实数a的取值范围.22.(理科)已知函数f(x)=e x+(a≠0,x≠0)在x=1处的切线与直线(e﹣1)x ﹣y+2018=0平行(Ⅰ)求a的值并讨论函数y=f(x)在x∈(﹣∞,0)上的单调性(Ⅱ)若函数g(x)=f(x)﹣﹣x+m+1(m为常数)有两个零点x1,x2(x1<x2)①求实数m的取值范围;②求证:x1+x2<0.2018-2019学年湖北省部分重点中学高三(上)第一次联考数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,共60.0分)1.若复数z满足zi=1+2i,则z的共轭复数的虚部为()A.i B.﹣i C.﹣1D.1【分析】利用复数的运算法则、共轭复数的定义、虚部的定义即可得出.【解答】解:iz=1+2i,∴﹣i•iz=﹣i(1+2i),z=﹣i+2则z的共轭复数=2+i的虚部为1.故选:D.【点评】本题考查了复数的运算法则、共轭复数的定义、虚部的定义,考查了推理能力与计算能力,属于基础题.2.下列四个结论:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;②若p∧q是真命题,则¬p可能是真命题;③“a>5且b>﹣5”是“a+b>0”的充要条件;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减其中正确的是()A.①④B.②③C.①③D.②④【分析】利用命题的否定判断①的正误;命题的否定判断②的正误;充要条件判断③的正误;幂函数的形状判断④的正误;【解答】解:①命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”;满足命题的否定形式,正确;②若p∧q是真命题,p是真命题,则¬p是假命题;所以②不正确;③“a>5且b>﹣5”可得“a+b>0”成立,“a+b>0”得不到“a>5且b>﹣5”所以③不正确;④当a<0时,幂函数y=x a在区间(0,+∞)上单调递减,正确,反例:y=,可知:x∈(﹣∞,0)时,函数是增函数,在(0,+∞)上单调递减,所以④正确;故选:A.【点评】本题考查命题的真假的判断与应用,涉及命题的否定,复合命题的真假,充要条件的应用,是基本知识的考查.3.已知集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},若B⊆A,则实数m的取值范围是()A.(﹣3,3]B.[﹣3,3]C.(﹣∞,3]D.(﹣∞,3)【分析】当B=∅时,m+1>2m﹣1,当B≠∅时,,由此能求出实数m的取值范围.【解答】解:∵集合A=(﹣2,5],B={x|m+1≤x≤2m﹣1},B⊆A,∴当B=∅时,m+1>2m﹣1,解得m<2,成立;当B≠∅时,,解得2≤m≤3.综上,实数m的取值范围是(﹣∞,3].故选:C.【点评】本题考查实数的取值范围的求法,考查子集、不等式的性质等基础知识,考查运算求解能力,是基础题.4.已知函数,则以下说法正确的是()A.f(x)的对称轴为B.f(x)的对称中心为C.f(x)的单调增区间为D.f(x)的周期为4π【分析】由题意利用正弦函数的图象和性质,逐一判断各个选项是否正确,从而得出结论.【解答】解:对于函数,令2x+=kπ+,求得x=+,k∈Z,故它的图象的对称轴为x=+,k∈Z,故A不正确.令2x+=kπ,求得x=﹣,k∈Z,故它的图象的对称中心为(﹣,0 ),k∈Z,故B正确.令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ﹣,k∈Z,故它增区间[kπ﹣,kπ﹣],k∈Z,故C不正确.该函数的最小正周期为=π,故D错误,故选:B.【点评】本题主要考查正弦函数的图象和性质,属于基础题.5.已知数列{a n}的前n项之和S n=n2﹣4n+1,则|a1|+|a2|+…+|a10|的值为()A.61B.65C.67D.68【分析】首先运用a n=求出通项a n,判断正负情况,再运用S10﹣2S2即可得到答案.【解答】解:当n=1时,S1=a1=﹣2,当n≥2时,a n=S n﹣S n﹣1=(n2﹣4n+1)﹣[(n﹣1)2﹣4(n﹣1)+1]=2n﹣5,故a n=,据通项公式得a1<a2<0<a3<a4<…<a10∴|a1|+|a2|+…+|a10|=﹣(a1+a2)+(a3+a4+…+a10)=S10﹣2S2=102﹣4×10+1﹣2(﹣2﹣1)=67.故选:C.【点评】本题主要考查数列的通项与前n项和之间的关系式,注意n=1的情况,是一道基础题.6.在△ABC中,内角A、B、C的对边分别为a、b、c,若b=acosC+c,则角A为()A.60°B.120°C.45°D.135°【分析】利用正弦定理把已知等式转化成角的关系,根据三角形内角和定理,两角和的正弦函数公式,同角三角函数基本关系式可求cosA的值,结合A的范围即可得解A的值.【解答】解:∵b=acosC+c.∴由正弦定理可得:sinB=sinAcosC+sinC,可得:sinAcosC+sinCcosA=sinAcosC+sinC,可得:sinCcosA=sinC,∵sinC≠0,∴cosA=,∵A∈(0°,180°),∴A=60°.故选:A.【点评】本题主要考查了正弦定理的应用,三角函数恒等变换的应用.注重了对学生基础知识综合考查,属于基础题.7.若均α,β为锐角,=()A.B.C.D.【分析】由题意求出cosα,cos(α+β),利用β=α+β﹣α,通过两角差的余弦函数求出cosβ,即可.【解答】解:α,β为锐角,则cosα===;<sinα,∴,则cos(α+β)=﹣=﹣=﹣,cosβ=cos(α+β﹣α)=cos(α+β)cosα+sin(α+β)sinα==.故选:B.【点评】本题考查两角和与差的三角函数的化简求值,注意角的范围与三角函数值的关系,考查计算能力.8.等差数列{a n}的前9项的和等于前4项的和,若a1=1,a k+a4=0,则k=()A.3B.7C.10D.4【分析】由“等差数列{a n}前9项的和等于前4项的和”可求得公差,再由a k+a4=0可求得结果.【解答】解:∵等差数列{a n}前9项的和等于前4项的和,∴9+36d=4+6d,其中d为等差数列的公差,∴d=﹣,又∵a k+a4=0,∴1+(k﹣1)d+1+3d=0,代入可解得k=10,故选:C.【点评】本题考查等差数列的前n项和公式及其应用,涉及方程思想,属基础题.9.已知函数f(x)=e x﹣2mx+3的图象为曲线C,若曲线C存在与直线y=垂直的切线,则实数m的取值范围是()A.()B.(]C.()D.(]【分析】求函数的导数,利用导数的几何意义以及直线垂直的等价条件,转化为e x﹣2m=﹣3有解,即可得到结论.【解答】解:函数的f(x)的导数f′(x)=e x﹣2m,若曲线C存在与直线y=x垂直的切线,则切线斜率k=e x﹣2m,满足(e x﹣2m)=﹣1,即e x﹣2m=﹣3有解,即2m=e x+3有解,∵e x+3>3,∴m>,故选:A.【点评】本题主要考查导数的几何意义的应用,以及直线垂直的关系,结合指数函数的性质是解决本题的关键.10.已知(x+y+4)<(3x+y﹣2),若x﹣y<λ+恒成立,则λ的取值范围是()A.(﹣∞,1)∪(9,+∞)B.(1,9)C.(0,1)∪(9,+∞)D.(0,1]∪[9,+∞)【分析】根据已知得出x,y的约束条件,画出满足约束条件的可行域,再用角点法,求出目标函数z=x﹣y的最大值,再根据最值给出λ的求值范围.【解答】解:由题意得x,y的约束条件.画出不等式组表示的可行域如图示:在可行域内平移直线z=x﹣y,当直线经过3x+y﹣2=0与x=3的交点A(3,﹣7)时,目标函数z=x﹣y有最大值z=3+7=10.x﹣y<λ+恒成立,即:λ+≥10,即:.解得:λ∈(0,1]∪[9,+∞)故选:D.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.11.若a,b,c>0且(a+c)(a+b)=4﹣2,则2a+b+c的最小值为()A.﹣1B. +1C.2+2D.2﹣2【分析】利用基本不等式的性质即可得出.【解答】解:∵a,b,c>0且(a+b)(a+c)=4﹣2,则2a+b+c=(a+b)+(a+c)≥=2=2,当且仅当a+b=a+c=﹣1时取等号.故选:D.【点评】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.12.已知函数f(x)=,x∈(0,+∞),当x2>x1时,不等式<0恒成立,则实数a的取值范围为()A.(﹣∞,e]B.(﹣∞,e)C.D.【分析】根据题意可得函数g(x)=xf(x)=e x﹣ax2在x∈(0,+∞)时是单调增函数,求导,分离参数,构造函数,求出最值即可【解答】解:∵x∈(0,+∞),∴x1f(x1)<x2f(x2).即函数g (x )=xf (x )=e x ﹣ax 2在x ∈(0,+∞)时是单调增函数. 则g′(x )=e x ﹣2ax ≥0恒成立. ∴2a ≤,令,则,x ∈(0,1)时m'(x )<0,m (x )单调递减, x ∈(1,+∞)时m'(x )>0,m (x )单调递增, ∴2a ≤m (x )min =m (1)=e , ∴.故选:D .【点评】本题考查了函数的单调性问题,考查函数恒成立问题,考查转化思想,考查导数的应用,属于中档题.二、填空题(本大题共4小题,共20.0分)13.已知数列{a n }满足a 1=1,a n ﹣a n +1=2a n a n +1,且n ∈N*,则a 8=.【分析】直接利用递推关系式求出数列的通项公式,进一步根据通项公式求出结果. 【解答】解:数列{a n }满足a 1=1,a n ﹣a n +1=2a n a n +1,则:(常数),数列{}是以为首项,2为公差的等差数列.则:,所以:,当n=1时,首项a 1=1, 故:.所以:.故答案为:【点评】本题考查的知识要点:数列的通项公式的求法及应用.14.已知向量的模为1,且,满足|﹣|=4,|+|=2,则在方向上的投影等于﹣3.【分析】由已知中向量的模为1,且,满足|﹣|=4,|+|=2,我们易求出•的值,进而根据在方向上的投影等于得到答案.【解答】解:∵||=1,|﹣|=4,|+|=2,∴|+|2﹣|﹣|2=4•=﹣12∴•=﹣3=||||cosθ∴||cosθ=﹣3故答案为:﹣3【点评】本题考查的知识点是平面向量数量积的含义与物理意义,其中根据已知条件求出•的值,是解答本题的关键.15.设实数x,y满足,则的取值范围是[﹣,] .【分析】首先画出可行域,利用目标函数的几何意义求z的最值.【解答】解:由实数x,y满足,得到可行域如图:由图象得到的范围为[k OB,k OA],A(1,1),B(,)即∈[,1],∈[1,7],﹣ [﹣1,].所以则的最小值为﹣;m最大值为:;所以的取值范围是:[﹣,]故答案为:[﹣,].【点评】本题考查了简单线性规划问题;关键是正确画出可行域,利用目标函数的几何意义求出其最值,然后根据对勾函数的性质求m的范围.16.设P是边长为a的正△ABC内的一点,P点到三边的距离分别为h1、h2、h3,则;类比到空间,设P是棱长为a的空间正四面体ABCD内的一点,则P点到四个面的距离之和h1+h2+h3+h4=.【分析】由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质.固我们可以根据已知中平面几何中,关于线的性质“正三角形内任意一点到三边距离之和是一个定值”,推断出一个空间几何中一个关于面的性质.【解答】解:类比P是边长为a的正△ABC内的一点,本题可以用一个正四面体来计算一下棱长为a的三棱锥内任一点到各个面的距离之和,如图:由棱长为a可以得到BF=a,BO=AO=,在直角三角形中,根据勾股定理可以得到BO2=BE2+OE2,把数据代入得到OE=a,∴棱长为a的三棱锥内任一点到各个面的距离之和4×a=a,故答案为:a.【点评】本题考查的知识点是类比推理,类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).三、解答题(本大题共6小题,共70.0分)17.设函数f(x)=,其中=(2sin(+x),cos2x),=(sin(+x),﹣),x∈R(1)求f(x)的最小正周期和对称轴;(2)若关于x的方程f(x)﹣m=2在x∈[]上有解,求实数m的取值范围.【分析】(1)用向量数量积公式计算后再化成辅助角形式,最后用正弦函数的周期公式和对称轴的结论可求得;(2)将方程有解转化为求函数的值域,然后用正弦函数的性质解决.【解答】解:(1)∵f(x)=•=2sin(+x)•sin(+x)﹣cos2x=2sin2(+x)﹣cos2x=1﹣cos[2(+x)]﹣cos2x=sin2x﹣cos2x+1=2sin(2x﹣)+1,∴最小正周期T=π,由2x﹣=+kπ,得x=+,k∈Z,所以f(x)的对称轴为:x=+,k∈Z,(2)因为f(x)﹣m=2可化为m=2sin(2x﹣)﹣1在x∈[,]上有解,等价于求函数y=2sin(2x﹣)﹣1的值域,∵x∈[,],∴2x﹣∈[,],∴sin(2x﹣)∈[,1]∴y∈[0,1]故实数m的取值范围是[0,1]【点评】本题考查了平面向量数量积的性质及其运算.属基础题.18.在△ABC中,角A,B,C的对边分别是a,b,c,且(Ⅰ)求角A的大小;(Ⅱ)若a=2,求△ABC面积的最大值.【分析】(Ⅰ)由已知及正弦定理,三角形内角和定理,三角函数恒等变换的应用可得,结合sinB≠0,可得,结合A为三角形内角,可求A 的值.(Ⅱ)由余弦定理,基本不等式可得,根据三角形面积公式即可计算得解.【解答】解:(Ⅰ)由正弦定理可得:,从而可得:,即,又B为三角形内角,所以sinB≠0,于是,又A为三角形内角,所以.(Ⅱ)由余弦定理:a2=b2+c2﹣2bccosA,得:,所以,所以≤2+,即△ABC面积的最大值为2+.【点评】本题主要考查了正弦定理,三角形内角和定理,三角函数恒等变换的应用,余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.已知首项为1的等差数列{a n}中,a8是a5,a13的等比中项.(1)求数列{a n}的通项公式;(2)若数列{a n}是单调数列,且数列{b n}满足b n=,求数列{b n}的前项和T n.【分析】(1)根据等差数列的通项公式和等比数列的性质列出关于公差d的方程,利用方程求得d,然后写出通项公式;(2)根据单调数列的定义推知a n=2n﹣1,然后利用已知条件求得b n的通项公式,再由错位相减法求得答案.【解答】解:(1)∵a8是a5,a13的等比中项,{a n}是等差数列,∴(1+7d)2=(1+4d)(1+12d)解得d=0或d=2,∴a n=1或a n=2n﹣1;(2)由(1)及{a n}是单调数列知a n=2n﹣1,(i)当n=1时,T1=b1===.(ii)当n>1时,b n==,∴T n=+++…+……①∴T n=+++…++……②①﹣②得T n=+++…+﹣=﹣,∴T n=﹣.综上所述,T n=﹣.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题综上所述,20.已知等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.【分析】(1)直接利用等差数列的性质求出数列的通项公式.(2)利用裂项相消法求出数列的和.【解答】解:(1)等差数列{a n}满足(n+1)a n=2n2+n+k,k∈R.令n=1时,,n=2时,, n=3时,,由于2a 2=a 1+a 3, 所以,解得k=﹣1. 由于=(2n ﹣1)(n +1),且n +1≠0, 则a n =2n ﹣1;(2)由于===,所以S n =+…+=+n==.【点评】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用.21.(2分)已知函数f (x )=ax +lnx (a ∈R ) (1)若a=2,求曲线y=f (x )在x=1处的切线方程; (2)求f (x )的单调区间和极值;(3)设g (x )=x 2﹣2x +2,若对任意x 1∈(0,+∞),均存在x 2∈[0,1],使得f (x 1)<g (x 2),求实数a 的取值范围.【分析】(1)利用导数的几何意义,可求曲线y=f (x )在x=1处切线的斜率,从而求出切线方程即可;(2)求导函数,在区间(0,﹣)上,f'(x )>0;在区间(﹣,+∞)上,f'(x )<0,故可得函数的单调区间;求出函数的极值即可;(3)由已知转化为f (x )max <g (x )max ,可求g (x )max =2,f (x )最大值﹣1﹣ln (﹣a ),由此可建立不等式,从而可求a 的取值范围.【解答】解:(1)由已知f′(x)=2+(x>0),…(2分)∴f'(1)=2+1=3,f(1)=2,故曲线y=f(x)在x=1处切线的斜率为3,故切线方程是:y﹣2=3(x﹣1),即3x﹣y﹣1=0…(4分)(2)求导函数可得f′(x)=a+=(x>0).…当a<0时,由f'(x)=0,得x=﹣.在区间(0,﹣)上,f'(x)>0;在区间(﹣,+∞)上,f'(x)<0,所以,函数f(x)的单调递增区间为(0,﹣),单调递减区间为(﹣,+∞),=﹣1﹣ln(﹣a)…(10分)故f(x)极大值=f(﹣)(3)由已知转化为f(x)max<g(x)max.∵g(x)=x2﹣2x+2=(x﹣1)2+1,x2∈[0,1],∴g(x)max=2…(11分)由(2)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在(0,﹣)上单调递增,在(﹣,+∞)上单调递减,故f(x)的极大值即为最大值,f(﹣)=﹣1+ln(﹣)=﹣1﹣ln(﹣a),所以2>﹣1﹣ln(﹣a),所以ln(﹣a)>﹣3,解得a<﹣.…(14分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查求参数的值,解题的关键是转化为f(x)max<g(x)max.22.(理科)已知函数f(x)=e x+(a≠0,x≠0)在x=1处的切线与直线(e﹣1)x ﹣y+2018=0平行(Ⅰ)求a的值并讨论函数y=f(x)在x∈(﹣∞,0)上的单调性(Ⅱ)若函数g(x)=f(x)﹣﹣x+m+1(m为常数)有两个零点x1,x2(x1<x2)①求实数m的取值范围;②求证:x1+x2<0.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)根据函数的单调性求出函数的最小值,求出m的范围,构造函数m(x)=g(x)﹣g(﹣x)=g(x)﹣g(﹣x)=e x﹣e﹣x﹣2x,(x<0)则m'(x)=e x+e﹣x﹣2>0,根据函数的单调性证明即可.【解答】解:(Ⅰ)∵,∴∴a=1,∴f(x)=e x,f令h(x)=x2e x﹣1,h'(x)=(2x+x2)e x,h(x)在(﹣∞,﹣2)上单调递增,在(﹣2,0)上单调递减,所以x∈(﹣∞,0)时,h(x),即x∈(﹣∞,0)时,f'(x)<0,所以函数y=f(x)在x∈(﹣∞,0)上单调递减.(Ⅱ) 由条件可知,g(x)=e x﹣x+m+1,①g'(x)=e x﹣1,∴g(x)在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,要使函数有两个零点,则g(x)min=g(0)=m+2<0,∴m<﹣2.‚②证明:由上可知,x1<0<x2,∴﹣x2<0,∴构造函数m(x)=g(x)﹣g(﹣x)=g(x)﹣g(﹣x)=e x﹣e﹣x﹣2x,(x<0)则m'(x)=e x+e﹣x﹣2>0,所以m(x)>m(0)即g(x2)=g(x1)>g(﹣x1)又g(x)在(﹣∞,0)上单调递减,所以x1<﹣x2,即x1+x2<0.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,属于中档题.。
2 9、若函数x y a 12log -=在),0(+∞上为减函数,且函数x a y )3(=为增函数,则a 的取值范围是( ) A.)31,0( B.(0,1) C.),1(+∞ D. )1,21( 10、如果数列}{n a 的通项公式是n n a 2=,那么=++++54321a a a a a ( )A.126B. 31C. 30D.6211.下列函数中,周期为π的奇函数是( )A.x x y sin cos =B.x x y 22sin cos -=C.x y cos 1-=D.x x y 2cos 2sin -= 12、.在同一直角坐标系中,函数y=x+a 与函数y=a x 的图像可能是:( )A. B. C. D.13、.函数)42sin(2)(π+=x x f 的图象,可由函数x x f 2sin 2)(=的图象( )而得到。
A. 向右平移4π个单位 B. 向左平移4π个单位 C. 向右平移8π 个单位 D. 向左平移8π 个单位 14、已知α为第二象限角,1312cos -=α,则αtan 等于( ) A.125 B.512 C.512- D.125- 15、在△ABC 中,若内角A 、B 、C 成等差数列,则=-C A C A sin sin cos cos ( )3 A. 21- B. 0 C. 23 D. 1 二、填空题(每空2分,共30分)16、集合}012{2=++x ax x 中只有一个元素,则=a _________.17、已知121)(+-=x a x f ,若)(x f 为奇函数,则=a _________ 18、已知⎩⎨⎧<-≥-=0,40,5)(22x x x x x f ,则=)]2([f f ___________________. 19、计算)163sin(77sin 17cos 13sin ︒-︒-︒︒= .20.在等比数列}{n a 中,31,891==n a a ,公比32=q ,则=n ________. 21.设}{n a 为等比数列,若,23=a 则此数列前5项的积为_________.22、函数x x f 2log 2)(-=的定义域为___________,23、如果0)](log [log log 237=x ,则21x 的值是_________________ 24、=++++-49tan 3sin )1251()279(27log 3103ππ____________. 25、设20πα<<,则)c o s 1(l o g )c o s 1(l o g s i n s i n αααα-++的值为______.26、 若等差数列}{n a 的公差为2-,且9741=++a a a ,则=++852a a a ___________.27、已知一元二次不等式02<++b ax x 的解集是)7,2(-,则=+b a _____。
2018届高三数学(理)一轮复习考点规范练:第八章立体几何39Word版含解析考点规范练39空间几何体的表面积与体积基础巩固1.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.82.一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.1+2C.2+D.23.如图,直三棱柱ABC-A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为()A. B.1 C. D.4.(2016山东,理5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为()A.πB.πC.πD.1+π5.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A. B.4π C.2π D. ?导学号37270348?6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.棱长为4的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是.8.某四棱柱的三视图如图所示,则该四棱柱的体积为.9.(2016邯郸一模)已知三棱锥P-ABC内接于球O,PA=PB=PC=2,当三棱锥P-ABC的三个侧面的面积之和最大时,球O的表面积为.?导学号37270349?10.在三棱柱ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,B1C1的中点,则三棱锥P-A1MN的体积是.11.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm和30 cm,且其侧面积等于两底面面积之和,求棱台的高.12.一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为、宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.能力提升13.如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C. D. ?导学号37270350?14.某几何体的三视图如图所示,则该几何体的体积为()A.+πB.+πC.+2πD.+2π15.(2016浙江,理11)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2,体积是cm3.16.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.高考预测17.已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为()A.3B.2C.D.1 ?导学号37270351?参考答案考点规范练39空间几何体的表面积与体积1.B解析由条件及几何体的三视图可知该几何体是由一个圆柱被过圆柱底面直径的平面所截剩下的半个圆柱及一个半球拼接而成的.其表面积由一个矩形的面积、两个半圆的面积、圆柱的侧面积的一半及一个球的表面积的一半组成.∴S表=2r×2r+2r2+πr×2r+4πr2=5πr2+4r2=16+20π,解得r=2.2.C解析由三视图可得该四面体的直观图如图所示,平面ABD⊥平面BCD,△ABD与△BCD 为全等的等腰直角三角形,AB=AD=BC=CD=取BD的中点O,连接AO,CO,则AO⊥CO,AO=CO=1.由勾股定理得AC=,因此△ABC与△ACD为全等的正三角形,由三角形面积公式得S△ABC=S△ACD=,S△ABD=S△BCD=1,所以四面体的表面积为2+3.C解析由题意知,球心在侧面BCC1B1的中心O上,BC为△ABC所在圆面的直径,所以∠BAC=90°,△ABC的外接圆圆心N是BC的中点,同理△A1B1C1的外心M是B1C1的中点.设正方形BCC1B1的边长为x,Rt△OMC1中,OM=,MC1=,OC1=R=1(R为球的半径),所以=1,即x=,则AB=AC=1.所以侧面ABB1A1的面积S=1=4.C解析由三视图可知,上面是半径为的半球,体积为V1=,下面是底面积为1,高为1的四棱锥,体积V2=1×1=,故选C.5.D解析因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r==1,所以V球=13=故选D.6.B解析设底面圆半径为R,米堆高为h.∵米堆底部弧长为8尺,2πR=8,∴R=∴体积V=πR2h=π5.∵π≈3,∴V(立方尺).∴堆放的米约为22(斛).7.32解析由三视图,可得棱长为4的正方体被平面AJGI截成两个几何体,且J,I分别为BF,DH的中点,如图,两个几何体的体积各占正方体的一半,则该几何体的体积是43=32.8解析由三视图可知,四棱柱高h为1,底面为等腰梯形,且底面面积S=(1+2)×1=,故四棱柱的体积V=S·h=9.12π解析由题意三棱锥P-ABC的三条侧棱PA,PB,PC两两互相垂直,三棱锥P-ABC 的三个侧面的面积之和最大,三棱锥P-ABC的外接球就是它扩展为正方体的外接球,求出正方体的体对角线的长为2,所以球的直径是2,半径为,球的表面积为4π×()2=12π.10解析由题意,可得直三棱柱ABC-A1B1C1如图所示.其中AB=AC=AA1=BB1=CC1=A1B1=A1C1=1.∵M,N,P分别是棱AB,BC,B1C1的中点,∴MN=,NP=1.∴S△MNP=1=∵点A1到平面MNP的距离为AM=,11.解如图所示,三棱台ABC-A1B1C1中,O,O1分别为两底面中心,D,D1分别为BC和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB=30,则OD=5,O1D1=,由S侧=S上+S下,得3(20+30)×DD1=(202+302),解得DD1=,在直角梯形O1ODD1中,O1O==4(cm),所以棱台的高为4 cm.12.解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,所以V=1×1(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,所以AA1=2,侧面ABB1A1,CDD1C1均为矩形.S=2×(1×1+1+1×2)=6+213.A解析如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG=HF=,AG=GD=BH=HC=,所以S△AGD=S△BHC=1=所以V=V E-ADG+V F-BHC+V AGD-BHC=2V E-ADG+V AGD-BHC=2+1=14.A解析由三视图可知,该几何体是一个组合体,其左边是一个三棱锥,底面是等腰直角三角形(斜边长等于2),高为1,所以体积V1=2×1×1=;其右边是一个半圆柱,底面半径为1,高为2,所以体积V2=π·12·2=π,所以该几何体的体积V=V1+V2=+π.15.7232解析由三视图,可知该几何体为两个相同长方体组合而成,其中每个长方体的长、宽、高分别为4 cm,2 cm,2 cm,所以其体积为2×(2×2×4)=32(cm3).由于两个长方体重叠部分为一个边长为2的正方形,所以其表面积为2×(2×2×2+4×2×4)-2×(2×2)=72(cm2).16.解(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为17.C解析如图,过A作AD垂直SC于D,连接BD.由于SC是球的直径,所以∠SAC=∠SBC=90°.又∠ASC=∠BSC=30°,又SC为公共边,所以△SAC≌△SBC.由于AD⊥SC,所以BD⊥SC.由此得SC⊥平面ABD.所以V S-ABC=V S-ABD+V C-ABD=S△ABD·SC.由于在Rt△SAC中,∠ASC=30°,SC=4,所以AC=2,SA=2由于AD= 同理在Rt△BSC中也有BD=又AB=,所以△ABD为正三角形.所以V S-ABC=S△ABD·SC=()2·sin 60°×4=,所以选C.。
x 二项式定理1.【来源】浙江省 2017 届高三“超级全能生”3 月联考数学试题 在二项式(2x - 1)6的展开式中,常数项是( C )xA .-240B .240C .-160D .160答案及解析:2.【来源】安徽省黄山市 2019 届高三第一次质量检测(一模)数学(理)试题在(1+x )6(1-2x )展开式中,含 x 5 的项的系数是( D ) A. 36B. 24C. -36D. -243.【来源】新疆维吾尔自治区 2018 届高三第二次适应性(模拟)检测数学(理)试题若⎛ 2 1 ⎫n- x ⎪ 展开式中含 x 项的系数为-80,则 n 等于( A )⎝ ⎭A .5B .6 C.7 D .84.【来源】浙江省金丽衢十二校联考 2017 届高考二模数学试题在(1+x 3)(1﹣x )8 的展开式中,x 5 的系数是( A ) A .﹣28B .﹣84C .28D .84答案及解析:【考点】二项式定理的应用.【分析】利用二项式定理的通项公式求解即可.【解答】解:由(1+x 3)展开可知含有 x 3 与(1﹣x )8 展开的 x 2 可得 x 5 的系数; 由(1+x 3)展开可知常数项与(1﹣x )8 展开的 x 5,同样可得 x 5 的系数; ∴含 x 5 的项+=28x 5﹣56x 5=﹣28x 5;∴x 5 的系数为﹣28, 故选 A【点评】本题主要考查二项式定理的应用,求展开式的系数把含有 x 5 的项找到.从而可以利用通项求解.属于中档题5.【来源】北京东城景山学校 2016-2017 学年高二下学期期中考试数学(理)试题设(3x -1)4 = a + a x + a x 2 + a x 3 + a x 4 ,则 a + a + a + a的值为( A ).12341234A .15B .16C .1D .-15答案及解析: 在(3x -1)4= a + a x + a x 2 + a x 3 + a x 4 中,令 x = 0 ,可得 a = 1 ,1234再令 x = 1可得 a 0 + a 1 + a 2 + a 3 + a 4 = 16 , 所以 a 1 + a 2 + a 3 + a 4 = 15 .n 7 7 7 故选 A .6.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题在(x + y )n的展开式中,若第七项系数最大,则 n 的值可能等于( D ).A .13,14B .14,15C .12,13D .11,12,13答案及解析:(x + y )n 的展开式第七项系数为 C 6 ,且最大,可知此为展开式中间项,当展开式为奇数项时: n= 6 , n = 12 ,2当有偶数项时 n + 1= 6 , n = 11, 2 或 n + 1 = 7 , n = 13 ,2故 n = 11,12 ,13 . 选 D .7.【来源】广东省广州市海珠区 2018 届高三综合测试(一)数学(理)试题(x + y )(2x - y )6 的展开式中 x 4 y 3 的系数为( D )A .-80B .-40C. 40D .808.【来源】广东省潮州市 2017 届高三数学二模试卷数学(理)试题 在(1﹣2x )7(1+x )的展开式中,含 x 2 项的系数为( B ) A .71 B .70 C .21 D .49答案及解析:【分析】先将问题转化为二项式(1﹣2x )7 的系数问题,利用二项展开式的通项公式求出展开式的第 r+1 项,令 x 的指数分别等于 1,2 求出特定项的系数【解答】解:(1﹣2x )7(1+x )的展开式中 x 2 的系数等于(1﹣2x )7 展开式的 x 的系数+(1﹣2x )7 展开式的 x 2 的系数,(x+1)7 展开式的通项为 T r+1=(﹣2)r C r x r ,故展开式中 x 2 的系数是(﹣2)2C 2+(﹣2)•C 1=84﹣14=60,故选:B .9.【来源】浙江省新高考研究联盟 2017 届第四次联考数学试题 在二项式(x 2- 1)5 的展开式中,含 x 7的项的系数是( C )xA . -10B. 10C. -5D. 510.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题 已知(1 + x )n的展开式中只有第 6 项的二项式系数最大,则展开式奇数项的二项式系数和为( D ) A .212B .211C.210D .2911.【来源】上海市浦东新区 2018 届高三上学期期中考试数学试卷展开式中的常数项为( C )x -A.-1320B.1320C.-220D.22012.【来源】浙江省绍兴一中2017 届高三上学期期末数学试题在(x﹣y)10 的展开式中,系数最小的项是(C )A.第4 项B.第5 项C.第6 项D.第7 项答案及解析:【考点】二项式定理的应用.【分析】由二项展开式可得出系数最小的项系数一定为负,再结合组合数的性质即可判断出系数最小的项.【解答】解:展开式共有11 项,奇数项为正,偶数项为负,且第6 项的二项式系数最大,则展开式中系数最小的项第 6项.故选C.13.【来源】浙江省金华十校联考2017 届高三上学期期末数学试题在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的值是(B)A.7 B.8 C.9 D.10答案及解析:【考点】二项式定理的应用.【分析】由二项展开式的通项公式T r+1=•(﹣1)r x r可得a r=(﹣1)r•,于是有2(﹣1)2+(﹣1)n﹣5=0,由此可解得自然数n 的值.【解答】解:由题意得,该二项展开式的通项公式•(﹣1)r x r,∴该项的系数,∵2a2+a n﹣5=0,∴2(﹣1)2+(﹣1)n﹣5=0,即+(﹣1)n﹣5•=0,∴n﹣5 为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.14.【来源】浙江省重点中学2019 届高三上学期期末热身联考数学试题⎛ 2 ⎫5 1⎪1展开式中,x2的系数是( B )⎝⎭A、80B、-80C、40D、-4015.【来源】山东省德州市2016-2017 学年高二下学期期末考试数学(理)试题a 2 4如果x + x - 的展开式中各项系数之和为2,则展开式中x 的系数是( C ) x xA.8 B.-8 C.16 D.-1616.【来源】云南省昆明市第一中学2018 届高三第八次月考数学(理)试题x x2 ⎪ ⎛1- 1 ⎫ (1+ x )6x 3⎝ ⎭ 展开式中 x 的系数为(B )A .-14B .14C. 15D .3017.【来源】安徽省安庆一中、山西省太原五中等五省六校(K12 联盟)2018 届高三上学期期末联考数学(理)试题在二项式(x - 1)n 的展开式中恰好第 5 项的二项式系数最大,则展开式中含有 x 2项的系数是( C )xA .35B .-35C .-56D .56答案及解析:第五项的二项式系数最大,则,通项,令,故系数.18.【来源】辽宁省实验中学、沈阳市东北育才学校等五校 2016-2017 学年高二下学期期末联考数学(理)试题 在( - 2)n 的展开式中,各项的二项式系数之和为 64,则展开式中常数项为( A )xA .60B .45C . 30D .1519.【来源】湖北省武汉市 2018 届高三四月调研测试数学理试题 在(x + 1-1)6 的展开式中,含 x 5项的系数为( B )xA .6B .-6C .24D .-24答案及解析:的展开式的通项 .的展开式的通项=. 由 6﹣r ﹣2s=5,得 r+2s=1,∵r ,s ∈N ,∴r=1,s=0. ∴的展开式中,含 x 5 项的系数为 . 故选:B .20.【来源】辽宁省抚顺市 2018 届高三 3 月高考模拟考试数学(理)试题在(2 -1)6 的展开式中,含 1项的系数为( C )xA. -60B. 160C. 60D. 6421.【来源】2018 年高考真题——数学理(全国卷Ⅲ)(x 2+ 2)5 的展开式中 x 4 的系数为( C )xA .10B .20C .40D .80答案及解析:由题可得 令 ,则所以x2× 4x9 n故选 C.22.【来源】浙江省金华市十校联考 2016-2017 学年高二下学期期末数学试卷在(x 2﹣4)5 的展开式中,含 x 6 的项的系数为( D ) A .20 B .40 C .80 D .160答案及解析:【分析】=(﹣4)r,令 10﹣2r=6,解得 r=2,由此能求出含 x 6 的项的系数.【解答】解:∵(x 2﹣4)5, ∴T r+1==(﹣4)r,令 10﹣2r=6,解得 r=2, ∴含 x 6 的项的系数为=160. 故选:D .23.【来源】浙江省诸暨市牌头中学 2018 届高三 1 月月考数学试题 在⎛x 2 - ⎝2 ⎫6的展开式中,常数项为( D )⎪⎭ A .-240 B .-60 C .60 D .24024.【来源】浙江省湖州市 2017 届高三上学期期末数学试题在(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 的展开式中,含 x 3 的项的系数是( D ) A .121 B .﹣74C .74D .﹣121答案及解析:【考点】二项式定理的应用.【分析】利用等比数列的前 n 项公式化简代数式;利用二项展开式的通项公式求出含 x 4 的项的系数,即是代数式的含 x 3 的项的系数.【解答】解:(1﹣x )5+(1﹣x )6+(1﹣x )7+(1﹣x )8 ==,(1﹣x )5 中 x 4 的系数 ,﹣(1﹣x )9 中 x 4 的系数为﹣C 4=﹣126,﹣126+5=﹣121. 故选:D25.【来源】甘肃省兰州市第一中学 2018 届高三上学期期中考试数学(理)试题在(x 2-1)(x +1)4 的展开式中,x 3 的系数是( A ) A .0B .10C .-10D .20答案及解析:(x +1)4 的展开式的通项, 因此在(x 2-1)(x +1)4 的展开式中,x 3 的系数是26.【来源】山西重点中学协作体 2017 届高三暑期联考数学(理)试题在二项式 + 1的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互 x xx 1 ⎝ ⎭不相邻的概率为( D ) A . 16B . 14C. 1 3D . 51227.【来源】湖北省孝感市八校 2017-2018 学年高二上学期期末考试数学(理)试题已知C 0- 4C 1+ 42C 2- 43C 3+ + (-1)n 4nC n= 729 ,则C 1+ C 2+ + C n的值等于( C )nnnnnA .64B .32 C.63 D .31答案及解析:nnn因为 ,所因,选 C. 28.【来源】辽宁省重点高中协作校 2016-2017 学年高二下学期期末考试数学(理)试题若òn(2x -1)dx = 6 ,则二项式(1 - 2x )n的展开式各项系数和为( A ) A .-1 B .26 C .1 D . 2n29.【来源】浙江省金华十校 2017 届高三数学模拟试卷(4 月份)数学试题若(x -1)8=1+a 1x +a 2x 2+…+a 8x 8,则 a 5=( B ) A .56B .﹣56C .35D .﹣35答案及解析:利用通项公式即可得出. 解:通项公式 T r+1=(﹣1)8﹣r x r ,令 r=5,则(﹣1)3=﹣56.故选:B .30.【来源】广东省茂名市五大联盟学校 2018 届高三 3 月联考数学(理)试题6⎛ 1 ⎫ x 4在( + x ) 1+ y ⎪ 的展开式中, y 2 项的系数为( C )A .200B .180 C. 150 D .120答案及解析:展开式的通项公式,令可得:,,展开式的通项公式 ,令可得,据此可得: 项的系数为 .本题选择 C 选项.31.【来源】吉林省长春外国语学校 2019 届高三上学期期末考试数学(理)试题 (2-x )(1+2x )5 展开式中,含 x 2 项的系数为( B )x x 0 1 2 2017 3n nx A . 30 B . 70 C .90 D .-15032.【来源】浙江省新高考研究联盟 2017 届第三次联考数学试题若(1 + x )3 + (1 + x )4 + (1 + x )5 + + (1 + x )2017 = a + a x + a x 2 + + a x 2017 ,则 a 的值为( D )3 2017 32018 420174201833.【来源】广东省肇庆市 2017 届高考二模数学(理)试题若(x 6+ 1 )n的展开式中含有常数项,则 n 的最小值等于( C )A .3B .4C .5D .6答案及解析:【分析】二项式的通项公式 T r+1=C )r ,对其进行整理,令 x 的指数为 0,建立方程求出 n 的最小值.【解答】解:由题意 )n 的展开式的项为)r =C n r=C r令r=0,得 r ,当 r=4 时,n 取到最小值 5故选:C .【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条 件转化成指数为 0,得到 n 的表达式,推测出它的值.34.【来源】上海市金山中学 2017-2018 学年高二下学期期中考试数学试题 设(3x -1)6= a x 6+ a x 5+ + a x + a ,则| a | + | a | + | a | + + | a| 的值为…( B )651126(A) 26(B) 46(C) 56(D) 26+ 4635.【来源】浙江省台州市 2016-2017 学年高二下学期期末数学试题x -已知在( 2 1 )n的展开式中,第 6 项为常数项,则 n =( D )A .9B .8C .7D .6答案及解析:【考点】二项式系数的性质. 【分析】利用通项公式即可得出. 【解答】解:∵第 6 项为常数项,由 =﹣ •x n ﹣6,可得 n ﹣6=0.解得 n=6. 故选:D .36.【来源】山东省潍坊寿光市 2016-2017 学年高二下学期期末考试数学(理)试题⎛ 1 ⎫6+ 2x ⎪ ⎝ ⎭的展开式中常数项为( B ) A .120B .160C. 200D .24037.【来源】北京西城八中少年班 2016-2017 学年高一下学期期末考试数学试题 (2x + 3)4 = a + a x + a x 2 + a x 3 + a x 4(a + a + a )2 - (a + a )2若0 1 2 3 4,则 0 2 41 3 的值为( A ). 5 x A . C B . C C . C D . Cx x A .1 B .-1 C .0 D .2答案及解析:令 x = 1, a + a + + a = (2 + 3)4 ,1 4令 x = -1, a - a + a - a + a= (-2 + 3)4 ,1234而 (a + a + a )2 - (a + a )22413= (a 0 + a 2 + a 4 + a 1 + a 3 )(a 0 - a 1 + a 2 - a 3 + a 4 )= (2 + 选 A .3)4 (-2 + 3)4 = (3 - 4)4 = 1. 38.【来源】云南省曲靖市第一中学 2018 届高三 4 月高考复习质量监测卷(七)数学(理)试题设 i 是虚数单位,a 是(x + i )6的展开式的各项系数和,则 a 的共轭复数 a 的值是( B ) A . -8iB . 8iC . 8D .-8答案及解析:由题意,不妨令 ,则,将转化为三角函数形式,,由复数三角形式的乘方法则,,则,故正确答案为 B.39.【来源】福建省三明市 2016-2017 学年高二下学期普通高中期末数学(理)试题 a 2 52x + x - 的展开式中各项系数的和为-1,则该展开式中常数项为( A ) x xA .-200B .-120 C.120 D .20040.【来源】甘肃省天水一中 2018 届高三上学期第四次阶段(期末)数学(理)试题已知(1+ax )(1+x )5 的展开式中 x 2 的系数为 5,则 a =( D )A.-4B.-3C.-2D.-141.【来源】广东省深圳市宝安区 2018 届高三 9 月调研测数学(理)试题(1 + 1)(1 + x )5 展开式中 x 2 的系数为 ( A )xA .20B .15C .6D .142.【来源】甘肃省民乐一中、张掖二中 2019 届高三上学期第一次调研考试(12 月)数学(理)试题⎛ a ⎫ ⎛1 ⎫5x + ⎪ 2x - ⎪ ⎝ ⎭ ⎝⎭ 的展开式中各项系数的和为 2,则该展开式中常数项为( D )A .-40B .-20C .20D .4043.【来源】浙江省名校协作体 2018 届高三上学期考试数学试题⎛ 1+ 2⎫(1- x )4 展开式中 x 2 的系数为( C ) x ⎪ ⎝ ⎭A .16B .12C .8D .444.【来源】山西省太原市 2018 届高三第三次模拟考试数学(理)试题已知(x -1)(ax +1)6展开式中 x 2 的系数为 0,则正实数a = ( B ) 22 A .1B .C.53D . 2x 4 5 5 答案及解析:的展开式的通项公式为.令 得 ;令得.展开式 为. 由题意知,解得(舍).故选 B. 45.【来源】吉林省松原市实验高级中学、长春市第十一高中、东北师范大学附属中学 2016 届高三下学期三校联合模拟考试数学(理)试题(x +1)2 (x - 2)4的展开式中含 x 3 项的系数为( D )A .16B .40 C.-40 D .846.【来源】海南省天一大联考 2018 届高三毕业班阶段性测试(三)数学(理)试题若(2x - 3)2018= a + a x + a x 2 + L + ax 2018 ,则 a + 2a + 3a + L + 2018a= ( D )122018A .4036B .2018C .-2018D .-4036123201847.【来源】湖北省天门、仙桃、潜江 2018 届高三上学期期末联考数学(理)试题(1 + x )8 (1 + y )4 的展开式中 x 2y 2 的系数是 ( D )A .56B .84C .112D .168答案及解析:因的展开式 的系数 ,的展开式 的系数 ,所的系数.故选 D.48.【来源】北京西城八中 2016-2017 学年高一下学期期末考试数学试题 ⎛ x 2 - 在二项式⎝ 1 ⎫5⎪⎭ 的展开式中,含 x 的项的系数是( C ). A .-10B .-5C .10D .5答案及解析:解: ⎛ x 2 - 1 ⎫5⎪ 的展开项T = C k (x 2 )k (-x -1 )5-k = (-1)5-k C k x 3k -5 ,令3k - 5 = 4 ,可得 k = 3, ⎝x ⎭ k +1 5 5∴ (-1)5-k C k = (-1)5-3 C 3= 10 . 故选 C .49.【来源】广东省化州市 2019 届高三上学期第二次模拟考生数学(理)试题 已知(x +1)(ax - 1)5的展开式中常数项为-40,则 a 的值为( C )xA. 2B. -2C. ±2D. 450.【来源】福建省“华安一中、长泰一中、南靖一中、平和一中”四校联考 2017-2018 学年高二下学期第二次联考试题(5 月)数学(理)试题若(1 - 2 x )n(n ∈ N *) 的展开式中 x 4的系数为 80,则(1 - 2 x )n的展开式中各项系数的绝对值之和为( C ) A .32B .81C .243D .256。
武汉市第一中学2018-2019学年上学期高三期中数学模拟题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60πD .72π2. 已知角α的终边经过点(sin15,cos15)-,则2cos α的值为( )A .12+B .12 C. 34 D .0 3. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+,则当14x y+取最小值时,CM CN ⋅=( )C .4D .3 则几何体的体积为( )34意在考查学生空间想象能力和计算能 D .i 5351-12n ,则此数列的第4项是( )A .1B .12 C. 34 D .58 7. 已知函数(5)2()e22()2xf x x f x x f x x +>⎧⎪=-≤≤⎨⎪-<-⎩,则(2016)f -=( ) A .2e B .e C .1 D .1e【命题意图】本题考查分段函数的求值,意在考查分类讨论思想与计算能力.8. 1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆)C. 1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.9. 设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.10.已知点P 是双曲线C :22221(0,0)x y a b a b-=>>左支上一点,1F ,2F 是双曲线的左、右两个焦点,且12PF PF ⊥,2PF 与两条渐近线相交于M ,N 两点(如图),点N 恰好平分线段2PF ,则双曲线的离心率是( ) A.5B.2D.2【命题意图】本题考查双曲线的标准方程及其性质等基础知识,意在考查运算求解能力. 11.已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.12. 已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩……… 内的概率为( )A.34B.38C.14D.18【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力.二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.已知平面向量a ,b 的夹角为3π,6=-b a ,向量c a -,c b -的夹角为23π,23c a -=,则a与c的夹角为__________,a c ⋅的最大值为 .【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.14.已知抛物线1C :x y 42=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :12222=-by a x(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.15.执行如图所示的程序框图,输出的所有值之和是.【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.16.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1cos 2c B a b ⋅=+,ABC ∆的面积12S c =, 则边c 的最小值为_______.【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.三、解答题(本大共6小题,共70分。
2019年上海市桃浦中学高考数学选择题专项训练(一模)抽选各地名校试卷,经典试题,有针对性的应对高考数学考点中的难点、重点和常规考点进行强化训练。
第 1 题:来源:云南省玉溪市2018届高三数学上学期第一次月考试题文(含解析)已知函数有两个极值点,且,若,函数,则()A. 仅有一个零点B. 恰有两个零点C. 恰有三个零点D. 至少两个零点【答案】A【解析】由有两个极值点,且,所以函数在递增,在上递减,在递增,大致图像如下图又因为,所以显然为与的中点,结合上面函数图像可知,函数与函数的交点只有一个,所以方程的根只有一个,即函数的零点只有一个,故选择A.方法点睛:根据三次函数,可以确定函数在定义域上先递增,再递减,再递增,于是为极大值点,为极小值点,再根据可知,为与的中点,于是结合函数图像,根据数形结合可知,函数仅有一个零点,考查转化能力的应用.第 2 题:来源:黑龙江省农垦北安管理局2018届高三数学9月月考试题曲线在点处的切线方程是( )A. B.C.D.【答案】B【解析】试题分析:因为,,所以,,即曲线在点处的切线的斜率为-ln2,即曲线在点处的切线方程是,选B。
第 3 题:来源:山东省潍坊市临朐县2017届高三数学上学期阶段性质量检测(12月月考)试题理如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E,F分别是棱AA′,CC′的中点,过直线E,F的平面分别与棱BB′、DD′交于M,N,设BM=x,x∈[0,1],给出以下四个命题:①平面MENF⊥平面BDD′B′;②当且仅当x=时,四边形MENF的面积最小;③四边形MENF周长L=f(x),x∈[0,1]是单调函数;④四棱锥C′﹣MENF的体积V=h(x)为常函数;以上命题中假命题的序号为A.①④B.② C.③ D.③④【答案】C第 4 题:来源:贵州省思南中学2018_2019学年2018_2019学年高一数学下学期期中试题已知△ABC中,sinA∶sinB∶sinC=k∶(k+1)∶2k,则k的取值范围是( )A.(2,+∞) B.(-∞,0) C. D.【答案】D【解析】由正弦定理,得a=mk,b=m(k+1),c=2mk(m>0),∵即∴k>.第 5 题:来源:甘肃省静宁县第一中学2018_2019学年高二数学下学期期末考试试题理下列函数中,既是奇函数又在内单调递增的函数是()A. B. C.D.【答案】D第 6 题:来源:内蒙古包头市第四中学2017_2018学年高二数学下学期期中试题理设为正整数,,经计算得观察上述结果,可推测出一般结论( )A. B. C. D.以上都不对【答案】C第 7 题:来源:山东省济南市2018届高三数学上学期12月考试试题理已知是定义在上的函数,是的导函数,且满足,,则的解集为()A. B. C. D.【答案】B第 8 题:来源:广东省惠州市惠城区2018届高三数学9月月考试题理试卷及答案设复数满足(为虚数单位),则复数在复平面内对应的点位于().A. 第一象限B. 第二象限 C.第三象限 D.第四象限【答案】A第 9 题:来源:山西省应县2017_2018学年高二数学上学期第四次月考试题理试卷及答案在下列命题中:①若向量共线,则所在的直线平行;②若向量所在的直线是异面直线,则一定不共面;③若三个向量两两共面,则三个向量一定也共面;④已知三个向量,则空间任意一个向量总可以唯一表示为.其中正确命题的个数为()A. 0B. 1C.2 D. 3【答案】A第 10 题:来源:云南省玉溪市2017_2018学年高一数学上学期期中试题试卷及答案要得到函数的图像,只需将函数的图像()A.先关于轴对称,再向右平移个单位B.先关于轴对称,再向左平移个单位C.先关于轴对称,再向右平移个单位D.先关于轴对称,再向左平移个单位【答案】C第 11 题:来源: 2017_2018学年高中数学第三章直线与方程3.3.3点到直线的距离3.3.4两条平行直线间的距离学业分层测评试卷及答案新人教A版必修直线l过点A(3,4)且与点B(-3,2)的距离最远,那么l的方程为( )A.3x-y-13=0 B.3x-y+13=0C.3x+y-13=0 D.3x+y+13=0【答案】 C第 12 题:来源:山东省泰安第四中学2018_2019学年高二数学下学期2月月考试题.已知曲线的一条切线的斜率为,则切点的横坐标为A. B. C.D.或【答案】C【解析】设切点坐标为(xO2yO),xo>O因为f′(x)= ,所以f′(xo)= 由题意得,即xo2-x0-6=0,解得x0=3(负值舍去),所以切点的横坐标为3,故选C.第 13 题:来源:湖南省株洲市2019届高三数学上学期教学质量统一检测试题(一)理(含解析).欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,表示的复数在复平面中位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据欧拉公式计算,再根据复数几何意义确定象限.【详解】因为,所以对应点,在第二象限,选B. 【点睛】本题考查复数除法以及复数几何意义,考查基本分析求解能力,属基本题.第 14 题:来源:江西省吉安市新干县2016_2017学年高二数学下学期第一次段考试题(3、4班)试卷及答案空间中四点可确定的平面有()A.1个B.3个 C.4个 D.1个或4个或无数个【答案】 D第 15 题:来源:天津市2018届高三数学上学期第一次月考试题理试卷及答案已知,那么是的【答案】B;第 16 题:来源:辽宁省沈阳市部分市级重点高中2016_2017学年高一数学下学期期中测试试题试卷及答案某奶茶店的日销售收入y(单位:百元)与当天平均气温x(单位:℃)之间的关系如下:x -2 -1 0 1 2y 5 2 2 1通过上面的五组数据得到了x与y之间的线性回归方程:=-x+2.8;但现在丢失了一个数据,该数据应为( )A. 3B. 4C. 5D. 2【答案】B【解析】设该数据是a,=0,故=-x+2.8=2.8,∴(5+a+2+2+1)=2.8,解得:a=4,本题选择B选项.第 17 题:来源:内蒙古呼和浩特铁路局包头职工子弟第五中学2016-2017学年高二数学上学期期末考试试题试卷及答案理不等式-x2+3x-2≥0的解集是()A.{x|x>2或x<1} B.{x|x≥2或x≤1} C.{x|1≤x≤2} D.{x|1<x<2}【答案】C第 18 题:来源:河北省邢台市2017_2018学年高二数学下学期第三次月考试题理(含解析)的展开式的中间项为()A. B. C. D.【答案】D【解析】分析:原式张开一共有5项,故只需求出第三项即可.第 19 题:来源:辽宁省六校协作体2018_2019学年高二数学上学期期中试题理在各项均不为零的等差数列中,若(n≥2,n∈N * ),则的值为( ) A.2013 B.2014C.4026D.4028【答案】D第 20 题:来源:河南省鹤壁市2016_2017学年高二数学下学期第一次月考试题试卷及答案理若函数在其定义域内的一个子区间内不是单调函数,则实数k 的取值范围()A. B. C. D.【答案】B第 21 题:来源:湖北省部分重点中学2018届高三数学起点考试试题试卷及答案理抛物线的焦点为,过焦点倾斜角为的直线与抛物线相交于两点两点,若,则抛物线的方程为A.B.C. D.【答案】C第 22 题:来源:甘肃省嘉峪关市酒钢三中2016-2017学年高一数学上学期期末考试试题试卷及答案如图是一个水平放置的直观图,它是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积为()A. B.C.D.【答案】A第 23 题:来源:江苏省马坝高级中学2018_2019学年高一数学下学期期中试题在△ABC中,角A、B、C的对应边分别为a,b,c,若,则角B的值为 .A.B.C.或D.或【答案】A第 24 题:来源: 2017_2018学年高中数学第四章圆与方程4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用学业分层测评试卷及答案已知两圆的圆心距是6,两圆的半径分别是方程x2-6x+8=0的两个根,则这两个圆的位置关系是( ) A.外离 B.外切C.相交 D.内切【答案】 B第 25 题:来源:甘肃省会宁县第一中学2018_2019学年高二数学上学期期中试题理已知集合,,则=()A.B.C.D.【答案】.B第 26 题:来源:高中数学第三章导数及其应用3.3导数的应用3.3.2利用导数研究函数的极值课后训练新人教B版选修1_120171101250在下面函数y=f(x)图象中既是函数的极大值点又是最大值点的是( )A.x1 B.x2 C.x3 D.x4【答案】C第 27 题:来源:北京市西城区2016_2017学年高一数学下学期期中试题试卷及答案对于任意实数a、b、c、d,下列结论:①若a>b,c≠0,则ac>bc;②若a>b,则ac2>bc2;③若ac2>bc2,则a>b;④若a>b,则<;正确的结论为()A. ①B. ②C. ③D. ④【答案】C第 28 题:来源:广东省第二师范学院番禺附属中学2018_2019学年高二数学下学期期中试题理过双曲线两焦点且与轴垂直的直线与双曲线的四个交点组成一个正方形,则该双曲线的离心率为A. B. C. D.2【答案】B第 29 题:来源:湖北省黄冈中学2016-2017学年高二数学上学期期末模拟测试试题试卷及答案(1)理设平面的一个法向量为,平面的一个法向量为,若,则A. B. C.D.【答案】D第 30 题:来源:海南省2016_2017学年高一数学下学期期中题文试卷及答案用简单随机抽样方法从有25名女生和35名男生的总体中,推选5名学生参加健美操活动,则某名女生被抽到的机率是()A. B. C. D.【答案】C【解析】某名女生被抽到的机率是第 31 题:来源:内蒙古包头市第一中学2016-2017学年高一数学上学期期中试题试卷及答案函数y=(在[0,1]上是减函数,则的取值范围()A. (1,2) B. (0,1) C.(0,2) D.【答案】 A第 32 题:来源:黑龙江省大庆市2017届高三第三次教学质量检测(三模)数学试题(理)含答案已知等比数列的公比,则的前项和()A.B. C.D.【答案】A第 33 题:来源:贵州省铜仁市第一中学2019届高三数学上学期第二次月考试题理(含解析)设、分别为圆和椭圆上的点,则两点间的最大距离是( )A. B. C. D.【答案】D【详解】设椭圆上点Q,则,因为圆的圆心为,半径为,所以椭圆上的点与圆心的距离为,所以P、Q两点间的最大距离是.第 34 题:来源: 2017年普通高等学校招生全国统一考试模拟数学(理)试题(八)含答案如图,在长方体中,分别是棱上的动点(点E 与不重合),且,过的动平面与棱相交,交点分别为,设,在长方体内随机选取一点,则该点取自几何体内的概率的最小值为,A. B. C. D.【答案】B第 35 题: 来源: 山东省新泰二中2018_2019学年高二数学上学期第三次阶段性测试试题 若,,且,则的值是( )A . 0B . 1C . -2D . 2 【答案】C第 36 题: 来源: 2017届北京市丰台区高三5月期末(二模)数学试题(理)含答案表示集合中所有元素的和,且,若能被3整除,则符合条件的非空集合的个数是 (A)10(B)11(C)12 (D )13【答案】B第 37 题: 来源: 黑龙江省伊春市2018届高三数学上学期第一次月考试题理试卷及答案 过点、,且圆心在上的圆的方程是( )A .B .C .D .【答案】C第 38 题: 来源: 湖北省武汉市2018届高三数学上学期期中试题理试卷及答案 下列函数为偶函数且在(0,+∞)上为增函数的是A .B .C.D.【答案】D第 39 题:来源:高中数学阶段通关训练(二)(含解析)新人教A版选修1_1已知F1,F2是椭圆+=1的两个焦点,P为椭圆上一点,则|PF1|·|PF2|有( )A.最大值16B.最小值16C.最大值4D.最小值4【答案】A.由椭圆的定义知a=4,|PF1|+|PF2|=2a=2×4=8.由基本不等式知|PF1|·|PF2|≤==16,当且仅当|PF1|=|PF2|=4时等号成立,所以|PF1|·|PF2|有最大值16.第 40 题:来源:浙江省温州市十校联合体高一(上)期末数学试卷(含答案解析)已知向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则四边形ABCD是()A.梯形 B.平行四边形 C.矩形 D.菱形【答案】A【解答】解:根据题意,向量、不共线,若=+2,=﹣4﹣,=﹣5﹣3,则向量=++=﹣8﹣2,分析可得:=2,即直线AD与BC平行,而向量与不共线,即直线AB与CD不平行,故四边形ABCD是梯形;。
2018年秋期高中三年级期终质量评估数学试题(理) 第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}1,2,3,4M =,则集合{}|,2P x x M x M =∈∉的子集的个数为 A. 8 B. 4 C. 3 D.22.已知复数cos sin z i θθ=+(i 为虚数单位),则21z z+= A. cos sin i θθ+ B.2sin θ C. 2cos θ D.sin 2i θ 3.直线()12x m y m ++=-和直线280mx y ++=平行,则m 的值为 A. 1 B. -2 C. 1或-2 D. 23-4.已知公差不为0的等差数列{}n a 满足134,,a a a 成等比数列,n S 为数列{}n a 的前n 项和,则3253S S S S --的值为A. -2B. -3C. 2D. 35.甲、乙、丙、丁、戊五位同学战成一排照相留念,则在甲乙相邻的条件下,甲丙也相邻的概率为 A.110 B. 23 C. 13 D.146.若如下框图所给的程序运行结果为S=41,则图中的判断框①中应填入的是 A. 6?i > B. 6?i ≤ C. 5?i > D. 5?i ≤7.已知三棱锥的俯视图与左视图如图所示,俯视图是边长为2的正三角形,左视图是有一条直角边为2的直角三角形,则该三棱锥的主视图可能为8.将函数()sin 22f x x π⎛⎫=- ⎪⎝⎭的图象向右平移4π个单位得到函数()g x ,则()g x 具有性质A.最大值为1,图象关于直线2x π=对称 B.在0,4π⎛⎫⎪⎝⎭上单调递减,为奇函数 C. 在3,88ππ⎛⎫-⎪⎝⎭上单调递减,为偶函数 D.周期为π,图象关于3,08π⎛⎫ ⎪⎝⎭对称9.已知实数,x y 满足260,0,2,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是A. []2,1-B.[]1,3-C. []1,2-D. []2,3 10.已知函数())20162016log 20162x x f x x -=+-+,则关于x 的不等式()()311f x f x ++>的解集为A. 1,4⎛⎫-+∞ ⎪⎝⎭ B. 1,4⎛⎫-∞- ⎪⎝⎭ C. ()0,+∞ D. (),0-∞11.过双曲线22115y x -=的右支上一点P ,分别向圆()221:44C x y ++=和圆()222:44C x y -+=作切线,切点分别为M,N ,则22PM PN -的最小值为A. 10B.13C. 16D. 1912.定义在R 上的函数()f x 满足()()xf x f x x e '-=⋅,且()102f =,则()xx e f x ⋅的最大值为A. 1B. -12C. 1-D.0二、填空题:本大题共4小题,每小题5分,共20分.13.若命题“0x R ∃∈,使得200230x mx m ++-<”为假命题,则实数m 的取值范围是 为 . 14.已知0sin a xdx π=⎰,则二项式61a x ⎛⎫- ⎪⎝⎭的展开式中3x -的系数为 .15.已知ABC ∆中,8,9BC AB AC =⋅=-,D 为边BC 的中点,则AD = . 16.在正三棱锥V ABC -内,有一个半球,其底面与正三棱锥的底面重合,且与正三棱锥的三个侧面都相切,若半球的半径为2,则正三棱锥的体积的最小时,其底面边长为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分10分) 设()()0axf x a x a=>+,令()111,n n a a f a +==,又1,.n n n b a a n N *+=⋅∈ (1)证明:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和.18.(本题满分12分)已知ABC ∆的面积为S , 3.AB AC S AC AB ⋅=-= (1)若()()()2cos 0f x x B ωω=+>的图象与直线2y =相邻两个交点间的最短距离为2,且116f ⎛⎫= ⎪⎝⎭,求ABC ∆的面积S;(2)求cos S B C +的最大值.19.(本题满分12分)某校高三学生有两部分组成,本部生与分校生共2000名学生,期末考试数学成绩换算成100分的成绩如图所示,从高三的学生中,利用分层抽样,抽取100名学生的成绩绘制成频率分布直方图:(1)若抽取的学生中,本部生与分校生的比为9:1,确定高三本部生与分校生的人数; (2)计算此次数学成绩的平均分;(3)若抽取的[)[)80,90,90,100的学生中,本部生与分校生的比例关系也是9:1,从抽取的[)[)80,90,90,100两段的分校生中,选两人进行座谈,设抽取的[)80,90的人数为随机变量ξ,求ξ的分布列和数学期望.20.(本题满分12分)已知四棱锥P ABCD -中,底面ABCD 为直角梯形,AD//BC,90,BCD PA ∠=⊥PA 底面ABCD,ABM ∆是边长为2的等边三角形,PA DM ==. (1)求证:平面PAM ⊥平面PDM ;(2)若点E 为PC 的中点,求二面角P MD E --的余弦值.21.(本题满分12分)已知椭圆()2222:10x y C a b a b +=>>,过椭圆的上顶点与右顶点的直线l ,与圆22127x y +=相切,且椭圆C 的右焦点与抛物线24y x =的焦点重合. (1)求椭圆C 的方程;(2)过点O 作两条相互垂直的射线与椭圆C 分别交于A,B 两点,求OAB ∆面积的最小值.22.(本题满分12分)已知()ln f x x x mx =+,且曲线()y f x =在点()()1,1f 处的切线斜率为1. (1)求实数m 的值; (2)设()()()22a g x f x x x a a R =--+∈在定义域内有两个不同的极值点12,x x ,求a 的取值范围;(3)已知0λ>,在(2)的条件下,若不等式()11212e x x x x λλ+<⋅<恒成立,求λ的取值范围.2018年秋期高三年级期终质量评估试题理科数学参考答案一、选择题:BCACD CCBCA BA 二、填空题:13. 14.15.16.三、解答题:17 解:(1)证明:a n +1=f (a n )=an +a a ·an =an 1,∴an +11=a 1+an 1,即an +11-an 1=a 1. ∴是首项为1,公差为a 1的等差数列.........3分∴an 1=1+(n -1)a 1.整理得a n =+n a........5分 (2)b n =a n ·a n +1=+n a ·+n +1a=.........7分设数列{b n }的前n 项和为T n ,则==.∴数列{b n }的前n 项和为n +a na. ......10分18.解:∵,设△ABC 的三个内角的对边分别为,,,由得,, ………4分 (1)∵的图象与直线相邻两个交点间的最短距离为T ,,即:,解得,,,即:,∵B 是△ABC 的内角,, 又,从而△ABC 是直角三角形,,. ………8分(2)∵,设△ABC的外接圆半径为R,则,解得,,故的最大值为.………12分19.解:(1)因为抽取的本部生与分校生的比为9﹕1,所以本部生抽取90人,分校生抽取10人,本部生的人数为,分校生的人数为.………2分(2),平均分为………5分(3)根据频率分布直方图可知,抽取的,的学生分别为,抽取的分校生的人数分别为人抽取的的人数为随机变量,可知可知;;,………10分可知. ………12分20.解:(1)是边长为的等边三角形, 底面是直角梯形,又又………6分(2)以为原点,所在直线为轴,所在直线为轴,过且与平行的直线为轴,建立空间直角坐标系,则设平面的法向量为,则取………8分为中点,则,设平面的法向量为,则取………10分由.二面角的余弦值为.………12分21.解(1)过椭圆的上顶点与右顶点的直线为,直线与相切,满足,且,整理可得,(舍去),故,所求的椭圆C的方程为………4分(2)(方法一)①当两线分别与坐标轴重合时,………5分②当两线不与坐标轴重合时,由于,设直线为,则直线为,设,直线的方程为与椭圆联立消去得,用代换得………8分,当且仅当时取“=”又,综合①②可得三角形的最小面积为. ………12分(2)(方法二)设,直线的方程为与椭圆联立消去得即,把代入得,整理得,所以到直线的距离………8分,当且仅当时取“=”号.由即弦的长度的最小值是所以三角形的最小面积. ………12分22.解(1)由题意知,,即:解得. ………2分(2)因为在其定义域内有两个不同的极值点,,所以有两个不同的根,,设,则显然当时,单调递增,不符合题意,所以,由得,当时,,单调递增,当时,,单调递减,所以,从而得,………5分又当时,,所以在上有一根;设,则,在上单调递增,,所以在上有一根.(利用罗比塔法则可酌情给分)综上可知,当时,有两个不同的根所以的取值范围为……7分(也可孤立参量,利用图像解决法,请酌情给分)(3)因为等价于.由题意可知分别是方程,即:的两个根,即,所以原式等价于,因为,,所以原式等价于.又由,作差得,,即.所以原式等价于,………9分因为,原式恒成立,即恒成立.令,,则不等式在上恒成立.令,又,当时,可见时,,所以在上单调增,又,在恒成立,符合题意.当时,可见时,,时,所以在时单调增,在时单调减,又,所以在上不能恒小于0,不符合题意,舍去.综上所述,若不等式恒成立,只须,又,所以 (12)分。
2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。
2018届高三模拟 数学试题(理)一、选择题 (本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知集合1{,},(),3x M y y x x x R N y y x R ⎧⎫==-∈==∈⎨⎬⎩⎭,则( )A .M N =B .N M ⊆C .R M C N =D .R C N M 2. 复数(12)(2)z i i =++的共轭复数为( )A .-5iB .5iC .15i +D .15i - 3. 将函数()3sin(2)3f x x π=-的图像向右平移(0)m m >个单位后得到的图像关于原点对称,则m 的最小值是( )A .6π B .3π C .23π D .56π 4. 已知函数22()log f x x x =+,则不等式(1)(2)0f x f +-<的解集为( )A .(,1)(3,)-∞-+∞B .(,3)(1,)-∞-+∞C .(3,1)(1,1)---D .(1,1)(1,3)-5. 已知命题:,p a b R ∃∈, a b >且11a b >,命题:q x R ∀∈,3sin cos 2x x +<.下列命题是真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝ 6. 将正方体(如图1)截去三个三棱锥后,得到如图2所示的几何体,侧视图的视线方向如图2所示,则该几何体的侧视图为( )⊂≠7. 下列说法错误的是( )A .“函数()f x 的奇函数”是“(0)0f =”的充分不必要条件.B .已知A BC 、、不共线,若0PA PB PC ++=则P 是△ABC 的重心.C .命题“0x R ∃∈,0sin 1x ≥”的否定是:“x R ∀∈,sin 1x <”.D .命题“若3πα=,则1cos 2α=”的逆否命题是:“若1cos 2α≠,则3πα≠”. 8. 已知等比数列{}n a 的前n 项和为n S ,已知103010,130S S ==,则40S =( )A .-510B .400C . 400或-510D .30或40 9. 南宋数学家秦九韶在《数书九章》中提出的秦九韶,算法至今仍是多项式求值比较先进的算法.已知20172016()2018201721f x x x x =++++ ,下列程序框图设计的是求0()f x 的值,在“中应填的执行语句是( )A .n i =B .1n i =+C .n =2018i -D .n =2017i - 10. 已知34πθπ≤≤2=,则θ=( ) A . 101133ππ或 B .37471212ππ或 C .131544ππ或 D . 192366ππ或 11.已知△ABC中,,,a b c为角,,A B C的对边,0aBC bCA cAB ++=,则△ABC 的形状为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D . 无法确定12. 我国古代太极图是一种优美的对称图.如果一个函数的图像能够将圆的面积和周长分成两个相等的部分,我们称这样的函数为圆的“太极函数”.下列命题中错误..命题的个数是( ) 1:P 对于任意一个圆其对应的太极函数不唯一;2:P 如果一个函数是两个圆的太极函数,那么这两个圆为同心圆;3:P 圆22(1)(1)4x y -+-=的一个太极函数为32()33f x x x x =-+; 4:P 圆的太极函数均是中心对称图形; 5:P 奇函数都是太极函数; 6:P 偶函数不可能是太极函数.A. 2B. 3C.4D.5二、填空题(本大题共4小题,每小题5分,共20分)13.已知平面向量(2,1),(2,).a b x == 且(2)()a b a b +⊥-,则x = .14.曲线2y x =与直线2y x =所围成的封闭图形的面积为 .15.已知等差数列{}n a 是递增数列,且1233a a a ++≤,7338a a -≤,则4a 的取值范围为 .16.()f x 是R 上可导的奇函数,()f x '是()f x 的导函数.已知0x >时()(),(1)f x f x f e '<=,不等式()ln(0ln(x f x e <≤的解集为M ,则在M 上()sin6g x x =的零点的个数为 .三、解答题(本大题共70分,解答应写出文字说明、证明过程或演算步骤。
湖北省孝感一中、应城一中等重点高中协作体2018-2019学年高一上学期期中联考数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,B={x|x2﹣2x﹣3<0},则A∩B=()A. {-1,0,1,2,3}B. {-1,0,1,2}C. {1,2}D. {1,2,3}【答案】C【解析】∵集合A={1,2,3},B={x|x2﹣2x﹣3<0}={x|﹣1<x<3},∴A∩B={1,2}.故选:C.2.下列函数中与f(x)=x是同一函数的有()①y=②y=③y=④y=⑤f(t)=t⑥g(x)=xA. 1 个B. 2 个C. 3个D. 4个【答案】C【解析】f(x)=x的定义域为R;①的定义域为{x|x≥0},定义域不同,不是同一函数;②的定义域为R,定义域和解析式都相同,是同一函数;③,解析式不同,不是同一函数;④的定义域为{x|x≠0},定义域不同,不是同一函数;⑤f(t)=t的定义域为R,解析式和定义域都相同,是同一函数;⑥g(x)=x的定义域为R,解析式和定义域都相同,是同一函数.故选:C.3.已知幂函数f(x)=kxα(k∈R,α∈R)的图象过点(,),则k+α= ()A. B. 1 C. D. 2【答案】A【解析】∵幂函数f(x)=kxα(k∈R,α∈R)的图象过点(,),∴k=1,=,∴α=﹣;∴k+α=1﹣=.故选:A.4.下列函数中,既是奇函数又是增函数的为()A. B. C. D. y=ln【答案】B【解析】由奇函数的性质可知,A:y=x+1为非奇非偶函数,不符合条件;B:y=f(x)=x|x|的定义域R,且f(﹣x)=﹣x|﹣x|=﹣x|x|=f(x),奇函数y=x|x|=在R上单调递增,故正确;C:y=为奇函数,但在(0,+∞),(﹣∞,0)上单调递减,不符合题意;D:y=ln的定义域(﹣1,1),f(x)=ln==﹣f(x),为奇函数,而t===﹣1+在(﹣1,1)上单调递减,根据复合函数的单调性可知,y=ln在(﹣1,1)上单调递增,不符合故选:B.5.已知a=log23.4,b=2.11.2,c=log0.33.8,则a、b、c的大小关系为()A. a<b<cB. c<a<bC. b<c<aD. c<b<a【答案】B【解析】1=log22<a=log23.4<log24=2,b=2.11.2>2.11=2.1,c=log0.33.8<log0.31=0,则a、b、c的大小关系为c<a<b.故选:B.6.若y=f(x)的定义域为(0,2],则函数g(x)=的定义域是()A. (0,1]B. [0,1)C. (0,1)∪(1,4]D. (0,1)【答案】D【解析】由y=f(x)的定义域为(0,2],令,解得0<x<1,∴函数g(x)=的定义域是(0,1).故选:D.7.下列所给4个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;(2)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速;(3)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间.A. (1)(2)(4)B. (4)(2)(1)C. (4)(3)(1)D. (4)(1)(2)【答案】B【解析】(1)我离开家不久,发现自己把作业本放在家里了,于是立刻返回家里取了作业本再上学,中间有回到家的过程,故④成立;(2)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速,②符合;(3)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间,①符合.故选:B.8.已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其定义如下表填写下列f[g(x)]的表格,其中三个数依次为A. 2,1,3B. 1 ,2,3C. 3,2,1D. 1,3,2【答案】A【解析】∵两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其定义如表:∴f[g(1)]=f(1)=2,f[g(2)]=f(3)=1,f[g(3)]=f(2)=3,∴f[g(x)]的表格中三个数依次为2,1,3.故选:A.9.如图的曲线是幂函数y=x n在第一象限内的图象.已知n分别取±2,四个值,与曲线c1、c2、c3、c4相应的n依次为()A. B.C. D.【答案】A【解析】根据幂函数y=x n的性质,在第一象限内的图象,当n>0时,n越大,递增速度越快,故曲线c1的n=2,曲线c2的n=,当n<0时,|n|越大,曲线越陡峭,所以曲线c3的n=,曲线c4的﹣2,故依次填2,,﹣,﹣2.故选:A.10.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是( )(参考数据:lg3≈0.48)A. 1033B. 1053C. 1073D. 1093【答案】D【解析】设,两边取对数,,所以,即最接近,故选D.11.某同学求函数f(x)=ln x+2x﹣6零点时,用计算器算得部分函数值如表所示:则方程ln x+2x﹣6=0的近似解(精确度0.1)可取为()A. 2.52B. 2.625C. 2.66D. 2.75【答案】A【解析】根据题意,由表格可知,方程f(x)=ln x+2x﹣6的近似根在(2.5,3),(2.5,2.75),(2.5,2.625)内;据此分析选项:A中2.52符合,故选:A.12.已知函数(a>0且a≠1)是R上的单调函数,则a的取值范围是()A. (0,]B. [)C. []D. (]【答案】C【解析】由题意,分段函数是在R上单调递减,可得对数的底数需满足0<a<1,根据二次函数开口向上,二次函数在(﹣∞,)单调递减,可得≥0.且[x2+(4a﹣3)x+3a]min≥[log a(x+1)+2]max,故而得:,解得a≤,并且3a≥2,a∈(0,1)解得:1>a≥.∴a的取值范围是[,],故选:C.二、填空题:每小题5分,共20分.13.设全集U={1,2,3,4,5,6,7},∁U(A∪B)={1,3},A∩(∁U B)={2,4},则集合B为__________【答案】{5,6,7}【解析】全集U={1,2,3,4,5,6,7},∁U(A∪B)={1,3},∴A∪B={2,4,5,6,7},又A∩(∁U B)={2,4},∴2∉B,且4∉B,∴集合B={5,6,7}.故答案为:{5,6,7}.14.若2a=5b=20,则= ______【答案】【解析】∵2a=5b=20,∴a=log220,b=log520,则==4log202+2log205=log2016×25=2.故答案为:215.已知函数y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+1,那么不等式2f(x)﹣1<0的解集是_________【答案】【解析】根据题意,函数y=f(x)是定义在R上的奇函数,则f(0)=0,设x>0,则﹣x<0,则f(﹣x)=﹣x+1,又由函数f(x)为奇函数,则f(x)=﹣f(﹣x)=x﹣1,则f(x)=,当x>0时,2f(x)﹣1<0即2(x﹣1)﹣1<0,变形可得:2x﹣3<0,解可得0<x<;当x=0时,2f(x)﹣1<0即﹣1<0,符合题意;当x<0时,2f(x)﹣1<0即2(x+1)﹣1<0,变形可得:2x+1<0,解可得x<﹣,综合可得:x的取值范围为;故答案为:.16.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________分钟.【答案】3.75(或)【解析】由题意函数关系p=at2+bt+c(a,b,c是常数),经过点(3,0.7),(4,0.8),(5,0.5),∴,a=﹣0.2,b=1.5,c=﹣2.2,∴p=﹣0.2t2+1.5t﹣2.2=﹣0.2(t﹣3.75)2+0.6125,∴得到最佳加工时间为3.75分钟.故答案为:3.75.三、解答题:本大题共6小题,共70分,其中第17题10分,其余每题12分.解答应写出文字说明、证明过程或演算步骤.17.已知函数f(x)=4x2﹣kx﹣8,x∈[5,10].(1)当k=1时,求函数f(x)的值域;(2)若f(x)在定义域上具有单调性,求k的取值范围.解:(1)时,的对称轴为,在[5,10]上单调递增,因为,,所以的值域为[87,382].(2)由题意:对称轴,所以,所以的取值范围为.18.已知全集U=R,集合P={x|x2﹣6x≥0},M={x|a<x<2a+4}.(1)求集合∁U P;(2)若M⊆∁U P,求实数a的取值范围.解:(1)由得,所以P=,=(0,6).(2)当时,,符合题意,当时,且,解得,综上:的取值范围为.19.已知函数f(x)=的定义域为M.(1)求M;(2)当x∈M时,求g(x)=4x﹣2x+1+1的值域.解:(1)∵函数f(x)=的定义域为M.∴M={x|}={x|﹣1<x≤2};(2)当x∈M=(﹣1,2]时,g(x)=4x﹣2x+1+1=(2x)2﹣2×2x+1=(2x﹣1)2,∵x∈(﹣1,2],∴2x∈(],∴g(x)min=g(0)=(20﹣1)2=0,g(x)max=g(2)=(22﹣1)2=9,∴g(x)=4x﹣2x+1+1的值域为[0,9].20.某租赁公司拥有汽车100辆,当每辆车的月租金为3200元时,可全部租出。
湖南省(XXX)、江西省(XXX)等十四校2018届高三第二次联考数学(理)试题+Word版含答案2018届高三·十四校联考第二次数学(理科)考试第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.设集合A={x|x≥2},B={x|1<−x≤2},则A∩B=()A。
(-4,+∞) B。
[-4,+∞) C。
[-2,-1] D。
[-4,-2]2.复数z=xxxxxxxxxxxxxxxxi的共轭复数为()A。
3+i B。
-i C。
+i D。
-i3.下列有关命题的说法中错误的是()A。
设a,b∈R,则“a>b”是“aa>bb”的充要条件B。
若p∨q为真命题,则p,q中至少有一个为真命题C。
命题:“若y=f(x)是幂函数,则y=f(x)的图象不经过第四象限”的否命题是假命题D。
命题“∀n∈N,f(n)∈N且f(n)≤n”的否定形式是“∃n∈N*,f(n)∉N*且f(n)>n”4.已知不等式ax+1/x+2<0的解集为(-2,-1),则二项式(x+2)(ax-2)展开式的常数项是()A。
-15 B。
15 C。
-5 D。
55.若函数f(x)=3sin(π-ωx)+sin(5π+ωx/2),且f(α)=2,f(β)=3,α-β的最小值是π,则f(x)的单调递增区间是()A。
(2kπ-5π/3,2kπ-π/3) (k∈Z)B。
(2kπ-,2kπ+) (k∈Z)C。
(kπ-,5π/3+kπ) (k∈Z)D。
(kπ-π/3,5π/3+kπ) (k∈Z)6.某几何体的三视图如图所示(单位:cm),则该几何体的表面积(单位:cm)是()A。
40+125 B。
40+245 C。
36+125 D。
36+2457.甲、乙、丙、丁、戊五位同学相约去学校图书室借A、B、C、D四类课外书(每类课外书均有若干本),已知每人均只借阅一本,每类课外书均有人借阅,且甲只借阅A类课外书,则不同的借阅方案种类为()A。
襄阳2025届高三上学期10月月考数学试卷(答案在最后)命题人:一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合31A x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z ,则用列举法表示A =()A.{}2,0,1,2,4- B.{}2,0,2,4- C.{}0,2,4 D.{}2,4【答案】B 【解析】【分析】由题意可得1x -可为1±、3±,计算即可得.【详解】由题意可得1x -可为1±、3±,即x 可为0,2,2,4-,即{}2,0,2,4A =-.故选:B.2.设3i,ia a z +∈=R ,其中i 为虚数单位.则“1a <-”是“z >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】首先根据复数代数形式的除法运算化简z ,再求出z,令z >求出相应的a 的取值范围,最后根据充分条件、必要条件的定义判断即可.【详解】因为23i 3i 3i i ia az a +-===-,所以z =令z >,即>1a >或1a <-,所以1a <-推得出z >,故充分性成立;由z >推不出1a <-,故必要性不成立;所以“1a <-”是“z >”的充分不必要条件.故选:A3.已知向量a ,b 不共线,且c a b λ=+ ,()21d a b λ=++ ,若c 与d 同向共线,则实数λ的值为()A.1B.12C.1或12-D.1-或12【答案】B 【解析】【分析】先根据向量平行求参数λ,再根据向量同向进行取舍.【详解】因为c与d 共线,所以()2110λλ+-=,解得1λ=-或12λ=.若1λ=-,则c a b =-+,d a b =- ,所以d c =- ,所以c 与d 方向相反,故舍去;若12λ=,则12c a b =+ ,2d a b =+ ,所以2d c = ,所以c与d 方向相同,故12λ=为所求.故选:B4.已知3322x y x y ---<-,则下列结论中正确的是()A.()ln 10y x -+>B.ln0yx> C.ln 0y x +> D.ln 0y x ->【答案】A 【解析】【分析】构造函数()32xf x x -=-,利用()f x 的单调性可得x y <,进而可得.【详解】由3322x y x y ---<-得3322x y x y ---<-,设()32xf x x -=-,因函数3y x =与2x y -=-都是R 上的增函数,故()f x 为R 上的增函数,又因3322x y x y ---<-,故x y <,()ln 1ln10y x -+>=,故A 正确,因y x,y x +,y x -与1的大小都不确定,故B ,C ,D 错误,故选:A5.从0,1,2,3,4,5,6这7个数中任选5个组成一个没有重复数字的“五位凹数12345a a a a a ”(满足12345a a a a a >><<),则这样的“五位凹数”的个数为()A.126个B.112个C.98个D.84个【答案】A 【解析】【分析】利用分步乘法计数原理可得.【详解】第一步,从0,1,2,3,4,5,6这7个数中任选5个共有57C 种方法,第二步,选出的5个数中,最小的为3a ,从剩下的4个数中选出2个分给12,a a ,由题意可知,选出后1245,,,a a a a 就确定了,共有24C 种方法,故满足条件的“五位凹数”5274C C 126=个,故选:A6.若数列{}n a 满足11a =,21a =,12n n n a a a --=+(3n ≥,n 为正整数),则称数列{}n a 为斐波那契数列,又称黄金分割数列.在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用.设n S 是数列{}n a 的前n 项和,则下列结论成立的是()A.78a =B.135********a a a a a +++⋅⋅⋅+=C.754S =D.24620202021a a a a a +++⋅⋅⋅+=【答案】B 【解析】【分析】按照斐波那契数列的概念,找出规律,得出数列的性质后逐个验证即可.【详解】解析:按照规律有11a =,21a =,32a =,43a =,55a =,68a =,713a =,733S =,故A 、C 错;21112123341n n n n n n n n n n n n n n a a a a a a a a a a a a a S ++--------=+=+++=+++++==+ ,则202020181220183520191352019111a S a a a a a a a a a a =+=++++=++++=++++ ,故B 对;24620202234520182019a a a a a a a a a a a ++++=+++++++ 1234520182019201920211a a a a a a a S a =+++++++==- ,故D 错.故选:B .7.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,A ,B 是椭圆C 上的两点.若122F A F B = ,且12π4AF F ∠=,则椭圆C 的离心率为()A.13B.23C.33D.23【答案】B 【解析】【分析】设1AF =,结合题意可得2AF ,根据椭圆定义整理可得22b c m -=,根据向量关系可得1F A ∥2F B ,且2BF =2b c m+=,进而可求离心率.【详解】由题意可知:()()12,0,,0F c F c -,设1,0AF m =>,因为12π4AF F ∠=,则()2,2A c m m -+,可得2AF =由椭圆定义可知:122AF AF a +=,即2a =,整理可得22b c m-=;又因为122F A F B = ,则1F A ∥2F B ,且2112BF AF ==,则(),B c m m +,可得1BF =由椭圆定义可知: 䁕2a =,2bcm+=;即2c c-=+3c=,所以椭圆C的离心率3cea==.故选:B.【点睛】方法点睛:椭圆的离心率(离心率范围)的求法求椭圆的离心率或离心率的范围,关键是根据已知条件确定a,b,c的等量关系或不等关系,然后把b用a,c代换,求e的值.8.圆锥的表面积为1S,其内切球的表面积为2S,则12SS的取值范围是()A.[)1,+∞ B.[)2,+∞C.)∞⎡+⎣ D.[)4,+∞【答案】B【解析】【分析】选择OBC∠(角θ)与内切球半径R为变量,可表示出圆锥底面半径r和母线l,由圆锥和球的表面积公式可得()122212tan1tanSSθθ=-,再由2tan(0,1)tθ=∈换元,转化为求解二次函数值域,进而得12SS的取值范围.【详解】设圆锥的底面半径为r,母线长为l,圆锥内切球半径为R,如图作出圆锥的轴截面,其中设O为外接圆圆心,,D E为切点,,AB AC为圆锥母线,连接,,,OB OD OA OE.设OBCθ∠=,tanRrθ=,0tan1θ<<tanRrθ∴=.OD AB⊥,OE BC⊥,πDBE DOE∴∠+∠=,又πAOD DOE∠+∠=,2AOD DBE θ∴∠=∠=,tan 2AD R θ∴=,22tan 2tan Rl r AD BD r AD r R θθ∴+=++=+=+,则圆锥表面积()21πππS r rl r l r =+=+,圆锥内切球表面积224πS R =,所求比值为()212222π2tan 21tan 1tan tan 4π2tan 1tan R R R S S R θθθθθθ⎛⎫+ ⎪-⎝⎭==-,令2tan 0t θ=>,则()2211()2122222g t t t t t t ⎛⎫=-=-+=--+ ⎪⎝⎭,则10()2g t <≤,且当12t =时,()g t 取得最大值12,故122S S ≥,即12S S 的取值范围是[)2,+∞.故选:B.【点睛】关键点点睛:求解立体几何中的最值问题一般方法有两类,一是设变量(可以是坐标,也可以是关键线段或关键角)将动态问题转化为代数问题,利用代数方法求目标函数的最值;二是几何法,利用图形的几何性质,将空间问题平面化,将三维问题转化为二维问题来研究,以平面几何中的公理、定义、定理为依据,以几何直观为主要手段直接推理出最值状态何时取到,再加以求解.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设A ,B 为随机事件,且()P A ,()P B 是A ,B 发生的概率.()P A ,()()0,1P B ∈,则下列说法正确的是()A.若A ,B 互斥,则()()()P A B P A P B ⋃=+B.若()()()P AB P A P B =,则A ,B 相互独立C .若A ,B 互斥,则A ,B 相互独立D.若A ,B 独立,则()(|)P B A P B =【答案】ABD 【解析】【分析】利用互斥事件的概率公式可判断A 选项;由相互独立事件的概念可判断B 选项;由互斥事件和相互独立事件的概念可判断C 选项;由相互独立事件的概念,可判断D 选项.【详解】对于选项A ,若,A B 互斥,根据互斥事件的概率公式,则()()()P A B P A P B ⋃=+,所以选项A 正确,对于选项B ,由相互独立事件的概念知,若()()()P AB P A P B =,则事件,A B 是相互独立事件,所以选项B 正确,对于选项C ,若,A B 互斥,则,A B 不一定相互独立,例:抛掷一枚硬币的试验中,事件A :“正面朝上”,事件B :“反面朝上”,事件A 与事件B 互斥,但()0P AB =,1()()2P A P B ==,不满足相互独立事件的定义,所以选项C 错误,对于选项D ,由相互独立事件的定义知,若A ,B 独立,则()(|)P B A P B =,所以选项D 正确,故选:ABD.10.已知函数()sin sin cos 2f x x x x =-,则()A.()f x 的图象关于点(π,0)对称B.()f x 的值域为[1,2]-C.若方程1()4f x =-在(0,)m 上有6个不同的实根,则实数m 的取值范围是17π10π,63⎛⎤⎥⎝⎦D.若方程[]22()2()1(R)f x af x a a -+=∈在(0,2π)上有6个不同的实根(1,2,,6)i x i = ,则61ii ax=∑的取值范围是(0,5π)【答案】BCD 【解析】【分析】根据(2π)()f f x =-是否成立判断A ,利用分段函数判断BC ,根据正弦函数的单调性画出分段函数()f x 的图象,求出的取值范围,再利用对称性判断D.【详解】因为()sin sin cos 2f x x x x =-,所以(2π)sin(2π)sin(2π)cos 2(2π)sin sin cos 2()f x x x x x x x f x -=----=--≠-,所以()f x 的图象不关于点(π,0)对称,故A 错误;当sin 0x ≥时,()222()sin 12sin 3sin 1f x x x x =--=-,由[]sin 0,1x ∈可得[]()1,2f x ∈-,当sin 0x <时,()222()sin 12sin sin 1f x x x x =---=-,由[)sin 1,0x ∈-可得(]()1,0f x ∈-,综上[]()1,2f x ∈-,故B 正确:当sin 0x ≥时,由21()3sin 14f x x =-=-解得1sin 2x =,当sin 0x <时,由21()sin 14f x x =-=-解得3sin 2x =-,所以方程1()4f x =-在(0,)+∞上的前7个实根分别为π6,5π6,4π3,5π3,13π6,17π6,10π3,所以17π10π63m <≤,故C 正确;由[]22()2()1f x af x a -+=解得()1f x a =-或()1f x a =+,又因为()223sin 1,sin 0sin 1,sin 0x x f x x x ⎧-≥=⎨-<⎩,所以根据正弦函数的单调性可得()f x 图象如图所示,所以()1f x a =-有4个不同的实根,()1f x a =+有2个不同的实根,所以110012a a -<-<⎧⎨<+<⎩,解得01a <<,设123456x x x x x x <<<<<,则1423πx x x x +=+=,563πx x +=,所以615πii x==∑,所以61i i a x =∑的取值范围是(0,5π),故D 正确.故选:BCD.11.在平面直角坐标系中,定义(){}1212,max ,d A B x x y y =--为两点()11,A x y 、()22,B x y 的“切比雪夫距离”,又设点P 及l 上任意一点Q ,称(),d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(),d P l ,给出下列四个命题,正确的是()A .对任意三点,,A B C ,都有()()(),,,d C A d C B d A B +≥;B.已知点()2,1P 和直线:220l x y --=,则()83d P l =,;C.到定点M 的距离和到M 的“切比雪夫距离”相等的点的轨迹是正方形.D.定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()()12,,2220d P F d P F a c a =>>-,则点P 的轨迹与直线y k =(k 为常数)有且仅有2个公共点.【答案】AD 【解析】【分析】对于选项A ,根据新定义,利用绝对值不等性即可判断;对于选项B ,设点Q 是直线21y x =-上一点,且(,21)Q x x -,可得()1,max 2,22d P Q x x ⎧⎫=--⎨⎬⎩⎭,讨论|2|x -,1|2|2x -的大小,可得距离d ,再由函数的性质,可得最小值;对于选项C ,运用新定义,求得点的轨迹方程,即可判断;对于选项D ,根据定义得{}{}max ,max ,2x c y x c y a +--=,再根据对称性进行讨论,求得轨迹方程,即可判断.【详解】A 选项,设()()(),,,,,A A B B C C A x y B x y C x y ,由题意可得:()(){}{},,max ,max ,,A C A CBC B C A C B C A B d C A d C B x x y y x x y y x x x x x x +=--+--≥-+-≥-同理可得:()(),,A B d C A d C B y y +≥-,则:()(){}(),,max ,,A B A B d C A d C B x x y y d A B +≥--=,则对任意的三点A ,B ,C ,都有()()(),,,d C A d C B d A B +≥;故A 正确;B 选项,设点Q 是直线220x y --=上一点,且1,12Q x x ⎛⎫- ⎪⎝⎭,可得()1,max 2,22d P Q x x ⎧⎫=--⎨⎬⎩⎭,由1222x x -≥-,解得0x ≤或83x ≥,即有(),2d P Q x =-,当83x =时,取得最小值23;由1222x x -<-,解得803x <<,即有()1,22d P Q x =-,(),d P Q 的范围是2,23⎛⎫⎪⎝⎭,无最值,综上可得,P ,Q 两点的“切比雪夫距离”的最小值为23,故B 错误;C 选项,设(),M a b{}max ,x a y b =--,若y b x a -≥-,y b =-,两边平方整理得x a =;此时所求轨迹为x a =(y b ≥或)y b ≤-若y b x a -<-,则x a =-,两边平方整理得y b =;此时所求轨迹为y b =(x a ≥或)x a ≤-,故没法说所求轨迹是正方形,故C 错误;D 选项,定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()12,,2d P F d P F a -=(220c a >>),则:{}{}max ,max ,2x c y x c y a +--=,显然上述方程所表示的曲线关于原点对称,故不妨设x ≥0,y ≥0.(1)当x c yx c y ⎧+≥⎪⎨-≥⎪⎩时,有2x c x c a +--=,得:0x a y a c =⎧⎨≤≤-⎩;(2)当x c y x c y ⎧+≤⎪⎨-≤⎪⎩时,有02a =,此时无解;(3)当x c y x c y⎧+>⎪⎨-<⎪⎩时,有2,x c y a a x +-=<;则点P 的轨迹是如图所示的以原点为中心的两支折线.结合图像可知,点P 的轨迹与直线y k =(k 为常数)有且仅有2个公共点,故D 正确.故选:AD.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.三、填空题:本题共3小题,每小题5分,共15分.12.若)nax的展开式的二项式系数和为32,且2x -的系数为80,则实数a 的值为________.【答案】 【解析】【分析】由二项式系数和先求n ,再利用通项53215C ()r r rr T a x -+=-得到2x -的指数确定r 值,由2x -的系数为80,建立关于a 的方程求解可得.【详解】因为)na x-的展开式的二项式系数和为32,所以012C C C C 232nnn n n n ++++== ,解得5n =.所以二项式展开式的通项公式为5352155C ()C ()rr rr r rr a T a x x--+=-=-,由5322r-=-,解得3r =,所以2x -的系数为3335C ()1080a a -=-=,解得2a =-.故答案为:2-.13.已知函数()()()2f x x a x x =--在x a =处取得极小值,则a =__________.【答案】1【解析】【分析】求得()()()221f x x x x a x =-+--',根据()0f a ¢=,求得a 的值,结合实数a 的值,利用函数的单调性与极值点的概念,即可求解.【详解】由函数()()()2f x x a x x =--,可得()()()221f x x x x a x =-+--',因为x a =处函数()f x 极小值,可得()20f a a a =-=',解得0a =或1a =,若0a =时,可得()(32)f x x x '=-,当0x <时,()0f x '>;当203x <<时,()0f x '<;当23x >时,()0f x '>,此时函数()f x 在2(,0),(,)3-∞+∞单调递增,在2(0,)3上单调递减,所以,当0x =时,函数()f x 取得极大值,不符合题意,(舍去);若1a =时,可得()(1)(31)f x x x '=--,当13x <时,()0f x '>;当113x <<时,()0f x '<;当1x >时,()0f x '>,此时函数()f x 在1(,),(1,)3-∞+∞单调递增,在(0,1)上单调递减,所以,当1x =时,函数()f x 取得极小值,符合题意,综上可得,实数a 的值为1.故答案为:1.14.数学老师在黑板上写上一个实数0x ,然后老师抛掷一枚质地均匀的硬币,如果正面向上,就将黑板上的数0x 乘以2-再加上3得到1x ,并将0x 擦掉后将1x 写在黑板上;如果反面向上,就将黑板上的数0x 除以2-再减去3得到1x ,也将0x 擦掉后将1x 写在黑板上.然后老师再抛掷一次硬币重复刚才的操作得到黑板上的数为2x .现已知20x x >的概率为0.5,则实数0x 的取值范围是__________.【答案】()(),21,-∞-+∞ 【解析】【分析】构造函数()23f x x =-+,()32xg x =--,由两次复合列出不等式求解即可.【详解】由题意构造()23f x x =-+,()32xg x =--,则有()()43f f x x =-,()()9f g x x =+,()()92g f x x =-,()()342x g g x =-.因为()()f g x x >,()()g f x x <恒成立,又20x x >的概率为0.5,所以必有43,3,42x x x x ->⎧⎪⎨-≤⎪⎩或者43,3,42x x x x -≤⎧⎪⎨->⎪⎩解得()(),21,x ∈-∞-⋃+∞.故答案为:()(),21,-∞-+∞ 四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC的面积为4,且2AD DC = ,求BD 的最小值.【答案】(1)π3(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由112333BD BC CA BA BC =+=+ ,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V 的面积为33π,43B =,所以133sin 24ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当6,2a c ==时取等号,所以BD .16.已知抛物线2:2(0)E y px p =>与双曲线22134x y -=的渐近线在第一象限的交点为Q ,且Q 点的横坐标为3.(1)求抛物线E 的方程;(2)过点(3,0)M -的直线l 与抛物线E 相交于,A B 两点,B 关于x 轴的对称点为B ',求证:直线AB '必过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)由双曲线求其渐近线方程,求出点Q 的坐标,由此可求抛物线方程;(2)联立直线AB 的方程与抛物线方程可得关于x 的一元二次方程,设 , ,()22,B x y '-,根据韦达定理求出12124,12y y m y y +==,求出直线AB '的方程并令0y =,求出x 并逐步化简可得3x =,则直线AB '过定点(3,0).【小问1详解】设点Q 的坐标为()03,y ,因为点Q 在第一象限,所以00y >,双曲线22134x y -=的渐近线方程为233y x =±,因为点Q在双曲线的渐近线上,所以0y =,所以点Q的坐标为(3,,又点(3,Q 在抛物线22y px =上,所以1223p =⨯,所以2p =,故抛物线E 的标准方程为:24y x =;【小问2详解】设直线AB 的方程为3x my =-,联立243y xx my ⎧=⎨=-⎩,消x 得,24120y my -+=,方程24120y my -+=的判别式216480m ∆=->,即230m ->,设 , ,则12124,12y y m y y +==,因为点A 、B 在第一象限,所以121240,120y y m y y +=>=>,故0m >,设B 关于x 轴的对称点为()22,B x y '-,则直线AB '的方程为212221()y y y y x x x x ---+=-,令0y =得:212221x x x y x y y -=+-⨯-122121x y x y y y +=+()()12211233y my y my y y -+-=+()21121223my y y y y y -+=+241212344m m mmm-===.直线AB '过定点(3,0).【点睛】方法点睛:联立直线AB 的方程与抛物线方程可得关于x 的一元二次方程,设 , ,()22,B x y '-,根据韦达定理求出12124,12y y m y y +==,求出直线AB '的方程并令0y =,求出x 并逐步化简可得3x =,则直线AB '过定点(3,0).17.如图,已知正方形ABCD 的边长为4,,E F 分别为,AD BC 的中点,沿EF 将四边形EFCD 折起,使二面角A EF C --的大小为60°,点M 在线段AB 上.(1)若M 为AB 的中点,且直线MF 与直线EA 的交点为O ,求OA 的长,并证明直线OD //平面EMC ;(2)在线段AB 上是否存在点M ,使得直线DE 与平面EMC 所成的角为60°;若存在,求此时二面角M EC F --的余弦值,若不存在,说明理由.【答案】(1)2OA =;证明见解析.(2)存在点M ,使得直线DE 与平面EMC 所成的角为60°;此时二面角M EC F --的余弦值为14.【解析】【分析】(1)根据中位线性质可求得OA ,由//MN OD ,结合线面平行判定定理可证得结论;(2)由二面角平面角定义可知60DEA ∠=︒,取AE ,BF 中点O ,P ,由线面垂直的判定和勾股定理可知OD ,OA ,OP 两两互相垂直,则以O 为坐标原点建立空间直角坐标系;设()1,,0M m ()04m ≤≤,利用线面角的向量求法可求得m ;利用二面角的向量求法可求得结果.【小问1详解】,E F 分别为,AD BC 中点,////EF AB CD ∴,且2AE FB ==,又M 为AB 中点,且,AB OE AB BF ⊥⊥,易得OAM FBM ≅ ,2OA FB AE ∴===,连接,CE DF ,交于点N ,连接MN ,由题设,易知四边形CDEF 为平行四边形,N Q 为DF 中点,//,AM EF A 是OE 的中点,M ∴为OF 中点,//MN OD ∴,又MN ⊂平面EMC ,OD ⊄平面EMC ,//OD ∴平面EMC ;【小问2详解】////EF AB CD ,EF DE ⊥ ,EF AE ⊥,又DE ⊂平面CEF ,AE ⊂平面AEF ,DEA ∴∠即为二面角A EF C --的平面角,60DEA ∴=︒∠;取,AE BF 中点,O P ,连接,OD OP ,如图,60DEA ∠=︒ ,112OE DE ==,2414cos 603OD ∴=+-︒=,222OD OE DE +=,OD AE ∴⊥,//OP EF ,OP DE ⊥,OP AE ⊥,又,AE DE ⊂平面AED ,AE DE E = ,OP ∴⊥平面AED ,,OD AE ⊂ 平面AED ,,OD OP AE OP ∴⊥⊥,则以O 为坐标原点,,,OA OP OD方向为,,x y z轴正方向建立空间直角坐标系如下图所示,则(D ,()1,0,0E -,()1,4,0F -,(0,C ,设()()1,,004M m m ≤≤,则(1,0,DE =-,()2,,0EM m =,(1,EC = ,设平面EMC 的法向量,则1111111·20·40EM n x my EC n x y ⎧=+=⎪⎨=++=⎪⎩,令12y =,则1x m =-,1z=1,m m ⎛∴=- ⎝,∵直线DE 与平面EMC 所成的角为60o ,·sin 60cos ,·DE n DE n DE n∴︒==11132=,解得1m =或3m =,存在点M ,当1AM =或3AM =时,使得直线DE 与平面EMC 所成的角为60o ;设平面CEF 的法向量()2222,,n x yz =,又(1,EC = ,(FC =,2222222·40·0EC n x y FC n x ⎧=++=⎪∴⎨=+=⎪⎩ ,令21z =,则2x =,20y =,()2m ∴=;当1m =时,11,2,n ⎛=- ⎝,12121243·13cos ,84·2n n n n n n ∴=== ;当3m =时,23,2,n ⎛=- ⎝,12121243·13cos ,84·2n n n n n n ∴=== ;综上所述:二面角M EC F --的余弦值为14.【点睛】关键点点睛:本题第二步的关键在于证明三线互相垂直,建立空间直角坐标系,设出动点M 的坐标,熟练利用空间向量的坐标运算,求法向量,求二面角、线面角是解题的关键.18.已知函数()12ex xf x x λ-=-.(1)当1λ=时,求()f x 的图象在点 h 处的切线方程;(2)若1x ≥时,()0f x ≤,求λ的取值范围;(3)求证:()1111111232124e 2e*n n n n nnn +++-+++->∈N .【答案】(1)0y =(2)[)1,+∞(3)证明见详解【解析】【分析】(1)利用导数的几何意义求解即可;(2)根据题意,由条件式恒成立分离参数,转化为212ln xx xλ≥+,求出函数()212ln x g x x x =+的最大值得解;(3)先构造函数()12ln x x x x ϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,可得()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,迭代累加可证得结果.【小问1详解】当1λ=时,()12ex xf x x -=-,h t ,则()12121e x x f x x x -⎛⎫=-+ ⎪⎝'⎭,则()0122e 0f =-=',所以()f x 在点 h 处的切线方程为0y =.【小问2详解】由1x ≥时,()0f x ≤,即12e0x xx λ--≤,整理得212ln x x xλ≥+,对1x ≥恒成立,令()212ln x g x x x =+,则()()42321ln 222ln x x x x x g x x x x---=-+'=,令()1ln h x x x x =--,1x ≥,所以()ln 0h x x '=-≤,即函数 在1x ≥上单调递减,所以()()10h x h ≤=,即()0g x '≤,所以函数()g x 在1x ≥上单调递减,则()()11g x g ≤=,1λ∴≥.【小问3详解】设()12ln x x x xϕ=-+,1x >,则()()222221212110x x x x x x x xϕ---+-='=--=<,所以 在 ∞上单调递减,则()()10x ϕϕ<=,即12ln 0x x x-+<,11ln 2x x x ⎛⎫∴<- ⎪⎝⎭,1x >,令11x n=+,*N n ∈,可得1111111ln 1112211n n n n n ⎛⎫⎪⎛⎫⎛⎫+<+-=+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎪+⎝⎭,所以()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,()()111ln 2ln 1212n n n n ⎛⎫+-+<+ ⎪++⎝⎭,()()111ln 3ln 2223n n n n ⎛⎫+-+<+ ⎪++⎝⎭,…()()111ln 2ln 212212n n n n ⎛⎫--<+ ⎪-⎝⎭,以上式子相加得()112221ln 2ln 212212n n n n n n n ⎛⎫-<+++++ ⎪++-⎝⎭,整理得,11111ln 2412212n n n n n-<++++++-L ,两边取指数得,11111ln 2412212e e n n n n n -++++++-<L ,即得111114122122e e n n n n n -++++-<L ,()*Nn ∈得证.【点睛】关键点点睛:本题第三问解题的关键是先构造函数()12ln x x x xϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,得到()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭.19.已知整数4n ,数列{}n a 是递增的整数数列,即12,,,n a a a ∈Z 且12n a a a <<<.数列{}n b 满足11b a =,n n b a =.若对于{}2,3,,1i n ∈- ,恒有1i i b a --等于同一个常数k ,则称数列{}n b 为{}n a 的“左k 型间隔数列”;若对于{}2,3,,1i n ∈- ,恒有1i i a b +-等于同一个常数k ,则称数列{}n b 为{}n a 的“右k型间隔数列”;若对于{}2,3,,1i n ∈- ,恒有1i i a b k +-=或者1i i b a k --=,则称数列{}n b 为{}n a 的“左右k 型间隔数列”.(1)写出数列{}:1,3,5,7,9n a 的所有递增的“左右1型间隔数列”;(2)已知数列{}n a 满足()81n a n n =-,数列{}n b 是{}n a 的“左k 型间隔数列”,数列{}n c 是{}n a 的“右k 型间隔数列”,若10n =,且有1212n n b b b c c c +++=+++ ,求k 的值;(3)数列{}n a 是递增的整数数列,且10a =,27a =.若存在{}n a 的一个递增的“右4型间隔数列{}n b ”,使得对于任意的{},2,3,,1i j n ∈- ,都有i j i j a b b a +≠+,求n a 的关于n 的最小值(即关于n 的最小值函数()f n ).【答案】(1)1,2,4,6,9或1,2,4,8,9或1,2,6,8,9或1,4,6,8,9.(2)80k =(3)()()382n n f n -=+【解析】【分析】(1)由“左右k 型间隔数列”的定义,求数列{}:1,3,5,7,9n a 的所有递增的“左右1型间隔数列”;(2)根据“左k 型间隔数列”和“右k 型间隔数列”的定义,由1212n n b b b c c c +++=+++ ,则有1291016a a k a a ++=+,代入通项计算即可;(3)由“右4型间隔数列”的定义,有144i i i b a a +=->-,可知{}3i i b a nn -∈≥-∣,则有()()()232431n n n a a a a a a a a -=+-+-++- ()()()()413216n n ≥-+-+-+-++- ,化简即可.【小问1详解】数列{}:1,3,5,7,9n a 的“左右1型间隔数列”为1,2,4,6,9或1,2,4,8,9或1,2,6,8,9或1,4,6,8,9.【小问2详解】由12101210b b b c c c +++=+++ ,可得239239b b b c c c +++=+++ ,即128341088a a a k a a a k ++++=+++- ,即1291016a a k a a ++=+,即16168988109k +=⨯⨯+⨯⨯,所以80k =.【小问3详解】当{}2,3,,1i n ∈- 时,由144i i i b a a +=->-,可知{}3i i b a nn -∈≥-∣.又因为对任意{},2,3,,1i j n ∈- ,都有i j i j a b b a +≠+,即当{}2,3,,1i n ∈- 时,i i b a -两两不相等.因为()()()232431n n n a a a a a a a a -=+-+-++- ()()()2233117444n n b a b a b a --=++-++-+++- ()()()()223311742n n n b a b a b a --=+-+-+-++- ()()()()413216n n ≥-+-+-+-++- ()382n n -=+.所以n a 的最小值函数()()382n n f n -=+.另外,当数列䁕 的通项()0,1,38,2,2i i a i i i n =⎧⎪=⎨-+≤≤⎪⎩间隔数列 的通项(),1,13,21,2i i a i i n b i i i n ==⎧⎪=⎨-+≤≤-⎪⎩或时也符合题意.【点睛】方法点睛:在实际解决“新定义”问题时,关键是正确提取新定义中的新概念、新公式、新性质、新模式等信息,确定新定义的名称或符号、概念、法则等,并进行信息再加工,寻求相近知识点,明确它们的共同点和不同点,探求解决方法,在此基础上进行知识转换,有效输出,合理归纳,结合相关的数学技巧与方法来分析与解决!。
齐鲁名校教科研协作体山东、湖北部分重点中学2018年高考冲刺模拟试卷(二)理科数学试题本试卷共4页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
一.选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. (原创.容易)已知集合(,1][1,)A =-∞-+∞ ,21{|log ,[,4]}2B y y x x ==∈,则A B = ( )A.[1,2]-B. [1,2]C. {1}[1,2]-D. [1,1]{2}- 【答案】C【解析】,由B 可得[1,2]B =-,(,1][1,)A =-∞-+∞ {1}[1,2]A B ∴=- .故选C. 【考点】考查对数不等式的解法及集合运算.2. (原创.容易)已知复数z 满足||2z z z +=,(z 为z 的共轭复数).下列选项(选项中的i 为虚数单位)中z =( ).A. 1i +B. 1i -C.1i +或1i -D.1i -+或1i -- 【答案】C【解析】设(,)z a bi a b R =+∈,则z a bi =-,所以22222a b a ⎧+=⎨=⎩得11a b =⎧⎨=±⎩,所以1z i =+或1z i =-.故选C.(用验证法2z z +=即可得C ) 【考点】考查复数的模的运算.3. (原创.容易)正项等比数列{}n a 中,34,a a 的等比中项为11eed x x⎰,令123n n T a a a a =⋅⋅⋅⋅ ,则6T =( )A.6B.16C.32D.64 【答案】D【解析】因为1111ln |ln ln 2ee eedx x e x e ==-=⎰,即344a a =, 又1625344a a a a a a ===,所以33612634()464T a a a a a =⋅⋅⋅=== .故选D. 【考点】考查积分的运算及等比数列的性质.4. (原创.容易) 一个几何体的三视图如图所示,正视图与俯视图外框为全等的长与宽分别为2,1的长方形,侧视图为正方形.则这个几何体的体积为A.13 B.53 C.54D.2 【答案】B【解析】依题意几何体是长方体截去了一个三棱锥部分而成.长方体的体积为1122⨯⨯=,三棱锥的体积为111112323⨯⨯⨯⨯=, 所以几何体的体积为15233-=.故选B. 【考点】考查立体几何三视图及体积运算.5. (原创.容易)已知如图所示的程序框图中输出的结果为a ,则二项式6()a x x-展开式中的常数项为( )A.15B.-15C.20D.-20 【答案】C 【解析】由11a a=-赋值运算,a 输入值为-1,则第1次运算结果为12,第2次结果为2,第3次结果为-1,结果数字以3为周期循环出现,要运算12次,此时输出的数为-1.这样二项式6()a x x-的展开通项为6161()k k kk T C x x-+=,当3k =时为常数项,所以常数项为3620C =.故选C.【考点】考查算法框图及二项式定理的展开式. 6.(原创.容易)函数sin |sin |()x x f x x+=的部分图象为几何体i <13?【答案】A【解析】当[,0)x π∈-时,()0f x =,所以排除C,D ;当(2,)x ππ∈--时sin 0x >,2sin ()0xf x x=<.故选A. 【考点】考查三角函数的值的变化及图象.7.(原创.容易)一个圆形电子石英钟由于缺电,指针刚好停留在8:20整,三个指针(时针、分针、秒针)所在射线将时钟所在圆分成了三个扇形,一只小蚊子(可看成是一个质点)随机地飞落在圆面上,则恰好落在时针与分针所夹扇形内的概率为( ) A.1136 B.13 C.1336 D.718【答案】C【解析】观察时钟所在圆被12个刻度十二等分,指针转过一等分就旋转30,时针转过一等分就是1小时,分针转过一等分就是5分钟,所以8:20的时候秒针指向12,分针指向4,时针的指向是从刻度8再转过一等分的三分之一即10.这样分针与时针这间的扇形的圆心角为43010130⨯+=.又同圆中扇形面积比等于其圆心角的度数的比,所以1301336036P ==.故选C. 【考点】考查几何概率8. (原创.容易)在ABC ∆中,,1CA CB CA CB ⊥==,D 为AB 的中点,将向量CD绕点C 按逆时针方向旋转90得向量CM ,则向量CM在向量CA 方向上的投影为( )A.1-B.1C.12-D.12【答案】C121110987654321【解析】如图,以,CA CB 为,x y 轴建立平面直角坐标系,则11(1,0),(,)22CA CD == ,得11(,)22CM =- ,所以向量CM 在向量CA 方向上的投影为11212||CA CM CA -⋅==-.故选C. 【考点】考查平面向量的投影的定义及计算.9. (原创.中等) 在三棱锥S ABC -中,,,AB AC AB AC SA SA ⊥==⊥平面ABC ,D 为BC 中点,则异面直线AB 与SD 所成角的余弦值为( )A.以上结论都不对 【答案】B【解析】如图,取AC 中点为E ,连结,DE SE ,因为,D E 分别为,BC AC 的中点,所以DE ∥AB ,所以SDE ∠就是异面直线AB 与SD 所成角,令2AB AC SA ===,由勾股定理得SE =1DE =.易证BA ⊥平面SAC ,DE ∴⊥平面SAC ,DE SE ∴⊥,SD ∴=在Rt SDE ∆中,cos 6DE SDE SD ∠===.故选B. 【考点】考查空间异面直线所成角的大小. 10. (原创.中等) 下面有四个命题:①设(1,1),X N (13)0.9544P X -≤≤=,则(3)0.0228P X ≥=. ②已知lg 2a =,则aaa a a a <<. ③将2tan()6y x π=+的图象向右平移6π个单位,再将所得图象的横坐标不变,纵坐标缩短到原来的12,可得到tan y x =的图象. ④设03a <<,则函数3()(01)f x x ax x =-<<有最小值无最大值. 其中正确命题的个数为( )A.1B.2C.3D.4 【答案】CCS【解析】①(1,1),X N 曲线关于1X =对称,所以0.9544(3)0.50.02282P X ≥=-=,正确. ②可知0101,a a a a a <<∴>>,即1a a a >>,所以aa a a a a <<,错误. ③正确.④'201,()30x f x x a <<∴=-= 得x =,又03a <<,01∴<,可知()f x 在单调递减,在单调递增,所以正确.故选C. 【考点】考查了正态分布的概率计算,用指数函数的单调性比较大小,图象变换及函数的最值的求解.11. (原创.中)已知双曲线22221(0,0)x y a b a b-=>>的左、右顶点分别为,A B ,右焦点为F .过点F 且垂直于x 轴的直线l 交双曲线于,M N 两点,P 为直线l 上一点,当APB ∠最大时,点P 恰好在M (或N )处.则双曲线的离心率为( )2【答案】A【解析】当过,A B 的圆与直线l 相切于P 点时,直线上其它点都在圆外,此时APB ∠最大,由切割线定理得2222||||||()()FP FB FA c a c a c a b ==-+=-=,点P 恰好在M 处,所以||FM b =,由双曲线可知2||b FM a =,所以2,b b a b a=∴=,所以双曲线的离心率为e =故选A.(也可用正切的和差公式求解)【考点】考查求双曲线的离心率. 12. (改编,难)已知函数ln ,0()ln(),0mx x x f x mx x x ->⎧=⎨+-<⎩.若函数()f x 有两个极值点12,x x ,记过点11(,())A x f x 和22(,())B x f x 的直线斜率为k ,若02k e <≤,则实数m 的取值范围为( )A.1(,2]eB.1(,]e eC.(,2]e eD.1(2,]e e+ 【答案】B【解析】当0x >时,函数()ln f x mx x =-的导函数为'11()mx f x m x x-=-=, 由函数()f x 有两个极值点得0m >,又()f x 为奇函数,不妨设210x x =->,则有21x m=,1(,1ln )B m m ∴+可得:1(,(1ln ))A m m--+ . 由直线的斜率公式得2121()()(1ln )f x f x k m m x x -==+-,0m >,又0k >,11ln 0,m m e∴+>∴>,(当10m e <≤时,0k ≤,不合题意)令1()(1ln ),k h m m m m e==+>得'()2ln 1(1ln )0h m m m =+=++>,()h m ∴在1(,)e +∞上单调递增,又1()0,()2h h e e e==,由02k e <≤得:1()()()h h m h e e<≤,所以1m e e <≤.故选B.【考点】利用导数研究函数的极值、零点及不等式问题. 二.填空题:本题共4个题,每小题5分,共20分.13. (书本题改编.容易)已知抛物线22y px =的准线方程为2x =-,点P 为抛物线上的一点,则点P 到直线3y x =+的距离的最小值为_________.【解析】由题设得抛物线方程为28y x =,设P 点坐标为(,)P x y ,则点P 到直线3y x =+的距离为d=222===≥,当4y =. 【考点】考查抛物线的性质,点到直线的距离及最值的求解.14. (原创.容易) 我国古代著名的数学家刘徽著有《海岛算经》.内有一篇:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直.从前表却行百二十三步,人目著地取望岛峰,与表末参合.从后表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高及去表各几何?”请你计算出海岛高度为__________步.(参考译文:假设测量海岛,立两根标杆,高均为5步,前后相距1000步,令前后两根标杆和岛在同一直线上,从前标杆退行123 步, 人的视线从地面(人的高度忽略不计)过标杆顶恰好观测到岛峰,从后标杆退行127步, 人的视线从地面过标杆顶恰好观测到岛峰,问岛高多少? 岛与前标杆相距多远?)(丈、步为古时计量单位,当时是“三丈=5步”) 【答案】1255步【解析】如图,设岛高x 步,与前标杆相距y 步,则有512312351271271000x y x y⎧=⎪+⎪⎨⎪=⎪++⎩,解得:1255x =步. 【考点】考查解直角三角形,利用相似成比例的关系.15. (原创.容易)若实数,x y 满足3||3y x ay x ≥+⎧⎨≤-+⎩.若z x y =+的最小值为7-,则________a =. 【答案】2-【解析】作出可行域如图所示,过点C 时取最小值.由33y x y x a=+⎧⎨=+⎩得333(,)22a a C --,则333722a a --+=-得2a =-. 【考点】考查利用线性规划求字母的值.16. (改编.难) 已知数列{}n a 的前n 项和为n S (*n N ∈),且满足212n n S S n n ++=+,若对*1,n n n N a a +∀∈<恒成立,则首项1a 的取值范围是__________. 【答案】13(,)44-【解析】因为212n n S S n n ++=+,所以212(1)1,(2)n n S S n n n -+=-+-≥, 两式作差得141,2n n a a n n ++=-≥,所以145,3n n a a n n -+=-≥两式再作差得114,3n n a a n +--=≥,可得数列{}n a 的偶数项是以4为公差的等差数列,从3a 起奇数项也是以4为公差的等差数列.若对*1,n n n N a a +∀∈<恒成立,当且仅当1234a a a a <<<.1271000又12213213,32,742a S a a a a a +=∴=-∴=-=+,4311172a a a =-=-, 所以1111324272a a a a <-<+<-,解得:11344a -<<. 【考点】数列递推的应用.三.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)(原创.易)已知ABC ∆中,2AB BC CA ===,P 为ABC ∆内一点,且90BPC ∠= .(Ⅰ)当BP =AP 的长;(Ⅱ)若150APC ∠= ,令PCB θ∠=,求tan θ的值.解析:(Ⅰ)如图,在PBC ∆中,90BPC ∠=,2BP BC ==,45PBC ∴∠= .所以15ABP ∠=,cos15cos(4530)=-=.……………2分 由余弦定理得:2222cos15AP BA BP BA BP =+-⋅⋅424=+-=-4分1AP ∴=.……………6分(另解:取BC 中点为D ,连PD ,证明,,A P D 三点共线,求出1PD =,又AD =则1AP =.此法请酌情给分)(Ⅱ)PCB θ∠=,60ACP θ∠=-,150APC ∠=由内角和定理得30PAC θ∠=-.……………8分在直角PBC ∆中,cos 2cos PC BC θθ=⋅=,……………9分 在APC ∆中,由正弦定理得:sin sin AC PCAPC PAC =∠∠即22cos sin150sin(30)θθ=-,……………11分CACA解得tan 3θ=.……………12分 18. (本小题满分12分)(原创.中)如图,五边形ABSCD 中,四边形ABCD 为长方形,三角形SBC 为边长为2的正三角形,将三角形SBC 沿BC 折起,使得点S 在平面ABCD 上的射影恰好在AD 上.(Ⅰ)当AB =时,证明:平面SAB ⊥平面SCD ;(Ⅱ)若1AB =,求平面SCD 与平面SBC 所成二面角的余弦值的绝对值.解析:(Ⅰ)作SO AD ⊥,垂足为O ,依题意得SO ⊥平面ABCD ,,SO AB SO CD ∴⊥⊥, 又AB AD ⊥,AB ∴⊥平面SAD ,,AB SA AB SD ⊥⊥.……………2分利用勾股定理得SA ==SD =在SAD ∆中,2,AD SA SD SA SD ==⊥……………4分SD ∴⊥平面SAB ,又SD ⊂平面SCD ,所以平面SAB ⊥平面SCD .……………5分(Ⅱ)连结,BO CO ,SB SC = ,Rt SOB Rt SOC ∴∆≅∆,BO CO =,又四边形ABCD 为长方形,,Rt AOB Rt DOC OA OD ∴∆≅∆∴=.取BC 中点为E ,得OE ∥AB ,连结,SE SE ∴=其中1OE =,1OA OD ==,OS =……………7分由以上证明可知,,OS OE AD 互相垂直,不妨以,,OA OE OS 为,,x y z 轴建立空间直角坐标系. 1,OE OS =∴(0,1,0),(1,1,(2,0,0)DC SC BC ∴==-=-,……………8分设111(,,)m x y z =是平面SCD 的法向量,则有00m DC m SC ⎧⋅=⎪⎨⋅=⎪⎩即111100y x y =⎧⎪⎨-+=⎪⎩, 令11z =得(m =.……………9分设222(,,)n x y z =是平面SBC 的法向量,则有00n BC n SC ⎧⋅=⎪⎨⋅=⎪⎩即2222200x x y -=⎧⎪⎨-+=⎪⎩ 令11z =得n =.……………10分则||1|cos ,|3||||m n m n m n ⋅===⋅……………11分所以平面SCD 与平面SBC 所成二面角的余弦值的绝对值为13.……………12分 19. (本小题满分12分)(原创.易)我校为了更好地管理学生用手机问题,根据学生每月用手机时间(每月用手机时间总和)的长短将学生分为三类: 第一类的时间区间在(0,30],第二类的时间区间在(30,60],第三类的时间区间在(60,720](单位:小时),并规定属于第三类的学生要进入“思想政治学习班”进行思想和心理的辅导.现对我校二年级1014名学生进行调查,恰有14人属于第三类,这14名学生被学校带去政治学习.由剩下的1000名学生用手机时间情况,得到如图所示频率分布直方图.(I) 求这1000名学生每月用手机时间的平均数; (II)利用分层抽样的方法从1000名选出10位学生代表,若从该10名学生代表中任选两名学生,求这两名学生用手机时间属于不同类型的概率; (III)若二年级学生长期保持着这一用手机的现状,学校为了鼓励学生少用手机,连续10个月,每个月从这1000名学生中随机抽取1名,若取到的是第一类学生,则发放奖品一份,设X 为获奖学生人数,求X 的数学期望()E X 与方差()D X .x用手机时间解析:(Ⅰ) 平均数为: 50.01010150.03010250.04010350.01010⨯⨯+⨯⨯+⨯⨯+⨯⨯450.00610550.0041023.4+⨯⨯+⨯⨯=(小时). ……………………4分(Ⅱ) 由频率分布直方图可知,采用分层抽样抽取10名学生,其中8名为第一类学生,2名为第二类学生,则从该10名学生代表中抽取2名学生且这两名学生不属于同一类的概率为118221016.45C C C =…………8分 (Ⅲ) 由题可知,这1000名学生中第一类学生80%,则每月从1000名学生中随机抽取1名学生,是第一类学生的概率为0.8,则连续10个月抽取,获奖人数(10,0.8)X B ,其数学期望()100.88E X np ==⨯=(小时),方差()(1)100.80.2 1.6D X np p =-=⨯⨯=.……………12分 20. (本小题满分12分)(原创.中难)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,12,F F 分别为椭圆的左、右焦点,点P 为椭圆上一点,12F PF ∆(Ⅰ)求椭圆C 的方程; (Ⅱ)过点(4,0)A 作关于x 轴对称的两条不同直线12,l l 分别交椭圆于11(,)M x y 与22(,)N x y ,且12x x ≠,证明直线MN 过定点,并求AMN ∆的面积S 的取值范围.解:(Ⅰ)设222a b c -=,则c a =.……………1分 设(,)P x y,则1212||,||F PF F PF S c y y b S bc ∆∆=≤∴≤= .……………3分 解得21a b =⎧⎨=⎩.所以椭圆C 的方程为2214x y +=.……………4分 (Ⅱ)设MN 方程为,(0)x ny m n =+≠,联立22440x ny m x y =+⎧⎨+-=⎩,得222(4)240n y nmy m +++-=,212122224,44nm m y y y y n n --∴+==++,……………5分因为关于x 轴对称的两条不同直线12,l l 的斜率之和为0 即1212044y y x x +=--,即1212044y y ny m ny m +=+-+-,……………7分 得1212122()4()0ny y m y y y y ++-+=,即222222(4)280444n m nm nmn n n --+=+++.解得:1m =.……………8分 直线MN 方程为:1x ny =+,所以直线MN 过定点(1,0)B .……………9分又12||y y -===令211,(0,)44t t n =∴∈+12||y y ∴-=……………11分又121213||||||(0,222S AB y y y y =-=-∈.……………12分 (其它解法酌情给分) 21. (本小题满分12分)(原创.难)已知函数()ln(),0f x ax a a =->.(Ⅰ)若函数()()xh x e f x =为单调函数,求a 的取值范围;(Ⅱ)当1a =时,证明:()sin 0xe f x x +>.解:(Ⅰ)()(ln ),0x h x e ax a x =->'1()(ln )x h x e ax a x∴=+-, ()h x 为单调函数等价为'()0h x ≥恒成立或'()0h x ≤恒成立,令1()ln x ax a x ϕ=+-得/22111()x x x x xϕ-=-=, 所以()x ϕ在(0,1)单调递减,在(1,)+∞单调递增,……………………2分 又1()0aϕ=,当01a <≤时11a ≥,1(,)x a ∴∈+∞时,1()()0x a ϕϕ>=; 当1a >时11a <,1(0,)x a ∴∈时,1()()0x aϕϕ>=;'()0h x ∴≤不可能恒成立,归纳得'()0h x ≥恒成立. ……………………3分又min ()(1)ln 1x a a ϕϕ==-+,所以ln 10a a -+≥ . 令()ln 1,0p a a a a =-+>,'1()1p a a=-, 得()p a 在(0,1)单调递增,在(1,)+∞单调递减,()(1)0p a p ≤=,即ln 10a a -+≤, ……………………5分所以ln 10a a -+=,即1a =. ……………………6分 (Ⅱ)令()(ln 1)sin x F x e x x =+-, (1)当x e ≥时,sin 1x ≥-,所以()(ln 1)sin ln 1x x F x e x x e x =+-≥-+,0x >. ……………………7分因为'[(1)]10x x e x e -+=-≥,所以0(1)(01)0x e x e -+>-+=即1x e x >+;因为'1[(1)l n ]1x x x--=-,可知函数(1)l nx x --在1x =处取最小值即(1)ln 0x x --≥,即ln 1x x -≥-.由不等式的性质得ln 1(1)(1)130xe x x x -+>++-+=>,所以()(ln 1)sin 0xF x e x x =+->. ……………………9分(2)当0x e <<时,()(ln 1)sin 1(ln 1)sin xF x e x x x x =+->+-, 因为/(sin )1cos 0x x x -=-≥,所以sin 0sin 00x x ->-=,即sin x x <,ln 10,(ln 1)sin (ln 1)x x x x x -<∴->- ,即1()1(ln 1)(ln 1)F x x x x x x>+-=+- 由(Ⅱ)证明可知1ln 10x x+-≥,所以()0F x >. ……………………11分由(1)(2)得()sin 0x e f x x +>. ……………………12分 (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22. (本小题满分10分)[选修4-4:坐标系与参数方程] (原创.易)在直角坐标系xOy 中,直线l 的参数方程为5cos sin x t y t αα=+⎧⎨=⎩,(t 为参数,α为直线倾斜角).以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是4cos ρθ=.(Ⅰ)当45α= 时,求直线l 的普通方程与曲线C 的直角坐标方程;(Ⅱ)已知点C 的直角坐标为(2,0)C ,直线l 与曲线C 交于,A B 两点,当ABC ∆面积最大时,求直线l 的普通方程.解:(Ⅰ)当45α= 时,直线l的参数方程为52x y ⎧=+⎪⎪⎨⎪=⎪⎩, 消去t 得直线l 的普通方程为50x y --=. ……………………2分曲线C 的极坐标方程是4cos ρθ=,两边乘以ρ为24cos ρρθ=,由cos sin x y ρθρθ=⎧⎨=⎩得:2240x y x +-=,所以曲线C 的直角坐标方程为2240x y x +-=. ……………………5分 (Ⅱ)曲线C 是以(2,0)C 为圆心,2为半径的圆,1||||sin 2sin 2ABC S CA CB ACB ACB ∆=∠=∠. ……………………7分 当90ACB ∠=时面积最大.此时点C 到直线:(5)l y k x =-的距离为,所以|,解得:k =, ……………………9分 所以直线l的普通方程为5)7y x =±-. ……………………10分23. (本小题满分10分)[选修4-5:不等式选讲] (原创.易)设()|1||3|f x a x x =-++. (Ⅰ)当1a =时,求()f x 的最小值;(Ⅱ)若()g x 为奇函数,且(2)()g x g x -=,当[0,1]x ∈时,()5g x x =.若()()()h x f x g x =-有无数多个零点,作出()g x 图象并根据图象写出a 的值(不要求证明).解:(Ⅰ)当1a =时,()|1||3||(1)(3)|4f x x x x x =-++≥--+=, 当且仅当(1)(3)0x x -+≤,即31x -≤≤时等号成立.()f x ∴的最小值为4. ……………………4分(Ⅱ)()g x 的图象是夹在5y =-与5y =之间的周期为4的折线,如图,…………6分又(1)3,3()(1)3,31(1)3,1a x a x f x a x a x a x a x -++-≤-⎧⎪=-++-<<⎨⎪+-+≥⎩, ()f x 的图象是两条射线与中间一段线段组成. ……………………8分若()()()h x f x g x =-有无数多个零点,则()f x 的图象的两条射线中至少有一条是平行于x 轴的,所以(1)0a -+=或(1)0a +=得1a =-.此时4,3()22,314,1x f x x x x -≤-⎧⎪=+-<<⎨⎪≥⎩,经验证符合题意,1a ∴=- ……………………10分。
2018年湖北省武汉市中北路中学高三数学理下学期期末试题一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设全集U=R,,,则A. B. C. D.参考答案:D略2. (5分)已知sin2α=﹣,α∈(﹣,0),则sinα+cosα=()A. B.﹣ C.﹣ D.参考答案:A【考点】:二倍角的正弦.【分析】:把要求的结论平方,就用到本题已知条件,这里用到二倍角公式,由角的范围,确定sinα+cosα的符号为正,实际上本题考的是正弦与余弦的和与两者的积的关系,解:∵α∈(﹣,0),∴sinα+cosα>0,∴(sinα+cosα)2=1+sin2α=,∴sinα+cosα=,故选A【点评】:必须使学生熟练的掌握所有公式,在此基础上并能灵活的运用公式,培养他们的观察能力和分析能力,提高他们的解题方法.本题关键是判断要求结论的符号,可以用三角函数线帮助判断3. 定义在上的奇函数满足:当时,,则方程的实根的个数为()A. 1 B. 2 C.3 D.5参考答案:C略4. 不等式的解集是A.(一∞,-2)U(7,+co) B.[-2,7]C.D. [-7,2]参考答案:C由得,即,所以,选C.5. 已知变量与正相关,且由观测数据算得样本的平均数,,则由观测的数据得线性回归方程可能为()参考答案:A6. 将一个质点随机投放在关于的不等式组所构成的三角形区域内,则该质点到此三角形的三个顶点的距离均不小于1的概率是()A.B.C.D.参考答案:B略7. 在透明塑料制成的正方体容器中灌进体积的水,密封后可以任意摆放,那么容器内水面形状可能是:①三角形;②梯形;③长方形;④五边形.其中正确的结果是A.①②③ B.①③④ C.②③④ D.①②③④参考答案:D8. 已知双曲线(a>0,b>0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且x1x2=﹣,则m的值为()A.B.C.2 D.3参考答案:A【考点】双曲线的简单性质.【分析】由双曲线的定义可得a=2,可得y1=2x12,y2=2x22,A点坐标是(x1,2x12),B点坐标是(x2,2x22)A,B的中点坐标是(,),因为A,B关于直线y=x+m对称,所以A,B的中点在直线上,且AB与直线垂直,可得=+m,=﹣1,结合条件,由此能求得m.【解答】解:双曲线=1(a>0,b>0)上的一点到双曲线的左、右焦点的距离之差为4,可得2a=4,即a=2.抛物线y=2x2上的两点A(x1,y1),B(x2,y2),可得y1=2x12,y2=2x22,A点坐标是(x1,2x12),B点坐标是(x2,2x22),A,B的中点坐标是(,),因为A,B关于直线y=x+m对称,所以A,B的中点在直线上,且AB与直线垂直,可得=+m,=﹣1,即x12+x22=+m,x2+x1=﹣,因为x1x2=﹣,所以x12+x22=(x1+x2)2﹣2x1x2=+1=,代入得=﹣+m,求得m=.故选:A.9. 已知函数,则方程(为正实数)的根的个数不可能为A. 3个 B. 4个 C. 5个 D. 6个参考答案:A10. 函数的单调递增区间是()参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 已知正三棱锥P ABC中,E,F分别是AC,PC的中点,若EF BF,AB=2,则三棱锥P ABC 的外接球的表面积为_________.参考答案:12. 在△中,,,则的长度为________.参考答案:1或2由余弦定理得,即,解得BC=1或BC=2.13. 曲线在点处的切线方程为.参考答案:由已知得:求导,当时,k=0,所以切线方程:14. 已知是定义在上不恒为零的函数,对于任意的,都有成立.数列满足,且.则数列的通项公式__________________ .参考答案:15. △ABC的内角A,B,C所对的边分别为a,b,c,a=4,c=,sinA=4sinB,则C= _ .参考答案:16. 二男二女共四个学生站成一排照相,两个女生必须相邻的站法有种.(用数字作答)参考答案:1217. 某程序框图如下图所示,该程序运行后输出的的值为.31略三、解答题:本大题共5小题,共72分。
山东、湖北部分重点中学2018年第二次联考(理)数学试题(理工农医类)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创,容易)已知复数z 满足(1)3i z i -=-+,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 【答案】B【解析】(1)3i z i -=-+321iz i i-+⇒==---,则2z i =-+.故选B 【考点】复数运算及几何意义.2.(原创,容易)已知全集{}{}2|560,12U x Z x x A x Z x =∈--<=∈-<≤,{}2,3,5B =,则()U A B = ð ( ) A .{}2,3,5 B .{}3,5C .{}2,3,4,5D .{}3,4,5【答案】B【解析】{}{}0,1,2,3,4,5,0,1,2U A ==,则()U A B = ð{}3,5. 【考点】二次不等式及集合运算.3.(原创,容易)在等差数列{}n a 中,7=14S ,则246a a a ++=( ) A .2 B .4C .6D .8【答案】C【解析】744=147142S a a ⇒=⇒=,则246436a a a a ++==. 【考点】等差数列性质.4.(原创,容易)如图,网格纸上的小正方形边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A ....【答案】A【解析】三视图还原为三棱锥A BCD -,如左下图所示,则三棱锥A BCD -的表面积为A BCD S -=21422282⨯⨯⨯+⨯=+【考点】三视图还原及三棱锥的表面积.5.(原创,中档)已知 1.10.6122,3,log 3a b c ===,则,,a b c 的大小为( )A .b c a >> B.a c b >> C. b a c >> D.a b c >> 【答案】D【解析】 1.10.61220,30,log 30a b c =>=>=<, 1.10.622,32a b =>==<=【考点】指数函数对数函数的性质. 6.(原创,中档)若函数()sin(2)3f x x π=+图象的横坐标伸长到原来的2倍, 纵坐标不变,再向左平移6π得到函数()g x 的图象,则有( ) A .()cos g x x = B .()sin g x x = C .()cos()3g x x π=+ D .()sin()3g x x π=+【答案】A【解析】:26sin(2)sin()sin()cos 332y x y x y x x ππππ=+−−−−−→=+−−−→=+=左移横坐标变为倍.【考点】正余弦型函数的图象变换.7.(原创,中档)已知命题:p 若a c b c ⋅=⋅ ,则a b = ,命题:q 若2,a b a b +=<,则21b > ,则有( )A .p 为真 B.q ⌝为真 C. p q ∧为真 D.p q ∨为真 【答案】D【解析】p 为假,2,a b a b +=<2211b b b b ⇒>-⇒>⇒> ,q 为真. 则p q ∨为真,故选D【考点】向量数量积与模、不等式及简易逻辑.8.2cos()4θθ=+,则sin2θ=()A.13B.23C.23-D.13-【答案】C【解析】222(cos sin)22(cos sin)2cos sinθθθθθθθθ-=⇒+=⇒-2244sin23sin2sin23θθθ+=⇒=-或sin22θ=(舍),故选C考点:三角函数恒等变形.9.(原创,中档)如图所示,扇形AOB的半径为2,圆心角为90 ,若扇形AOB绕OA旋转一周,则图中阴影部分绕OA旋转一周所得几何体的体积为()A.3π B.5πC.83πD.163π【答案】C【解析】扇形AOB绕OA旋转一周所得几何体的体积为球体积的12,则321633V rππ==,AOB∆绕OA旋转一周所得几何体的体积为31833rππ⨯=,阴影部分旋转所得几何体的体积为83π,故选C【考点】旋转体体积、割与补.10.(原创,中档)函数22()41xxxf x⋅=-的图象大致为()A BC D【答案】A【解析】222()()()()4122x xx xx x f x f x f x f x -⋅==⇒-=-⇒--为奇函数,排除B ;()0x f x →+∞⇒→;排除D ;211(1=()()(1)322f f f f =⇒<),,排除C ;故选A【考点】函数性质及图象.11.(原创,中档)已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i 行,第j 列的数记为,i j a ,比如3242549,15,23,,,===a a a ,若,2017i j a =,则i j +=( )A .64B .65C .71D .72【答案】D【解析】奇数数列2120171009n a n n =-=⇒=, 按照蛇形排列,第1行到第i 行末共有(1)122i i i ++++=个奇数,则第1行到第44行末共有990个奇数;第1行到第45行末共有1035个奇数;则2017位于第45行;而第45行是从右到左依次递增,且共有45个奇数;故2017位于第45行,从右到左第19列,则45,2772i j i j ==⇒+=,故选D【考点】等差数列与归纳推理.12.(原创,难)已知函数()2cos()4f x x x π=+,给出下列命题:①函数()f x 的最小正周期为2π;②函数()f x 关于4x π=对称;③函数()f x 关于3(,0)4π对称;④函数()f x的值域为[,则其中正确的命题个数为( ) A. 1 B. 2 C. 3 D. 4【答案】D【解析】()2cos()4f x x x π=+的周期显然为2π;())cos()2sin 422f x x x x x πππ+=++=;()2)cos()2sin 422f x x x x x πππ-=-+-+=;()()44f x f x ππ+=-,故②正确.33())cos()2cos 42f x x x x x πππ+=++=33()2)cos()2cos 42f x x x x x πππ-=-+-+=;33()()44f x f x ππ+=--,故③正确. 2()(cos sin )(cos sin )f x x x x x =+-,设22cos sin (cos sin )2x x t x x t +=⇒-=-,则[t ∈,32y t t =-2min max 230y t t y y '=-=⇒=⇒==,故④正确 【考点】三角恒等变形、函数周期性、对称性及值域. 二、填空题:本大题共4小题,每小题5分.13.(原创,容易)若(,2),(1,1)a x b x ==-,若()()a b a b +⊥- ,则x = .【答案】1-【解析】22()()1a b a b a b x +⊥-⇒=⇒=-【考点】向量坐标运算及向量垂直.14.(原创,容易)已知实数,x y 满足102400x y x y x -+≤⎧⎪+-≥⎨⎪≥⎩,则2z x y =+的最小值为 .【答案】5【解析】由题意可得可行域为如图所示(含边界),11222z x y y x z =+⇒=-+,则在点(1,2)A 处取得最小值5【考点】基本型的线性规划15.(原创,中档)已知在数列{}n a 的前n 项之和为n S ,若1112,21n n n a a a -+==++,则10S = .【答案】1078【解析】111112,2121n n n n n n a a a a a --++==++⇒-=+11232211()()()()n n n n n a a a a a a a a a a ---⇒=-+-++-+-+⇒ 23122211n n n a n a --=+++++-+ .111212212n n n n ---=+-+=+-. 29101011122210782S ⨯=+++++= . 【考点】等差等比数列及均值不等式16.(原创,难)四棱锥S ABCD -中,底面ABCD 是边长为2的正方形,侧面SAD 是以SD为斜边的等腰直角三角形,若4SC ≤≤,则四棱锥S ABCD -的体积取值范围为 .【答案】8[]33【解析】如图所示,四棱锥S ABCD -中,可得:;AD SA AD AB AD ⊥⊥⇒⊥平面SAB ⇒平面SAB ⊥平面ABCD ,过S 作SO AB ⊥于O ,则SO ⊥平面ABCD ,故1433S ABCD ABCD V S SO SO -=⋅=,在SAB ∆中,2SA AB ==,设SAB θ∠=,则有,SC =又4SC ≤≤112cos [,]2233ππθθ⇒-≤≤⇒∈,则2sin SO θ=∈,四棱锥S ABCD -的体积取值范围为8[]33【考点】线面垂直、面面垂直、解三角不等式及体积范围.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12分)(原创,容易)已知单调的等比数列{}n a 的前n 项的和为n S ,若339S =,且43a 是65,a a -的等差中项.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足321log n n b a +=,且{}n b 前n 项的和为n T ,求1231111nT T T T ++++ . 【答案】(Ⅰ) 3n n a = ;(Ⅱ)43(18)解:(Ⅰ) 24656603a a a q q q =-⇒--=⇒=或2q =-(舍);………………3分3131(1)3931a q S a q-==⇒=-…………………5分3n n a =……………………6分(Ⅱ) 213log 321n n b n +==+;………………7分3521(2)n T n n n =++++=+ ………………8分11111()(2)22n T n n n n ==-++………………10分 1231111111111111111()()()()21322423522n T T T T n n ⇒++++=-+-+-+-+ 12311111311()2212n T T T T n n ⇒++++=--++ ……………………12分 【考点】等比数列基本量运算、数列求和 18.(本题满分12分)(原创,中档)设函数()2sin()cos 3f x x x π=+-(Ⅰ) 求()f x 的单调增区间;(Ⅱ) 已知ABC ∆的内角分别为,,A B C,若()2A f =ABC ∆能够盖住的最大圆面积为π,求AB AC ⋅的最小值.【答案】(Ⅰ) 5[,],1212k k k Z ππππ-++∈ ;(Ⅱ)6 (18)解:(Ⅰ) 1()2sin()cos sin 2cos 23222f x x x x x π=+-=+……3分s i n (2)3x π=+……………4分5222,2321212k x k k x k k Z πππππππππ-+≤+≤+⇒-+≤≤+∈…………5分 ()f x 的单调增区间为5[,],1212k k k Z ππππ-++∈……6分 (Ⅱ) 由余弦定理可知:222a b c bc =+-……7分 由题意可知:ABC ∆的内切圆半径为1……8分ABC ∆的内角,,A B C 的对边分别为,,a b c ,则b c a +-=9分222(b c b c bc +-=+-……………10分4()12b c bc ⇒=+≥⇒≥或43bc ≤(舍)……11分 1[6,)2AB AC bc ⋅=∈+∞ ,当且仅当b c =时,AB AC ⋅的最小值为6.……………12分令也可以这样转化:1r a b c =⇔++=……9分代入222()b c b c bc +-=+-;……………10分4()12b c bc ⇒=+≥⇒≥或43bc ≤(舍);……………11分 1[6,)2AB AC bc ⋅=∈+∞ ,当且仅当b c =时,AB AC ⋅的最小值为6.……………12分【考点】三角函数式化简、正余弦型函数性质、解三角形及均值不等式求最值. 19.(本题满分12分)(原创,中档)如图,三棱台111ABC A B C -中, 侧面11A B BA 与侧面11AC CA 是全等的梯形,若1111,A A AB A A AC ⊥⊥,且11124AB A B A A ==.(Ⅰ)若12CD DA = ,2AE EB =,证明:DE ∥平面11BCC B ; (Ⅱ)若二面角11C AA B --为3π,求平面11A B BA 与平面11C B BC 所成的锐二面角的余弦值.19.(Ⅰ)证明:连接11,AC BC ,梯形11AC CA ,112AC AC =,易知:111,2AC AC D AD DC == ……2分; 又2AE EB =,则DE ∥1BC ……4分;1BC ⊂平面11BCC B ,DE ⊄平面11BCC B ,可得:DE ∥平面11BCC B ……6分; (Ⅱ)侧面11AC CA 是梯形,111A A AC ⊥,1AA AC ⇒⊥,1A A AB ⊥,则BAC ∠为二面角11C AA B --的平面角,BAC ∠=3π……7分; 111,ABC A B C ⇒∆∆均为正三角形,在平面ABC 内,过点A 作AC 的垂线,如图建立空间直角坐标系,不妨设11AA =,则11112,A B AC ==4AC AC ==,故点1(0,0,1)A ,(0,4,0),C1,1)B B ……9分;设平面11A B BA 的法向量为111(,,)m x y z =,则有:11111100(1,00m AB y m m AB y z ⎧⎧⋅=+=⎪⎪⇒⇒=⎨⋅=++=⎪⎩……10分; 设平面11C B BC 的法向量为222(,,)n x y z =,则有:22122200030m CB y n m CB y z ⎧⎧⋅=-=⎪⎪⇒⇒=⎨⋅=-+=⎪⎩……11分; 1cos ,4m n m n m n⋅<>==-, 故平面11A B BA 与平面11C B BC 所成的锐二面角的余弦值为14……12分; 【考点】线面平行证明及二面角计算. 20. (本题满分12分)设函数2()2(2)23xf x x e ax ax b =--++-(原创,中档)(Ⅰ)若()f x 在0x =处的法线(经过切点且垂直于切线的直线)的方程为240x y ++=,求实数,a b 的值;(原创,难)(Ⅱ)若1x =是()f x 的极小值点,求实数a 的取值范围. (Ⅰ)解:()2(1)22x f x x e ax a '=--+;……………………2分; 由题意可知:(0)2f '=;……………………3分;(0)2222f a a '=-+=⇒=;………………4分;易得切点坐标为(0,2)-,则有(0)21f b =-⇒=;………………5分;(Ⅱ)由(Ⅰ)可得:()2(1)222(1)()x x f x x e ax a x e a '=--+=--;………………6分; (1)当0a ≤时,0()01x e a f x x '->⇒=⇒=,(,1)()0x f x '∈-∞⇒<;(1,)()0x f x '∈+∞⇒>;1x =是()f x 的极小值点,∴0a ≤适合题意;………………7分; (2)当0a e <<时,1()01f x x '=⇒=或2ln x a =,且ln 1a <;(,ln )()0x a f x '∈-∞⇒>;(ln ,1)()0x a f x '∈⇒<;(1,)()0x f x '∈+∞⇒>;1x =是()f x 的极小值点,∴0a e <<适合题意;………………9分;(2)当a e ≥时,1()01f x x '=⇒=或2ln x a =,且ln 1a ≥;(,1)()0x f x '∈-∞⇒>;(1,ln )()0x a f x '∈⇒<;(ln ,)()0x a f x '∈+∞⇒>;1x =是()f x 的极大值点,∴a e ≥不适合题意;…………11分综上,实数a 的取值范围为a e <;………………12分; 【考点】函数切线及函数极值. 21.(本题满分12分) 已知函数()(ln 1)1f x x x ax ax =⋅++-+.(原创,中档)(Ⅰ)若()f x 在[1,)+∞上是减函数,求实数a 的取值范围. (原创,难)(Ⅱ)若()f x 的最大值为2,求实数a 的值. (Ⅰ)()ln 220f x x ax a '=++-≤在[1,)+∞恒成立……1分;2ln 12x a x+⇒≤-在[1,)+∞恒成立……2分; 设2ln (),[1,)12x g x x x +=∈+∞-,则2122ln ()(12)x x g x x ++'=-,由1x ≥得:()0g x '>……3分; ()g x 在[1,)+∞上为增函数1x ⇒=,()g x 有最小值(1)2g =-. ∴2a ≤-;……4分; (Ⅱ)注意到(1)2f =,又()f x 的最大值为2,则(1)0f '=202a a ⇒+=⇒=-;………………6分下面证明:2a =-时,()2f x ≤,即()(ln 21)210f x x x x x =⋅-++-≤,1ln 230x x x⇔--+≤;……………7分 设1()ln 23,(0,)h x x x x x =--+∈+∞;……………8分 22221121(21)(1)()2x x x x h x x x x x-+++-'=-+==……………9分 (0,1)()0()x h x h x '∈⇒>⇒在(0,1]上为增函数;(1,)()0()x h x h x '∈+∞⇒<⇒在[1,)+∞上为减函数;……………10分1()x h x =⇒有最大值(1)0h =;……………11分()(1)0h x h ≤=()(ln 21)210f x x x x x ⇔=⋅-++-≤∴2a =-适合题意;……………12分【考点】导函数单调性、函数最值及不等式证明.选做题(请考生在第22、23题中任选一题作答,如果多选,则按所做的第一题计分)22.(本小题满分10分)【选修4−4:坐标系与参数方程】(原创,容易)已知直线l 的参数方程为()x t t y a t=⎧⎨=-⎩为参数.以原点为极点,x 轴的正半轴为极轴,建立极坐标系, 圆C 的极坐标方程为4cos ρθ=.(Ⅰ)求直线l 与圆C 的普通方程;(Ⅱ)若直线l 分圆C 所得的弧长之比为3:1,求实数a 的值.解:(Ⅰ)由题意知:2224cos 4cos 40x x y ρθρρθ=⇒=⇒-+=…………3分,0x t x y a x y a y a t=⎧⇒+=⇒+-=⎨=-⎩;…………5分 (Ⅱ)222240(2)4x x y x y -+=⇒-+=;…………6分,直线l 分圆C 所得的弧长之比为3:1⇒弦长为8分,d ⇒==9分,0d a ⇒==⇒=或4a =;…………10分,【考点】方程互化、圆弦长.23.(本小题满分10分)【选修4—5:不等式选讲】 (原创,容易)已知函数()241f x x x =-++,(Ⅰ)解不等式()9f x ≤;(Ⅱ)若不等式()2f x x a <+的解集为A ,{}230B x x x =-<,且满足B A ⊆,求实数a 的取值范围.23. 解:(Ⅰ)()9f x ≤可化为2419x x -++≤2339x x >⎧⎨-≤⎩,或1259x x -≤≤⎧⎨-≤⎩,或1339x x <-⎧⎨-+≤⎩;…………………………2分 24x <≤,或12x -≤≤,或21x -≤<-; ……………………4分不等式的解集为[2,4]-;……………………………5分(Ⅱ)易知(0,3)B =;…………………………6分所以B A ⊆,又2412x x x a -++<+在(0,3)x ∈恒成立;…………………………7分 241x x a ⇒-<+-在(0,3)x ∈恒成立;…………………………8分1241x a x x a ⇒--+<-<+-在(0,3)x ∈恒成立;…………………………9分 (0,3)(0,33)35a x a x x x >-⎧⎨>-∈∈+⎩在恒成立在恒成立05a a a ≥⎧⇒⇒≥5⎨≥⎩………………………10分 【考点】绝对值不等式解法、不等式恒成立.齐鲁名校教科研协作体山东、湖北部分重点中学2018届高三第二次调研联考数学(理)参考答案及评分标准1.【答案】B2.【答案】B3.【答案】C4.【答案】A5.【答案】D6.【答案】A7.【答案】D8.【答案】C9.【答案】C10.【答案】A11.【答案】D12.【答案】D13.【答案】1-14.【答案】515.【答案】107816.【答案】8]317.【答案】(Ⅰ) 3n n a = ;(Ⅱ)43 解:(Ⅰ) 24656603a a a q q q =-⇒--=⇒=或2q =-(舍);………………3分3131(1)3931a q S a q-==⇒=-…………………5分 3n n a =……………………6分(Ⅱ) 213log 321n n b n +==+;………………7分3521(2)n T n n n =++++=+ ………………8分11111()(2)22n T n n n n ==-++………………10分 1231111111111111111()()()()21322423522n T T T T n n ⇒++++=-+-+-+-+ 12311111311()2212n T T T T n n ⇒++++=--++ ……………………12分 【考点】等比数列基本量运算、数列求和18.【答案】(Ⅰ) 5[,],1212k k k Z ππππ-++∈ ;(Ⅱ)6 解:(Ⅰ) 1()2sin()cos sin 232f x x x x x π=+-=+……3分 s i n (2)3x π=+……………4分 5222,2321212k x k k x k k Z πππππππππ-+≤+≤+⇒-+≤≤+∈…………5分 ()f x 的单调增区间为5[,],1212k k k Z ππππ-++∈……6分 (Ⅱ) 由余弦定理可知:222a b c bc =+-……7分由题意可知:ABC ∆的内切圆半径为1……8分ABC ∆的内角,,A B C 的对边分别为,,a b c,则b c a +-=9分222(b c b c bc +-=+-……………10分4()12b c bc ⇒=+≥⇒≥或43bc ≤(舍)……11分 1[6,)2AB AC bc ⋅=∈+∞ , 当且仅当b c =时,AB AC ⋅ 的最小值为6.……………12分令也可以这样转化:12r a b c =⇔++=……9分代入222()b c b c bc +-=+-;……………10分4()12b c bc ⇒=+≥⇒≥或43bc ≤(舍);……………11分1[6,)2AB AC bc ⋅=∈+∞ , 当且仅当b c =时,AB AC ⋅ 的最小值为6.……………12分19.19.(Ⅰ)证明:连接11,AC BC ,梯形11AC CA ,112AC AC =,易知:111,2AC AC D AD DC == ……2分; 又2AE EB = ,则DE ∥1BC ……4分;1BC ⊂平面11BCC B ,DE ⊄平面11BCC B ,可得:DE ∥平面11BCC B ……6分;(Ⅱ)侧面11AC CA 是梯形,111A A AC ⊥,1AA AC ⇒⊥,1A A AB ⊥,则BAC ∠为二面角11C AA B --的平面角, BAC ∠=3π……7分; 111,ABC A B C ⇒∆∆均为正三角形,在平面ABC 内,过点A 作AC 的垂线,如图建立空间直角坐标系,不妨设11AA =,则11112,A B AC ==4AC AC ==,故点1(0,0,1)A ,(0,4,0),C1,1)B B ……9分;设平面11A B BA 的法向量为111(,,)m x y z =,则有:11111100(1,00m AB y m m AB y z ⎧⎧⋅=+=⎪⎪⇒⇒=⎨⋅=++=⎪⎩ ……10分; 设平面11C B BC 的法向量为222(,,)n x y z =,则有:22122200030m CB y n m CB y z ⎧⎧⋅=-=⎪⎪⇒⇒=⎨⋅=-+=⎪⎩……11分; 1cos ,4m n m n m n⋅<>==- , 故平面11A B BA 与平面11C B BC 所成的锐二面角的余弦值为14……12分;20.(Ⅰ)解:()2(1)22x f x x e ax a '=--+;……………………2分;由题意可知:(0)2f '=;……………………3分;(0)2222f a a '=-+=⇒=;………………4分;易得切点坐标为(0,2)-,则有(0)21f b =-⇒=;………………5分;(Ⅱ)由(Ⅰ)可得:()2(1)222(1)()x x f x x e ax a x e a '=--+=--;………………6分;(1)当0a ≤时,0()01x e a f x x '->⇒=⇒=,(,1)()0x f x '∈-∞⇒<;(1,)()0x f x '∈+∞⇒>;1x =是()f x 的极小值点,∴0a ≤适合题意;………………7分;(2)当0a e <<时,1()01f x x '=⇒=或2ln x a =,且ln 1a <;(,ln )()0x a f x '∈-∞⇒>;(ln ,1)()0x a f x '∈⇒<;(1,)()0x f x '∈+∞⇒>; 1x =是()f x 的极小值点,∴0a e <<适合题意;………………9分;(2)当a e ≥时,1()01f x x '=⇒=或2ln x a =,且ln 1a ≥;(,1)()0x f x '∈-∞⇒>;(1,ln )()0x a f x '∈⇒<;(ln ,)()0x a f x '∈+∞⇒>; 1x =是()f x 的极大值点,∴a e ≥不适合题意;…………11分综上,实数a 的取值范围为a e <;………………12分;21.(Ⅰ)()ln 220f x x ax a '=++-≤在[1,)+∞恒成立……1分; 2ln 12x a x+⇒≤-在[1,)+∞恒成立……2分; 设2ln (),[1,)12x g x x x +=∈+∞-,则2122ln ()(12)x x g x x ++'=-,由1x ≥得:()0g x '>……3分; ()g x 在[1,)+∞上为增函数1x ⇒=,()g x 有最小值(1)2g =-. ∴2a ≤-;……4分; (Ⅱ)注意到(1)2f =,又()f x 的最大值为2,则(1)0f '=202a a ⇒+=⇒=-;………………6分下面证明:2a =-时,()2f x ≤,即()(ln 21)210f x x x x x =⋅-++-≤,1ln 230x x x⇔--+≤;……………7分 设1()ln 23,(0,)h x x x x x =--+∈+∞;……………8分 22221121(21)(1)()2x x x x h x x x x x-+++-'=-+==……………9分 (0,1)()0()x h x h x '∈⇒>⇒在(0,1]上为增函数;(1,)()0()x h x h x '∈+∞⇒<⇒在[1,)+∞上为减函数;……………10分1()x h x =⇒有最大值(1)0h =;……………11分()(1)0h x h ≤=()(ln 21)210f x x x x x ⇔=⋅-++-≤∴2a =-适合题意;……………12分22.解:(Ⅰ)由题意知:2224cos 4cos 40x x y ρθρρθ=⇒=⇒-+=…………3分, 0x t x y a x y a y a t =⎧⇒+=⇒+-=⎨=-⎩;…………5分 (Ⅱ)222240(2)4x x y x y -+=⇒-+=;…………6分,直线l 分圆C 所得的弧长之比为3:1⇒弦长为8分,d ⇒==9分,0d a ⇒==⇒=或4a =;…………10分,23. 解:(Ⅰ)()9f x ≤可化为2419x x -++≤2339x x >⎧⎨-≤⎩,或1259x x -≤≤⎧⎨-≤⎩,或1339x x <-⎧⎨-+≤⎩;…………………………2分 24x <≤,或12x -≤≤,或21x -≤<-; ……………………4分不等式的解集为[2,4]-;……………………………5分(Ⅱ)易知(0,3)B =;…………………………6分 所以B A ⊆,又2412x x x a -++<+在(0,3)x ∈恒成立;…………………………7分 241x x a ⇒-<+-在(0,3)x ∈恒成立;…………………………8分1241x a x x a ⇒--+<-<+-在(0,3)x ∈恒成立;…………………………9分 (0,3)(0,33)35a x a x x x >-⎧⎨>-∈∈+⎩在恒成立在恒成立05a a a ≥⎧⇒⇒≥5⎨≥⎩………………………10分。
2017-2018学年度上学期高三年级期中检测数学(理)试题第I 卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数2z1i,则下列命题中正确的个数为①2=z ②i z -=1 ③z 的虚部为i ④z 在复平面上对应点在第一象限 A .1 B .2 C .3 D .4 2.下列函数为偶函数且在(0,+∞)上为增函数的是A .20()(cos )x f x tdt B .223()f x x x C .21()2f x x x D .()()xx f x x e e3.已知集合2lg 2x A x y x ⎧-⎫==⎨⎬+⎩⎭,集合{}21B y y x ==-,则集合{x x A B 且}x A B 为A .[]()2,12,-+∞ B .()()2,12,-+∞C .()[),21,2-∞-D .(](),21,2-∞-4.下列说法正确的是 A .“,x yR ,若0xy,则1x且1y ”是真命题B .在同一坐标系中,函数(1)y f x =+与(1)y f x =-的图象关于y 轴对称.C .命题“x R ,使得2230x x ”的否定是“x R ,都有2230x x ”D .aR ,“11a”是“1a ”的充分不必要条件5.如图,在ABC 中,13AN NC ,P 是BN 上的一点, 若29AP mABAC ,则实数m 的值为 A .19 B .13C .1D .3 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织七匹三丈(1匹=40尺,一丈=10尺),问日益几何?”第5题图其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了七匹三丈,问每天增加多少尺布?”若这一个月有31天,记该女子一个月中的第n 天所织布的尺数为n a ,则132931242830a a a a a a a a ++⋅⋅⋅++++⋅⋅⋅++的值为A .2930 B .1615 C .13D .15 7.若13tan ,(,)tan 242ππααα-=∈,则sin(2)4πα+的值为 A .2±B .25C .2D .2±8.某食品的保鲜时间y (单位:小时)与储存温度x (单位:C )满足函数关系bkx ey +=( 718.2=e 为自然对数的底数,,k b 为常数),若该食品在0C 的保鲜时间是192小时,在22C 的保鲜时间是48小时,则该食品在33C 的保鲜时间是( )小时.A .22B .23C .24D .33 9.已知函数()sin()(0,)2f x x πωϕωϕ=+><的部分图像如所示,为了得到()y f x 的图像需将cos 2yx 的图像A .向右平移3π个单位长度 B .向左平移3π个单位长度 C .向右平移6π个单位长度D .向左平移6π个单位长度 10.已知定义在R 上的偶函数)(x f ,满足)()4(x f x f =+,且]2,0[∈x 时,()sin 2sin f x x xππ=+,则方程0lg )(=-x x f 在区间[0,10]上根的个数是A .18B .19C .10D .9 11.在ABC 和AEF 中,B 是EF 的中点,1633ABEF BC CA ,,,若2AB AEAC AF ,则EF 与BC 的夹角的余弦值为A .12 B .23 C .34 D .13第9题图12.设函数()()x x f x e x ae (其中e 为自然对数的底数)恰有两个极值点12,x x 12()x x ,则下列说法中正确的是A .103aB .201x C .1(0)02f -<< D .12()()0f x f x第II 卷二、填空题(每题5分,共20分,将答案填在答题纸上)13.函数2lg(23)y x x =--+的单调递增区间是________.14.已知向量(6,2)a =-,(1,)b m =,且a b ⊥,则2a b -= . 15.已知数列{}n a 的通项公式为219104na n n,当123234a a a a a a 345a a a12n n n a a a 取得最大值时,n 的值为_________.16.若函数()y f x =满足b x a f x a f 2)()(=-++(其中220ab ),则称函数)(x f y =为“中心对称函数”,称点),(b a 为函数()f x 的“中心点”.现有如下命题:①函数()sin 1f x x =+是“中心对称函数”;②若“中心对称函数”()y f x =在R 上的“中心点”为()(),a f a ,则函数()()()F x f x a f a =+-是R 上的奇函数;③函数()32362f x x x x =-+-是“中心对称函数”,且它的“中心点”一定为()1,2;④函数x x x f cos 2)(-=是“中心对称函数”,且它的“中心点”一定为(,)2ππ.其中正确的命题是___ _____.(写出所有正确命题的序号)三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)已知向量(,cos())a sinx x π=-,(2cos ,2cos )b x x ,函数()1f x a b .(Ⅰ)求()f x 的对称中心; (Ⅱ)求函数()f x 在区间[0,]2π上的最大值和最小值,并求出相应x 的值.18.(本小题满分12分)已知函数()f x =4log (41)x++kx (k R ∈).(Ⅰ)当12k时,若方程()f x -m =0有解,求实数m 的取值范围; (Ⅱ)试讨论()f x 的奇偶性.19.(本小题满分12分)已知数列{}n a ,{}n b ,n S 为数列{}n a 的前n 项和,且满足214a b =,22n n S a =-,21(1)n n nb n b n n +-+=+(*n N ∈).(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)试问{}nb n能否为等差数列,请说明理由; (III )若数列{}n c 的通项公式为,24n n n n n a b n c a b n ⎧-⎪⎪=⎨⎪⎪⎩为奇数,为偶数,令n T 为{}n c 的前n 项的和,求2n T .20.(本小题满分12分)已知函数()-xf x e ax =(a R ∈,e 为自然对数的底数).(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若1a =,函数()()()2xg x x m f x e x x =--++在()2,+∞上为增函数,求实数m 的取值范围.21.(本小题满分12分)如图所示,某住宅小区一侧有一块三角形空地ABO ,其中3,OA km 33,OBkm90AOB .物业管理拟在中间开挖一个三角形人工湖OMN ,其中,M N 都在边AB 上(,M N 不与,A B 重合,M 在,A N 之间),且30MON .(Ⅰ)若M 在距离A 点2km 处,求点,M N 之间的距离;(Ⅱ)为节省投入资金,三角形人工湖OMN 的面积要尽可能小.试确定M 的位置,使OMN 的面积最小,并求出最小面积.22.(本小题满分12分)已知数列{}n a 满足1n na t =+(,,3,)n t N t t n t *∈≥≤,为常数. (Ⅰ)设1121111nni inS a a a a ,*n N ,证明:(1)ln(1)nS t n ;(Ⅱ)证明:1n a na e -<(e 为自然对数底数);(Ⅲ)设1231()=()()()()nttt t t n kn k T a a a a a ==+++∑ ,*nN ,试比较与n T 与1的大小关系,并说明理由.第21题图1. C 2. D 3. D 4. B 5. A 6. B 7. C 8. C 9. A 10. B 11. B 12. C第II 卷二、填空题:每题5分,满分20分,将答案填在答题纸上. 13. (3,1]或(3,1) 14. 45 15. 9n16.①②③三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.解:(I )因为()1f x a b =2sin cos cos(π)2cos 1x x x x +-⋅+22sin cos 2cos 1x x x =-+=sin 2cos2x x -=2sin(2)4x………4分所以()f x 的对称中心为(,0)()28k k Z ππ+∈ ……………5分 (II )由(I )得,()f x =sin 2cos2x x -=2sin(2)4x π-, …………7分因为π0,2x ⎡⎤∈⎢⎥⎣⎦,所以π3π2,444x π⎡⎤-∈-⎢⎥⎣⎦, 所以当242x ππ-=时,即8x 3π=时,()f x 的最大值是2;当244x ππ-=-时,即0x =时,()f x 的最小值是1-. …………10分 18.(本小题满分12分)解:(Ⅰ)由m =()f x =4log (41)x+-12x ,∴m =441log 2x x +=41log (2)2xx+. ∵1222xx ,∴m ≥12. ……………………………………6分(Ⅱ)依题意得定义域为R ,关于原点对称∵()f x 4log (41)x ++kx ,()f x 4log (41)x -+-kx ,令()()f x f x ,得441log 41x x-++=2kx -,即4log 4x=2kx -, ∴2x kx 对一切k R ∈恒成立.∴12k时()()f x f x ,此时函数()f x 是偶函数……………………9分∵0441(0)log (41)0log 22f k =+-⨯==,∴函数()f x 不是奇函数, 综上,当12k时,函数()f x 是偶函数;当12k 时,函数()f x 是非奇非偶函数. …………12分 19、(本小题满分12分)解:(Ⅰ)当1n =时,111222S a a =-⇒=,当2n ≥时,由112222n n n n S a S a --=-⎧⎨=-⎩,得:122n n n a a a -=-,则12n n a a -=,综上,{}n a 是公比为2,首项为2的等比数列,2nn a =;………………3分(Ⅱ){}nb n是等差数列,理由如下: ∵214a b =,∴11b =,∵21(1)n n nb n b n n +-+=+,∴111n nb b n n+-=+ 综上,{}n b n 是公差为1,首项为1的等差数列,且211n n bn b n n=+-⇒=;…7分 (Ⅲ)令212n n n p c c -=+22122221(21)2(2)2(41)2(41)424n nn n n n n n ----⋅⋅=-+=-⋅=-⋅01212123123474114(41)443474114(45)4(41)4n n n nn T n T n n --⎧=⨯+⨯+⨯++-⨯⎪⎨=⨯+⨯+⨯++-⨯+-⨯⎪⎩ ①②①-②,得:012121644334444444(41)43(41)414nn nnn T n n --⋅-=⋅+⋅+⋅++⋅--⋅=+--⋅- 所以27127499nn n T -=+⋅. ……………… ………12分20.(本小题满分12分)解:(Ⅰ)函数()f x 的定义域为R ,()xf x e a '=-.当0a ≤时,()0f x '>,∴()f x 在R 上为增函数; 当0a >时,由()0f x '=得ln x a =,当(),ln x a ∈-∞时,()0f x '<,∴函数()f x 在(),ln a -∞上为减函数, 当()ln ,x a ∈+∞时,()0f x '>,∴函数()f x 在()ln ,a +∞上为增函数……4分 (Ⅱ)当1a =时,()()()2x x g x x m e x e x x =---++,∵()g x 在()2,+∞上为增函数;∴()10xxg x xe me m '=-++≥在()2,+∞上恒成立,即11x x xe m e +≤-在()2,+∞上恒成立, …………………………6分令()11xx xe h x e +=-,()2,x ∈+∞,则()()()2221x x xxe xe e h x e --'==-()()221x x xe e x e---,令()2xL x e x =--,()10xL x e '=->在()2,+∞上恒成立,即()2xL x e x =--在()2,+∞上为增函数,即()()2240L x L e >=->,∴()0h x '>,即()11x x xe h x e +=-在()2,+∞上为增函数,∴()()222121e h x h e +>=-,∴22211e m e +≤-,所以实数m 的取值范围是2221,1e e ⎛⎤+-∞ ⎥-⎝⎦. ………………12分21.(本小题满分12分)解:(Ⅰ)在ABO 中,因为33390OAOB AOB ,,,所以60OAB ,在OAM 中,由余弦定理得:2222cos 7OM AO AM AO AM A ,所以7OM,所以22227cos 2OA OM AM AOM AO AM, 在OAN 中,sin sin()sin(90)ONA A AON AOM 27cos 7AOM, 在OMN 中,由sin 30sin MN OMONA,得7172427MN;… ………6分 (Ⅱ)解法1:设,060AOM,在OAM 中,由sin sin OM OAOAB OMA ,得332sin(60)OM,在OAN 中,由sinsin ONOA OABONA ,得90)2cos ON ==, 所以11sin 22OMNSOM ONMON 60)⋅12cos 2θ⋅ =2716sin(60)cos θθ+6060)4θ<<+.当26090θ+=,即15θ=时,OMN S的最小值为27(23)4.所以应设计15AOM ,可使△OMN 的面积最小,最小面积是27(23)4km 2…12分解法2:设AM =x ,0<x <3.在△OAM 中,由余弦定理得OM 2=AO 2+AM 2-2AO ·AM ·cos A =x 2-3x +9,所以OM =x 2-3x +9,所以cos∠AOM =OA 2+OM 2-AM 22OA ·OM =6-x2x 2-3x +9, 在△OAN 中,sin∠ONA =sin(∠A +∠AON )= sin(∠AOM +90°)=cos∠AOM =6-x 2x 2-3x +9,由ON sin ∠OAB =OAsin ∠ONA,得ON =36-x2x 2-3x +9·32=33x 2-3x +96-x, 所以S △OMN=12OM ·ON ·sin∠MON =12·x 2-3x +9·33x 2-3x +96-x ·12=33(x 2-3x +9)4(6-x ),0<x <3,令6-x =t ,则x =6-t ,3<t <6,则:S △OMN=33(t 2-9t +27)4t =334(t -9+27t )≥334·(2t ·27t-9)=27(2-3) 4.当且仅当t =27t ,即t =33,x =6-33时等号成立,S △OMN 的最小值为27(2-3)4, 所以M 的位置为距离A 点6-3 3 km 处,可使△OMN 的面积最小,最小面积是27(2-3) 4km 2.22.(本小题满分12分) 解:(Ⅰ)即证:12111ln(1)(1)(1)(1)nn t a t a t a +++>++++,即证:1111ln(1)23n n++++>+, 设()ln(1)g x x x =-+,1()111xg x x x '=-=++, ∵当0x >时,()0g x '>,()g x 在(0,)+∞上单调递增, 当10x -<<时,()0g x '<,()g x 在(1,0)-上单调递减, ∴()ln(1)(0)0g x x x g =-+≥=(当且仅当0x =时等号成立), 即0x >时,有ln(1)x x >+, ∴1113411ln 2ln ln lnln(1)2323n n n n+++++>++++=+, ∴12111(1)ln(1)n t n a a a +++>++ ……………………………4分(用数学归纳法给分)(Ⅱ)由(Ⅰ)知:当1x >-且0x ≠时,有ln(1)x x >+,即当0x >且1x ≠时,有1ln x x ->,因为0111n n t a t t <=≤<++,所以 1ln n n a a ->, 即1n a na e -<………………………………………8分(Ⅲ)1231()=()()()()1nt t t t tnk n k T a a a a a ,理由如下:解法一:由(Ⅱ)知:123()()()()t t tt n a a a a ++++3121111()()()()n a a a a t t t t e e e e 3121111()()()()n a a a a t t t t e e e e2111(1)1t tn t t t t ee e-+++-=-22211111(1)111t t t t t t t t t t ee ee e--+++++--≤=--,设 1t t eq +=,因为3142t t q ee +=≥>,21111t t t t ee-++-∴=-1111111t t q q q q q ----=<<---, 所以1231()=()()()()1nttt t t n kn k T a a a a a ==++++<∑ ………………12分解法二:因为,*n t N ∈, 且n t ≤,所以1231231()=()()()()()()()()nt t t t t t t t t nk n t k T a a a a a a a a a12()()()111tt t t t t t下面用数学归纳法证明:*3,t tN 时,12()()()1111tt t t t t t,即12(1)tt t t t t ,①当3t时,左边333312336(13),即当3t 时不等式成立;②假设当(3)t k k时不等式成立,即12(1)kkkk k k ,则当1tk时,111112(1)k kkk k k 11122(1)k k k k k k k 1(1)(12)(1)k k k k k k k11(1)(1)(1)2(1)kkk kkkk,11111112111()(1)1()()1111k k k k k k k C C k kkk111121kC k ,11(2)2(1)k k k k,11111112(1)2(1)(2)kkkkkk k kkk,所以当1t k时,不等式也成立;综合①②*3,t tN 时,12(1)tttt t t ,即12()()()1111tt t t tt t成立,所以1231()=()()()()1nt t t t t n kn k T a a a a a ==++++<∑.。