研究性重水反应堆冷却回路~(16)N的测量和计算
- 格式:pdf
- 大小:200.48 KB
- 文档页数:4
核电站辐射测量技术课后题(优秀范文5篇)第一篇:核电站辐射测量技术课后题2.1核辐射测量的分类:一是测量核辐射的粒子数如放射源活度、射线强度及通量密度等;二是测量核辐射粒子的能量。
2.2测量装置包括:辐射源、探测器、电子学记录系统及计算机系统。
2.3低水平放射性测量:辐射防护、环境检测、核电站的辐射测量等通常都是极其微弱的放射性测量被称作低水平放射性测量。
2.4低水平放射性测量通常分3步进行:1.在所关心的地点采集具有代表性的样品;2.用物理或者化学方法处理样品3.测量样品并对测量结果作统计学方面的分析判断。
2.5用于低水平放射性测量的测量装置应该具有这样的特点:能用最少的测量时间得到满足测量精度要求的测量数据,可以探测到的最少样品的放射性活度要大。
(这就需要定义优质因子)2.6本底的主要来源:宇宙射线、周围环境的放射性核素、屏蔽材料及探测器件中的放射性核素2.7降低本底的措施:降低本底,要根据本底的来源,采用不同的措施。
1.铅屏蔽材料中有微量放射性核素,选择放置较长时间的老铅或特殊精练过的铅,可使本底降低2.为减少氡钍射气造成的本底,可以采用有效的通风3.为了降低探测元器件的放射性核素带来的本底,可以采用以石英玻璃代替玻璃壳的光电倍增管,可以先对NAI(T1)晶体经过去钾提纯4.降低宇宙射线中的硬成分的影响可采用反符合屏蔽5.对于接地不良造成的对电子学线路的干扰,可以尽可能缩短放大器与探测器之间的距离,所有电子学仪器都一点接地。
4.1、燃料元件破损监测的方法?①一回路冷却剂γ放射性的连续监测②一回路冷却剂放射性的采样测量③辐照后燃料元件包壳破损的啜漏检测2、燃料元件包壳破损的啜漏检测系统的组成和工作原理?在线:固定在装卸料机上的压缩空气注入单元和抽真空单元;控制和测量单元;记录单元。
离线:水循环采样回路、气体回路、隔热回路;啜漏套筒、过滤器原理:在停堆期间,根据一回路冷却剂放射性跟踪监测提供的信息,将全部或部分燃料燃耗未达到额定值的燃料组件从反应堆卸到燃料水池,先采取在线检测系统对元件包壳破损泄漏监测,进而把泄漏的有破损燃料组件和不带泄漏的完好燃料组件区分开,然后采用离线检测系统定量的测定破损情况。
第四章 反应性系数核反应堆在运行过程中,它的一些物理参数以及反应性都在不断地发生变化。
前面一章讨论了核反应堆在运行期间核燃料的燃耗和裂变产物的积累,及由其所引起的反应性变化。
另一方面,在运行过程中堆芯的温度也在不断变化,例如,压水堆由冷态到热态,堆芯温度要变化200~300开,当反应堆功率改变时,堆芯的温度也要发生变化。
由于堆芯温度及其分布的变化将导致有效增殖系数的变化,从而引起反应性的变化。
这种物理现象称为反应堆的“温度效应”。
其于上述原因,核反应堆在运行初期必需具有足够的剩余反应性。
反应堆启动后,必需随时克服由于温度效应、中毒和燃耗所引起的反应性变化;另一方面,为使反应堆启动、停闭、中毒和燃耗所引起的反应性变化;另一方面,为使反应堆启动、停闭、提升或降低功率,都必需采用外部控制的方法来控制反应性。
由于不同的物理过程所引起的反应性变化的大小和速率不同,所采用的反应性控制的方式和要求也就不同。
表6-1给出压水堆内几个主要过程引起的反应性变化值和所要求的反应性控制变化率。
反应堆系统存在着随堆芯其他某一特性的变化而自动变化的固有特性。
固有特性通常就是用反应性系数来描写的。
反应性系数定义为,反应堆的反应性随某给定参数的变化率。
对反应堆具有重要意义的一些反应性系数有,燃料温度(多普勒)系数、慢化剂温度系数、空泡系数及压力系数等。
但对反应堆安全运行具有实际意义的是反应性功率系数。
对此将逐一予以讨论。
表4-1 压水堆的反应性控制要求1)指反应堆从零功率运行温度)(1T 到满功率运行温度)(2T 之间所产生的反应性变化值。
2)指反应堆从零功率到满功率之间的反应性变化第一节 反应性温度系数堆芯内温度变化时,中子能谱、微观截面等都将相应地发生变化。
所以,与反应性有关的许多参数,如热中子利用系数、逃脱共振几率等,都是温度的函数。
因而,当反应堆中各种材料的温度发生变化时,会引起反应性的变化。
温度变化一度(开)时所引起的反应性变化称为反应性温度系数,或简称温度系数,以r a 表示。
重水堆压力管长度测量及数据分析
水堆压力管一直是用来测量和观察地质压力的重要仪器,它通常由管材和重水(如海水)组成,它能够有效地反映地层以及地表的变化情况,在矿山、路基建设中起到重要作用。
近年来,随着数字技术的发展,重水堆压力管的长度测量也有了新的发展,凭借数字技术,重水堆压力管的长度测量技术已经发展得更加准确和精确。
首先,重水堆压力管的长度测量技术采用高精度仪器和设备,实现对重水堆压力管长度的准确测量。
这里运用了工业级数据采集仪,将重水堆压力管中的压力、位移以及温度采集,从而实现高精度的重水堆压力管长度测量。
此外,工业级数据采集仪还可以实时监测重水堆压力管的压力、位移以及温度情况,从而对重水堆压力管的工作状况进行实时管理。
其次,重水堆压力管的长度测量技术还通过数字技术实现了高精度的数据分析。
首先,它通过工业级数据采集仪实现了高精度的重水堆压力管长度测量,然后通过相应的数据分析软件来对所采集的压力、位移以及温度数据进行分析,从而可以获得更精准的重水堆压力管长度测量数据。
同时,通过数据分析,还能够更好地了解重水堆压力管的工作状态,从而能够及早发现重水堆压力管在工作中出现的问题,以求得更好的工作性能。
综上所述,重水堆压力管的长度测量技术通过高精度的仪器和设备以及数字技术,实现了高精准的重水堆压力管长度测量,同时可以实时了解重水堆压力管的工作状况,及早发现存在的问题,以求得更
好的工作性能。
重水堆压力管的长度测量技术不仅可以更准确地实现重水堆压力管的长度测量,而且还能够更好地为矿山、路基建设等提供有力的技术支撑。
2.1查水物性骨架表计算水的以下物性参数:(1)求16.7MPa时饱和水的动力粘度和比焓;(2)若324℃下汽水混合物中水蒸气的质量比是1%,求汽水混合物的比体积;(3)求15MPa下比焓为1600kJ/kg时水的温度;(4)求15MPa下310℃时水的热导率。
2.2计算核电厂循环的热效率13:14:49位置T /K p /kPa -1h /(kJ·kg ) 状态 给水泵入口 6.89 163 饱和液 给水泵出口7750 171 欠热液 蒸发器二次侧出口 7750 2771 饱和气 汽轮机出口6.891940两相混合物 蒸发器一次侧入口 599 15500 欠热液 蒸发器一次侧出口56515500欠热液第三章3.1的热导率,并求1600℃下97%理论密度的UO2与316℃下金属铀的热导率做比较。
13:14:49习题讲解8假设堆芯内所含燃料是富集度3%的UO2,慢化剂为重水D2O,慢化剂温度为260℃,并且假设中子是全部热能化的,在整个中子能谱范围内都适用1/v定律。
试计算中子注量率为1013 1/(cm2·s)处燃料元件内的体积释热率。
= 0.275试推导半径为R ,高度为L ,包含n 根垂直棒状燃料元件的圆柱形堆芯的总释热率Q t 的方程:1Q tnLA u q V ,maxF u其中,A u 是燃料芯块的横截面积。
4.1燃料元件,已知表面热有一压水堆圆柱形UO2流密度为1.7 MW/m2,芯块表面温度为400℃,芯块直径为10.0mm,UO2密度取理论密度的95%,计算以下两种情况燃料芯块中心最高温度:(1)热导率为常数,k = 3 W/(m•℃)(2)热导率为k = 1+3exp(-0.0005t)。
热导率为常数k不是常数,要用积分热导法4.2有一板状燃料元件,芯块用铀铝合金制成(铀占22%重量),厚度为1mm,铀的富集度为90%,包壳用0.5mm厚的铝。
元件两侧用40℃水冷却,对流传热系数h=40000 W/(m2•℃),假设:气隙热阻可以忽略铝的热导率221.5 W/(m•℃)铀铝合金的热导率167.9 W/(m•℃)裂变截面520×10-24cm2试求元件在稳态下的径向温度分布4.3已知某压水堆燃料元件芯块半径为4.7mm,包壳内半径为4.89mm,包壳外半径为5.46mm,包壳外流体温度307.5 ℃,冷却剂与包壳之间传热系数为 28.4 kW/(m2•℃),燃料芯块热导率为 3.011 W/(m•℃),包壳热导率为18.69 W/(m•℃),气隙气体的热导率为0.277W/(m•℃)。
课堂上讲过的题目11-1. 已知堆芯平均宏观裂变截面∑f=0.085 [cm-1],平均热中子密度n=8⨯107 [cm-3],平均热中子速度v=2.5⨯103 [m/sec],取每次裂变释放、并可回收的能量E f=200[MeV](1[MeV]=1.602⨯10-13 [J])。
试求:(1)堆芯内每秒每立方厘米的裂变次数;(2)堆芯平均体积释热率[W/cm3]。
【解答】:(1)堆芯平均热中子通量密度:φ=nv=8⨯107⨯2500⨯102 = 2⨯1013 [cm-2⋅sec-1]每秒每立方厘米的裂变次数即为裂变反应率:R f =∑f φ=0.085⨯2⨯1013=1.7⨯1012[cm-3⋅sec-1](2)已知:E f=200[MeV]=200[MeV]⨯{1. 602⨯10-13[J/MeV]}=3.204⨯10-11[J]体积释热率=R f E f=1.7⨯1012⨯3.204⨯10-11=54.468[W/cm3]1-2.【例题】:在一个运行着的反应堆堆芯中,一个热中子即将与一个铀-238核相互作用。
以下哪一种情形最有可能发生作用,并且将怎样影响堆芯的k eff?A.该中子将被散射,因此使k eff不变。
B.中子将被吸收,而238U核将裂变,因此使k eff减小。
C.中子将被吸收,而238U核将裂变,因此使k eff增大。
D.中子将被吸收,而238U核将进行放射性衰变,生成239Pu,因此使k eff 增大。
【答案】:[A]。
【解答】:∙∵只有能量高于1.1MeV的中子才能引起238U核的裂变(低于此能量裂变截面极小),∴对于一个热中子来说,B、C两种情况可以排除。
∙由238U的微观截面图可知:热中子与238U核的弹性散射截面σ弹性(情况A)与俘获截面σ俘获(情况D)相比较,σ弹性>σ俘获。
∙∴选A项。
1-3.【例题1】:某热中子反应堆处在临界状态,每次裂变产生的中子数ν 2.43。
重水反应堆热柱中子能谱测量
包宗渝;陈军
【期刊名称】《青岛大学学报:自然科学版》
【年(卷),期】1997(010)002
【摘要】利用飞得时间法,用机械选择器测量了中国原子能科学研究院重水反应堆热柱的中子能谱。
结果表明,该热柱能谱和理论Maxewll谱有偏离。
【总页数】4页(P66-69)
【作者】包宗渝;陈军
【作者单位】中国原子能科学研究院;中国原子能科学研究院
【正文语种】中文
【中图分类】TL423.075
【相关文献】
1.核反应堆内中子能谱测量技术 [J], 王谷军
2.游泳池反应堆热柱中子束空间分布.能谱及剂量参数的测定 [J], 陈常茂;谢建伦
3.SPRR-300反应堆大热柱内中子注量率及能谱分布 [J], 窦海峰;代君龙
4.研究性重水反应堆厂房外环境中子、γ剂量当量率的测定 [J], 陈常茂;闻友勤
5.重水反应堆热柱中子能谱测量 [J], 包宗渝;陈军;岳骞;徐昆;
因版权原因,仅展示原文概要,查看原文内容请购买。
重水反应堆技术的发展与应用重水反应堆技术是一种利用重水(D2O)作为冷却剂和减速剂的核能发电技术。
它在核能领域具有重要的地位,不仅可以提供清洁、高效的能源,还可以用于核武器的生产和核医学的研究。
本文将探讨重水反应堆技术的发展历程以及其在能源和其他领域的应用。
一、重水反应堆技术的发展历程重水反应堆技术最早起源于20世纪40年代,当时加拿大和英国的科学家们开始研究利用重水作为冷却剂和减速剂的核反应堆。
1944年,加拿大的麦克马斯特大学成功建成了世界上第一座重水反应堆,这标志着重水反应堆技术的诞生。
随着时间的推移,重水反应堆技术得到了不断的改进和发展。
1950年代,加拿大建成了世界上第一座商业化的重水反应堆,开始向国内外供应重水和核燃料。
1960年代,重水反应堆技术进一步发展,出现了更加高效和安全的重水反应堆设计,如加拿大的CANDU(加拿大重水反应堆)和法国的重水压力管式反应堆。
二、重水反应堆技术在能源领域的应用1. 发电:重水反应堆技术是一种可持续发展的能源解决方案。
它可以利用铀等核燃料进行核裂变,产生大量的热能,进而驱动蒸汽涡轮发电机组发电。
与传统的燃煤发电相比,重水反应堆发电具有零排放、高效率和长寿命的优势。
2. 核燃料再处理:重水反应堆技术还可以用于核燃料的再处理。
在重水反应堆中使用的核燃料可以通过再处理过程进行回收和再利用,减少核废料的产生,并提高核燃料的利用率。
3. 核武器生产:重水反应堆技术在核武器生产中起到了重要的作用。
重水反应堆可以产生大量的裂变产物,如钚-239,这是一种重要的核武器材料。
然而,由于核武器的非法性和危险性,国际社会对于重水反应堆技术的应用存在一定的限制和监管。
三、重水反应堆技术在其他领域的应用1. 核医学研究:重水反应堆技术可以用于核医学研究,如放射性同位素的生产和放射治疗。
重水反应堆可以产生各种放射性同位素,用于医学诊断和治疗,如放射性碘用于甲状腺治疗。
2. 同位素标记:重水反应堆技术还可以用于同位素标记。
重水堆核电站重水堆按其结构型式可分为压力壳式和压力管式两种。
压力壳式的冷却剂只用重水,它的内部结构材料比压力管式少,但中子经济性好,生成新燃料钚-239的净产量比较高。
这种堆一般用天然铀作燃料,结构类似压水堆,但因栅格节距大,压力壳比同样功率的压水堆要大得多,因此单堆功率最大只能做到30 万千瓦。
因为管式重水堆的冷却剂不受限制,可用重水、轻水、气体或有机化合物。
它的尺寸也不受限制,虽然压力管带来了伴生吸收中子损失,但由于堆芯大,可使中子的泄漏损失减小。
此外,这种堆便于实行不停堆装卸和连续换料,可省去补偿燃耗的控制棒。
压力管式重水堆主要包括重水慢化、重水冷却和重水慢化、沸腾轻水冷却两种反应堆。
这两种堆的结构大致相同。
(1) 重水慢化,重水冷却堆核电站这种反应堆的反应堆容器不承受压力。
重水慢化剂充满反应堆容器,有许多容器管贯穿反应堆容器,并与其成为一体。
在容器管中,放有锆合金制的压力管。
用天然二氧化铀制成的芯块,被装到燃料棒的锆合金包壳管中,然后再组成短棒束型燃料元件。
棒束元件就放在压力管中,它借助支承垫可在水平的压力管中来回滑动。
在反应堆的两端,各设置有一座遥控定位的装卸料机,可在反应堆运行期间连续地装卸燃料元件。
这种核电站的发电原理是:既作慢化剂又作冷却剂的重水,在压力管中流动,冷却燃料。
像压水堆那样,为了不使重水沸腾,必须保持在高压(约90大气压)状态下。
这样,流过压力管的高温(约300℃)高压的重水,把裂变产生的热量带出堆芯,在蒸汽发生器内传给二回路的轻水,以产生蒸汽,带动汽轮发电机组发电。
(2)重水慢化、沸腾轻水冷却堆核电站这种堆是英国在坝杜堆(重水慢化、重水冷却堆)的基础上发展起来的。
加拿大所设计的重水慢化重水冷却反应堆的容器和压力管都是水平布置的。
而重水慢化沸腾轻水冷却反应堆都是垂直布置的。
它的燃料管道内流动的轻水冷却剂,在堆芯内上升的过程中,引起沸腾,所产生的蒸汽直接送进汽轮机,并带动发电机。