土壤胶体与离子交换作用
- 格式:ppt
- 大小:282.00 KB
- 文档页数:33
土壤学课程教案课程编号: _______________________ 章节名称及内容:土壤胶体和土壤离子交换(下)所在课程顺序号:第14个教案授课学时与时长: 1.75学时授课教师:王聪课程类型:学类核心巡一、教学目标1、熟练掌握阳离子交换量和盐基饱,深刻理解离子交换在土壤肥力上的意义二、教学内容1、土壤吸附能力三、教学重点1、阳离子交换量、盐基饱和度、土壤养分离子有效性的影响因素四、教学难点1、影响土壤养分离子有效性的因素五、教学方法课堂讲授、多媒体辅助和板书相结合。
六、教学过程开始课堂讲授前播放一段相关的视频或则提出与本次课程相关的几个问题进行提问并讲解上次课堂留下的问题和作业,然后开始进行课堂讲授,讲授过程穿插问题提问,本次课程结束时布置作业或则留下几个问题进行下次课堂的提问主要内容8.2土壤吸附能力8.2土壤吸附能力8.2.1土壤吸附的概念1概念:土壤的吸附性能:土壤颗粒表面具有能够吸附阴阳离子、气体、液体等物质的能力。
土壤吸附性能是土壤的重要特性,由于具有吸附性能,使土壤起到“库”的作用,避免了土壤养分的淋失,从而达到保蓄养分的能力,这对于植物营养、±壤肥力以及污染土壤的自净能力等方面起极其重要的作用O8.2.2土壤吸附的类型交换性吸附:土壤胶粒带有电荷借静电引力从溶液中吸附带异号电荷的离子或极性分子。
土壤固相从溶液中吸附离子的同时,也伴随着固相表面上交换离子的解吸。
(最主要的吸附类型)专性吸附:非静电因素引起的土壤对离子的吸附作用。
它是指离子通过表面交换与晶体的阳离子共用1个或2个氧原子,形成共价键而被土壤吸附的现象。
负吸附:指土粒表面的离子或分子浓度低于整体溶液中该离子或分子的浓度的现象。
8. 2.3土壤阳离子交换与吸附作用1.概述土壤阳离子交换作用:指土壤胶体表面所吸附的阳离子与土壤溶液中的阳离子相互交换的作用。
交换性阳离子:被土壤胶体表面所吸附,能被土壤溶液中的阳离子所交换的阳离子。
土壤胶体吸收阴离子原因
土壤胶体吸收阴离子的原因有以下几点:
1.胶体颗粒表面带有电荷:胶体颗粒表面通常带有负电荷,这种负电荷能够吸引和吸附带正电荷的阴离子。
2.离子交换:胶体颗粒上的负电荷能够与溶液中的正电荷离子发生电荷交换作用,使阴离子从溶液中吸附到胶体颗粒表面。
3.吸附作用:胶体颗粒表面的负电荷能够吸引和吸附带正电荷的阴离子,使其附着在胶体颗粒表面。
4.胶体颗粒的孔隙结构:胶体颗粒具有较大的孔隙结构和比表面积,可以提供更多的吸附位置,增加吸附阴离子的能力。
总之,土壤胶体吸附阴离子主要是由于胶体颗粒表面带有负电荷、离子交换、吸附作用和胶体颗粒的孔隙结构等因素的综合作用。
第七章土壤离子吸附与交换第一节土壤胶体一、土壤胶体土壤胶体是土壤中高度分散的部分,是土壤中最活跃的物质,其重要性犹如生物中的细胞,土壤的许多理、化现象,例如土粒的分散与凝聚、离子吸附与交换、酸碱性、缓冲性、粘结性、可塑性等都与胶体的性质有关。
所以,只有深入研究土壤胶体的性质,才能了解土壤理、化现象发生的本质。
二、土壤胶体的种类和构造在胶体化学中,一般指分散相物质的粒径在1—100毫微米之间的为胶体物质,而土壤胶体微粒直径的上限一般取2000毫微米。
1.胶体的种类土壤胶体按其成分和特性,主要有三种:1)土壤矿质胶体:包括次生铝硅酸盐(伊利石、蒙脱石、高岭石等)、简单的铁、铝氧化物、二氧化硅等。
2)有机胶体:包括腐殖质、有机酸、蛋白质及其衍生物等大分子有机化合物。
3)有机-无机复合胶体:土壤有机胶体与矿质胶体通过各种键(桥)力相互结合成有机-无机复合胶体。
在土壤中有机胶体和无机胶体很少单独存在,只要存在这两类胶体,它们的存在状态总是有机-无机复合胶体。
2.土壤胶体的构造胶体的构造有两种形式。
若胶体内部组成的分子或离子排列组合有严格规律的为晶形胶粒;若排列无严格规律的则属非晶形胶粒。
土壤无机胶体多属晶形胶体,有机胶体多属非晶质胶体。
土壤胶体微粒构造,从内向外可分为几个圈层:胶核是胶粒的核心,土壤胶体胶核的成分由二氧化硅、氧化铁、氧化铝、次生铝硅酸盐腐殖质等的分子团所组成的微粒核。
微粒核表面的分子向溶液介质解离而带有电荷,形成一个内离子层;在内离子层外面,由于电性吸引,形成带有相反电荷的外离子层。
这两个电性相反组成的电层,称为双电层。
在双电层中,由于内离子层决定着胶体的电位,故又称决定电位离子层;双电层的外层,由于其电荷符号与内层相反,故又称反离子层,亦称补偿离子层。
补偿离子层的离子,因距离内层远近不同,所受的电性引力的大小也不同。
距离近者受吸引力大,不能自由活动,这一部分的离子层,称为非活性补偿离子层。
土壤胶体中离子的吸附和交换过程,保肥作用土壤胶体就像一个超级神秘又有趣的魔法世界。
那些离子呢,就像是一群调皮的小精灵,在这个世界里玩着独特的游戏。
你看啊,土壤胶体这个魔法世界里有好多“小房子”,专门用来收留那些离子小精灵。
当阳离子小精灵们在土壤里游荡的时候,土壤胶体就像一个热情好客的大房东,伸出它那无形的“大手”,把阳离子小精灵们吸附过来。
这就好比是在寒冷的冬天,一个温暖的小屋对瑟瑟发抖的路人有着巨大的吸引力。
而这个吸附的过程可不得了,它就像是一场精心编排的舞蹈。
阳离子小精灵们一个个有序地被土壤胶体邀请进“房子”里。
这时候,土壤胶体就像一个超级收纳盒,把这些离子整整齐齐地放好,可别小看这个过程,这就是土壤保肥的开始呢。
保肥就像是土壤胶体这个魔法世界的伟大使命。
如果把土壤比作一个大银行,那土壤胶体就是银行里最安全的保险柜。
肥料中的离子就像是人们存在银行里的财宝,土壤胶体把这些财宝紧紧锁住,防止它们流失。
说到离子交换,那就更有趣了。
就好像这些离子小精灵们在土壤胶体这个大社区里玩换房子的游戏。
当一种阳离子小精灵被吸附得多了,土壤胶体就会像一个公平的管理员,协调着让一些小精灵和别的小精灵交换“房子”。
这一交换,就像是魔法棒一挥,让土壤里的营养成分重新分配,变得更加合理。
有时候,我觉得土壤胶体像一个超级智能的厨师。
离子就是各种食材,它吸附和交换离子的过程就像是厨师精心调配菜肴。
它把各种离子小食材按照合适的比例搭配起来,做出最适合植物生长的“大餐”。
如果没有土壤胶体这个神奇的存在,那土壤就像是一个漏勺,肥料就会像沙子一样轻易地溜走。
植物就只能可怜巴巴地望着天,祈求老天降下更多的养分。
土壤胶体的保肥作用简直就是大自然给予植物的超级福利。
它就像一个永远不知疲倦的守护者,不管白天黑夜,不管风吹雨打,都紧紧地看守着那些对植物生长至关重要的离子。
我们可不能小看这个小小的土壤胶体啊,它虽然微观得我们肉眼都看不见,但它却像一个巨人一样,撑起了植物生长的一片天。
土壤胶体的离子交换作用离子交换作用包括阳离子交换吸附作用和阴离子交换吸附作用。
一、土壤阳离子交换吸附作用的概念1.土壤胶体表面所吸附的阳离子,与土壤溶液中的阳离子或不同胶粒上的阳离子相互交换的作用,称为阳离子交换吸附作用。
2.当土壤溶液中阳离子吸附在胶体上时,表示阳离子养分的暂时保蓄,即保肥过程;当胶体上的阳离子解离至土壤溶液中时,表示养分的释放,即供肥过程。
二、土壤阳离子交换吸附作用的特点1. 可逆反应:在自然状况下,很难把土壤胶体上某一阳离子完全彻底地代换到溶液中去。
同时,土壤胶体上吸附的阳离子也必然是多种多样的,不可能为单一种离子所组成。
在湿润地区的一般酸性土壤中,吸附的阳离子有Al3+、H+、Ca2+、Mg2+、K+等;在干旱地区的中性或碱性土壤中,主要的吸附性阳离子是Ca2+,其次有Mg2+、K+、Na+等。
2. 等量交换:以等量电荷关系进行,如一个Ca2+可交换两个Na+;一个二价的钙离子可以交换两个一价的氢离子。
3. 速度受交换点位置和温度的影响:①位置:如果溶液中的离子能直接与胶粒表面代换性离子接触,交换速度就快;如离子要扩散到胶粒内层才进行交换,则交换时间就较长,有的需要几昼夜才能达成平衡。
高岭石类矿物交换作用主要发生在胶粒表面边缘上,所以速率很快;蒙脱石类矿物的离子交换大部分发生在胶粒晶层之间,其速率取决于层间间距或膨胀程度;水云母类的交换作用发生在狭窄的晶层间,所以交换速率较慢。
(高岭石〉蒙脱石〉水云母)②温度:高温可加快离子交换反应的速率,因为温度升高,离子的热运动变得更为剧烈,致使单位时间内碰撞固相表面的次数增多。
三、影响阳离子交换作用的因素1.阳离子的交换能力:(指一种阳离子将胶体上另一种阳离子交换下来的能力。
)主要决定于阳离子被胶粒吸附的力量(或称阳离子与胶体的结合强度),它实质上是阳离子与胶体之间的静电能。
a.离子电荷价:M3+> M2+> M+(M表示阳离子)b.离子的半径及水化程度:同价离子,离子半径大水化半径小,交换能力越强。
土壤阳离子交换作用有何特征,影响阳离子
阳离子交换作用是指土壤溶液中的阳离子与土壤胶体表面吸附的阳离子互换位置的过程。
其主要特征是:①阳离子交换作是一种可逆反应,该反映速度很快,可以迅速达到平衡,即溶液中的阳离子与胶体表面吸附的阳离子处于动态平衡中;②阳离子交换遵循等价离子交换的原则;③阳离子交换符合质量作用定律,离子的浓度增大后其交换能力增强。
例如通过改变土壤溶液中某种交换性阳离子的浓度使胶体表面吸附的其它交换性阳离子的浓度发生变化,这对施肥实践以及土壤阳离子养分的保持等有重要意义。