葡萄酒的分级与理化指标检验
- 格式:doc
- 大小:149.00 KB
- 文档页数:11
一、理化指标的检验(无特殊说明水为蒸馏水)1、酒精度的检验(密度瓶法)原理:通过蒸馏除去样品中的不挥发物质,用密度瓶测定出馏出液的密度。
根据馏出液的密度,查表1,求得20℃时酒精度。
用%(体积分数)表示。
仪器:分析天平(感量0.0001g ),全玻璃蒸馏器(500ml ),附温度及密度瓶(50ml ) 操作步骤:用100ml 容量瓶准确量取100ml 样品于500ml 蒸馏瓶中,用50ml 水分三次冲洗容量瓶,洗液全部并入蒸馏瓶中。
连接冷凝器,以取样用容量瓶做接收器。
开启冷凝水,缓慢加热蒸馏。
收集馏出液接近刻度,取下容量瓶,补加水至刻度。
将密度瓶洗净、干燥,带温度计和侧孔罩称量,至恒重。
将密度瓶中加入蒸馏水,于20℃时用滤纸吸去侧管中流出的液体,盖上侧孔罩,擦干瓶壁上的水,称量出水与密度瓶的重量。
将密度瓶中的水倒出,用试样冲洗密度瓶3~5次,装满,于20℃称量。
计算:0.9972.12.9981122020m m A A m m A m m -⨯=⨯+-+-=ρ2020ρ——样品在20摄氏度时的密度,g/ml ; m ——密度瓶的质量,g ;m 1——20℃时密度瓶与水的质量,g ;m 2——20℃时密度瓶与试样的质量,g ;所得结果应保留至一位小数。
2、总糖和还原糖的测定(菲林试剂法)原理:利用菲林溶液与还原糖共沸,生成氧化亚铜沉淀的反应,以次甲基蓝为指示剂,以样品或经水解后的样品滴定煮沸的菲林溶液,达到终点时,稍微过量的还原糖将蓝色的次甲基蓝还原为无色,根据样品消耗量求得总糖或还原糖的含量。
试剂和材料:盐酸(1+1),NaOH 溶液(200g/L ),葡萄糖标准溶液(2.5g/L,称取在105℃~110℃烘箱内烘干3h 并在干燥器中冷却的无水葡萄糖2.5g ,用水溶解至1000ml ),次甲基蓝指示液(10g/L ),菲林试剂(Ⅰ、Ⅱ)。
操作步骤:a ):标定预备试验:吸取菲林试剂Ⅰ、Ⅱ各5.00ml 于250ml 三角瓶中,加50ml 水,摇匀,在电炉上加热至沸,在沸腾状态下用葡萄糖标准溶液滴定,当溶液的蓝色消失呈砖红色时,加2滴次甲基蓝指示液,继续滴定至蓝色消失,记录消耗葡萄糖标准溶液的体积。
基于理化指标分析的葡萄及葡萄酒的评价葡萄及葡萄酒的评价是葡萄酒产业中非常重要的一环,而基于理化指标的分析是评价葡萄和葡萄酒质量的一种方法。
下面我们将对基于理化指标分析的葡萄及葡萄酒的评价进行详细讨论。
首先,对于葡萄而言,理化指标主要包括果实大小、果皮厚度、果实颜色、果汁含糖量、酸度、酚类化合物含量等。
果实大小与产量密切相关,通常越大的葡萄产量越高。
果皮厚度与葡萄外观和保存性能有关,较厚的果皮可以保护果实不受外界因素的影响。
果实颜色通常被视为葡萄的品质指标之一,深色葡萄通常含有更多的花青素,而花青素是葡萄酒中重要的色素成分。
果汁含糖量与葡萄糖度相关,是判断果实成熟度和甜度等级的指标之一、酸度是葡萄品质的重要指标之一,过低的酸度可能导致葡萄酒口感平淡。
酚类化合物含量则与葡萄的芳香物质和抗氧化能力等相关。
通过对这些理化指标的分析,可以全面评价葡萄的品质和适用于酿酒的潜力。
对于葡萄酒而言,理化指标主要包括酒精度、总酸度、挥发性酸度、PH值、葡萄酒中的有机酸、糖分、酚类化合物、色素等。
酒精度是葡萄酒中的酒精含量,对于葡萄酒的风味和醇度影响很大。
总酸度和挥发性酸度分别是葡萄酒中总酸和挥发性酸的含量,对于葡萄酒的酸度和口感起到重要作用。
PH值是葡萄酒的酸碱度,对于葡萄酒的稳定性和口感也有影响。
葡萄酒中的有机酸是葡萄酒中的重要成分,不同有机酸的含量和比例会影响葡萄酒的口感和风味。
糖分是判断葡萄酒甜度的重要指标。
酚类化合物和色素是葡萄酒中的重要成分,对于葡萄酒的色泽和口感产生显著影响。
基于理化指标的分析的定量化方法可以通过仪器设备进行测量,然后用数学和统计学的方法进行分析和处理。
利用这些分析结果,我们可以对葡萄和葡萄酒的品质进行判断和评价。
同时,可以通过与历史数据和目标品质进行对比,从而找出改进和调整的方向。
此外,还可以通过对不同产地、不同品种的葡萄以及不同酿造方法的葡萄酒进行理化指标的分析比较,探索出最佳的生产和酿造工艺。
葡萄酒理化指标葡萄酒是一种受人欢迎的酒类,而其质量与口感的好坏往往取决于其理化指标。
理化指标能够反映葡萄酒的成分、品质和口感等方面,是评价葡萄酒品质的重要依据。
本文将介绍一些常见的葡萄酒理化指标。
1. 酒精含量酒精含量是葡萄酒中最重要的理化指标之一。
它可以影响葡萄酒的味道、风味和口感。
葡萄酒中的酒精含量通常以百分比的形式表示,例如10%或14%。
酒精含量的高低会对葡萄酒的口感产生明显的影响,酒精含量越高,葡萄酒的口感会越醇厚。
2. pH值pH值是用于衡量葡萄酒酸碱度的指标。
葡萄酒的pH值通常在3.0到4.0之间,酸度越高,pH值越低。
pH值的变化会影响葡萄酒的稳定性、颜色和风味。
一般来说,较低的pH值会使葡萄酒更加酸爽,而较高的pH值会使葡萄酒更加柔和。
3. 总酸度葡萄酒的总酸度是指葡萄酒中所有酸性物质的总量。
总酸度包括酒石酸、柠檬酸、苹果酸等。
总酸度对葡萄酒的口感和风味有着重要的影响。
总酸度越高,葡萄酒会呈现出更为酸爽和清新的口感。
4. 残糖含量葡萄酒的残糖含量是指在葡萄酒中未发酵的糖分含量。
残糖含量的高低对葡萄酒的甜度有着直接的影响。
残糖含量分为干型(0-4g/L)、半干型(4-12g/L)、半甜型(12-45g/L)和甜型(45g/L以上)等不同档次。
残糖含量越高,葡萄酒的甜度就越高。
5. 色素和多酚含量葡萄酒中的色素和多酚是赋予葡萄酒颜色和抗氧化性的重要成分。
色素和多酚含量的高低会直接影响葡萄酒的颜色和品质。
它们能够提供葡萄酒的浓度和丰富度,同时也能够提供一定的保护作用。
6. 硫酸盐含量硫酸盐是葡萄酒中常见的添加剂,它可以用于保护葡萄酒的稳定性和抗氧化性。
硫酸盐的含量会对葡萄酒的品质产生影响。
过高的硫酸盐含量可能会给葡萄酒带来刺激性气味和口感,而过低的含量可能会导致葡萄酒易氧化。
以上介绍了一些常见的葡萄酒理化指标,这些指标可以帮助我们更全面地了解葡萄酒的品质和口感。
在选择和品尝葡萄酒时,我们可以参考这些指标对葡萄酒进行评估和比较,以找到适合自己口味的葡萄酒。
根据第二组的评价结果将每个样品的质量具体数值化,得到表5,具体分值见附录:0.64813 * hy13 + 6.63499 * hy19 - 0.53336 * hy29 - 0.30936 * hy30用通径系数表达的回归方程:hdf = 0.07383 * hy2 - 0.14912 * hy10 - 0.25691 * hy11 + 0.79528 * hy13+ 0.40819 * hy19 - 0.28586 * hy29 - 0.07582 * hy30bdf = 69.57711 + 0.36079 * by5 - 0.02403 * by16 - 0.01425 * by18 - 0.00543 * by23 + 0.27698 * by30 bdf = 0.24656 * by5 + 0.17042 * by16 - 0.07736 * by18- 0.1646 * by23 + 0.36858 * by30通过对红、白酿酒葡萄的理化指标做通径系数与多元回归分析,得到两条线性回归方程,根据方程利用MATLAB可估计出葡萄的分值,通过制定分级标准将葡萄样品进行分级,具体结果见表6:中样品2、9、23归类为优等级,其它24个样品被划分为其它三级,结果红葡萄的27个样品中优、良、中、差这四个等级的样品数量分别为3个、14个、9个、1个;同理可以得出白葡萄的28个样品中优、良、中、差这四个等级的样品数量分别为8个、17个、3个、0个。
第二问通径系数与多元回归的程序:proc corr data=by;var by1-by30;with bdf;run;proc reg;model bdf=by5 by16 by18 by23 by30/stb;run;proc corr data=hy;var hy1-hy30;with hdf;run;proc reg;model hdf=hy2 hy10 hy11 hy13 hy19 hy29 hy30/stb;。
葡萄酒理化指标的测定葡萄酒是一种酒精饮料,具有特殊的香味与风味。
它的质量与风味受到多种理化指标的影响。
因此,对葡萄酒理化指标进行准确可靠的测定非常重要。
下面将介绍葡萄酒几个常见的理化指标的测定方法。
1.酒精度酒精度是指葡萄酒中酒精的含量,是衡量葡萄酒酒精浓度的重要指标。
测定酒精度的常用方法是密度法和蒸馏法。
密度法通过测量葡萄酒的密度来计算酒精度,而蒸馏法则是将葡萄酒蒸馏得到酒精蒸馏液,再通过测定酒精蒸馏液的体积或比例来计算酒精度。
2.酸度葡萄酒的酸度主要包括总酸度和挥发酸度。
总酸度是指葡萄酒中的总酸含量,常用的测定方法是以酒石酸为指示剂,用氢氧化钠溶液滴定葡萄酒中的总酸。
挥发酸度是指葡萄酒中易挥发的有机酸的含量,通常以乙酰氯为指示剂,用氢氧化钠溶液滴定葡萄酒中的挥发酸。
3.pH值pH值是用来表示溶液酸碱性的指标,对于葡萄酒而言,它的pH值直接影响到其口感和稳定性。
常用的测定方法是使用酸碱指示剂与葡萄酒溶液进行滴定,根据溶液的颜色变化来确定pH值。
4.老化程度指标葡萄酒的老化程度对于其质量和风味有着重要的影响。
常用的老化程度指标包括酚类物质含量和色素变化。
酚类物质含量可以通过紫外-可见分光光度法进行测定,通过测定葡萄酒溶液在一定波长下的吸光度来计算酚类物质含量。
色素变化可以通过比色法进行测定,将葡萄酒溶液与标准色板进行比色,根据色差评估葡萄酒的色素变化程度。
5.抗氧化能力抗氧化能力是葡萄酒抵御氧化反应的能力,直接影响其质量和口感。
抗氧化能力的测定方法有多种,例如Folin-Ciocalteu法可以测定葡萄酒中多酚类物质的含量,还可以使用1,1-二苯基-2-三硝基苯肼(DPPH)法或四氨基吡啶(ABTS)法来测定葡萄酒中的自由基清除能力。
总结起来,葡萄酒的理化指标的测定在保证其质量与口感方面起着至关重要的作用。
通过准确测定葡萄酒中的酒精度、酸度、pH值、老化程度指标和抗氧化能力等指标,可以进一步探索和优化葡萄酒的制作工艺和质量调控方法,提高葡萄酒的质量和市场竞争力。
基于理化指标分析的葡萄与葡萄酒的评价摘要针对酿酒葡萄与葡萄酒理化指标的统计,通过聚类法,典型相关分析及逐步回归分析法等,建立数据统计模型:对于问题一,首先对两组数据进行整理分析,然后利用spss软件进行配对数据t-检验(详见第三页表二),从而判断出两组评酒员的评价结果具有显著性差异。
而后利用excel进行方差分析-无重复双因子分析得出二组结果更为可信。
详细见第 3 页。
对于问题二,使用matlab软件对原始变量进行主成分分析得出中和变量,然后使用spss软件应用离差平方和法对中和变量进行聚类分析,从而根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级,为了检验欧式测距是否可以正确区分出葡萄的等级,所以对主成份分析后的理化指标求均值,经过验证,均值相差大,足以区分葡萄等级,最终将红葡萄分为3级,白葡萄分为4级。
详细见第 5 页。
对于问题三,首先通过matlab软件对葡萄酒的理化指标进行主成分分析,得出中和指标。
然后使用spss软件进行典型相关分析,得到葡萄酒的理化指标与酿酒葡萄的理化指标的关联度。
再通过对关系度表格的分析,得到酿酒葡萄与葡萄酒的理化指标之间的联系。
详细见第 14 页。
对于问题四,考虑到葡萄酒质量与酿酒葡萄和葡萄酒理化指标可能成线性关系,故应用逐步回归分析,将葡萄酒质量设为因变量,酿酒葡萄和葡萄酒理化指标设为自变量,列出线性回归方程,通过spss软件进行数据拟合和显著性分析,排除影响不显著的变量,将因变量与评酒员打分结果对比,得出拟合结果基本符合。
再通过分析得到分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响。
最后根据F检验判断所得数据的正确性。
由于葡萄酒可能会收到年份和贮藏环境等其他因素的影响,因此不能单纯地通过葡萄和葡萄酒的理化指标来评价葡萄酒的质量。
详细见第 16 页。
关键字:典型相关分析 t检验主成分分析一、问题重述葡萄酒是一种成分复杂的酒精饮料,不同产地、年份和品种的葡萄酒成分不同。
葡萄酒的评价与理化指标检验摘要:本实验以美国新橡木桶贮存赤霞珠干红葡萄酒为原料,根据GBT 15038-2006 葡萄酒、果酒通用分析方法测定样品的总酸、挥发酸、酒精度、干浸出物、总浸出量、残糖、单宁、色度、色调、总酚、总SO2、明胶指数、盐酸指数、pH、可溶性固形物。
结果显示,葡萄酒的各项理化指标符合国家新标准中的规定。
本文讨论分析了橡木桶对赤霞珠干红葡萄酒储存过程中理化指标的影响。
关键词:赤霞珠;橡木桶;干红葡萄酒;理化指标;分析检测1 引言葡萄酒是以新鲜葡萄或葡萄汁为原料,经发酵而成的含有多种营养成分的饮料酒, 是世界公认的对人体有益的健康酒精饮品。
葡萄酒具有很高的营养价值和保健作用, 内含一种称为白藜芦醇的物质, 以红葡萄酒中含量最多, 可用于癌症的化学预防。
葡萄酒能调节人体新陈代谢, 促进血液循环, 防止胆固醇增加, 同时还有利尿、激发肝功能和防止衰老的作用, 长期适当适量( 每天控制在50mL) 饮用, 可以起到滋补、强身、美容的作用, 可防止坏血病、贫血、眼角膜炎, 降低血脂, 促进消化, 对预防癌症和医治心脏病大有禆益。
干红葡萄酒中含有人体维持生命活动所需的三大营养素:维他命、糖及蛋白质。
葡萄糖是人类维持生命、强身健体不可缺少的营养成分,是人体能量的主要来源。
近年来也越来越受广大顾客的青睐。
本研究的目的就是通过对赤霞珠干红葡萄酒理化指标的检测,保障酒的质量,并通过检测分析在制作、品种、贮存工具、贮存条件相同的情况下,只有贮存时间不同对酒理化性质的比较分析。
由于橡木桶贮存过的葡萄酒日益得到消费者的认可,橡木桶便越来越受到世界各地的酿酒师的青睐。
橡木香气是木桶贮藏的葡萄酒中最常见的香气。
经过木桶贮藏,葡萄酒逐渐氧化成熟。
新、旧橡木桶也会对葡萄酒产生一定影响,随着贮酒次数的增加,木桶的贮藏效果逐渐减弱。
几乎有葡萄酒出产的地方都可以见到赤霞珠的身影,但是它在世界各地区的表现是有所差异的,不同的地区由于气候不同导致葡萄的质量不同。
本文研究的是美国新橡木桶贮存赤霞珠干红葡萄酒的理化指标差异。
2 材料与方法2.1 原料美国6#新橡木桶贮存2#赤霞珠干红葡萄酒(W2B6)2010年10月—2011年6月的九个样品。
2.2 试剂与仪器试剂: NaOH 标准液,费林溶液Ⅰ、Ⅱ液,葡萄糖标液,福林-肖卡、福林-丹尼斯(试剂等。
仪器:分析天平,分光光度计, pH计等。
2.3 实验方法2.3.1 总酸的测定采用氢氧化钠标准滴定溶液[c(NaOH)=0.05mol/L]以酚酞作指示剂直接滴定。
吸取样品2ml—5ml[液温20℃;取样量可根据酒的颜色深浅而增减],置于250ml三角瓶中,加入50ml水,同时加入2滴酚酞指示液,摇匀后,立即用经氧化钠标准溶液滴定至终点,并保持30s内不变色,记下消耗氢氧化钠标准溶液的体积。
同时做空白试验。
c×(V1-V0)×75X=——————————————V2(1)X——样品中总酸的含量(以酒石酸计),单位为克每升;c——氢氧化钠标准溶液滴定溶液的浓度,单位为摩尔每升;V0——空白试验消耗氢氧化钠标准溶液的体积,单位为毫升;V1——样品滴定时消耗氢氧化钠标准溶液的体积,单位为毫升;V2——吸取样品的体积,单位为毫升;75——酒石酸的摩尔质量的数值,单位为克每摩尔。
2.3.2 挥发酸的测定以蒸馏的方式蒸出样品中的低沸点酸类即挥发酸,用碱标准溶液进行滴定,再测定游离二氧化硫和结合二氧化硫,通过计算与修正,得出样品中挥发酸的含量。
实测挥发酸:安装好蒸馏装置。
吸取10ml样品(V)[液温20℃]进行蒸馏,收集100ml 馏出液。
将馏出液加热至沸,加入2滴酚酞指示液,用氢氧化钠标准溶液滴定至粉红色,30s 内不变色即为终点,记下消耗氢氧化钠标准溶液的体积(V1)。
测定游离:于上述溶液中加入1滴盐酸溶液酸化,加2ml淀粉指示液和几粒碘化钾,混匀后用碘标准溶液滴定,得出碘标准滴定溶液消耗的体积(V2)测定结合二氧化硫:在上述溶液中加入硼酸钠饱和溶液,至溶液显粉红色,继续用碘标准滴定溶液滴定,至溶液呈蓝色,得到碘标准滴定溶液消耗的体积(V3)。
c×V1×60.0Xi= ————————(2)VXi——样品中实测挥发酸的含量(以乙酸计),单位为克每升;C——氢氧化钠标准溶液滴定溶液的浓度,单位为摩尔每升;V1——消耗氢氧化钠标准滴定溶液的体积,单位为毫升;60.0——乙酸的摩尔质量的数值,单位为克每摩尔;V——吸取样品的体积,单位为毫升。
2.3.3 酒精度的测定(密度瓶法)用一洁净、干燥的100 mL 容量瓶准确量取100 mL葡萄酒(液温20 ℃) 于500 mL 内含几颗玻璃珠的蒸馏瓶中,用50 mL 蒸馏水分3 次冲洗容量瓶,洗液并入蒸馏瓶中,连接冷凝器,以取样用的原容量瓶作接收器(外加冰浴) . 开启冷却水,缓慢加热蒸馏. 收集馏出液接近刻度,取下容量瓶,盖塞. 于20 ℃水浴中保温30 min ,补加水至刻度,混匀,备用.将葡萄酒馏出液在20 ℃时的密度按以下公式计算m2-m+Aρ2020 = ——————×ρ(3) m1-m+Am1– mA =ρa×—————(4)997.0ρ2020———试样馏出液在20 ℃时的密度, g/ L;m ———密度瓶的质量, g ;m1———20 ℃时密度瓶与充满密度瓶蒸馏水的总质量, g ;m2———20 ℃时密度瓶与充满密度瓶试样馏出液的总质量, g ;ρ0———20 ℃时蒸馏水的密度(998. 20 g/ L);A ———空气浮力校正值;ρa———干燥空气在20 ℃、1 013. 25 hPa 时的密度值(≈1. 2 g/ L) ;997. 0 ———在20 ℃时蒸馏水与干燥空气密度值之差, g/ L 。
然后,根据计算所得ρ2020 ,查表酒精水溶液与酒精度对照表(20 ℃) ,求得酒精度。
2.3.4 总浸出物的测定用密度平法测定样品或蒸出酒精后的样品的密度,然后用其密度值查附录C[1],求的总浸出物的含量。
试样的制备:用2.3.3中蒸出酒精度后的残液,在20℃时以水定容至100ml。
分析步骤:吸取试样,按2.3.3同样操作,并按2.3.3计算出脱醇样品20℃时的密度ρ1。
以ρ1×1.00180的值,查附录C,得出总浸出物的含量(g/L)。
2.3.5 残糖的测定(直接滴定法)利用费林溶液与还原糖共沸,生成氧化亚铜沉淀的反应,以次甲基蓝为指示液,以样品或经水解后的样品滴定煮沸的费林溶液,达到重点时,稍微过量的还原糖将蓝色的次甲基蓝还原为无色,以示终点。
根据样品消耗量求的还原糖的含量。
预备试验:吸取费林溶液Ⅰ、Ⅱ各5.00ml于250ml三角瓶中,加50ml水,摇匀,在电炉上加热至沸,在沸腾状态下用葡萄糖标准溶液滴定,当溶液的蓝色将消失呈红色时,加2滴次甲基蓝指示剂,继续滴至蓝色消失,记录消耗葡萄糖标准溶液的体积。
正式试验:吸取费林溶液Ⅰ、Ⅱ各5.00ml于250ml三角瓶中,加50ml水比预备试验少1ml的葡萄糖标准溶液,加热至沸腾,并保持2min,加2滴次甲基蓝指示液,在沸腾状态下于1min 内用葡萄糖标准溶液滴至终点,记录消耗葡萄糖标准溶液的总体积(V)。
费林溶液Ⅰ、Ⅱ各5ml相当于葡萄糖的克数按式(5)计算:F=V×m/1000 (5)F——费林溶液Ⅰ、Ⅱ各5ml相当于葡萄糖的克数,单位为克(g);m——称取无水葡萄糖的质量,单位为克,单位为克(g);V——消耗葡萄糖标准溶液的总体积,单位为毫升(ml)。
分析步骤:测定干葡萄酒或含糖较低的半干葡萄酒,先吸取一定量样品(V3)[液温20℃]于预先装有费林溶液Ⅰ、Ⅱ液各5.0ml的250米三角瓶中,再用葡萄糖标准溶液按上述操作,记录消耗葡萄糖标准溶液的体积(V),结果按式(6)计算。
F-c×VX=——————————×1000(6)(V1/V2)×V3X——干葡萄酒或半干葡萄酒总糖或还原糖的含量,单位为克每升(g/L);F——费林溶液Ⅰ、Ⅱ各5ml相当于葡萄糖的克数,单位为克(g);c——葡萄糖标准溶液的浓度,单位为克每毫升(g/ml);V——消耗葡萄糖标准溶液的总体积,单位为毫升(ml);V1——吸取样品的体积,单位为毫升(ml);V2——样品稀释后或水解定容的体积,单位为毫升(ml);V3——消耗试样的体积,单位为毫升(ml)。
2.3.6干浸出物的測定总浸出物的含量减去残糖的含量,即得干浸出物的含量,单位为克每升(g/l)。
2.3.7 单宁的测定单宁类化合物在碱性溶液中,将磷钼酸和磷钨酸盐还原成蓝色化合物,蓝色的深浅程度与单宁含酚基的数目成正比。
如试样中含有其他酚类化合物或其他还原物质,也会被同时测定。
标准曲线的制备:吸取0 mL、0.5 mL、1.0 mL、1.5 mL、2.5 mL、5.0 mL、7.5 mL、10 mL单宁酸标准溶液用水分别定容至50 mL,分别取1 mL放入盛有70 mL水的100 mL容量瓶中,加入福林--丹尼斯试剂5 mL及饱和碳酸钠溶液10 mL,加水至刻度,充分混匀。
30 min后以空白作参比,在波长760 nm处测定吸光度,以吸光度为横坐标,100 mL溶液中单宁酸的毫克数为纵坐标绘制标准曲线(y=ax+b,y—吸光值;x-单宁含量,g/L)。
试样的测定:吸取0.1 mL试样提取液的上清液,置于盛有70 mL水的100 mL容量瓶中,加入5 mL福林-丹尼斯试剂及10 mL饱和碳酸钠溶液,加水至100 mL,充分混匀。
30 min 后以水代替试样制成的空白作参比,在760 nm波长处测定吸光度,由吸光度从标准曲线查出相应的单宁含量。
计算:样品测得吸光值,从标准曲线查得单宁的浓度再乘以10即为酒样中单宁实际含量。
即:单宁含量(以单宁酸计)=10× [ (y-b)/a ]。
式中 y-吸光值;a-标准曲线斜率;b-标准曲线截距。
2.3.8色度测定溶液呈现不同颜色是由于溶液对光具有选择性吸收,可见光在400--760nm,而红葡萄酒颜色在420nm,520nm,620nm有吸收。
420nm,520nm,620nm所发出的光分别为绿色,蓝色和橙色。
我们看到的则是其发出光的互补色,即420nm为黄色,520nm为红色,620nm为蓝紫色。
先测定被测样品的pH,然后准确吸取被测样品若干,用相同pH的缓冲液稀释至刻度均匀,用1cm比色皿在420nm,520nm,620nm处分别测得其吸光值。
将3波长下吸光度相加即为红葡萄酒的色度。
2.3.9 色调的测定葡萄酒的色调可以表现其成熟程度,新红葡萄酒源于果皮的花色素苷的作用,带紫色或宝石红色调。