110孔数解析
- 格式:doc
- 大小:31.00 KB
- 文档页数:5
六年级数学同余定理试题答案及解析1.自然数-1的个位数字是多少?【答案】7【解析】我们先计算出的个数数字,再减去1即为所求.(特别的如果是0,那么减去1后的个位数字因为借位为9)将一个数除以10,所得的余数即是这个数的个位数字.而积的余数等于余数的积.有2除以10的余数为2,2×2除以10的余数为4,2×2×2除以10的余数为8,2×2×2×2除以10的余数为6;2×2×2×2×2除以10的余数为2,除以10的余数为4,除以10的余数为8,除以10的余数为6;…… ……也就是说,n个2相乘所得的积除以10的余数每4个数一循环.因为67÷4=16……3,所以除以10的余数同余与2×2×2,即余数为8,所以-1除以8的余数为7.即-1的个位数字为7.评注:n个相同的任意整数相乘所得积除以10的余数每4个数一循环.2.算式7+7×7+…+计算结果的末两位数字是多少?【答案】56【解析】我们只用算出7+7×7+…+的和除以100的余数,即为其末两位数字.7除以100的余数为7,7×7除以100的余数为49,7×7×7除以100的余数为43,7×7×7×7除以100的余数等于43×7除以100的余数为1;而除以100的余数等于×7的余数,即为7,……这样我们就得到一个规律除以100所得的余数,4个数一循环,依次为7,49,43,1.1990÷4=497……2,所以7+7×7+…+的和除以100的余数同余与:497×(7+49+43+1)+7+49=49756,除以100余56.所以算式7+7×7+…+计算结果的末两位数字是56.3.一个1994位的整数,各个数位上的数字都是3.它除以13,商的第200位(从左往右数)数字是多少?商的个位数字是多少?余数是多少?【答案】2,7【解析】这个数即为,而整除13的数的特征是将其后三位与前面的数隔开而得到两个新数,将这两个新数做差,这个差为13的倍数.显然有能够被13类整除,而1994÷6=332……2,即==+33,而是13的倍数,所以除以13的余数即为33除以13的余数为7.有÷13=25641,而÷13=25641025641,所以除以13所得的商每6个数一循环,从左往右依次为2、5、6、4、1、0.200÷6=33……2,所以除以13所得商的第23位为5.除以13的个位即为33除以13的个位,为2.即商的第23位(从左往右数)数字是5,商的个位数字是2,余数是7.4.己知:a=.问:a除以13的余数是几?【答案】8【解析】因为199119911991能被13整除,而1991÷3=663……2.有a==199119911991×+199119911991×+199119911991×++199119911991×+…+199119911991×+19911991.所以a除以13的余数等于19911991除以13的余数8.5.甲、乙两数的和是,甲数除以乙数商余,求甲、乙两数.【答案】1000,88【解析】(法1)因为甲乙,所以甲乙乙乙乙;则乙,甲乙.(法2)将余数先去掉变成整除性问题,利用倍数关系来做:从中减掉以后,就应当是乙数的倍,所以得到乙数,甲数.6.有两个自然数相除,商是,余数是,已知被除数、除数、商与余数之和为,则被除数是多少?【答案】1968【解析】被除数除数商余数被除数除数+17+13=2113,所以被除数除数=2083,由于被除数是除数的17倍还多13,则由“和倍问题”可得:除数=(2083-13)÷(17+1)=115,所以被除数=2083-115=1968.7.一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________.【答案】84【解析】设这个自然数除以11余,除以9余,则有,即,只有,,所以这个自然数为。
法兰尺寸表法兰制造标准作者:admin产品来源:本站原创点击数:189 更新时间:2008-8-19 【字体:小大】法兰结构图作者:admin产品来源:本站原创点击数:128 更新时间:2008-8-19 【字体:小大】产品录入:admin 责任编辑:admin法兰标准体系作者:admin产品来源:本站原创点击数:112 更新时间:2008-8-19 【字体:小大】法兰标准体系管道法兰按与管子的连接方式可分为五种基本类型:平焊法兰、对焊法兰、螺纹法兰、承插焊法兰、松套法兰。
法兰的密封面型式有有多种,一般常用有凸面(RF)、凹面(FM)、凹凸面(MFM)、榫槽面(TG)、全平面(FF)、环连接面(RJ)。
相应材质:20#、A105、Q235A、12Cr1MoV、16MnR、15CrMo、18-8、321、304、304L、316、316L等。
一、美标ANSIBI605、WN、SO、SW、PL、BL、TH、LJ。
二、日标JIS、B2220。
三、德标DIN、2527-2635四、欧洲系列、国行标准。
HG20615-97<-->HG20614-97五、美洲系列、国行标准。
HG20615-97<-->HG20635-97六、国家标准。
GB9122-GB9123-88七、石化、机械部标准。
JI81-86-59-94、JB2555-79八、电力部标准。
GD-87 DG-78九、化工部标准。
HGJ44-76-91 HG5010-5028-58十、压力容器法兰。
JB/T 4700-4707-2000法兰制造流程作者:admin产品来源:本站原创点击数:71 更新时间:2008-8-19【字体:小大】法兰产品系列作者:admin产品来源:本站原创点击数:63 更新时间:2008-8-19【字体:小大】。
国家梁上打孔标准110mm国家梁上打孔标准110mm是指在建筑结构中,用于穿越梁、柱等构件的孔洞直径为110毫米。
这个标准是为了确保建筑物的结构安全和施工质量而设立的。
一、国家梁上打孔标准110mm的背景和意义梁是建筑结构中的一种重要构件,承受着悬挂的荷载,并将荷载传递到支点或其他结构上。
在建筑物的设计和施工过程中,有时需要将管线、电缆等通过梁进行穿越,这就需要在梁上进行打孔。
为了确保穿越孔的质量和安全性,国家制定了标准,规定了梁上打孔的尺寸和要求。
国家梁上打孔标准110mm的制定,主要是为了以下几个方面的考虑:1.结构安全:打孔是在结构中作出的改变,如果打孔过大或者位置不准确,有可能会损坏结构的承载能力,甚至引发结构的倒塌。
通过规定统一的孔洞直径,可以保证结构的安全性,防止因为打孔不当引发的安全事故。
2.施工质量:打孔是建筑施工的一个环节,施工过程中需要遵守一定的规范和标准。
国家梁上打孔标准110mm的制定,有助于统一施工方的要求,提高施工质量,降低施工风险。
3.维护便捷:打孔不仅是为了穿越管线,也是为了以后的维护和维修。
通过规定统一的孔洞直径,可以方便后续的管线维护工作,减少维护的难度和成本。
二、国家梁上打孔标准110mm的具体要求1.孔洞直径:国家标准规定,梁上打孔的孔洞直径应为110毫米。
这个直径是在考虑管线通过的同时,也要考虑结构的强度和稳定性。
2.孔洞位置:孔洞应按照设计要求合理布置,位置要准确,不能与梁的主要受力区域相冲突。
在施工过程中,需要严格按照设计图纸进行操作,确保孔洞的位置正确。
3.孔洞平整度和光滑度:打孔后,孔洞的内壁应保持平整和光滑,不得有明显的凹凸或毛刺。
这是为了保证管线能够顺利通过,并减少管道在穿越过程中的损坏风险。
4.孔洞处理:孔洞的处理应符合相关的建筑施工规范,需要进行清理、除锈、刷防腐等工序。
同时,还需要进行检查和验收,确保处理过程符合标准要求。
5.监控与修复:一旦完成打孔,施工方需要采取相应的监控措施,定期检查孔洞的状况,并在必要时进行修复和维护。
第二十六讲同余有余精锐宝典在整数的除法中,只有能整除与不能整除两种情况。
当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数有如下一些重要性质(a,b,c均为自然数):(1)余数小于除数。
(2)被除数=除数×商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数。
(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。
(4)a与b的和除以c的余数,等于a,b分别除以c的余数之和(或这个和除以c的余数)。
(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c的余数)。
同余这个概念最初是由伟大的德国数学家高斯发现的。
同余的定义是这样的:两个整数a,b,如果它们除以同一自然数m所得的余数想同,则称a,b对于模m同余。
记作:a ≡b(mod m)。
读做:a同余于b模m。
比如,12除以5,47除以5,它们有相同的余数2,这时我们就说,对于除数5,12和47同余,记做12≡47(mod5)。
同余的性质比较多,主要有以下一些:性质(1):对于同一个出书,两个数之和(或差)与它们的余数之和(或差)同余。
比如:32除以5余数是2,19除以5余数是4,两个余数的和是2+4=6。
“32+19”除以5的余数就恰好等于它们的余数和6除以5的余数。
也就是说,对于除数5,“32+19”与它们的余数和“2+4”同余,用符号表示就是:32≡2(mod5),19≡4(mod5),32+19≡2+4≡1(mod5)性质(2):对于同一个除数,两个数的乘积与它们余数的乘积同余。
性质(3):对于同一个除数,如果有两个整数同余,那么它们的差就一定能被这个除数整除。
性质(4):对于同一个除数,如果两个整数同余,那么它们的乘方仍然同余。
应用同余性质解题的关键是要在正确理解的基础上灵活运用同余性质。
把求一个较大的数除以某数的余数问题转化为求一个较小的数除以这个数的余数,使复杂的题变简单,使困难的题变容易。
整数问题(好题选)1整数问题(好题选)1一.解答题(共30小题)1.求方程2x2﹣7xy+3y3=0的正整数解.2.若n为自然数,n+3与n+7都是质数,求n除以3所得的余数.3.有一个整数,用它去除70,110,160得到的三个余数之和是50,求这个数.4.满足被3除余1,被4除余2,被5除余3,被6除余4的最小自然数是?5.数119很奇特:当被2除时,余数为1;当被3除时,余数为2;当被4除时,余数为3;当被5除时,余数为4;当被6除时,余数为5.问:具有这种性质的三位数还有哪些?6.设p,q,r都是质数,并且p+q=r,p<q.求p.7.证明:当n>2时,n与n!之间一定有一个质数.8.已知n是正整数,且n4﹣16n2+100是质数,求n的值.9.p是质数,p4+3仍是质数,求p5+3的值.10.设n是大于1的正整数,求证:n4+4是合数.11.是否存在质数p.q,使得关于x的一元二次方程px2﹣qx+p=O有有理数根?12.设a,b,c,d为正整数,并且ab=cd,试问a+b+c+d能不为质数?13.试证明:形如111111+9×10n(n为自然数)的正整数必为合数.14.求这样的质数,当它加上10和14时,仍为质数.15.令a,b,c为整数,并且满足a+b+c=0.假设d=a1999+b1999+c1999.请问:(a)有没有可能d=2?(b)有没有可能d是个质数?(大于1的整数,如果只有1及本身的因子,称它为质数.)16.求所有的素数对(p,q),使得pq|5p+5q.17.小于10且分母为36的最简分数有多少个?18.已知a,b,c是三个两两不同的奇质数,方程有两个相等的实数根.(1)求a的最小值;(2)当a达到最小时,解这个方程.19.已知下面著名的“勾股定理”:在一个直角三角形中,两条直角边的平方之和等于斜边的平方.试问:是否存在同时满足下列两个条件的直角三角形?(1)三条边长均是正整数;(2)一条直角边为素数(也称质数)p.若存在,请求出另一条直角边长;若不存在,请说明理由.20.自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有_________个.21.求336与1260的最大公约数和最小公倍数.22.甲、乙、丙三人到李老师那里求学,甲每6天去一次,乙每8天去一次,丙每9天去一次,如果8月17日他们三人在李老师处见面,那么下一次在李老师处见面的时间是几月几日呢?23.一只青蛙在平面直角坐标系上从点(1,1)开始,可以按照如下两种方式跳跃:①能从任意一点(a,b),跳到点(2a,b)或(a,2b);②对于点(a,b),如果a>b,则能从(a,b)跳到(a﹣b,b);如果a<b,则能从(a,b)跳到(a,b﹣a).例如,按照上述跳跃方式,这只青蛙能够到达点(3,1),跳跃的一种路径为:(1,1)→(2,1)→(4,1)→(3,1).请你思考:这只青蛙按照规定的两种方式跳跃,能到达下列各点吗?如果能,请分别给出从点(1,1)出发到指定点的路径;如果不能,请说明理由.(1)(3,5);(2)(12,60);(3)(200,5);(4)(200,6).24.如图,一个圆圈上有n (n<100=个孔.小明像玩跳棋一样,从A孔出发,逆时针方向将一枚棋子跳动,每步跨过若干个孔,希望跳一圈后回到A孔.他先每步跳过2个孔,结果只能跳到B孔;他又试着每步跳过4个孔,结果还是跳到B;最后他每步跳过6孔,正好回到A孔.问这个圆圈上一共有多少个孔?25.已知x、y为正整数,且满足xy﹣(x+y )=2p+q,其中p、q分别是x与y的最大公约数和最小公倍数,求所有这样的数对(x,y )(x≥y ).26.有很多种方法可以将2001写成25个自然数之和,对于每一种写法,这25个自然数均有相应的最大公约数,那么这个最大公约数的最大值是多少?27.两个正整数最大公约数是7,最小公倍数是105.求这两个数.28.已知两个数的和是45,他们的最小公倍数是168,求这两个数.29.1到100中,与100互质的所有自然数之和是多少?(配对)30.三个自然数的最大公约数是10,最小公倍数是100,满足要求的三数组共有多少组?整数问题(好题选)1参考答案与试题解析一.解答题(共30小题)1.求方程2x2﹣7xy+3y3=0的正整数解.考点:高次方程.专题:计算题.分析:将原方程看作是关于x的一元二次方程,则△≥0,据此可以求得y的取值范围,从而求得y的正整数解;然后根据y的正整数解来求x的整数解.解答:解:∵方程2x2﹣7xy+3y3=0有正整数解,∴△=49y2﹣24y3=y2(49﹣24y)≥0,且y>0,解得,0<y≤;∴y=1或y=2;①当y=1时,原方程化为2x2﹣7x+3=0,即(2x﹣1)(x﹣3)=0,解得,x=(舍去),或x=3;∴原方程的解是:;②当y=2时,原方程化为2x2﹣14x+24=0,即(x﹣3)(x﹣4)=0,解得,x=3或x=4;∴原方程的解是:;.点评:本题考查了高次方程的解法.通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.2.若n为自然数,n+3与n+7都是质数,求n除以3所得的余数.考点:带余除法;质数与合数.专题:计算题.分析:因为求n除以3所得的余数,所以设n=3k(k是一个非负整数),然后将其代入n+3和n+7,并由n+3与n+7都是质数对其进行论证.解答:解:∵n除以3所得的余数只可能为0、1、2三种.①若余数为0,即n=3k(k是一个非负整数,下同),则n+3=3k+3=3(k+1),所以3|n+3,又3≠n+3,故n+3不是质数,与题设矛盾.②若余数为2,且n=3k+2,则n+7=3k+2+7=3(k+3),故3|n+7,n+7不是质数;与题设矛盾.所以n除以3所得的余数只能为1.点评:本题考查了关于质数与合数及带余数除法的题目.一个整数除以m后,余数可能为0,1,…,m﹣1,共m 个,将整数按除以m所得的余数分类,可以分成m类.如m=2时,余数只能为0与1,因此可以分为两类,一类是除以2余数为0的整数,即偶数;另一类是除以2余数为1的整数,即奇数.同样,m=3时,就可将整数分为三类,即除以3余数分别为0、1、2这样的三类.通过余数是否相同来分类是一种重要的思想方法,有着广泛的应用.3.有一个整数,用它去除70,110,160得到的三个余数之和是50,求这个数.考点:带余除法.分析:根据题意,70+110+160﹣50一定是这个整数的倍数,由于三个余数的和为50,从而可知这个整数比50要小,可把这个整数的倍数写成几个数的乘积的形式,其中一个数一定要小于50,列式解答即可得到答案.解答:解:70+110+160﹣50=180+160﹣50,=340﹣50,=290,因为:2×5×29=290,58×5=290,因为这个整数不能为2、5、10,只能为58或29,110÷58=1…52,不符合题意,故舍去;70÷29=2…12,110÷29=3…23,160÷29=5…15,12+23+15=50.答:这个数为29.点评:此题考查了带余除法,解答此题的关键是确定几个被除数相加再减去余数的和是这个除数的倍数,然后再根据余数和为50确定除数的范围即可.4.满足被3除余1,被4除余2,被5除余3,被6除余4的最小自然数是?考点:带余除法.分析:从题中可以看出这个数加2就能被3,4,5,6整除,所以要先求3,4,5,6的最小公倍数,6是3的倍数,求4,5,6的最小公倍数,是60,再用这个数减2,可知最小为58.解答:解:∵4=2×2,6=2×3,∴3、5、4和6的最小公倍数是2×3×2×5=60,∴60﹣2=58.答:满足被3除余1,被4除余2,被5除余3,被6除余4的最小自然数是58.点评:此题主要考查应用最小公倍数的知识解决实际问题的能力,注意求最小公倍数时,把它们分解质因数后,把公有的质因数和独有的质因数连乘所得的积就是它们的最小公倍数.5.数119很奇特:当被2除时,余数为1;当被3除时,余数为2;当被4除时,余数为3;当被5除时,余数为4;当被6除时,余数为5.问:具有这种性质的三位数还有哪些?考点:带余除法.分析:被2除余1;被3除余2;被4除余3;被5除余4;被6除余5,就是这个数加上1能同时被2、3、4、5、6整除,即这个数同时是2、3、4、5、6的倍数,先找出2、3、4、5、6的最小公倍数60,设这个数为60x ﹣1,然后分析是三位数的即可.解答:解:这个三位数加上1,就能同时被2、3、4、5、6整除,即这个数同时是2、3、4、5、6的倍数,而2、3、4、5、6的最小公倍数是60,设这个数为60x﹣1.根据3位数的条件有:100≤60x﹣1≤999,解得:2≤x≤16,因为这些三位数是60x﹣1,2≤x≤16,所以这些三位数是119,179,239,299,359,419,479,539,599,659,719,779,839,899,959.故具有这种性质的三位数还有179,239,299,359,419,479,539,599,659,719,779,839,899,959.点评:此题考查了带余除法,解答本题关键是由被2除余1;被3除余2;被4除余3;被5除余4;被6除余5,就是这个数加上1能同时被2、3、4、5、6整除.然后找出2、3、4、5、6的最小公倍数60,设这个数为60x﹣1,进行分析是三位数的一共几个.6.设p,q,r都是质数,并且p+q=r,p<q.求p.考点:质数与合数.专题:探究型.分析:先根据已知条件判断出r是奇数,再根据p+q=r可判断出p,q为一奇一偶,根据在所有偶数中只有2是质数可求出答案.解答:解:∵r=p+q,∴r不是最小的质数,从而r是奇数,∴p,q为一奇一偶,∵p<q,∴p既是质数又是偶数,∴p=2.故答案为:2.点评:本题考查的是质数与合数、奇数与偶数的定义,解答此类题目时要注意在所有偶数中只有2是质数这一特点.7.证明:当n>2时,n与n!之间一定有一个质数.考点:质数与合数.专题:证明题.分析:用(a,b)表示自然数a,b的最大公约数,如果(a,b)=1,那么a,b称为互质(互素),所以(n!,n!﹣1)=1.解答:证明:首先,相邻的两个自然数是互质的.这是因为(a,a﹣1)=(a,1)=1,于是有(n!,n!﹣1)=1,由于不超过n的自然数都是n!的约数,所以不超过n的自然数都与n!﹣1互质(否则,n!与n!﹣1不互质),于是n!﹣1的质约数p一定大于n,即n<p≤n!﹣1<n!,所以,在n与n!之间一定有一个质数.点评:本题主要考查了质数与合数的概念,在解题时,首先要明确相邻的两个自然数是互质的.8.已知n是正整数,且n4﹣16n2+100是质数,求n的值.考点:质数与合数.专题:探究型.分析:从因数分解的角度看,质数只能分解成l和本身的乘积(也可从整除的角度看),故对原式进行恰当的分解变形,是解本例的最自然的思路.解答:解:∵n4﹣16n2+100=n4+20n2+100﹣36n2=(n2+6n+10)(n2﹣6n+10),∵n2+6n+10≠1,而n4﹣16n2+100为质数,∴n2﹣6n+10=1,即|(n﹣3)2=0,解得n=3.故答案为:3.点评:本题考查的是质数的定义,即质数就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数.9.p是质数,p4+3仍是质数,求p5+3的值.考点:质数与合数.专题:探究型.分析:先根据p是质数,p4+3为质数可判断出p4必为偶数,再根据所有偶数中只有2是质数判断出p=2,代入所求代数式即可求出p5+3的值.解答:解:∵p是质数,∴p4+3>3又∵p4+3为质数,∴p4+3必为奇数,∴p4必为偶数,∴p必为偶数.又∵p是质数,∴p=2,∴p5+3=25+3=35.故答案为:35.点评:本题考查的是质数与合数,奇数与偶数的相关知识,熟知所有偶数中只有2是质数这一结论是解答此题的关键.10.设n是大于1的正整数,求证:n4+4是合数.考点:质数与合数.专题:探究型.分析:先把n4+4进行因式分解,再由n是大于1的正整数求出两个因数中较小的一个大于1即可.解答:证明:我们只需把n4+4写成两个大于1的整数的乘积即可,n4+4=n4+4n2+4﹣4n2,=(n2+2)2﹣4n2,=(n2﹣2n+2)(n2+2n+2),因为n2+2n+2>n2﹣2n+2=(n﹣1)2+1>1,所以n4+4是合数.点评:本题考查的是质数的定义,即在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数叫质数.11.是否存在质数p.q,使得关于x的一元二次方程px2﹣qx+p=O有有理数根?考点:质数与合数;根的判别式.专题:探究型.分析:先设方程有有理数根,则判别式为平方数.令△=q2﹣4p2=n2,再把此方程化为完全平方的形式,再根据q ﹣n与q+n同为偶数列出关于n、p、q的方程组,用p表示出q,再根据q﹣n与q+n同为偶数而p.q为质数可知p=2,代入关于p、q的式子,求出符合条件的p、q的对应值,代入原方程求出方程的根,再根据有理数的概念进行解答即可.解答:解:设方程有有理数根,则判别式为平方数.令△=q2﹣4p2=n2,规定其中n是一个非负整数.则(q﹣n)(q+n)=4p2.(5分)由于1≤q﹣n≤q+n,且q﹣n与q+n同奇偶,故同为偶数,因此,有如下几种可能情形:、、、、消去n,解得.(10分)对于第1,3种情形,p=2,从而q=5;对于第2,5种情形,p=2,从而q=4(不合题意,舍去);对于第4种情形,q是合数(不合题意,舍去).又当p=2,q=5时,方程为2x2﹣5x+2=0,它的根为,它们都是有理数.综上所述,存在满足题设的质数.(15分)点评:本题考查的是质数与合数的概念、根的判别式、奇数与偶数,涉及面较广,难度较大.12.设a,b,c,d为正整数,并且ab=cd,试问a+b+c+d能不为质数?考点:质数与合数.专题:证明题.分析:证明一个数为合数时,一定要注意其因数大于1.解答:解:由于ab=cd,故由质因数分解定理,存在正整数c1,c2,d1,d2,使得d=d1d2,a=c1d1,b=c2d2,于是a+b+c+d=(c1+d2)(c2+d1)为合数.全解2:由于a+b+c+d=a+b+c+=为整数,从而存在整数c1,c2,使c=c1c2,且均为整数,将它们分别记作k与m,由a+c>c≥c1,b+c>c≥c2,得k>1,且m>1,从而a+b+c+d=km为合数,即不可能为质数.点评:本题主要考查的质数与合数的概念,在解答此题时,首先要熟练掌握质因数分解定理.13.试证明:形如111111+9×10n(n为自然数)的正整数必为合数.考点:质数与合数.专题:证明题.分析:因为111111=3×37037,9×10n=3×3×10n,所以111111+9×10n=3×(37037+3×10n)(n为自然数)能被3整除,所以根据合数的定义可知形如111111+9×10n(n为自然数)的正整数必为合数.解答:证明:∵111111=3×37037,9×10n=3×3×10n,∴111111+9×10n=3×(37037+3×10n),∴3|111111+9×10n(n为自然数),∴形如111111+9×10n(n为自然数)的正整数必为合数.点评:本题主要考查的是合数的定义.一个数除了1和它本身以外还有别的因数(第三个因数),这个数叫做合数.14.求这样的质数,当它加上10和14时,仍为质数.考点:质数与合数.专题:探究型.分析:这是一个找符合条件的质数问题.由于质数分布无一定规律,因此从最小的质数试验起.希望能找到所求的质数,然后再加以逻辑的证明.解答: 解:因为2+10=12,2+14=16,所以质数2不适合;因为3+10=13,3+14=17,所以质数3适合; 因为5+10=15,5+14=19,所以质数5不合适; 因为7+10=17,7+14=21,所以质数7不适合; 因为11+10=21,11+14=25,所以质数11不适合; …把正整数按模3同余分类.即:3k ﹣1,3k+1(k 为正整数). 因为(3k ﹣1)+10=3k+9=3(k+3)是合数,(3k+1)+14=3k+15=3(k+5)是合数, 所以3k ﹣1和3k+1这两类整数中的质数加上10和14后不能都是质数,因此,在3k ﹣1和3k+1两类整数中的质数加上10和14后当然不能都是质数. 对于3k 这类整数,只有在k=1时,3k 才是质数,其余均为合数. 所以所求的质数只有3. 故答案为:3.点评: 本题考查的是质数与合数的概念,熟知质数与合数的概念是解答此题的关键.15.令a ,b ,c 为整数,并且满足a+b+c=0.假设d=a 1999+b 1999+c 1999.请问: (a )有没有可能d=2?(b )有没有可能d 是个质数?(大于1的整数,如果只有1及本身的因子,称它为质数.)考点: 质数与合数. 专题: 探究型.分析: (1)若a 、b 、c 中有一个正数大于等于2,则d 将超过2,再由a+b+c=0可知,a+b=﹣c ,由于a ,b ,c 为整数,若d=2,则a 、b 、c 中必有一正一负两个数,由于a 、b 、c 为整数,故d=2不成立;(2)若d 为质数,则a 1999、b 1999、c 1999的和为质数,若a 为正数,则b+c 为负数;若a 为0,则b 、c 互为相反数.解答: 解:(1)∵a+b+c=0,∴a+b=﹣c ,∵若d=2,则a 、b 、c 中必有一正一负两个数, ∵a ,b ,c 为整数, ∴a 1999+b 1999+c 1999=2不可能成立. (2)在d=a 1999+b 1999+c 1999中, a 为0,则b 、c 互为相反数时, d=0,不是质数;a 为正数,则b+c 为负数, d 可能为质数.点评: 此题考查了关于质数的相关运算,要分类讨论,不要漏解.16.求所有的素数对(p ,q ),使得pq|5p +5q .考点:质数与合数. 专题:证明题. 分析: 注意素数即是质数,可以从小到大,利用列举法求解即可.首先设p 为2,可得(2,3),(2,5)合乎要求;当p 为大于2的数时,可知pq 为奇数,分析可得符合条件的素数对有(5,5)、(5,313)合乎要求,因为是有序数对,所以(3,2),(5,2),(313,5)也符合要求.解答: 解:若2|pq ,不妨设p=2,则2q|52+5q ,故q|5q +25. ∵q|5q ﹣5, ∴q|30,即q=2,3,5.易验证素数对(2,2)不合要求,(2,3),(2,5)合乎要求.若pq 为奇数且5|pq ,不妨设p=5,则5q|55+5q ,故q|5q ﹣1+625.当q=5时素数对(5,5)合乎要求,当q ≠5时,由Fermat 小定理有q|5q ﹣1﹣1,故q|626.由于q 为奇素数,而626的奇素因子只有313,所以q=313.经检验素数对(5,313)合乎要求.若p ,q 都不等于2和5,则有pq|5p ﹣1+5q ﹣1,故5p ﹣1+5q ﹣1≡0(bmodp ).①由Fermat 小定理,得5p ﹣1≡1(bmodp ),②故由①,②得5q ﹣1≡﹣1(bmodp ).③ 设p ﹣1=2k (2r ﹣1),q ﹣1=2l (2s ﹣1),其中k ,l ,r ,s 为正整数. 若k ≤l ,则由②,③易知,这与p ≠2矛盾!所以k >l .同理有k <l ,两结论矛盾,即此时不存在合乎要求的(p ,q ). 综上所述,所有满足题目要求的素数对(p ,q )为: (2,3),(3,2),(2,5),(5,2),(5,5),(5,313)及(313,5).点评: 此题考查了学生对质数意义的理解,还有对有序数对含义的理解.解此题的关键是分类讨论思想的应用,注意要不重不漏的表示出所有答案.17.小于10且分母为36的最简分数有多少个?考点: 质数与合数. 分析:最简分数的意义:分子分母是互质数的分数就是最简分数,据此先在0~1内找,最简分数有:、、、、、、、、、、、,共有12个,然后乘以10即可找出小于10且分母为36的最简分数有多少个,据此解答.解答:解:0~1中分母是36的最简分数有:、、、、、、、、、、、,共有12个,1~2中分母是36的最简分数有:(即1+)、(即1+)、(即1+)、(即1+)、(即1+)、(即1+)、(即1+)、(即1+)、(即1+)、(即1+)、(即1+)、(即1+),共有12个,…以此类推,可得小于10且分母为36的最简分数有12×10=120个. 答:小于10且分母为36的最简分数有120个.点评: 本题考查了质数与合数的知识及最简分数的定义,解答本题的关键是先找出0~1中分母是36的最简分数,然后数出个数乘以10即可.18.已知a ,b ,c 是三个两两不同的奇质数,方程有两个相等的实数根.(1)求a 的最小值;(2)当a 达到最小时,解这个方程.考点:质数与合数;根的判别式.分析:(1)首先由方程有两个相等的实数根,可得:△=5(a+1)2﹣900(b+c)=0,即可得到:(a+1)2=22×32×5(b+c),则可求得a+1的最小值,得到a的最小值;(2)将最小值代入方程,求解即可.解答:解:(1)∵方程有两个相等的实数根,∴△=5(a+1)2﹣900(b+c)=0,∴(a+1)2=22×32×5(b+c),∴5(b+c)应为完全平方数,最小值为52×22,∴a+1的最小值为60,∴a的最小值为59;(2)∵a=59时,b+c=20,则原方程为:20x2+60x+225=0,解得:x=﹣.点评:此题考查了一元二次方程的判别式和质数的意义.解此题的关键是抓住判别式△=0.19.已知下面著名的“勾股定理”:在一个直角三角形中,两条直角边的平方之和等于斜边的平方.试问:是否存在同时满足下列两个条件的直角三角形?(1)三条边长均是正整数;(2)一条直角边为素数(也称质数)p.若存在,请求出另一条直角边长;若不存在,请说明理由.考点:质数与合数;勾股定理.专题:计算题.分析:首先假设存在,设另一条直角边长为x,斜边长为y,则x、y为正整数,然后根据题意可得:p2+x2=y2,即可得:(y+x)(y﹣x)=p2,又由p为素数,讨论分析即可求得.解答:解:假设存在,令另一条直角边长为x,斜边长为y,则x、y为正整数.由勾股定理得p2+x2=y2.化为(y+x)(y﹣x)=p2.因为p为素数(也称质数),且y+x>y﹣x,所以只有从而.若p=2,则x、y不是整数,这样的三角形不存在;若p为奇素数,x、y都是整数,这样的三角形存在.综上所述,可知:p为偶素数2时,满足条件的三角形不存在;p为奇素数时,满足条件的三角形存在,且另一条直角边长为.点评:此题考查了素数的意义和勾股定理等知识.难度较大,要注意分类讨论思想的应用.20.自然数N是一个两位数,它是一个质数,而且N的个位数字与十位数字都是质数,这样的自然数有4个.专题:计算题.分析:根据个位数字与十位数字都是质数,可得这个两位质数的个位数字和十位数字只能是:2、3、5、7.解答:解:因为N是质数,且其个位数字和十位数字都是质数,那么十位数字和个位数字只能是:2、3、5、7,所以符合题意的两位数质数有:23,37,53,73,有4个;答:这样的自然数有4个.故答案为:4.点评:此题考查了质数的灵活应用,理解十位数字与个位数字都是质数的两位质数是由:2、3、5、7组成的是本题的关键.21.求336与1260的最大公约数和最小公倍数.考点:约数与倍数.专题:计算题.分析:利用分解质因数法来解答.把一个合数写成几个质数相乘的形式表示,叫做分解质因数.解答:解:∵336=24×3×7,1260=22×32×5×7,∴336和1260的最大公约数为:22×3×7=84;336和1260的最小公倍数为:24×32×5×7=5040.点评:本题主要考查了最大公约数与最小公倍数的求法.①求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数.②在计算多个数的最小公倍数时,对其中任意两个数存在的约数都要算出,其它无此约数的数则原样落下.最后把所有约数和最终剩下无法约分的数连乘即得到最小公倍数.22.甲、乙、丙三人到李老师那里求学,甲每6天去一次,乙每8天去一次,丙每9天去一次,如果8月17日他们三人在李老师处见面,那么下一次在李老师处见面的时间是几月几日呢?考点:约数与倍数.专题:应用题.分析:根据已知条件先求出他们再等多少天才能重逢,然后根据所求的数据推算它是几月几日.解答:解:∵甲、乙、丙三人到李老师那里求学,甲每6天去一次,乙每8天去一次,丙每9天去一次,∴他们下一次见面需隔的天数是6、8、9,又∵6、8、9的最小公倍数是72,∴他们再在72后相见,即在10月28日再次见面.点评:本题考查的是最大公约数与最小公倍数的应用题.最小公倍数的性质:①两个自然数的最大公约数与最小公倍数的乘积等于这两个数的乘积,且最小公倍数是最大公约数的倍数,即:如果(a,b)=d,[a,b]=m,那么,dm=ab,且d|m;②如果一个数c能同时被两个自然数a,b整除,那么c一定能被这两个数的最小公倍数整除,或者说,一些数的公倍数一定是这些的最小公倍数的倍数,即:若[a1,a2,a3,….a]=m,而a1|N,a2|N,…a n,那么m|N.23.一只青蛙在平面直角坐标系上从点(1,1)开始,可以按照如下两种方式跳跃:①能从任意一点(a,b),跳到点(2a,b)或(a,2b);②对于点(a,b),如果a>b,则能从(a,b)跳到(a﹣b,b);如果a<b,则能从(a,b)跳到(a,b﹣a).例如,按照上述跳跃方式,这只青蛙能够到达点(3,1),跳跃的一种路径为:(1,1)→(2,1)→(4,1)→(3,1).请你思考:这只青蛙按照规定的两种方式跳跃,能到达下列各点吗?如果能,请分别给出从点(1,1)出发到指定点的路径;如果不能,请说明理由.(1)(3,5);(2)(12,60);(3)(200,5);(4)(200,6).专题:推理填空题.分析:根据题目要求及两个规则,可以得到,a和b的公共奇约数=a和2b的公共奇约数=2a和b的公共奇约数.所以由规则①知,跳跃不改变前后两数的公共奇约数.又由规则②知,跳跃不改变前后两数的最大公约数.所以而按规则①和规则②跳跃,均不改变坐标前后两数的公共奇约数.由此可排除不能到达的点.解答:解:(1)能到达点(3,5)和点(200,6).从(1,1)出发到(3,5)的路径为:(1,1)→(2,1)→(4,1)→(3,1)→(3,2)→(3,4)→(3,8)→(3,5).从(1,1)出发到(200,6)的路径为:(1,1)→(1,2)→(1,4)→(1,3)→(1,6)→(2,6)→(4,6)→(8,6)→(16,6)→(10,6)→(20,6)→(40,6)→(80,6)→(160,6)→(320,6)→(前面的数反复减20次6)→(200,6);(2)不能到达点(12,60)和(200,5).理由如下:∵a和b的公共奇约数=a和2b的公共奇约数=2a和b的公共奇约数,∴由规则①知,跳跃不改变前后两数的公共奇约数.∵如果a>b,a和b的最大公约数=(a﹣b)和b的最大公约数,如果a<b,a和b的最大公约数=(b﹣a)和b的最大公约数,∴由规则②知,跳跃不改变前后两数的最大公约数.从而按规则①和规则②跳跃,均不改变坐标前后两数的公共奇约数.∵1和1的公共奇约数为1,12和60的公共奇约数为3,200和5的公共奇约数为5.∴从(1,1)出发不可能到达给定点(12,60)和(200,5).点评:此题主要考查了学生对公约数及公约奇数的理解和掌握,此题解题的关键是着重分析规则运用公约数解答.此题较难,是好题,能培养学生的分析判断能力.24.如图,一个圆圈上有n (n<100=个孔.小明像玩跳棋一样,从A孔出发,逆时针方向将一枚棋子跳动,每步跨过若干个孔,希望跳一圈后回到A孔.他先每步跳过2个孔,结果只能跳到B孔;他又试着每步跳过4个孔,结果还是跳到B;最后他每步跳过6孔,正好回到A孔.问这个圆圈上一共有多少个孔?考点:约数与倍数.专题:应用题.分析:根据题意知,n是3、5、7的倍数,所以问题就转化为求3、5、7的最小公倍数的问题.解答:解:依题意,每步跳过2孔,连起点一共要跳过3个孔,故除掉B孔外,圆圈上的孔数是3的倍数,有3|n ﹣1;每步跳过4个孔,连起点一步要跳过5个孔,故除掉B孔外,圆圈上的孔数是5的倍数,因此,有5|n﹣1;又每步跳过6个孔时,可回到A孔,这表明7|n.因(3,5)=1,故15|n﹣1.因n<100,故n只可能是16,31,46,61,76,91,其中仅有91是7的倍数,故n=91,即圆圈上有91个孔.点评:本题主要考查了关于最小公倍数的应用题.提取公因数法适用于求两个以上数的最小公倍数,方法步骤是:(1)先提取出这几个数的最大公因数,可以分次提取(此时所得的商互质,但不一定两两互质);(2)再在不互质的商中提取公因数,其他商照写下来,直到各商两两互质为止;(3)最后把提取出的各数及各商数连乘起来,乘积就是这几个数的最小公倍数.25.已知x、y为正整数,且满足xy﹣(x+y )=2p+q,其中p、q分别是x与y的最大公约数和最小公倍数,求所有这样的数对(x,y )(x≥y ).考点:约数与倍数.专题:计算题.分析:此题需分类讨论,①当x是y的倍数时,设x=ky(k是正整数).解方程k(y﹣2)=3;②当x不是y的倍数时,令x=ap,y=bp,a,b互质,则q=abp.解方程abp﹣1=(a﹣1)(b﹣1)即可.解答:解:①当x是y的倍数时,设x=ky(k是正整数).则由原方程,得ky•y﹣(ky+y)=2y+ky,∵y≠0,∴ky﹣(k+1)=2+k,∴k(y﹣2)=3,当k=1时,x=5,y=5;当k=3时,x=9,y=3;∴,;②当x不是y的倍数时,令x=ap,y=bp,a,b互质,则q=abp,代入原式得:abp2﹣(ap+bp)=2p+abp,即abp﹣1=(a+1)(b+1)当p=1时,a+b=2,可求得a=1,b=1,此时不满足条件;当p>1时,abp≥2ab﹣1=ab+(ab﹣1)≥ab>(a﹣1)(b﹣1)此时,abp﹣1=(a﹣1)(b+1)不满足条件;综上所述,满足条件的数对有:,.点评:本题主要考查的是最大公约数与最小公倍数.由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积.即(a,b)×[a,b]=a×b.所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数.26.有很多种方法可以将2001写成25个自然数之和,对于每一种写法,这25个自然数均有相应的最大公约数,那么这个最大公约数的最大值是多少?考点:约数与倍数.分析:根据2001=3×23×29=69×(1×24+5),即2001可写成:24个69、1个69×5=345的和,或23个69、1个69×2=138,1个69×4=276的和,或23个69、2个69×3=207的和,或22个69、2个69×2=138,1个69×3=207的和,或21个69、4个69×2=138的和,这25个自然数的最大公因数必定能整除3×23×29.这些公因数中的最大值不可能超过3×29=87,否则这25个之和必定大于2001,所以最大值是3×23=69,它们的最大公因数都是69.解答:解:因为2001=3×23×29=69×(1×24+5),从69×(1×24+5)可以看题目需要分多少份(本题是25份),可以是:24个69、1个69×5=345的和,或23个69、1个69×2=138,1个69×4=276的和,或23个69、2个69×3=207的和,或22个69、2个69×2=138,1个69×3=207的和,或21个69、4个69×2=138的和,。
110配线架详解配线架是电缆或光缆进行端接和连接的装置。
在配线架上可进行互连或交接操作。
建筑群配线架是端接建筑群干线电缆、光缆的连接装置。
建筑物配线架是端接建筑物干线电缆、干线光缆并可连接建筑群干线电缆、干线光缆的连接装置。
楼层配线架水平电缆、水平光缆与其他布线子系统或设备相连接的装置。
光纤配线架在后面部份还会单独介绍,这里介绍的都是铜缆配线架。
铜缆配线架系统分110型配线架系统和模块式快速配线架系统。
110型连接管理系统由AT&T公司于1988年首先推出,该系统后来成为工业标准的蓝本。
110型连接管理系统基本部件是配线架、连接块、跳线和标签。
110型配线架是110型连接管理系统核心部份,110配线架是阻燃、注模塑料做的基本器件,布线系统中的电缆线对就端接在其上。
110型配线架有25对、50对、100对、300对多种规格,它的套件还应包括4对连接块或5对连接块(图1-24)、空白标签和标签夹(图1-25)、基座。
110型配线系统使用方便的插拔式快接式跳接可以简单也进行回路的重新排列,这样就为非专业技术人员管理交叉连接系统提供了方便。
110型配线架主要有以下类型:110AW2:100对和300对连接块,带腿。
110DW2:25对、50对、100对和300对接线块,不带腿。
110AB:100对和300对带连接器的终端块,带腿。
110PB-C:150对和450对带连接器的终端块,不带腿。
110AB:100对和300对接线块,带腿。
110BB:100对连接块,不带腿。
110型配线架的缺点是不能进行二次保护,所以在入楼的地方需要考虑安装具有过流、过压保护装置的配线架。
110型配线架主要有五种端接硬件类型。
110A型、110P型、110JP 型、110VP VisiPatch型和XLBET超大型。
110A、110P、110JP、110VP VisiPatch和XLBET系统具有相同的电气性能,但是其性能、规格及占用的墙场或面板大小则有所不同。
1、猎狗前面26步远有一只野兔,猎狗追之.兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离.问:兔跑多少步后被猎狗抓获?此时猎狗跑了多少步?【解析】“猎狗前面26步”,显然指的是猎狗的26步,兔跑8步的时间狗跑5步,兔跑9步的距离等于狗跑4步的距离,可以统一为兔子跑72步的时间狗跑45步,兔子跑72步的距离狗跑32步距离,所以在兔子跑72步的时间里,狗比兔子多跑了45-32=13(步)的路程,这个13步是猎狗的13步,因此,要追上距离26(狗)步的距离,兔子跑了72×(26÷13)=144(步),此时猎狗跑了5×(144÷8)=90(步)【答案】兔子144步,猎狗90步。
2、猎人带猎狗去捕猎,发现兔子刚跑出40米,猎狗去追兔子。
已知猎狗跑2步的时间兔子跑3步,猎狗跑4步的距离与兔子跑7步的距离相等,求兔子再跑多远,猎狗可以追上它?【解析】设狗跑2步的时间为1(分钟),兔跑3步的时间也为1(分钟);再设狗的步长为7(米),则兔的步长为4(米),推出狗的速度是2×7=14,兔的速度是3×4=12。
用40÷(14-12)=20,20为追击时间。
再用兔的速度乘上追击时间可得兔跑的路程,即12×20=240(米)【答案】240米3、一只猎狗发现在离它18米远的前方有一只狐狸在跑,马上紧追上去,猎狗跑2步的路程狐狸需跑3步,若猎狗跑5步的时间,狐狸可跑7步,猎狗跑多少米能追上狐狸?【解析】设猎狗一步距离为A,狐狸一步则为(2/3)A设单位时间X作为参数,在X时间内猎狗可以跑一步,则狐狸可以跑7/5步即在相同的X时间内,猎狗跑A,狐狸可跑(2/3)*(7/5)A=(14/15)A 时间相同,猎狗和狐狸的速度即为路程比,15:14 猎狗每跑15米,狐狸跑14米,可追上狐狸1米,所以猎狗要跑15*18=270米因为不知道到这是小学竞赛题还是中学题,所以用小学的方式解的,中学物理题的话,用公式V=S/T表示上面的东西就可以了,最后的速度V用参数表示出来4、一条猎狗追30米外的一只狐狸,狗跳跃一次为2米,狐狸跳跃一次为1米,而狐狸跳3次的时间,猎狗只能跳两次,猎狗跑多少米才能追上狐狸?【解析】分析:狐狸跳3次的时间,猎狗只能跳两次,也就是狐狸前进1×3=3米,猎狗可以前进2×2=4米,由于4-3=1,所以猎狗每跑4米就追上狐狸1米,于是猎狗追上狐狸的需要跑4×30=120(米).5、一只野兔逃出85步后猎狗才追它,野兔跑8步的路程猎狗才需要跑3步,猎狗跑4步的时间野兔能跑9步,问猎狗需要跑多少步才能追上野兔?【解析】猎狗每跑12步这段时间内野兔跑27步而猎狗每跑12步的路程需要野兔跑32步所以猎狗每跑12步就可以比野兔多跑5步85÷5×12=204答:猎狗至少要跑204步才能追上野兔6、猎狗追赶前方30米处的野兔。
[(江南博哥)单选题]1.63/54规格硅芯管绕盘前、后的不圆度允差(%)分别为()。
A.≤1,≤2B.≤2,≤3C.≤3,≤4D.≤3,≤5参考答案:D参考解析:63/54规格硅芯管绕盘前椭圆度允差为≤3%、绕盘后椭圆度允差为≤5%。
表2-10-1)[单选题]2.32/26规格硅芯管绕盘前、后的不圆度允差(%)分别为()。
A.≤1,≤2B.≤2,≤3C.≤3,≤4D.≤3,≤5参考答案:B参考解析:32/26规格硅芯管绕盘前椭圆度允差为≤2%、绕盘后椭圆度允差为≤3%。
表2-10-1)[单选题]3.玻璃纤维增强塑料普通管箱(1类)的长度三均为()。
A.2000mmB.3000mmC.4000mmD.6000mm参考答案:C参考解析:普通管箱(1类)长度均为4000mm。
表2-10-14)[单选题]4.公称外径100mm的双壁波纹管的接合长度为()。
A.20mmB.30mmC.40mmD.50mm参考答案:B参考解析:公称外径100mm的双壁波纹管的最小接合长度为30mm。
[单选题]5.双壁波纹管落锤冲击试验温度条件为()。
A.0℃B.10℃C.23℃D.25℃参考答案:A参考解析:落锤冲击试验,按《热塑性塑料管材耐外冲击性能试验方法时针旋转法》(GB/T14152)规定进行试验。
取长度为200mm±10mm的试样10段,置于温度为0℃±1℃的水浴或空气浴中进行状态调节2h。
状态调节后,应从空气浴中取出10s内或从水浴中取出20s内完成试验。
[单选题]6.梅花管的内孔尺寸允许偏差均为()。
A.±0.1mmB.±0.2mmC.±0.3mmD.±0.5mm参考答案:D[单选题]7.玻璃纤维增强塑料管箱的厚度f均为()。
A.3mmB.4mmC.5mmD.6mm参考答案:C参考解析:管箱的厚度均为5mm。
表2-10-14)[单选题]8.双壁波纹管标称外径≤110mm,其落锤冲击试验落锤质量和冲击高度为()。
威仕达模具钳工工时定额(试行)批准:起草:技术质量部2006-11-061文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.1、钳工钻孔工时标准(包括简单划线)2文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.●表列数据为加工单孔工时,最小工时不低于0.2当孔数≤30时,系数为1;当孔数31-80时, 乘以系数0.9;当孔数81-110时, 乘以系数0.85;当孔数111-200时, 乘以系数0.8;当孔数200-300时, 乘以系数0.75;当孔数>300时, 乘以系数0.70;●手电钻钻孔乘以系数2●作螺孔和销孔工时按表数值乘以系数A;当孔数≤30时,A=2.5;当孔数31-80时, ,A=2.3;当孔数81-110时, ,A=2.2;当孔数>110时,A=2;●工件装卸时间小件0.2-0.5,中大型件1-2。
●钻余料时乘以系数0.82.模具粗装工时标准T粗装=镶块螺钉总数×A+拼块修研工时×B+装配合模工时C+辅助工时D●当螺钉数≤10时,A=0.05;当螺钉数10~30时,A=0.045;当螺钉数为30~100时,A=0.04;当螺钉数>100时, A=0.035。
3文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.●拼块数量≤10时,B=0.25;拼块数量10-30时,B=0.20;拼块数量30-60时,B=0.18;拼块数量>60时,B=0.15;●小型模具C=1;中大型模具C=2~2.5。
●辅助工时D包括测量出尺寸,划线,领标准件等。
小型模具D=1;中大型侧修侧整模具D=2.5-3;其余中大型模具D=1.5~2。
3.钳工打磨与抛光工时●顶盖类大平面且曲面平缓与大平面压料面T=抛光面积(mm2)/80000●曲面平缓大平面与压料面 T=抛光面积(mm2)/55000●曲面面积较小压料面 / 曲面变化较剧烈 T=抛光面积(mm2)/35000●其余较小曲面/面积小,需清角较多曲面 T=抛光面积(mm2)/30000●其余较小曲面/面积很小,需清角较多的内板曲面T=抛光面积mm2/22500(内板件乘以系数1.2-1.3)●对于外覆盖件模具,必须保证曲面饱满光顺、棱线均匀清晰笔直,抛光工时可酌情乘以系数1.5~1.8。
110孔数解析.txt永远像孩子一样好奇,像年轻人一样改变,像中年人一样耐心,像老年人一样睿智。
我的腰闪了,惹祸的不是青春,而是压力。
当女人不再痴缠,不再耍赖,不再喜怒无常,也就不再爱了。
110孔数解析.txt我这人从不记仇,一般有仇当场我就报了。
没什么事不要找我,有事更不用找我!就算是believe中间也藏了一个lie!我那么喜欢你,你喜欢我一下会死啊?我又不是人民币,怎么能让人人都喜欢我?110物品孔数解析物品孔数历来都是大家比较关心的问题。
不过纵观很多站关于物品孔数的说明似乎都有些问题,语焉不详或者谬误兼或有之。
我这里就重写一份,希望抛砖引玉可以补充完全/1 Normal item (白色物品)的最大孔数。
Normal item上的最大孔数由物品类型和物品种类两者共同决定。
(例如,Composite bow的物品类型是bow,它的物品种类是Composite bow. Short sword 的物品类型是sword,其物品总类为short sword,诸如此类)具体如何决定呢,首先,物品类型决定物品在不同ilvl下的最大孔数。
例如Composite bow,它的物品类型是bow。
而bow的最大孔数规则为:当其ilvl为1-24时,其最大孔数为3,当其ilvl为25-39时,其最大孔数为4,当其ilvl为40-99时,其最大孔数为6。
然后,物品种类将决定该物品实际可能出现的最大孔数。
仍旧以Composite bow为例子,它的物品种类就是Composite bow,这决定了其最大孔数为4。
因此,最后,Composite bow的实际出现孔数为:当其ilvl为1-24时,其最大孔数为3,当其ilvl为25-39时,其最大孔数为4,当其ilvl为40-99时,其最大孔数为4。
1)normal 物品上天然孔数。
Normal物品是个总称,实际上它是Superior,Normal,Lowquality (实际上Lowquality 也是Crude,Cracked,Damaged,Low Quality四种物品的总称)物品的总称。
其中只有Superior,Normal这两种物品可能具有天然的孔数。
天然形成的孔数起最大值依然由物品类型和物品种类两者共同决定,过程就如上了.天然形成的孔数为1-最大孔数之间随即取值.2) act5的打孔任务.这个大家可能比较关心了,act5任务对于normal item总能打出当前ilvl下的最大孔数.例如,一个ilvl=20的Composite bow就一能打出3s.诸如此类.3) 110中新的打孔公式.110的打孔公式仅仅适用于normal item,而不能对Superior和Lowquality 两种物品进行打孔(实际上Lowquality 物品一般情况下也没必要打孔). 打出的孔数都是随机的,并且孔数起最大值仍旧由物品类型和物品种类两者共同决定.2 Magic item (蓝色物品)事实上magic item和normal item一样也由物品类型决定物品在不同ilvl下的最大孔数.1) 词缀修饰得到的孔数mgaic item可以由词缀修饰得到孔数.但是这里需要注意,我在109后期提到的一个原则到了110仍然有效,这就是当物品最大孔数与词缀修饰的孔数出现矛盾的时候,一定会出现两者之间较小者.(例如,一件mage plate,其物品最大孔数为3,当它被Jeweler's这个词缀修饰的时候,最后你会发现它是3s,而不是应当出现的4s)2)3cg 公式和110中的新magci item cube3s sword是09种3cg+sword公式风行后的遗留品,例如著名的ccbq.不过实际上并不是所有s cg公式都得到3s. 当物品最大孔数<3时,即使用3cg公式也只能得到其最大孔数.例如用bone knife仅能得到1s.同理适用于新magci item cube。
这里还将遵循的原则是当物品最大孔数与词缀修饰的孔数和打孔随机出现孔数出现矛盾的时候,一定会出现三者之间较小者。
3)act5的打孔任务.对于magic 物品来说,用act5的打孔任务来打孔会随机出现1-2s,这个几率是平均的,而且在normal,nightmare和hell下都是一样的,没有分别.需要注意的是,和由词缀修饰类似的,当物品最大孔数与打孔孔数出现矛盾的时候,一定会出现两者之间较小者. 例如,用一把magic 的bone knife去打孔,无论如何也只能出现1s,这就是由于bone knife本身只能有1s的关系.3 rare item (亮金色物品)rare item和normal item一样也由物品类型决定物品在不同ilvl下的最大孔数.1) 词缀修饰的得到的孔数.同magic item一样,rare item可以由词缀修饰得到孔数.但是这里需要注意的就是是当物品最大孔数与词缀修饰的孔数出现矛盾的时候,一定会出现两者之间较小者.(例如,一把rare bone knife,其物品最大孔数为1,当它被Mechanic's这个词缀修饰的时候即使随机出现了2s,但最后其孔数仍旧为1s,这是由于bone knife本身只能有1s的关系.)2) soj 打孔公式只能出1s,没设么好说的了.3) act5的打孔任务.也只能出1s,还是没设么好说的了.4 set item( 绿色套装)set item和normal item一样也由物品类型决定物品在不同ilvl下的最大孔数.1) 天然形成的孔数set item里有不少本身带有孔数的,例如著名的Griswold's Legacy套装,全身上下最多可有12s.一些set item的孔数还是随即的,例如Natalya's Shadow,可以随机出现1-3s.2)act5的打孔任务.对于set 物品而言,这任务可以赋予1s.当然已经有孔的就不能重复打了.5 unique item情况基本和set item一样,不再赘述了.6 craft itemCraft item类同于rare item的情况.附:物品类型及 Ilvl 与最大孔数的关系表物品 Ilvl 孔数限制------------------------------Body Armor 1-25 326-99 4------------------------------Shield 1-39 340-99 4------------------------------ Scepter 1-24 325-39 540-99 6------------------------------Staff 1-24 525-99 6------------------------------Bow 1-24 325-39 440-99 6------------------------------Ama Bow 1-24 325-39 440-99 5------------------------------Axe 1-24 425-39 540-99 6------------------------------Club 1-24 325-39 440-99 6------------------------------ Sword 1-24 325-39 440-99 6------------------------------ Hammer 1-24 325-39 440-99 6------------------------------ Knife 1-24 225-99 3------------------------------ Spear 1-24 325-39 440-99 6------------------------------ Ama Spear 1-24 325-39 440-99 6------------------------------ Polearm 1-24 325-39 440-99 6------------------------------ Crossbow 1-24 325-39 440-99 6------------------------------ Mace 1-24 325-39 440-99 6------------------------------ Helm 1-39 240-99 3------------------------------ Claw 1-24 225-99 3------------------------------ Orb 1-24 225-99 3------------------------------ Nec Shield 1-24 225-99 3------------------------------ Pal Shield 1-24 325-99 4------------------------------ Bar Helm 1-24 225-99 3------------------------------ Dru Helm 1-24 225-99 3------------------------------ Circlet 1-24 125-39 240-99 3。