【数学】2016-2017年四川省成都七中育才学校七年级上学期数学期中试卷和解析答案PDF
- 格式:pdf
- 大小:903.63 KB
- 文档页数:24
四川省成都七中育才学校七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.﹣的相反数是()A.﹣2 B.﹣C.D.22.10月24日成都第十五届西博会新疆代表团签约175亿元合作项目,175亿元用科学记数法表示为()A.1.75×109元B.1.75×1010元C.0.175×1011元D.17.5×109元3.若单项式﹣2x m﹣1y mn与7x3y2是同类项,则代数式m﹣n的值是()A.﹣B.2 C.D.﹣24.用平面截一个几何体,如果截面的形状是长方形(或正方形),那么该几何体不可能是()A.圆柱B.棱柱C.圆锥D.正方体5.数轴上到﹣4的距离等于5个单位长度的点表示的数是()A.5或﹣5 B.1 C.﹣9 D.1或﹣96.若m、n满足|2m+3|+(n﹣2)4=0,则m n的值等于()A.B.C.﹣D.07.下列(1)=3a﹣2、(2)r+3>0、(3)3s+4=s、(4)x+7y=36,是一元一次方程的有()个.A.1 B.2 C.3 D.48.下列各组数据中,结果相等的是()A.(﹣1)4与﹣14B.﹣|﹣3|与﹣(﹣3)C. D.9.下面是小丽同学做的合并同类项的题,其中正确的是()A.2a+3b=6ab B.ab﹣ba=0 C.5a3﹣4a3=1 D.﹣a﹣a=010.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是()A.9cm2B.9πcm2C.18πcm2 D.18cm2二、填空题(每小题3分,共15分)11.比较大小:﹣3 2;﹣﹣;﹣π﹣3.14.12.多项式是次项式.13.如图是一个正方体盒子的展开图,在其中三个正方形A、B、C内分别添入适当的数,使他们折成正方体后相对的面上的两个数互为相反数,则添入正方形A、B、C内的三个数中最小的是面.14.若方程3x+2a=12和方程2x﹣4=12的解相同,则a的值为.15.当x=1时,代数式ax2+bx﹣1的值为3,则代数式﹣2a﹣b﹣2的值为.三、计算题(16、17题每小题4分,18题6分,共30分)16.(1)﹣4﹣28﹣(﹣29)+(﹣24)(2)2×(﹣3)2﹣×(﹣22)+6(3)﹣(﹣+)÷(﹣2)(4)﹣14+(1﹣0.5)××[2﹣(﹣3)2].17.(1)2ax2﹣3ax2﹣7ax2(2)﹣(﹣2x2y)﹣(+3xy2)﹣2(﹣5x2y+2xy2)18.先化简,后求值:﹣3(﹣x2+xy)+2y2﹣2(2y2﹣xy),其中x=,y=﹣1.四、解答题(19-21题每小题6分,22题7分,共25分)19.如图所示的几何体是由7个相同的小正方体搭成的,请画出它的左视图和俯视图.20.小明在对代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y+1化简后,没有含x的项,请求出代数式(a﹣b)2的值.21.2014年国庆十一黄金周期间,据统计,来成都古镇旅游的人数变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)若9月30日古镇的游客人数为a万人,则10月1日的游客人数为万人;七天内游客人数最大的是10月日;(2)若9月30日游客人数为0.3万人,而2013年黄金周7天游客总数为2.4万人,那么2014年“十一”黄金周比2013年同期游客总数增长的百分率是多少?22.把正整数1,2,3,4,…,2014排列成如图所示的一个表(1)用一正方形在表中随意框住16个数,把其中没有被阴影覆盖的最小的数记为x,另外没有被覆盖的数用含x的式子表示出来,从小到大依次是、、.(2)没有被阴影覆盖的这四个数之和能等于96吗?若能,请求出x的值;若不能,请说明理由.(3)那这四个数之和又能否等于3282呢?如果能,请求出x的值;如果不能,请说明理由.23.若3x|n|﹣(n﹣4)x﹣3是关于x的四次三项式,则n的值为.24.有理数a,b,c在数轴上的位置如图所示,则化简:|a﹣b|﹣|c﹣a|﹣|b+c|= .25.如图,一个正方体,6个面上分别写着6个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为9、12、13,则六个整数之和为.26.圣诞节将至,小华决定购买一些贺卡,贺卡店有一则广告如图:(1)如果小华只买15张,则购买贺卡共花去多少元钱?(2)如果小华购买x张,请用含x的代数式表示小华所花的费用;(3)如果小华此次购买共花去360元,请问购买贺卡可能多少张?27.请观察下列算式,找出规律并填空.如图所示数表,从1开始的连续自然数组成,观察规律并完成下列各题:(1)请问第六排从左到右的第二个数是;(2)设第n排右边最后一个数字为y,请用含n的代数式表示y.四川省成都七中育才学校七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.﹣的相反数是()A.﹣2 B.﹣C.D.2【考点】相反数.【分析】根据相反数的意义解答即可.【解答】解:由相反数的意义得:﹣的相反数是.故选C.2.10月24日成都第十五届西博会新疆代表团签约175亿元合作项目,175亿元用科学记数法表示为()A.1.75×109元B.1.75×1010元C.0.175×1011元D.17.5×109元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:175亿=175********=1.75×1010,故选:B.3.若单项式﹣2x m﹣1y mn与7x3y2是同类项,则代数式m﹣n的值是()A.﹣B.2 C.D.﹣2【考点】同类项;代数式求值.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得m﹣1=3,mn=2,解得m=4,n=,m﹣n=4﹣=,故选:C.4.用平面截一个几何体,如果截面的形状是长方形(或正方形),那么该几何体不可能是()A.圆柱B.棱柱C.圆锥D.正方体【考点】截一个几何体.【分析】用一个平面截一个几何体得到的面叫做几何体的截面.【解答】解:A、圆柱的轴截面是长方形,不符合题意;B、棱柱的轴截面是长方形,不符合题意;C、圆锥的截面为与圆有关的或与三角形有关的形状,符合题意;D、正方体的轴截面是正方形,不符合题意;故选C.5.数轴上到﹣4的距离等于5个单位长度的点表示的数是()A.5或﹣5 B.1 C.﹣9 D.1或﹣9【考点】数轴.【分析】设该点表示的数为x,由距离的定义可得到关于x的方程,可求得答案.【解答】解:设该点表示的数为x,由题意可得|x﹣(﹣4)|=5,∴x+4=5或x+4=﹣5,解得x=1或x=﹣9,即该点表示的数是1或﹣9,故选D.6.若m、n满足|2m+3|+(n﹣2)4=0,则m n的值等于()A.B.C.﹣D.0【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列方程求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,2m+3=0,n﹣2=0,解得m=﹣,n=2,所以,m n=(﹣)2=.故选A.7.下列(1)=3a﹣2、(2)r+3>0、(3)3s+4=s、(4)x+7y=36,是一元一次方程的有()个.A.1 B.2 C.3 D.4【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:(1)=3a﹣2、(3)3s+4=s是一元一次方程,故选:B.8.下列各组数据中,结果相等的是()A.(﹣1)4与﹣14B.﹣|﹣3|与﹣(﹣3)C. D.【考点】有理数的乘方.【分析】根据有理数的乘方,逐一计算,即可解答.【解答】解:A、(﹣1)4=1,﹣14=﹣1,1≠﹣1,故错误;B、﹣|﹣3|=﹣3,﹣(﹣3)=3,﹣3≠3,故错误;C、,,,故错误;D、,,相等,正确.故选:D.9.下面是小丽同学做的合并同类项的题,其中正确的是()A.2a+3b=6ab B.ab﹣ba=0 C.5a3﹣4a3=1 D.﹣a﹣a=0【考点】合并同类项.【分析】本题考查同类项的概念,含有相同的字母,并且相同字母的指数相同,是同类项的两项可以合并,否则不能合并.合并同类项的法则是系数相加作为系数,字母和字母的指数不变.【解答】解:A、2a与3b不是同类项,不能合并.错误;B、ab﹣ba=0.正确;C、5a3﹣4a3=a3.错误;D、﹣a﹣a=﹣2a.错误.故选B.10.如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是()A.9cm2B.9πcm2C.18πcm2 D.18cm2【考点】圆柱的计算.【分析】易得此几何体为圆柱,主视图为长方形,面积=底面直径×高.【解答】解:所得几何体的主视图的面积是2×3×3=18cm2.故选D.二、填空题(每小题3分,共15分)11.比较大小:﹣3 < 2;﹣>﹣;﹣π<﹣3.14.【考点】实数大小比较.【分析】根据正数都大于负数,两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:﹣3<2,∵|﹣|=,|﹣|=,∴﹣>﹣,﹣π<﹣3.14,故答案为:<,>,<.12.多项式是三次三项式.【考点】多项式.【分析】根据多项式的定义,即可解答.【解答】解:多项式是三次三项式,故答案为:三,三.13.如图是一个正方体盒子的展开图,在其中三个正方形A、B、C内分别添入适当的数,使他们折成正方体后相对的面上的两个数互为相反数,则添入正方形A、B、C内的三个数中最小的是 B 面.【考点】专题:正方体相对两个面上的文字;有理数大小比较.【分析】本题可根据图形的折叠性,对图形进行分析,可知A对应﹣1,B对应2,C对应0.两数互为相反数,和为0,据此可解此题.【解答】解:由图可知A对应﹣1,B对应2,C对应0.∵﹣1的相反数为1,2的相反数为﹣2,0的相反数为0,∴A=1,B=﹣2,C=0,∴添入正方形A、B、C内的三个数中最小的是B面.故答案为:B.14.若方程3x+2a=12和方程2x﹣4=12的解相同,则a的值为﹣6 .【考点】同解方程.【分析】本题中有2个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.【解答】解:解方程2x﹣4=12,得:x=8,把x=8代入3x+2a=12,得:3×8+2a=12,解得:a=﹣6.故答案为:﹣6.15.当x=1时,代数式ax2+bx﹣1的值为3,则代数式﹣2a﹣b﹣2的值为﹣10 .【考点】代数式求值.【分析】将x=1代入可求得a+=4,然后等式两边同时乘以﹣2得:﹣2a﹣b=﹣8,最后代入计算即可.【解答】解:将x=1代入得:a+﹣1=3,∴a+=4.等式两边同时乘以﹣2得:﹣2a﹣b=﹣8.∴﹣2a﹣b﹣2=﹣8﹣2=﹣10.故答案为:﹣10.三、计算题(16、17题每小题4分,18题6分,共30分)16.(1)﹣4﹣28﹣(﹣29)+(﹣24)(2)2×(﹣3)2﹣×(﹣22)+6(3)﹣(﹣+)÷(﹣2)(4)﹣14+(1﹣0.5)××[2﹣(﹣3)2].【考点】有理数的混合运算.【分析】(1)首先计算除法,然后从左向右依次计算即可.(2)首先计算乘方和乘法,然后从左向右依次计算即可.(3)首先计算小括号里面的加法,然后计算除法和减法即可.(4)首先计算乘方和括号里面的运算,然后计算乘法和加法即可.【解答】解:(1)﹣4﹣28﹣(﹣29)+(﹣24)=﹣32+29﹣24=﹣3﹣24=﹣27(2)2×(﹣3)2﹣×(﹣22)+6=2×9﹣×(﹣4)+6=18+1+6=25(3)﹣(﹣+)÷(﹣2)=﹣(﹣)÷(﹣2)=﹣=0(4)﹣14+(1﹣0.5)××[2﹣(﹣3)2]=﹣1+××[2﹣9]=﹣1+×(﹣7)=﹣1﹣=﹣217.(1)2ax2﹣3ax2﹣7ax2(2)﹣(﹣2x2y)﹣(+3xy2)﹣2(﹣5x2y+2xy2)【考点】整式的加减.【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=(2﹣3﹣7)ax2=﹣8ax2;(2)原式=2x2y﹣3xy2+10x2y﹣4xy2=12x2y﹣7xy2.18.先化简,后求值:﹣3(﹣x2+xy)+2y2﹣2(2y2﹣xy),其中x=,y=﹣1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣2xy+2y2﹣4y2+2xy=x2﹣2y2,当x=,y=﹣1时,原式=﹣2=﹣1.四、解答题(19-21题每小题6分,22题7分,共25分)19.如图所示的几何体是由7个相同的小正方体搭成的,请画出它的左视图和俯视图.【考点】作图﹣三视图.【分析】左视图有3列,每列小正方数形数目分别为3,2,1,俯视图有3列,每列小正方形数目分别为1,1,2.再根据小正方形的位置可画出图形.【解答】解:如图所示:20.小明在对代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y+1化简后,没有含x的项,请求出代数式(a﹣b)2的值.【考点】多项式.【分析】代数式合并后,根据其值与x取值无关,确定出a与b的值,即可求出所求式子的值.【解答】解:原式=(2﹣2b)x2+(a+3)x﹣6y+5,由代数式的值与字母x的取值无关,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则(a﹣b)2=16.21.2014年国庆十一黄金周期间,据统计,来成都古镇旅游的人数变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)若9月30日古镇的游客人数为a万人,则10月1日的游客人数为a+0.6 万人;七天内游客人数最大的是10月 3 日;(2)若9月30日游客人数为0.3万人,而2013年黄金周7天游客总数为2.4万人,那么2014年“十一”黄金周比2013年同期游客总数增长的百分率是多少?【考点】列代数式;正数和负数.【分析】(1)根据表格中的数据可以解答本题;(2)根据(1)中的答案和表格中的数据可以解答本题.【解答】解:(1)由题意可得,10月1日游客为:a+0.6,10月2日游客为:a+0.6+0.8=a+1.4,10月3日游客为:a+1.4+0.4=a+1.8,10月4日游客为:a+1.8﹣0.4=a+1.4,10月5日游客为:a+1.4﹣0.8=a+0.6,10月6日游客为:a+0.6+0.2=a+0.8,10月7日游客为:a+0.8﹣0.8=a,故答案为:(a+0.6),3;(2)∵9月30日游客人数0.3万人,∴2014年黄金周7天游客总数为0.3+1.4+0.3+0.6+0.3+1.8+0.3+1.4+0.3+0.6+0.3+0.8+0.3=8.7万人,∴2014年“十一”黄金周比2013年同期游客总数增长的百分率是.22.把正整数1,2,3,4,…,2014排列成如图所示的一个表(1)用一正方形在表中随意框住16个数,把其中没有被阴影覆盖的最小的数记为x,另外没有被覆盖的数用含x的式子表示出来,从小到大依次是x+3 、x+24 、x+27 .(2)没有被阴影覆盖的这四个数之和能等于96吗?若能,请求出x的值;若不能,请说明理由.(3)那这四个数之和又能否等于3282呢?如果能,请求出x的值;如果不能,请说明理由.【考点】一元一次方程的应用;列代数式.【分析】(1)观察数列的排列方式即可得出:每行有8个数,同行相邻两列数差为1,同列相邻两行的差为8.根据最小的数为x结合正方形的性质即可得出其它三个数;(2)根据(1)将此四个数相加,令其等于96即可得出关于x的一元一次方程,解之即可求出x的值,由x不是正整数即可得出这四个数之和不能等于96;(3)根据(1)将此四个数相加,令其等于3282即可得出关于x的一元一次方程,解之即可求出x的值,由x为正整数即可得出结论.【解答】解:(1)观察数列可知:每行有8个数,同行相邻两列数差为1,同列相邻两行的差为8.∵最小的数记为x,∴另外三个数分别为:x+3,x+24,x+27.故答案为:x+3;x+24;x+27.(2)没有被阴影覆盖的这四个数之和不能等于96,理由如下:四个数之和为x+x+3+x+24+x+27=4x+54,∴4x+54=96,解得:x=10.5,∵x为正整数,∴没有被阴影覆盖的这四个数之和不能等于96.(3)根据题意得:4x+54=3282,解得:x=807.答:这四个数之和能等于3282,此时x的值为807.23.若3x|n|﹣(n﹣4)x﹣3是关于x的四次三项式,则n的值为﹣4 .【考点】多项式.【分析】根据题意得|n|=4且n≠4,得出n的值即可.【解答】解:∵3x|n|﹣(n﹣4)x﹣3是关于x的四次三项式,∴|n|=4且n≠4,∴n=﹣4,故答案为﹣4.24.有理数a,b,c在数轴上的位置如图所示,则化简:|a﹣b|﹣|c﹣a|﹣|b+c|= ﹣c .【考点】整式的加减;数轴;绝对值.【分析】根据数轴得出a﹣b,c﹣a,b+c的符号,再去绝对值即可.【解答】解:由数轴得a<﹣1<b<0<1<c,∴|a﹣b|﹣|c﹣a|﹣|b+c|=b﹣a﹣c+a﹣b﹣c=﹣c,故答案为﹣c.25.如图,一个正方体,6个面上分别写着6个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为9、12、13,则六个整数之和为69 .【考点】专题:正方体相对两个面上的文字.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题,根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为9,10,11,12,13,14或8,9,10,11,12,13,然后分析符合题意的一组数即可.【解答】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为9,10,11,12,13,14,或8,9,10,11,12,13,且每个相对面上的两个数之和相等,13+10=23,12+11=23,9+14=23,故只可能为9,10,11,12,13,14,其和为69.故答案为:69.26.圣诞节将至,小华决定购买一些贺卡,贺卡店有一则广告如图:(1)如果小华只买15张,则购买贺卡共花去多少元钱?(2)如果小华购买x张,请用含x的代数式表示小华所花的费用;(3)如果小华此次购买共花去360元,请问购买贺卡可能多少张?【考点】一元一次方程的应用;列代数式.【分析】(1)根据总价=单价×数量,列式计算即可;(2)设小华所花的费用为y元,分0<x≤20和x>20两种情况找出y关于x 的代数式,此题得解;(3)先求出购买20和21张贺卡的总钱数,将其与360元进行比较即可得出小华此次购买贺卡张数可能多于21也可能少于20,将y=360代入(2)的关系式中即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)20×15=300(元).答:如果小华只买15张,则购买贺卡共花去300元钱.(2)设小华所花的费用为y元,根据题意可知:当0<x≤20时,y=20x;当x>20时,y=0.75×20x=15x.∴小华所花的费用y=.(3)∵20×20=400(元),21×15=315(元),315<360<400,∴若购买贺卡花去360元,则小华此次购买贺卡张数可能多于21也可能少于20,∴当y=360时,有20x=360或15x=360,解得:x=18或x=24.答:如果小华此次购买共花去360元,请问购买贺卡可能为18或24张.27.请观察下列算式,找出规律并填空.如图所示数表,从1开始的连续自然数组成,观察规律并完成下列各题:(1)请问第六排从左到右的第二个数是17 ;(2)设第n排右边最后一个数字为y,请用含n的代数式表示y.【考点】规律型:数字的变化类.【分析】由数表可知:每一行的数字个数与所在的行数相等,偶数行最后一个数可表示n(n+1),奇数行第一个数可表示n(n+1),由此规律分析得出答案即可.【解答】解:(1)第五排的第一个数字为×5×(5+1)=15,所以第六排从左到右的第二个数是17;(2)设第n排右边最后一个数字为y,偶数行y=n(n+1),奇数行y=n(n ﹣1)+1.2017年4月29日。
一、选择题1.(0分)[ID :68638]如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB=2ACB .AC+CD+DB=ABC .CD=AD-12AB D .AD=12(CD+AB ) 2.(0分)[ID :68635]已知点P 是CD 的中点,则下列等式中正确的个数是( ) ①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个B .2个C .3个D .4个3.(0分)[ID :68631]已知∠α与∠β互补,且∠α>∠β,则∠β的余角可以表示为( ) A .12α∠ B .12β∠ C .()12αβ∠-∠ D .()1+2αβ∠∠ 4.(0分)[ID :68628]如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°5.(0分)[ID :68616]α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ). A .不互余且不相等 B .不互余但相等 C .互为余角但不相等D .互为余角且相等6.(0分)[ID :68615]将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( ) A .B .C .D .7.(0分)[ID :68608]如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A.50︒B.65︒C.60︒D.70︒8.(0分)[ID:68600]下列说法正确的是()A.射线PA和射线AP是同一条射线B.射线OA的长度是3cmAB CD相交于点P D.两点确定一条直线C.直线,9.(0分)[ID:68598]如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为()A.互余B.互补C.相等D.无法确定10.(0分)[ID:68591]一个小立方块的六个面分别标有字母A,B,C,D,E,F,从三个不同的方向看形如图所示,则字母D的对面是( )A.字母A B.字母F C.字母E D.字母B11.(0分)[ID:68589]已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°12.(0分)[ID:68588]体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q13.(0分)[ID:68581]22°20′×8等于( ).A.178°20′B.178°40′C.176°16′D.178°30′14.(0分)[ID:68579]如图,图中射线、线段、直线的条数分别为()A.5,5,1 B.3,3,2C.1,3,2 D.8,4,115.(0分)[ID:68575]高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是()A .两点确定一条直线B .两点之间,线段最短C .两条直线相交,只有一个交点D .直线是向两个方向无限延伸的二、填空题16.(0分)[ID :68717]如图,点C 、D 在线段AB 上,D 是线段AB 的中点,AC =13AD ,CD=4cm ,则线段AB 的长为_____cm17.(0分)[ID :68726]从起始站A 市坐火车到终点站G 市中途共停靠5次,各站点到A 市距离如下: 站点B C D E F G 到A 市距离(千米)4458051135149518252270若火车车票的价格由路程决定,则沿途总共有不同的票价____种.18.(0分)[ID :68720]植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.19.(0分)[ID :68707]如图,点C 是线段AB 的中点,点D ,E 分别在线段AB 上,且ADDB=23,AEEB =2,则CD CE的值为____.20.(0分)[ID :68679]36.275︒=_____度______分______秒.21.(0分)[ID :68671]如图,小颖从家到超市共有4条路可走,小颖应选择第________条路才能使路程最短,用数学知识解释为________________.22.(0分)[ID :68669]如图,点C 是线段AB 上一点,点M ,N ,P 分别是线段AC ,BC ,AB 的中点.若3AC =,1CP =,则线段PN 的长为________.23.(0分)[ID :68659]如图,用边长为4cm 的正方形,做了一套七巧板,拼成如图所示的一幅图案,则图中阴影部分的面积为_____cm 2.24.(0分)[ID:68752]如图是一个正方体盒的展开图,若在其中的三个正方形A、B、C 内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数,则填入正方形中A,B,C内的三个数依次为__,___,___.25.(0分)[ID:68751]如图,点C是线段AB上一点,点M、N、P分别是线段AC,BC,AB的中点.3AC cm=,1=,线段PN=__cm.CP cm26.(0分)[ID:68749]一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的体积是_____立方厘米.(结果保留π)27.(0分)[ID:68733]在9点至10点之间的某时刻,钟表的时针与分针构成的夹角是110°,则这时刻是9点__________分.三、解答题28.(0分)[ID:68832]如图,是一个几何体的表面展开图.(1)该几何体是________;A.正方体 B.长方体 C.三棱柱 D.四棱锥(2)求该几何体的体积.29.(0分)[ID:68812]如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB的度数.30.(0分)[ID:68772]古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.C3.C4.A5.D6.C7.B8.D9.C10.D11.D12.C13.B14.D15.B二、填空题16.【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语17.14【分析】画出图形后分别求出BCCDDEEFFG的大小可得AB=FGBC=DECD=EF然后根据票价是由路程决定再分别求出从ABCDEF出发的情况相加即可【详解】解:①从A分别到BCDEFG共6种18.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性19.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE 与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴20.1630【解析】【分析】利用度分秒的换算1度=60分1分=60秒来计算【详解】36度16分30秒故答案为:361630【点睛】此题考查度分秒的换算解题关键在于掌握换算法则21.②两点之间线段最短【分析】结合两点之间线段最短以及图形信息即可解答本题【详解】根据题意可把家与超市看作两个点结合两点之间线段最短即可得出第②条为最短距离即数学知识为两点之间线段最短【点睛】本题考查两22.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=23.9【解析】【分析】先求出最小的等腰直角三角形的面积=××42=1再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可【详解】解:阴影部分的面积=42-7×××42=124.02【分析】利用正方体及其表面展开图的特点解题【详解】解:由于只有符号不同的两个数互为相反数由正方体的展开图解题得填入正方形中内的三个数依次为102故答案为102【点睛】本题主要考查互为相反数的概念25.【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN 的长进而得出PN的长【详解】解:为的中点为的中点故答案为:【点睛】本题考查了两点间的距离的计算掌握线段的中点的性质灵活运用26.或【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥再利用圆锥的体积公式进行计算即可【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥①当绕它的直角边为所在的直线旋转所形成几何体27.或【分析】设分针转的度数为x则时针转的度数为根据题意列方程即可得到结论【详解】解:设分针转的度数为x则时针转的度数为当时∴当时∴故答案为:或【点睛】本题考查了一元一次方程的应用----钟面角正确的理三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】解:A、由点C是线段AB的中点,则AB=2AC,正确,不符合题意;B、AC+CD+DB=AB,正确,不符合题意;C、由点C是线段AB的中点,则AC=12AB,CD=AD-AC=AD-12AB,正确,不符合题意;D、AD=AC+CD=12AB+CD,不正确,符合题意.故选D.2.C 解析:C根据线段中点的性质、结合图形解答即可. 【详解】 如图,∵P 是CD 中点,∴PC=PD ,12PC CD,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个; 故选:C . 【点睛】本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.3.C解析:C 【分析】首先根据∠α与∠β互补可得∠α+∠β=180°,再表示出∠β的余角90°-(180°-∠α),然后再把等式变形即可. 【详解】∵∠α与∠β互补, ∴∠α+∠β=180°, ∵∠α>∠β, ∴∠β=180°-∠α,∴∠β的余角为:90°-(180°-∠α)=∠α-90°=∠α-12(∠α+∠β)=12∠α−12∠β=12(∠α-∠β), 故选C . 【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的定义.4.A解析:A 【分析】根据题意各种角的关系直接可求出题目要求的角度. 【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°. 【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.5.D【分析】由α∠与β∠都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断. 【详解】解:由α∠与β∠都是γ∠的补角,得αβ∠=∠, 即21977m m -=-,解得:32m =, 所以2197745m m -=-=. 所以α∠与β∠互为余角且相等. 故选:D . 【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.6.C解析:C 【分析】根据图形,结合互余的定义判断即可. 【详解】解:A 、∠α与∠β不互余,故本选项错误; B 、∠α与∠β不互余,故本选项错误; C 、∠α与∠β互余,故本选项正确;D 、∠α与∠β不互余,∠α和∠β互补,故本选项错误; 故选:C . 【点睛】本题考查了余角和补角的应用,掌握余角和补角的定义是解题的关键.7.B解析:B 【分析】根据平行线的性质和角平分线性质可求. 【详解】 解:∵AB ∥CD ,∴∠1+∠BEF=180°,∠2=∠BEG , ∴∠BEF=180°-50°=130°, 又∵EG 平分∠BEF ,∴∠BEG=12∠BEF=65°, ∴∠2=65°. 故选:B . 【点睛】此题考查平行线的性质,角平分线的性质,解题关键在于掌握两直线平行,内错角相等和同旁内角互补这两个性质.8.D解析:D【分析】根据直线、射线、线段的性质对各选项分析判断后利用排除法.【详解】解:A、射线PA和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线AB、CD可能平行,没有交点,故本选项错误;D、两点确定一条直线是正确的.故选:D.【点睛】本题主要考查了直线、射线、线段的特性,是基础题,需熟练掌握.9.C解析:C【分析】∠1和∠2互余,∠2与∠3互余,则∠1和∠3是同一个角∠2的余角,根据同角的余角相等.因而∠1=∠3.【详解】∵∠1与∠2互余,∠2与∠3互余,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,故选:C.【点睛】本题考查了余角的定义.解题的关键是掌握余角的定义,以及同角的余角相等这一性质.10.D解析:D【分析】根据与A相邻的四个面上的数字确定即可.【详解】由图可知,A相邻的四个面上的字母是B、D、E、F,所以,字母D的对面是字母B.故选:D.【点睛】本题考查了正方体相对两个面上的文字,仔细观察图形从相邻面考虑求解是解题的关键.11.D解析:D【分析】考虑两种情形①当OC 在∠AOB 内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB 外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC 在∠AOB 内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB 外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°, 故答案为20°或60°, 故选D .【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 12.C解析:C【分析】根据点和圆的位置关系,知最好成绩在P 点.【详解】P 点与O 点距离最长,且在有效范围内,所以最好成绩在P 点.【点睛】考查了点和圆的位置关系.13.B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 14.D解析:D【分析】直线没有端点,射线有一个端点,线段有两个端点.【详解】以A 点为端点的射线有2条,以B 为端点的射线有3条,以C 为端点的射线有2条,以D 为端点射线有1条,合计射线8条.线段:AB ,BC ,AC ,BD ,合计4条.直线:AC ,合计1条故本题 D.【点睛】直线没有端点,射线有一个端点,线段有两个端点.15.B解析:B【分析】本题为数学知识的应用,由题意将弯曲的道路改直以缩短路程,就用到两点间线段最短定理.【详解】解:弯曲的道路改直,使两点处于同一条线段上,两点之间线段最短.故选B .【点睛】本题考查了两点之间线段最短的性质,正确将数学定理应用于实际生活是解题关键.二、填空题16.【分析】根据AC=ADCD=4cm 求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm ∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC =13AD ,CD=4cm ,求出AD ,再根据D 是线段AB 的中点,即可求得答案. 【详解】 ∵AC =13AD ,CD=4cm , ∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.17.14【分析】画出图形后分别求出BCCDDEEFFG 的大小可得AB =FGBC =DECD =EF 然后根据票价是由路程决定再分别求出从ABCDEF 出发的情况相加即可【详解】解:①从A分别到BCDEFG共6种解析:14【分析】画出图形后分别求出BC、CD、DE、EF、FG的大小,可得AB=FG,BC=DE,CD=EF,然后根据票价是由路程决定,再分别求出从A、B、C、D、E、F出发的情况,相加即可.【详解】解:①从A分别到B、C、D、E、F、G共6种票价,如图:BC=805﹣445=360,CD=1135﹣805=330,DE=1495﹣1135=360,EF=1825﹣1495=330,FG=2270﹣1825=445,即AB=FG,BC=DE,CD=EF,②∵BC=360,BD=690,BE=1050,BF=1380,BG=1825=AF,∴从B出发的有4种票价,有BC、BD、BE、BF,4种;③∵CD=330,CE=690=BD,CF=1020,CG=1465,∴从C出发的(除去路程相同的)有3种票价,有CD,CF,CG,3种;④∵DE=360=BC,DF=690=BD,DG=1135=AD,∴从D出发的(除去路程相同的)有0种票价;⑤∵EF=330=CD,EG=775,∴从E出发的(除去路程相同的)有1种票价,有EG,1种;⑥∵FG=445=AB,∴从F出发的(除去路程相同的)有0种票价;∴6+4+3+0+1+0=14.故答案为:14.【点睛】本题考查了线段知识的实际应用,正确理解题意、不重不漏的求出所有情况是解此题的关键,这是一道比较容易出错的题目,求解时注意分类全面.18.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.19.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE =11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.20.1630【解析】【分析】利用度分秒的换算1度=60分1分=60秒来计算【详解】36度16分30秒故答案为:361630【点睛】此题考查度分秒的换算解题关键在于掌握换算法则解析:16 30【解析】【分析】利用度分秒的换算1度= 60分,1分=60秒,来计算.【详解】36.275︒=36度16分30秒故答案为:36,16,30.【点睛】此题考查度分秒的换算,解题关键在于掌握换算法则.21.②两点之间线段最短【分析】结合两点之间线段最短以及图形信息即可解答本题【详解】根据题意可把家与超市看作两个点结合两点之间线段最短即可得出第②条为最短距离即数学知识为两点之间线段最短【点睛】本题考查两解析:② 两点之间,线段最短【分析】结合“两点之间线段最短”以及图形信息即可解答本题.【详解】根据题意,可把家与超市看作两个点,结合“两点之间线段最短”即可得出第②条为最短距离,即数学知识为“两点之间线段最短”.【点睛】本题考查两点之间的最短距离,熟练掌握“两点之间线段最短”的性质是解题关键. 22.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.23.9【解析】【分析】先求出最小的等腰直角三角形的面积=××42=1再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可【详解】解:阴影部分的面积=42-7×××42=1解析:9【解析】【分析】先求出最小的等腰直角三角形的面积=18×12×42=1,再根据阴影部分的面积=大正方形面积减去三个等腰三角形的面积减去有关小正方形的面积即可.【详解】解:阴影部分的面积=42-7×18×12×42=16-7=9.故答案为9.【点睛】本题考查七巧板、图形的拼剪,解题的关键是求出最小的等腰直角三角形的面积,学会利用分割法求阴影部分的面积.24.02【分析】利用正方体及其表面展开图的特点解题【详解】解:由于只有符号不同的两个数互为相反数由正方体的展开图解题得填入正方形中内的三个数依次为102故答案为102【点睛】本题主要考查互为相反数的概念解析:0 2【分析】利用正方体及其表面展开图的特点解题.【详解】解:由于只有符号不同的两个数互为相反数,由正方体的展开图解题得填入正方形中A,B,C内的三个数依次为1,0,2.故答案为1,0,2【点睛】本题主要考查互为相反数的概念,只有符号不同的两个数互为相反数.解题时勿忘记正方体展开图的各种情形.25.【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】解:为的中点为的中点故答案为:【点睛】本题考查了两点间的距离的计算掌握线段的中点的性质灵活运用解析:32 【分析】根据线段中点的性质计算即可CB 的长,结合图形、根据线段中点的性质可得CN 的长,进而得出PN 的长.【详解】解:AP AC CP =+,1CP cm =,314AP cm ∴=+=,P 为AB 的中点,28AB AP cm ∴==, CB AB AC =-,3AC cm =,5CB cm ∴=,N 为CB 的中点,1522CN BC cm ∴==, 32PN CN CP cm ∴=-=. 故答案为:32.【点睛】本题考查了两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.26.或【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥再利用圆锥的体积公式进行计算即可【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥①当绕它的直角边为所在的直线旋转所形成几何体 解析:12π或16π【分析】根据题意可得绕它的直角边所在的直线旋转所形成几何体是圆锥,再利用圆锥的体积公式进行计算即可.【详解】解:绕它的直角边所在的直线旋转所形成几何体是圆锥,①当绕它的直角边为3cm 所在的直线旋转所形成几何体的的体积是:2134123ππ⨯⨯=, ②当绕它的直角边为4cm 所在的直线旋转所形成几何体的的体积是:2143163ππ⨯⨯=, 故答案为:12π或16π.【点睛】此题主要考查了点、线、面、体,关键是掌握圆锥的体积公式,注意分类讨论.27.或【分析】设分针转的度数为x 则时针转的度数为根据题意列方程即可得到结论【详解】解:设分针转的度数为x 则时针转的度数为当时∴当时∴故答案为:或【点睛】本题考查了一元一次方程的应用----钟面角正确的理 解析:4011或32011 【分析】 设分针转的度数为x ,则时针转的度数为12x ,根据题意列方程即可得到结论. 【详解】解:设分针转的度数为x ,则时针转的度数为12x , 当9011012x x ︒︒+-=时,24011x ︒=, ∴2404061111︒︒÷= 当()9018011012x x ︒︒︒+--=时,192011x ︒⎛⎫= ⎪⎝⎭ ∴192032061111÷= 故答案为:4011或32011 【点睛】 本题考查了一元一次方程的应用----钟面角,正确的理解题意是解题的关键.三、解答题28.(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.29.120°,30°【分析】先根据角平分线,求得∠BOE 的度数,再根据角的和差关系,求得BOF ∠的度数,最后根据角平分线,求得BOC ∠、AOC ∠的度数.【详解】∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=∠AOB =45°又∵∠EOF=60°∴∠BOF=∠EOF -∠BOE= 15°又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120°故∠AOC=120°,∠COB=30°.【点睛】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据AOC ∠的度数是EOF ∠度数的2倍进行求解.30.34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.。
2016-2017学年四川省成都七中七年级(上)期末数学试卷一、选择题:(每小题3分,共30分)1.(3分)9的算术平方根是()A.3 B.﹣3 C.±3 D.±92.(3分)下列实数中是无理数的是()A.B.0.212121 C.D.﹣3.(3分)下列计算正确的是()A.=B.=6 C.D.4.(3分)等腰三角形的底边长为12,底边上的中线长为8,它的腰长为()A.6 B.8 C.10 D.35.(3分)数据5,7,5,8,6,13,5的中位数是()A.5 B.6 C.7 D.86.(3分)下列命题中是真命题的是()A.对顶角相等B.内错角相等C.同旁内角互补D.同位角相等7.(3分)二元一次方程组的解是()A.B.C.D.8.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点在第()象限.A.一B.二C.三D.四9.(3分)对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)10.(3分)如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒钟后,甲超过了乙其中正确的说法是()A.①②B.②③④C.②③D.①③④二、填空题:(每小题4分,共16分)11.(4分)若x m+2﹣2y=5是关于x,y的二元一次方程,则m=.12.(4分)函数y=中,自变量x的取值范围是.13.(4分)已知实数x,y满足+(3x﹣y)2=0,则的值为.14.(4分)一次函数y=﹣2x+b与x轴交于点(3,0),则它与直线y=x的交点坐标为.三、计算与解方程(组)(15、16每小题10分,17题6分,共26分)15.(10分)计算:(1)(2).16.(10分)解方程(组)(1)4(x﹣1)2=25(2).17.(6分)已知x=,y=,求x2﹣xy+y2的值.18.(8分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.(1)求证:四边形ACED是平行四边形;(2)若AC=2,CE=4,求四边形ACEB的周长.19.(10分)七中育才学校为调查本校学生周末平均每天学习所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分,请根据以上信息,解答下列问题:(1)请把统计图补充完整;(2)在这次调查的数据中,学习所用时间的众数是,中位数是,平均数是;(3)若该校共有1000名学生,根据以上调查结果估计该校全体学生每天学习时间在3小时内(含3小时)的同学共有多少人?20.(10分)已知在平行四边形ABCD中,AB=6,BC=10,∠BAD=120°,E为线段BC上的一个动点(不与B,C重合),过E作直线AB的垂线,垂足为F,FE与DC的延长线相交于点G,(1)如图1,当AE⊥BC时,求线段BE、CG的长度.(2)如图2,点E在线段BC上运动时,连接DE,DF,△BEF与△CEG的周长之和是否是一个定值,若是请求出定值,若不是请说明理由.(3)如图2,设BE=x,△DEF的面积为y,试求出y关于x的函数关系式.一、填空题(每小题4分,共20分)21.(4分)若整数m满足条件=m且m<﹣1,则m的值是.22.(4分)a、b、c为△ABC的三条边,满足条件点(a﹣c,a)与点(0,﹣b)关于x轴对称,判断△ABC的形状.23.(4分)如图,小明要给正方形桌子买一块正方形桌布.铺成图1时,四周垂下的桌布,其长方形部分的宽均为20cm;铺成图2时,四周垂下的桌布都是等腰直角三角形,且桌面四个角的顶点恰好在桌布边上,则要买桌布的边长是cm.(提供数据:≈1.4,≈1.7)24.(4分)如图,直线OD与x轴所夹的锐角为30°,OA的长为2,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三边形,点A1、A2、A3…A n﹣1在x轴正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B2的坐标为,点B n的坐标为.25.(4分)正方形OABC的边长为1,把它放在如图所示的直角坐标系中,点M (t,0)是x轴上一个动点(t≥1),连接BM,在BM的右侧作正方形BMNP;直线DE的解析式为y=2x+b,与x轴交于点D,与y轴交于点E,当△PDE为等腰直角三角形时,点P的坐标是.二、解答题(本大题共3小题,26题8分,27题10分,28题12分). 26.(8分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:(水价计费=自来水销售费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值.(2)小王家6月份交水费184元,则小王家6月份用水多少吨?27.(10分)运用“同一个图形的面积用不同方式表示”可以证明一类含有线段的等式,这种解决问题的方法我们称之为等面积法.学有所用:在等腰三角形ABC 中,AB=AC,其一腰上的高BD=h,M是底边BC上的任意一点,M到腰AB的距离ME=h1,M到腰AC的距离MF=h2.(1)请你结合图形1来证明:h1+h2=h;(2)当点M在BC的延长线上时,h1、h2、h之间又有什么样的结论,请你在图2中画出图形;(3)请利用以上结论解答下列问题,如图3,在平面直角坐标系中有两条直线l1:y=,l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,求点M的坐标.28.(12分)如图,已知一次函数y=﹣x+6的图象与坐标轴交于A、B两点,AE平分∠BAO,交x轴于点E.(1)求点B的坐标及直线AE的表达式;(2)过点B作BF⊥AE,垂足为F,在y轴上有一点P,使线段PE+PF的值最小,求点P的坐标;(3)若将已知条件“AE平分∠BAO,交x轴于点E”改变为“点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F,以EF为边作正方形EFMN,当点M落在坐标轴上时,求E点坐标.2016-2017学年四川省成都七中七年级(上)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)9的算术平方根是()A.3 B.﹣3 C.±3 D.±9【解答】解:9的算术平方根是3.故选:A.2.(3分)下列实数中是无理数的是()A.B.0.212121 C.D.﹣【解答】解:,﹣,0.212121是有理数,是无理数,故选:C.3.(3分)下列计算正确的是()A.=B.=6 C.D.【解答】解:A、原式=2﹣=,正确;B、原式==,错误;C、+为最简结果,错误;D、原式==2,错误,故选:A.4.(3分)等腰三角形的底边长为12,底边上的中线长为8,它的腰长为()A.6 B.8 C.10 D.3【解答】解:如图所示:AB=AC,AD为BC边的中线,AD=8,BC=12,∴BD=CD=6,AD⊥BC,在Rt△ABD中,BD=6,AD=8,根据勾股定理得:AB==10,则等腰三角形的腰长为10.故选:C.5.(3分)数据5,7,5,8,6,13,5的中位数是()A.5 B.6 C.7 D.8【解答】解:将数据5,7,5,8,6,13,5按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.故选:B.6.(3分)下列命题中是真命题的是()A.对顶角相等B.内错角相等C.同旁内角互补D.同位角相等【解答】解:A、对顶角相等是真命题,故本选项正确;B、只有两直线平行,才有内错角相等,故本选项错误;C、只有两直线平行,才有同旁内角互补,故本选项错误;D、只有两直线平行,才有同位角相等,故本选项错误.故选:A.7.(3分)二元一次方程组的解是()A.B.C.D.【解答】解:,①+②得,3x=3,解得x=1,把x=1代入①得,1+y=2,解得y=1,所以,方程组的解是.故选:B.8.(3分)在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点在第()象限.A.一B.二C.三D.四【解答】解:点P(﹣3,5)关于y轴的对称点是(3,5),点(3,5)在第一象限.故选:A.9.(3分)对于一次函数y=x+6,下列说法错误的是()A.y的值随着x值的增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【解答】解:∵y=x+6中k=1>0,∴y随x的增大而增大,故A正确;令x=0可得y=6,令y=0可求得x=﹣6,∴直线与x轴交于点(﹣6,0),与y轴交于点(0,6),∴函数图象与x轴的正方向成45°角,故B、C正确;D错误;故选:D.10.(3分)如图:图中的两条射线分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑了12米;④8秒钟后,甲超过了乙其中正确的说法是()A.①②B.②③④C.②③D.①③④【解答】解:根据函数图象的意义,①已知甲的速度比乙快,故射线OB表示甲的路程与时间的函数关系;错误;②甲的速度比乙快1.5米/秒,正确;③甲让乙先跑了12米,正确;④8秒钟后,甲超过了乙,正确;故选:B.二、填空题:(每小题4分,共16分)11.(4分)若x m+2﹣2y=5是关于x,y的二元一次方程,则m=﹣1.【解答】解:由题意,得m+2=1,解得m=﹣1,故答案为:﹣1.12.(4分)函数y=中,自变量x的取值范围是x≥2.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.13.(4分)已知实数x,y满足+(3x﹣y)2=0,则的值为2.【解答】解:根据题意得,x﹣2=0,3x﹣y=0,解得x=2,y=6,所以,==2.故答案为:2.14.(4分)一次函数y=﹣2x+b与x轴交于点(3,0),则它与直线y=x的交点坐标为(2,2).【解答】解:∵点(3,0)在直线y=﹣2x+b,∴﹣6+b=0,解得b=6,∴一次函数解析式为y=﹣2x+6,∵方程组的解为,∴两直线的交点坐标为(2,2).故答案为(2,2).三、计算与解方程(组)(15、16每小题10分,17题6分,共26分)15.(10分)计算:(1)(2).【解答】解:(1)原式=2+2﹣﹣2=;(2)原式=++2=4++2=4+3.16.(10分)解方程(组)(1)4(x﹣1)2=25(2).【解答】解:(1)∵4(x﹣1)2=25,∴(x﹣1)2=,则x﹣1=或x﹣1=﹣,解得:x=或x=﹣;(2),①+②,得:4x=20,解得:x=5,将x=5代入①,得:5﹣y=8,解得:y=﹣3,所以方程组的解为.17.(6分)已知x=,y=,求x2﹣xy+y2的值.【解答】解:因为x==,y==,把代入x2﹣xy+y2中,可得:=5+2﹣3+2+5﹣2=9.18.(8分)如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD.(1)求证:四边形ACED是平行四边形;(2)若AC=2,CE=4,求四边形ACEB的周长.【解答】解:(1)证明:∵∠ACB=90°,DE⊥BC,∴AC∥DE又∵CE∥AD∴四边形ACED是平行四边形.(2)∵四边形ACED是平行四边形.∴DE=AC=2.在Rt△CDE中,由勾股定理得CD=.∵D是BC的中点,∴BC=2CD=4.在△ABC中,∠ACB=90°,由勾股定理得AB=.∵D是BC的中点,DE⊥BC,∴EB=EC=4.∴四边形ACEB的周长=AC+CE+EB+BA=10+2.19.(10分)七中育才学校为调查本校学生周末平均每天学习所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分,请根据以上信息,解答下列问题:(1)请把统计图补充完整;(2)在这次调查的数据中,学习所用时间的众数是3小时,中位数是3小时,平均数是3小时;(3)若该校共有1000名学生,根据以上调查结果估计该校全体学生每天学习时间在3小时内(含3小时)的同学共有多少人?【解答】解:(1)每天作业用时是4小时的人数是:50﹣6﹣12﹣16﹣8=8(人),则众数是3小时,中位数是3小时,平均数是=3小时,故答案为:3小时、3小时、3小时;(2)1000×=680(人),答:估计该校全体学生每天学习时间在3小时内(含3小时)的同学共有680人.20.(10分)已知在平行四边形ABCD中,AB=6,BC=10,∠BAD=120°,E为线段BC上的一个动点(不与B,C重合),过E作直线AB的垂线,垂足为F,FE与DC的延长线相交于点G,(1)如图1,当AE⊥BC时,求线段BE、CG的长度.(2)如图2,点E在线段BC上运动时,连接DE,DF,△BEF与△CEG的周长之和是否是一个定值,若是请求出定值,若不是请说明理由.(3)如图2,设BE=x,△DEF的面积为y,试求出y关于x的函数关系式.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠BAD+∠B=180°,∵∠BAD=120°,∴∠B=60°,∵AE⊥BC于E,在Rt△ABE中,∠BAE=30°,AB=6,∴BE=3,AE=3,∵EF⊥AB,∴∠BFE=90°,在Rt△BEF中,∠BEF=30°,∴BF=BE=,EF=,∵S▱ABCD=BC×AE=AB×FG,∴10×3=6FG,∴FG=5,∴EG=FG﹣EF=;(2)如图2,过点A作AH⊥BC于H,∵∠B=60°,∴BH=3,AH=3,∵∠AHB=∠BFE=90°,∠B=∠B,∴△ABH∽△EBF,∴,设BE=a,∴,∴BF=a,EF=a,∵AB∥CD,∴△BEF∽△CEG,∴,∴CG=(10﹣a),EG=(10﹣a),∴C△BEF +C△CEG=BE+BF+EF+CE+CG+EG=a+a+a+10﹣a+(10﹣a)+(10﹣a)=10+5+5=15+5;(3)同(2)的方法得,EF=x,CG=(10﹣x),∴DG=CD+CG=6+5﹣x=11﹣x,∴S△DEF=EF×DG=×x×(11﹣x)=﹣x2+(0<x<10).一、填空题(每小题4分,共20分)21.(4分)若整数m满足条件=m且m<﹣1,则m的值是0或1.【解答】解:∵=m,∴m≥0.∵m<﹣1,且m为整数,∴m=0或1.故答案为:0或1.22.(4分)a、b、c为△ABC的三条边,满足条件点(a﹣c,a)与点(0,﹣b)关于x轴对称,判断△ABC的形状等边三角形.【解答】解:∵点(a﹣c,a)与点(0,﹣b)关于x轴对称,∴a=b=c,∴△ABC是等边三角形,故答案为:等边三角形.23.(4分)如图,小明要给正方形桌子买一块正方形桌布.铺成图1时,四周垂下的桌布,其长方形部分的宽均为20cm;铺成图2时,四周垂下的桌布都是等腰直角三角形,且桌面四个角的顶点恰好在桌布边上,则要买桌布的边长是136cm.(提供数据:≈1.4,≈1.7)【解答】解:设桌子边长为xcm,则根据勾股定理,桌子对角线长为=xcm,当x=20时,x=10,由勾股定理得:等腰三角形的直角边长是=10,即桌布边长为(x+40)cm,由于四周垂下的桌布都是等腰直角三角形,则等腰三角形直角边长为cm,列方程得x=x+40,解可得x=40+40;于是桌布长为40+40+40=80+40≈136(cm).故要买桌布的边长是136cm.24.(4分)如图,直线OD与x轴所夹的锐角为30°,OA的长为2,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三边形,点A1、A2、A3…A n﹣1在x轴正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B2的坐标为(3,),点B n的坐标为(3×2n﹣2,×2n﹣2).【解答】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠B1OA2=30°,∴∠B1OA2=∠A1B1O=30°,可求得OA2=2OA1=2,同理可求得OA n=2n﹣1,∵∠B n OA n+1=30°,∠B n A n A n+1=60°,∴∠B n OA n+1=∠OB n A n=30°∴B n A n=OA n=2n﹣1,即△A n B n A n+1的边长为2n﹣1,则可求得其高为×2n﹣1=×2n﹣2,∴点B n的横坐标为×2n﹣1+2n﹣1=×2n﹣1=3×2n﹣2,∴点B n的坐标为(3×2n﹣2,×2n﹣2),点B2的坐标为(3,).故答案为:(3,);(3×2n﹣2,×2n﹣2).25.(4分)正方形OABC的边长为1,把它放在如图所示的直角坐标系中,点M (t,0)是x轴上一个动点(t≥1),连接BM,在BM的右侧作正方形BMNP;直线DE的解析式为y=2x+b,与x轴交于点D,与y轴交于点E,当△PDE为等腰直角三角形时,点P的坐标是(4,4)或(4,2).【解答】解:如图,过点P作PF⊥BC交CB的延长线于点F,∵四边形OABC与四边形BMNP都是正方形,∴∠ABM+∠MBF=90°,∠FBP+∠MBF=90°,∴∠ABM=∠FBP,在△ABM和△FBP中,,∴△ABM≌△FBP(AAS),∴BF=AB,PF=AM,∵正方形OABC的边长为1,点M(t,0),∴BF=1,PF=t﹣1,点P到x轴的距离为t﹣1+1=t,∴点P的坐标为(2,t),又∵当y=0时,2x+b=0,解得x=﹣,当x=0时,y=b,∴点D(﹣,0),E(0,b),①DE是斜边时,PD2=(+2)2+t2,PE2=(b﹣t)2+22,DE2=()2+b2,∵△PDE是等腰直角三角形,∴PD2=PE2,且PD2+PE2=DE2,即(+2)2+t2=(b﹣t)2+22,且(+2)2+t2+(b﹣t)2+22=()2+b2,b2+2b+4+t2=b2﹣2bt+t2+4,且b2+2b+4+t2+b2﹣2bt+t2+4=b2+b2,整理得,b=(t+2)且t2﹣b(t﹣2)+16=0,∴t2﹣(t+2)(t﹣2)+16=0,整理得,t2=16,解得t1=4,t2=﹣4(舍去),∴点P的坐标是(4,4);②PD是斜边时,∵△PDE是等腰直角三角形,∴PE⊥DE,且PE=DE,过点P作PF⊥y轴于点F∵∠DEO+∠PEO=90°,∠DEO+∠EDO=90°,∴∠PEO=∠EDO,在△EDO和△PEF中,,∴△EDO≌△PEF(AAS),∴EF=DO=,PC=EO=b,又∵点P(4,t),∴b=4,b﹣t=,解得t==×4=2,∴点P坐标为(4,2),此时点C、F重合,点M、A重合,综上所述,点P的坐标为(4,4)或(4,2).故答案为:(4,4)或(4,2).二、解答题(本大题共3小题,26题8分,27题10分,28题12分). 26.(8分)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:(水价计费=自来水销售费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值.(2)小王家6月份交水费184元,则小王家6月份用水多少吨?【解答】解:(1)根据题意可得,,解得,,即a的值是2.2,b的值是4.4;(2)设小王家6月份用水x吨,根据题意知,30吨的水费为:17×2.2+13×4.2+30×0.8=116,∵184>116,∴小王家6月份计划用水超过了30吨∴6.0(x﹣30)+116+0.80×(x﹣30)=184,解得,x=40即小王家6月份用水量40吨.27.(10分)运用“同一个图形的面积用不同方式表示”可以证明一类含有线段的等式,这种解决问题的方法我们称之为等面积法.学有所用:在等腰三角形ABC 中,AB=AC,其一腰上的高BD=h,M是底边BC上的任意一点,M到腰AB的距离ME=h1,M到腰AC的距离MF=h2.(1)请你结合图形1来证明:h1+h2=h;(2)当点M在BC的延长线上时,h1、h2、h之间又有什么样的结论,请你在图2中画出图形;(3)请利用以上结论解答下列问题,如图3,在平面直角坐标系中有两条直线l1:y=,l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,求点M的坐标.【解答】(1)证明:连接AM,由题意得h1=ME,h2=MF,h=BD,∵S=S△ABM+S△AMC,△ABCS△ABM=×AB×ME=×AB×h1,S△AMC=×AC×MF=×AC×h2,=×AC×BD=×AC×h,AB=AC,又∵S△ABC∴×AC×h=×AB×h1+×AC×h2,∴h1+h2=h.(2)解:如图所示:h1﹣h2=h.(3)解:在y=x+3中,令x=0得y=3;令y=0得x=﹣4,所以A(﹣4,0),B(0,3)同理求得C(1,0).AB==5,AC=5,所以AB=AC,即△ABC为等腰三角形.①当点M在BC边上时,由h1+h2=h得:1+M y=OB,M y=3﹣1=2,把它代入y=﹣3x+3中求得:M x=,所以此时M(,2).②当点M在CB延长线上时,由h1﹣h2=h得:M y﹣1=OB,M y=3+1=4,把它代入y=﹣3x+3中求得:M x=﹣,所以此时M(﹣,4).③当点M在BC的延长线上时,h1=1<h,不存在;综上所述:点M的坐标为M(,2)或(﹣,4).28.(12分)如图,已知一次函数y=﹣x+6的图象与坐标轴交于A、B两点,AE平分∠BAO,交x轴于点E.(1)求点B的坐标及直线AE的表达式;(2)过点B作BF⊥AE,垂足为F,在y轴上有一点P,使线段PE+PF的值最小,求点P的坐标;(3)若将已知条件“AE平分∠BAO,交x轴于点E”改变为“点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F,以EF为边作正方形EFMN,当点M落在坐标轴上时,求E点坐标.【解答】解:(1)如图1中,∵一次函数y=﹣x+6的图象与坐标轴交于A、B点,∴A(0,6),B(8,0),设OE=x,作EM⊥AB于M.∵AE平分∠OAB,OE⊥OA,∴OE=EM=x,在△AEO和△AEM中,,∴△AEO≌△AEM,∴AM=AO=6,∵OA=6,OB=8,∠AOB=90°,∴AB===10,∴BM=4,在Rt△EBM中,∵EM2+BM2=EB2,∴x2+42=(8﹣x)2,∴x=3,∴E(3,0),设直线AE的解析式为y=kx+b则,解得,∴直线AE的解析式为y=﹣2x+6.(2)如图2中,作点E关于y轴的对称点E′,连接FE′交y轴于P,此时PE+PF 的值最小.∵BF⊥AE,∴直线BF的解析式为y=x﹣4,由解得,∴F(4,﹣2),∴直线FE′的解析式为y=﹣x﹣,∴P(0,﹣).(3)①如图3中,当点M在y轴上时,作FP⊥OB于P,FQ⊥OM于Q.∵四边形EFMN是正方形,∴FE=FM,∠EFM=∠PFQ,∴∠EFP=∠MFQ,∵∠FPE=∠FQM=90°,∴△FPE≌△FQM,∴FP=FQ,四边形OPFQ是正方形,设边长为x.∵∠AEO=∠BEF,∠AOE=∠PFE=90°,∴∠FAQ=∠FBP,∵∠AQF=∠BPF=90°,∴△AQF≌△BPF,∴AQ=BP,∴6+x=8﹣x∴x=1,∴F(1,﹣1),∴直线AF的解析式为y=﹣7x+6,∴E(,0).②如图4中,当点M在x轴上时,易知OA=OE=6,可得E(6,0).综上所述,满足条件的点E坐标为(,0)或(6,0).。
成都七中数学七试卷(含答案)第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1、- 2的相反数是( )A.1/2B.-2C.-1/2D.22.在数轴上距离原点2个单位长度的点所表示的数是 ( ) (A) 2 (B)2- (C)2或2- (D)1或1-3.如下图,下列图形属于柱体的有( )个A.4B.5C.2D.14.据舟山市旅游局统计,2012年舟山市接待境内外游客约2771万人次.数据2771万用科学记数法表示为( )A .2771×107B .2.771×107C .2.771×104D .2.771×1055.如果a >b ,下列各式中不正确...的是 ……………………………………………( ) A .-5a >-5b B .a +3>b +3 C .a 2>b2 D .a -b >06.若a 、b 互为相反数,c 、d 互为倒数,m 到原点的距离为2,则代数式|m |-cd +a+bm的值为…………………………………………………………………………………( ) A .-3 B .-3或1 C .-5 D .17.已知方程x 2k -1+k =0是关于x 的一元一次方程,则方程的解等于 ()A.-1 B.1 C.12D.-128.一根绳子弯曲成如图1的形状,用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n-2)次(剪开的方向与a 平行),这样一共剪n次时绳子的段数是( )A.4n+1 B.4n+2 C.4n+3 D.4n+59.下列各组数中,相等的是( )A.﹣1与(﹣4)+(﹣3)B.|﹣3|与﹣(﹣3)C.与D.(﹣4)2与﹣1610.钟面角是指时钟的时针与分针所成的角,如果时间从下午2点整到下午4点整,钟面角为90°的情况有()A.有一种B.有二种C.有三种D.有四种第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.如图,已知O是直线AB上一点,∠1=20°,OD平分∠BOC,则∠2的度数是__度.12.如果a-b=3,ab=-1,则代数式3ab-a+b-2的值是_________.13.在数轴上与-5表示的点相距2个单位长度的点表示的数为.14.已知:点A在数轴上的位置如图所示,点B也在数轴上,且A、B两点之间的距离是2,则点B表示的数是;15.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步,不断往返的程序运动.设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,x n表示21CD第n秒时机器人在数轴上的位置所对应的数.则下列结论:(1)x3=3;(2)x8=4;(3)x105<x104;(4)x2013<x2014中,正确结论的个数是_______________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算(1))(-12)-5+(-14)-(-39);(2)(3)17.计算(1))(-12)-5+(-14)-(-39);(2)(3)18.已知(x-1)5=ax5+bx4+cx3+dx2+ex+f.求:(1)a+b+c+d+e+f的值;(2)a+c+e的值.19.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用−1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(−2).请解答:(1)的整数部分是__________,小数部分是__________(2)如果的小数部分为a,的整数部分为b,求a+b−的值;20.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数): 星期 一 二 三 四 五 六 日增减/辆 ﹣1 +3 ﹣2 +4 +7 ﹣5 ﹣10 (1)生产量最多的一天比生产量最少的一天多生产多少辆? (2)本周总的生产量是多少辆?21 .如图,将连续的奇数1、3、5、7 …… ,排列成如下的数表,用十字框框出5个数。
2018-2019学年成都七中育才学校七年级(上)期中模拟数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分)1.﹣22的倒数是()A.B.C.4 D.﹣42.用一个平面去截一个圆柱体,截面的形状不可能是()A.长方形B.圆C.椭圆D.等腰梯形3.下列关于单项式﹣的说法中,正确的是()A.系数是﹣,次数是2 B.系数是,次数是2C.系数是﹣3,次数是3 D.系数是﹣,次数是34.下列计算正确的是()A.2x+3y=5xy B.﹣2ba2+a2b=﹣a2bC.2a2+2a3=2a5D.4a2﹣3a2=15.地球上的海洋面积为361 000 000平方千米,数字361 000 000用科学记数法表示为()A.36.1×107B.0.361×109C.3.61×108D.3.61×1076.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A.B.C.D.7.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5千克;其中,不符合代数式书写要求的有()A.5个B.4个C.3个D.2个8.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算()A.甲B.乙C.丙D.一样9.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.7710.若|a+b|=|a|+|b|成立,则a、b需要满足的条件为()A.a、b同号B.a、b异号C.ab≤0 D.ab≥0二、填空题(每小题4分,共16分)11.一个棱柱有21条棱,则它有个面.12.大于﹣4而小于3的所有整数之和为.13.多项式﹣x|m|﹣(m﹣2)x+7是关于x的二次三项式,则m的值是.14.一个长方形长AB为5cm,宽CD为3cm,则绕其一边旋转一周,得到一个圆柱体,则该圆柱体的体积是cm3(保留π).三、解答题(共54分)15.(18分)计算题(1)(﹣23.7)+58+(﹣16.3)(2)﹣2﹣(﹣2)﹣2×(﹣1)(3)[﹣52×(﹣)2﹣0.8]÷(﹣2)(4)(﹣1)2016+(﹣48)×(+2﹣2.75)16.(6分)如图的几何体是由8个相同的立方块搭成的.请画出它从正面、左面、上面看到的平面图形.17.(6分)已知x,y互为相反数,m,n互为倒数,且有|a|=7,试求下面代数式的值:a2﹣(x+y+mn)a+x2017+y2017﹣(﹣nm)2017.18.(8分)已知x、y为有理数,现规定一种新运算⊗,满足x⊗y=xy+2.(1)求2⊗4的值;(2)求(1⊗4)⊗(﹣2)的值;(3)探索a⊗(b+c)与a⊗b+a⊗c的关系,并用等式把它表达出来.19.(8分)若(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式﹣a2+2b2﹣(a2﹣3b2)的值.20.(8分)2016年第三次G20财长和央行行长会议在成都举行,订制某品牌茶叶作为纪念品,该品牌茶叶加工厂接到一周生产任务为182kg,计划平均每天生产26kg,由于各种原因实际每天产量与计划量相比有出入,某周七天的生产情况记录如下(超产为正、减产为负):+3,﹣2,﹣4,+1,﹣1,+6,﹣5(1)这一周的实际产量是多少kg?(2)若该厂工人工资实行每日计件工资制,按计划每生产1kg茶叶50元,若超产,则超产的每千克奖20元;若每天少生产1kg,则扣除10元,那么该厂工人这一周的工资总额是多少?B卷(50分)一、填空题(每小题4分,共20分)21.若2015(a+2)2016+2017|b﹣1|=0,则(a+b)2018=.22.要使等式(ax2﹣2xy+y2)﹣(﹣ax2+bxy+2y2)=6x2﹣9xy+cy2成立,那么a=,b=,c =.23.如果有一个三位数的百位数字是7,十位数字与个位数字组成的两位数为x,请用代数式表示这个三位数为.24.已知当x=2时,代数式ax3+bx+7的值为5,则当x=﹣2时,代数式ax3+bx﹣3的值为.25.如图,在一次数学活动课上,张明用10个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.二、解答题(共30分)26.(8分)出租车司机小王某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”.他这天下午行车情况如下:(单位:千米;每次行车都有乘客)﹣2,+5,﹣1,+10,﹣3,﹣2,﹣5,+6请回答:(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米还需收2元钱.那么小王这天下午收到乘客所给车费共多少元?(3)若小王的出租车每千米耗油0.3升,每升汽油6元,不计汽车的损耗,那么小王这天下午是盈利还是亏损了?盈利(或亏损)多少钱?27.(10分)用小立方体所搭一个几何体.使得它的主视图和俯视图如图1所示:(1)组成这个几何体最少需要个小立方体.最多需要个小立方体:满足条件的几何体共有种可能;(2)画出最多小立方体组成这个几何体的时的左视图;(3)现将上述小立方体取下4个,并用六种颜色分别粉刷为相同的小立方体.现将粉刷完毕的小立方体打乱拼接为如图2情况.现将每种颜色对应一个数字如表.则从上下前后左右都看不到的面有6个.求这6个面上颜色表示的所有数字的积.颜色红黄绿蓝紫白表示的数﹣1 2 ﹣3 4 ﹣5 628.(12分)阅读理解题如图,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.7 ★☆x ﹣4 9 …(1)可求得x=,第2016个格子中的数为;(2)判断:前n个格子中所填整数之和是否可能为2023?若能,求出n的值,若不能,请说明理由;(3)若取前3格子中的任意两个数,记作a、b,且a≥b,那么所有的|a﹣b|的和,可以通过计算:|7﹣★|+|7﹣☆|+|☆﹣★|得到.其结果为;若取前17格子中的任意两个数,记作s、t且s≥t,求所有的|s﹣t|之和.参考答案与试题解析1.【解答】解:﹣22=﹣4,故﹣4的倒数是:﹣.故选:A.2.【解答】解:当截面与轴截面平行时,得到的形状为长方形;当截面与轴截面垂直时,得到的截面形状是圆;当截面与轴截面斜交时,得到的截面的形状是椭圆;所以截面的形状不可能是等腰梯形.故选:D.3.【解答】解:单项式﹣的系数是:﹣,次数是3.故选:D.4.【解答】解:A、不是同类项,不能合并,故选项错误;B、正确;C、不是同类项,不能合并,故选项错误;D、4a2﹣3a2=a2,故选项错误.故选:B.5.【解答】解:361 000 000用科学记数法表示为3.61×108,故选:C.6.【解答】解:由原正方体知,带图案的三个面相交于一点,而通过折叠后A、B都不符合,且D折叠后图案的位置正好相反,所以能得到的图形是C.故选:C.7.【解答】解:①1x=x,不符合要求;②2•3应为2×3,不符合要求;③20%x,符合要求;④a﹣b÷c=a﹣,不符合要求;⑤,符合要求;⑥(x﹣5)千克,不符合要求,不符合代数式书写要求的有4个,故选:B.8.【解答】解:设商品原价为x,甲超市的售价为:x(1﹣20%)(1﹣10%)=0.72x;乙超市售价为:x(1﹣15%)2=0.7225x;丙超市售价为:x(1﹣30%)=70%x=0.7x;故到丙超市合算.故选:C.9.【解答】解:依题意有,刀鞘数为76.故选:C.10.【解答】解:若|a+b|=|a|+|b|成立,则a、b需要满足的条件为ab≥0,故选:D.11.【解答】解:一个棱柱有21条棱,这是一个七棱柱,它有9个面.故答案为:9;12.【解答】解:大于﹣4而小于3的所有整数有﹣3,﹣2,﹣1,0,1,2,﹣3+(﹣2)+(﹣1)+0+1+2=﹣3,故答案为:﹣3.13.【解答】解:∵多项式﹣x|m|﹣(m﹣2)x+7是关于x的二次三项式,∴,解得:m=﹣2.故答案为:﹣2.14.【解答】解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×32×5=45π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×52×3=75π(cm3).故它们的体积分别为45πcm3或75πcm3.故答案为:45π或75π.15.【解答】解:(1)(﹣23.7)+58+(﹣16.3)=[(﹣23.7)+(﹣16.3)]+58=(﹣40)+58=18;(2)﹣2﹣(﹣2)﹣2×(﹣1)=﹣2+2+2=2;(3)[﹣52×(﹣)2﹣0.8]÷(﹣2)=(﹣25×)×=(﹣1﹣)×=(﹣)×=;(4)(﹣1)2016+(﹣48)×(+2﹣2.75)=1+(﹣6)+(﹣128)+132=﹣1.16.【解答】解:如图所示:17.【解答】解:由题意知x+y=0,mn=1,a=7或a=﹣7,当a=7时,原式=72﹣(0+1)×7+x2017﹣x2017﹣(﹣1)2017=49﹣7+1=43;当a=﹣7时,原式=(﹣7)2﹣(0+1)×(﹣7)+x2017﹣x2017﹣(﹣1)2017=49+7+1=57.综上所述,a2﹣(x+y+mn)a+x2017+y2017﹣(﹣nm)2017的值为43或57.18.【解答】解:(1)∵x⊗y=xy+2,∴2⊗4=2×4+2=8+2=10;(2)x⊗y=xy+2,∴(1⊗4)⊗(﹣2)=(1×4+2)⊗(﹣2)=6⊗(﹣2)=6×(﹣2)+2=(﹣12)+2=﹣10;(3))∵x⊗y=xy+2,∴a⊗(b+c)=a(b+c)+2=ab+ac+2,a⊗b+a⊗c=ab+2+ac+2=ab+ac+4,∴a⊗(b+c)=a⊗b+a⊗c﹣2.19.【解答】解:(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵代数式的值与字母x的取值无关,∴2﹣2b=0,a+3=0,解得:a=﹣3,b=1,∴﹣a2+2b2﹣(a2﹣3b2)=﹣a2+2b2﹣a2+3b2=﹣a2+5b2=﹣9+5=﹣4.20.【解答】解:(1)方法一:∵七天的生产情况记录如下(超产为正、减产为负):+3,﹣2,﹣4,+1,﹣1,+6,﹣5,∴七天的生产情况实际值为:29kg、24kg、22kg、27kg、25kg、32kg、21kg.∴一周总产量:29+24+22+27+25+32+21=180(kg).答:这一周的实际产量是180kg;方法二:∵七天的生产情况记录如下(超产为正、减产为负):+3,﹣2,﹣4,+1,﹣1,+6,﹣5,则3﹣2﹣4+1﹣1+6﹣5=﹣2,∴一周总产量:182﹣2=180(kg).答:这一周的实际产量是180kg;(2)26×50+3×20+(26﹣2)×50+10×(﹣2)+(26﹣4)×50+(﹣4)×10+26×50+1×20+(26﹣1)×50+(﹣1)×10+26×50+6×20+(26﹣5)×50+(﹣5)×10=8580(元)答:该厂工人这一周的工资总额是8580元.21.【解答】解:∵2015(a+2)2016+2017|b﹣1|=0,∴a+2=0,b﹣1=0,∴a=﹣2,b=1,∴(a+b)2018=1,故答案为:1.22.【解答】解:(ax2﹣2xy+y2)﹣(﹣ax2+bxy+2y2)=ax2﹣2xy+y2+ax2﹣bxy﹣2y2=2ax2﹣(b+2)xy﹣y2=6x2﹣9xy+cy2,可得2a=6,b+2=9,c=﹣1,解得:a=3,b=7,c=﹣1.故答案为:3,7,﹣1.23.【解答】解:有一个三位数的百位数字是7,所以表示为7×100,十位数字与个位数字组成的两位数为x,所以此三位数表示为700+x.故答案为700+x.24.【解答】解:当x=2时,原式=8a+2b+7=5,即8a+2b=﹣2,则当x=﹣2时,原式=﹣8a﹣2b﹣3=2﹣3=﹣1.故答案为:﹣1.25.【解答】解:由题可知,最小的大正方体是由小方块组成的3×3×3的大正方体,所以按照张明的要求搭几何体,王亮至少需要27﹣10=17个小立方体.根据题意得到题中堆积体的俯视图,并进行标数(地图标数法):由上图的俯视图可知,能将其补充为完整的3×3×3的大正方体的剩余部分的俯视图为:由此可得,王亮所做堆积体的三视图,主、左、俯三视图面积皆为8,所以王亮所搭几何体的表面积为(8+8+8)×2=48,故答案为:17,48.26.【解答】解:(1)﹣2+5﹣1+10﹣3﹣2﹣5+6=8(千米),答:小王在下午出车的出发地的南方,距下午出车的出发地8千米;(2)10+[10+(5﹣3)×2]+10+[10+(10﹣3)×2]+10+10+[10+(5﹣3)×2]+[10+(6﹣3)×2 =80+28=108(元),答:小王这天下午收到乘客所给车费共多108元;(3)(|﹣2|+5+|﹣1|+10+|﹣3|+|﹣2|+|﹣5|+6)×0.3×6=34×0.3×6=61.2(元),108﹣61.2=46.8(元)答:小王这天下午是盈利,盈利46.8元.27.【解答】解:(1)组成这个几何体的最少的情形见俯视图:有8个小立方体组成.组成这个几何体的最多的情形见俯视图:有11个小立方体组成.满足条件的几何体有15种情形.故答案为8,11,15.(2)最多小立方体组成这个几何体的时的左视图为:(3)由题意黄与紫相对,红与绿相对,白与蓝相对.图2中第一个立方体右侧的是红,第二个立方体左侧是蓝,右侧是白,第三个立方体的左侧是黄,右侧是紫,最后一个立方体左侧是绿,∴这6个面上颜色表示的所有数字的积=﹣1×4×6×2×(﹣5)×(﹣3)=﹣720.28.【解答】解:(1)∵任意三个相邻格子中所填整数之和都相等,∴7+★+☆=★+☆+x,解得x=7,★+☆+x=☆+x﹣4,∴★=﹣4,所以,数据从左到右依次为7、﹣4、☆、7、﹣4、☆、…,第9个数与第三个数相同,即☆=9,所以,每3个数“7、﹣4、9”为一个循环组依次循环,∵2016÷3=672,∴第2016个格子中的数与第3个格子中的数相同,∴第2016个格子中的数是9,故答案为7,9;(2)∵7﹣4+9=12,即前3个数的和为12,2023÷12=168…7,又第1个格子中的数为7,故前n个格子中所填整数之和可能为2023;n=168×3+1=505,答:前n个格子中所填整数之和能为2023,此时n的值为505;(3)∵取前3格子中的任意两个数,记作a、b,且a≥b,∴所有的|a﹣b|的和为:|7﹣★|+|7﹣☆|+|☆﹣★|=|7+4|+|7﹣9|+|﹣4﹣9|=26;∵取前17格子中的任意两个数,记作s、t且s≥t,∴所有的|s﹣t|的和为:|7﹣7|×15+|7+4|×36+|9﹣7|×30+|﹣4+4|×15+|9+4|×30+|9﹣9|×10=846。
成都七中育才学校七年级上期数学期中考试试题(考试时间 120分钟,满分 150分)A卷(共100分)温馨提示:请将所有答案均写在答题卷上,交卷时只交答题卷.....。
注意所有解答题均要有完整过程,书写要工整,格式要规范。
相信你,你将取得理想的成绩!第Ⅰ卷(选择题共30分).一.选择题:(在每小题所给出的四个选项中,只有一个正确答案,请把正确答案选项前的字母代号填涂在机读卡中.每小题3分,共30分)1.13的相反数是( )A.13B.-13C.3 D.-32.下面几何体的截面不可能是圆的是 ( )A.圆柱B.圆锥C.球D.棱柱3.下面形状的四张纸板,按图中的线经过折叠可以围成一个直三棱柱的是( ).4.地球绕太阳每小时转动经过的路程约为110000千米,用科学记数法表示约为()A. 1.1×104千米 B. 1.1×105千米 C. 1.1×106千米 D. 11×104千米5.下列计算正确的是()A.-22=-4B.-(-2)2=4C.(-3)2=6D.(-1)3=16.下列整式中,多项式有()个.﹣a3b,,x2+y2﹣2,b,3x3﹣3xy3+x4﹣1,30t3,2x﹣y.A.2 B.3 C.4 D.57. 数轴上到原点的距离等于5的点表示的数是().A.5 B.-5 C.-5或5 D.不能确定8.下列图形是正方体展开图的是:().A.B.C.D.…9.下列计算:①(-1)×(-2)×(-3)=6;②(-36)÷(-9)=-4;③23×94⎛⎫- ⎪⎝⎭÷(-1)=32;④(-4)÷12×(-2)=16. 其中正确的个数是( ). A .4B .3C .2D .110.如图,用三角形摆图案:摆第1层图需要1个三角形,摆第2层图需要3个三角形,摆第3层图需要7个三角形,摆4层图需要13个三角形,…,摆第100层图需要( )个三角形.A .10001B .9981C .9901D .9837第Ⅱ卷 (非选择题 共70分)二.填空题(12题4分,其余每题2分,共12分) 11.7-的绝对值是 ,21-的倒数是 . 12. 把下列各数填在相应的大括号里:1,45-,8.9,-7,0,56,-3.2,+1 008,-0.06,28,-9.正整数集合:{ …};负整数集合:{ …}; 正分数集合:{ …};负分数集合:{ …}. 13.右图是一数值转换机,若输入的x 为-5, 则输出的结果为__________。
一、选择题1.81x>0.8x,所以在乙超市购买合算.故选B.【点睛】本题看起来很繁琐,但只要理清思路,分别计算降价后的价格是原价的百分之多少便可判断.渗透了转化思想.2.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里B.12里C.6里D.3里3.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()A.35°B.45°C.55°D.65°4.x=5是下列哪个方程的解()A.x+5=0B.3x﹣2=12+xC.x﹣15x=6D.1700+150x=24505.7-的绝对值是()A.17-B.17C.7D.7-6.下面四个图形中,是三棱柱的平面展开图的是( )A.B.C.D.7.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM平分∠AOD,ON平分∠COB,则∠MON的度数为()A .60°B .45°C .65.5°D .52.5°8.如图,用火柴棒摆出一列正方形图案,第①个图案用了 4 根,第②个图案用了 12 根,第③个图案用了 24 根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是( )A .84B .81C .78D .76 9.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠: 会员年卡类型办卡费用(元) 每次收费(元) A 类1500 100 B 类3000 60 C 类 4000 40例如,购买A 类会员年卡,一年内健身20次,消费1500100203500+⨯=元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为( )A .购买A 类会员年卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡10.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b11.如图所示几何体的左视图是( )A .B .C .D .12.下列各图经过折叠后不能围成一个正方体的是( )A.B.C.D.13.有理数a、b、c在数轴上的对应点如图,下列结论中,正确的是()A.a>c>b B.a>b>c C.a<c<b D.a<b<c 14.000043的小数点向右移动5位得到4.3,所以0.000043用科学记数法表示为4.3×10﹣5,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④二、填空题16.一个角与它的补角之差是20°,则这个角的大小是____.17.如图,用代数式表示图中阴影部分的面积为___________________.18.某商品按标价八折出售仍能盈利b元,若此商品的进价为a元,则该商品的标价为_________元.(用含a,b的代数式表示).19.若关于x的方程2ax=(a+1)x+6的解为正整数,求整数a的值_____.20.把六张形状大小完全相同的小长方形卡片(如图 1)不重叠地放在一个底面为长方形(长为 20cm,宽为 16cm)的盒子底部(如图 2),盒子底面未被卡片覆盖的部分用阴影表示.则图 2 中两块阴影部分周长的和是_________.21.已知x=3是方程ax﹣6=a+10的解,则a= .所对应的点相距4个单位长度的点表示的数是______.22.在数轴上与223.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为_______.24.用黑白两色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:则第n个图案中有白色纸片________张.25.有理数a、b、c在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|= ________.三、解答题26.有一批共享单车需要维修,维修后继续投放骑用,现有甲、乙两人做维修,甲每天维修16辆,乙每天维修的车辆比甲多8辆,甲单独维修完成这批共享单车比乙单独维修完多用20天,公司每天付甲80元维修费,付乙120元维修费.(1)问需要维修的这批共享单车共有多少辆?(2)在维修过程中,公司要派一名人员进行质量监督,公司负担他每天10元补助费,现有三种维修方案:①由甲单独维修;②由乙单独维修;③甲、乙合作同时维修,你认为哪种方案最省钱,为什么?27.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250米/分钟,那么小明跑步一共用了多长时间?28.5+(2.5−1)=4;故答案为:4.(3)依题意可得AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3;5t+9;2t+6.(4)不变.3BC−2AB=3(2t+6)−2(3t+3)=12.【点睛】本题主要考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.29.初一(7)班数学学习小组“孙康映雪”在学习了第七章平面图形的认识(二)后对几何学习产生了浓厚的兴趣.请你认真研读下列三个片断,并完成相关问题.如图1,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(片断一)小孙说:由四边形内角和知识很容易得到∠OBC+∠ODC的值.如果你是小孙,得到的正确答案应是:∠OBC+∠ODC = °.(片断二)小康说:连结BD(如图2),若BD平分∠OBC,那么BD也平分∠ODC.请你说明当BD平分∠OBC时,BD也平分∠ODC的理由.(片断三)小雪说:若DE平分∠ODC、BF平分∠MBC,我发现DE与BF具有特殊的位置关系.请你先在备用图中补全图形,再判断DE与BF有怎样的位置关系并说明理由.30.解方程:x+12=2−x3−1【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题题号1 2 3 4 5 6 7 8 9 10 11 12 13 14 15答 C C D C C D A C C B D C B二、填空题16.100°【解析】【分析】设这个角为α根据互为补角的两个角的和等于180°表示出它的补角然后列出方程求出α即可【详解】设这个角为α则它的补角180°-α根据题意得α-(180°-α)=20°解得:α=17.【解析】阴影部分的面积等于长方形的面积减去两个小扇形的面积差长方形的面积是ab两个扇形的圆心角是90∘∴这两个扇形是分别是半径为b的圆面积的四分之一∴【点睛】本题考查了列代数式由数和表示数的字母经有18.【解析】【分析】首先设标价x元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x的值【详解】设标价x元由题意得:80x﹣b=a解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关19.2347【解析】【分析】把a看做已知数表示出方程的解由方程的解为正整数确定出整数a的值即可【详解】方程整理得:(a﹣1)x=6解得:x=由方程的解为正整数即为正整数得到整数a=2347故答案为:2320.64【解析】试题分析:设小长方形的长为xcm宽为ycm根据题意得:20=x+3y则图②中两块阴影部分周长和是:40+2(16-3y)+2(16-x)=40+64-6y-2x=40+64-2(x+3y21.8【解析】【分析】将x=3代入方程ax﹣6=a+10然后解关于a的一元一次方程即可【详解】∵x=3是方程ax﹣6=a+10的解∴x=3满足方程ax﹣6=a+10∴3a﹣6=a+10解得a=8故答案为22.2或﹣6【解析】解:当该点在﹣2的右边时由题意可知:该点所表示的数为2当该点在﹣2的左边时由题意可知:该点所表示的数为﹣6故答案为2或﹣6点睛:本题考查数轴涉及有理数的加减运算分类讨论的思想23.301【解析】【分析】根据所给图形的数字的规律进行求解即可【详解】解:由图像的:表格中中的左上的数字分别为:1234可得第n个表格中的数字为:n;表格中中的右上的数字分别为:36912可得第n个表格24.3n+1【解析】【分析】试题分析:观察图形发现:白色纸片在4的基础上依次多3个;根据其中的规律用字母表示即可【详解】解:第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张第25.b+2c【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=三、解答题26.27.28.无29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.100°【解析】【分析】设这个角为α根据互为补角的两个角的和等于180°表示出它的补角然后列出方程求出α即可【详解】设这个角为α则它的补角180°-α根据题意得α-(180°-α)=20°解得:α=解析:100°【解析】【分析】设这个角为α,根据互为补角的两个角的和等于180°表示出它的补角,然后列出方程求出α即可.【详解】设这个角为α,则它的补角180°-α, 根据题意得,α-(180°-α)=20°,解得:α=100°,故答案为100°.【点睛】本题考查了余角和补角的概念,是基础题,设出这个角并表示出它的补角是解题的关键.17.【解析】阴影部分的面积等于长方形的面积减去两个小扇形的面积差长方形的面积是ab 两个扇形的圆心角是90∘∴这两个扇形是分别是半径为b 的圆面积的四分之一∴【点睛】本题考查了列代数式由数和表示数的字母经有 解析:212ab b π- 【解析】阴影部分的面积等于长方形的面积减去两个小扇形的面积差.长方形的面积是ab ,两个扇形的圆心角是90∘,∴这两个扇形是分别是半径为b 的圆面积的四分之一. ∴2211242ab b ab b ππ-⨯=- . 【点睛】 本题考查了列代数式, 由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式.理解图意得到阴影部分的面积长方形的面积-2个14圆的面积是解题的关键. 18.【解析】【分析】首先设标价x 元由题意得等量关系:标价×打折﹣利润=进价代入相应数值再求出x 的值【详解】设标价x 元由题意得:80x ﹣b=a 解得:x=故答案为:【点睛】此题主要考查了列代数式解决问题的关 解析:5()4a b + 【解析】【分析】首先设标价x 元,由题意得等量关系:标价×打折﹣利润=进价,代入相应数值,再求出x 的值.【详解】设标价x 元,由题意得:80%x ﹣b=a ,解得:x=5()4a b +,故答案为:5()4a b+.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,标价×打折﹣利润=进价.19.2347【解析】【分析】把a看做已知数表示出方程的解由方程的解为正整数确定出整数a的值即可【详解】方程整理得:(a﹣1)x=6解得:x=由方程的解为正整数即为正整数得到整数a=2347故答案为:23解析:2,3,4,7【解析】【分析】把a看做已知数表示出方程的解,由方程的解为正整数,确定出整数a的值即可.【详解】方程整理得:(a﹣1)x=6,解得:x=61 a-,由方程的解为正整数,即61a-为正整数,得到整数a=2,3,4,7,故答案为:2,3,4,7【点睛】本题考查了求解一元一次方程的解法,解题的关键是得出关于a的等式.20.64【解析】试题分析:设小长方形的长为xcm宽为ycm根据题意得:20=x+3y则图②中两块阴影部分周长和是:40+2(16-3y)+2(16-x)=40+64-6y-2x=40+64-2(x+3y解析:64【解析】试题分析:设小长方形的长为xcm,宽为ycm,根据题意得:20=x+3y,则图②中两块阴影部分周长和是:40+2(16-3y)+2(16-x)=40+64-6y-2x=40+64-2(x+3y)=40+64-40=64(cm)考点:代数式的应用.21.8【解析】【分析】将x=3代入方程ax﹣6=a+10然后解关于a的一元一次方程即可【详解】∵x=3是方程ax﹣6=a+10的解∴x=3满足方程ax﹣6=a+10∴3a﹣6=a+10解得a=8故答案为解析:8【解析】【分析】将x=3代入方程ax﹣6=a+10,然后解关于a的一元一次方程即可.【详解】∵x=3是方程ax﹣6=a+10的解,∴x=3满足方程ax﹣6=a+10,∴3a﹣6=a+10,解得a=8.故答案为8.22.2或﹣6【解析】解:当该点在﹣2的右边时由题意可知:该点所表示的数为2当该点在﹣2的左边时由题意可知:该点所表示的数为﹣6故答案为2或﹣6点睛:本题考查数轴涉及有理数的加减运算分类讨论的思想解析:2或﹣6【解析】解:当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6.故答案为2或﹣6.点睛:本题考查数轴,涉及有理数的加减运算、分类讨论的思想.23.301【解析】【分析】根据所给图形的数字的规律进行求解即可【详解】解:由图像的:表格中中的左上的数字分别为:1234可得第n个表格中的数字为:n;表格中中的右上的数字分别为:36912可得第n个表格解析:301【解析】【分析】根据所给图形的数字的规律进行求解即可.【详解】解:由图像的:表格中中的左上的数字分别为:1、2、3、4,可得第n个表格中的数字为:n;表格中中的右上的数字分别为:3、6、9、12,可得第n个表格中的数字为:3n,得最后一个中右上数字为21,可得为第7个表格,故a=7;表格中中的右上的数字分别为:2、4、6、8,可得第n个表格中的数字为:2n,故b=14;结合前4个表格可知,右下的数值=左下×右上+左下,故x=21×14+7=301,故【点睛】本题主要考查规律形数字的变化,能熟练找出规律是解题的关键.24.3n+1【解析】【分析】试题分析:观察图形发现:白色纸片在4的基础上依次多3个;根据其中的规律用字母表示即可【详解】解:第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张第解析:3n+1【解析】【分析】试题分析:观察图形,发现:白色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】解:第1个图案中有白色纸片3×1+1=4张第2个图案中有白色纸片3×2+1=7张,第3图案中有白色纸片3×3+1=10张,…第n个图案中有白色纸片=3n+1张.故答案为3n+1.【点睛】此题主要考查学生对图形的变化类的知识点的理解和掌握,此题的关键是注意发现前后图形中的数量之间的关系.25.b+2c【解析】【分析】由图可知c-a<0根据正数的绝对值等于它本身负数的绝对值等于它的相反数分别求出绝对值再根据整式的加减运算去括号合并同类项即可【详解】由图可知c<00<a<b则c-a<0原式=解析:b+2c【解析】【分析】由图可知, c-a<0,根据正数的绝对值等于它本身,负数的绝对值等于它的相反数,分别求出绝对值,再根据整式的加减运算,去括号,合并同类项即可.【详解】由图可知c<0,0<a<b,则c-a<0,原式=(c-a)+b+a-(-c)=c-a+b+a+c=b+2c.【点睛】本题考查的知识点是整式的加减和绝对值,解题关键是熟记整式的加减运算实际上就是去括号、合并同类项.三、解答题26.(1)960辆;(2)方案三最省钱,理由见详解.【解析】【分析】(1)通过理解题意可知本题的等量关系,即甲乙单独修完共享单车的数量相同,列方程求解即可;(2)分别计算,通过比较选择最省钱的方案.【详解】解:(1)设乙单独做需要x天完成,则甲单独做需要(x+20)天,由题意可得:16(x+20)=(16+8)x,解得:x=40,总数:(16+8)×40=960(辆),∴这批共享单车一共有960辆;(2)方案一:甲单独完成:60×80+60×10=5400(元),方案二:乙单独完成:40×120+40×10=5200(元),方案三:甲、乙合作完成:960÷(16+24)=24(天),则一共需要:24×(120+80)+24×10=5040(元),>>,∵540052005040∴方案三最省钱.【点睛】此题主要考查了一元一次方程的应用,正确得出等量关系是解题关键.27.(1)画图见解析;(2)小彬家与学校之间的距离是3km;(3)小明跑步共用了36分钟.【解析】试题分析:(1)根据题意画出即可;(2)计算 2﹣(﹣1)即可求出答案;(3)求出每个数的绝对值,相加可求小明一共跑了的路程,再根据时间=÷速度即可求出答案.试题解析:(1)如图所示:(2)小彬家与学校的距离是:2﹣(﹣1)=3(km).故小彬家与学校之间的距离是 3km;(3)小明一共跑了(2+1.5+1)×2=9(km),小明跑步一共用的时间是:9000÷250=36(分钟).答:小明跑步一共用了 36 分钟长时间.28.29.(1)180°;(2)见解析;(3)DE⊥BF.【解析】【分析】(1)根据四边形的性质,可得答案;(2)根据三角形内角和定理和角平分线的定义即可求解;(3)根据补角的性质,可得∠CBM=∠ODC,根据相似三角形的判定与性质,可得答案.【详解】(1)由四边形内角的性质,得,∠OBC+∠DOB+∠ODC+∠DCB=360°,∵∠DOB=∠DCB=90°,∴∠OBC+∠ODC=180°;(2)∵∠OBD+∠ODC=180°BD 平分∠OBC∴∠OBD=∠CBD∴∠OBD+∠ODB=90°∴∠CBD+∠ODC=90°∴∠ODB=∠BDC∴BD 平分∠ODC.(3)如图,延长DE 交BF 于G ,,∵∠ODC+∠OBC=∠CBM+∠OBC=180,∴∠CBM=∠ODC ,12∠CBM=∠EBG=12∠ODC=∠EDC . ∵∠BEG=∠DEC ,∴△DEC ∽△BEG ,∴∠BGE=∠DCE=90°,∴DE 垂直BF .【点睛】本题考查了三角形的内角和定理,利用相似三角形的判定与性质是解题关键;利用补角的性质得出∠NDC+∠CBM=180°是解题关键.30.x=-1【解析】【分析】方程去分母,去括号,移项合并,将x 系数化为1,即可求出解;【详解】解:去分母得:3x+3=4-2x-6,移项合并得:5x=-5,解得:x=-1;【点睛】此题考查解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.。
2018-2019学年四川省成都七中育才学校七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.用一个平面去截圆柱体,则截面形状不可能是()A.正方形B.三角形C.长方形D.圆2.一条信息在一周内被转发了2 180 000次,将数据2 180 000用科学记数法表示为()A.2.18×105B.2.18×106C.21.8×106D.21.8×1053.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz24.下列等式变形中,错误的是()A.由a=b,得a+5=b+5B.由﹣3x=﹣3y,得x=yC.由x+m=y+m,得x=y D.由a=b,得5.从n边形的一个顶点出发可以连接8条对角线,则n=()A.8B.9C.10D.116.下列调查中,适宜采用普查方式的是()A.调查日照电视台节目《社会零距离》的收视率B.调查日照市民对京剧的喜爱程度C.调查全国七年级学生的身高D.调查我国首艘宇宙飞船“天舟一号”的零部件质量7.如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.若∠DOC =70°,则∠BOE的度数是()A.30°B.40°C.25°D.20°8.一种商品进价为每件100元,按进价增加20%出售,后因库存积压降价,按售价的九折出售,每件还能盈利()A.8元B.15元C.12.5元D.108元9.已知a、b两数在数轴上对应的点如图所示,下列结论不正确的是()A.a﹣b>0B.|a|>|b|C.ab<0D.a+b<0 10.下列说法正确的个数是()①射线AB与射线BA是同一条直线;②两点确定一条直线;③两点之间直线最短;④若AB=BC,则点B是AC的中点.A.1个B.2个C.3个D.4个二、填空题(每小题4分,共16分)11.﹣的相反数是,倒数是,绝对值是.12.若x=1是方程a(x﹣2)=a+2x的解,则a=.13.单项式﹣πx2y的系数为,次数为.14.如图,OA是北偏东30°一条射线,若∠AOB=90°,则OB的方向角是.三、解答题(共54分)15.(1)计算:﹣12+16÷(﹣2)3×|﹣3﹣1|(2)解方程:7x﹣3(3x+2)=6(3)解方程:﹣x=16.先化简,再求值:2(ab+3a2)﹣[5a2﹣(3ab﹣b2)],其中a=,b=1.17.由7个棱长为1的正方体组成如图所示的几何体.(1)画出该几何体的主视图和左视图;(2)求该几何体的表面积.18.列方程解应用问题:一个车间加工轴杆和轴承,平均每人每天可以加工轴杆12根或轴承15个.该车间共有90人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套(1根轴杆与1个轴承为一套)?19.某中学为了了解七年级学生体能状况,从七年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图:(1)这次抽样调查的样本容量是,请补全条形图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中B等级所对应的圆心角为.(3)该校九年级学生有1600人,请你估计其中A等级的学生人数.20.如图①,已知线段CD在线段AB上运动,线段AB=10cm,CD=2cm,点E、F分别是AC、BD的中点.(1)若AC=3cm,求EF的长.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,则∠EOF、∠AOB和∠COD有何关系,请直接写出.一、填空题(每小题4分,共20分)21.已知2(x﹣1)2+3|y+3|=0,那么代数式x﹣y=.22.如图,数a,b,c所表示的数如图所示:化简代数式的结果为:|a+b﹣c|﹣2|b﹣a|+|2c|=.23.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2016次跳后它停的点所对应的数为.24.数学中有很多奇妙现象,比如:关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”.例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.若关于x的一元一次方程5x﹣m+1=0是差解方程,则m=.25.长方形ABCD中,AB=DC=6cm,AD=BC=12cm.有一动点P从A出发以3cm/s的速度沿A﹣B﹣C运动到C时停止,动点Q从C点出发以2cm/s的速度在线段CB上沿C ﹣B方向向B运动.P,Q同时出发,当一点停止时另一个点同时停止运动,设运动的时间是t(s).当t=时,能使|PQ﹣CQ|=2cm.二、解答题(8+10+12,共30分)26.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC中,∠ACB=90°,若AC=b,BC=a,请你利用这个图形解决下列问题:(1)试说明a2+b2=c2;(2)如果大正方形的面积是10,小正方形的面积是2,求(a+b)2的值.27.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000m3海水,淡化率为70%.每淡化1m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?28.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=,线段AB的中点表示的数为;②用含t的代数式表示:t秒后,点P表示的数为;点Q表示的数为.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.2018-2019学年四川省成都七中育才学校七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.用一个平面去截圆柱体,则截面形状不可能是()A.正方形B.三角形C.长方形D.圆【解答】解:用平面截圆柱,横切就是圆,竖切就是长方形,如果底面圆的直径等于高时,是正方形,不论怎么切不可能是三角形.故选:B.2.一条信息在一周内被转发了2 180 000次,将数据2 180 000用科学记数法表示为()A.2.18×105B.2.18×106C.21.8×106D.21.8×105【解答】解:2 180 000=2.18×106,故选:B.3.下列各式中,不是同类项的是()A.2ab2与﹣3b2a B.2πx2与x2C.m2n2与5n2m2D.与6yz2【解答】解:如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.故选:D.4.下列等式变形中,错误的是()A.由a=b,得a+5=b+5B.由﹣3x=﹣3y,得x=yC.由x+m=y+m,得x=y D.由a=b,得【解答】解:A、两边都加5,故A正确;B、两边都除以同一个不为零的数,故B正确;C、两边都加m,故C正确;D、当m=0时,两边都除以m无意义,故D错误;故选:D.5.从n边形的一个顶点出发可以连接8条对角线,则n=()A.8B.9C.10D.11【解答】解:由题意得:n﹣3=8,解得n=11,故选:D.6.下列调查中,适宜采用普查方式的是()A.调查日照电视台节目《社会零距离》的收视率B.调查日照市民对京剧的喜爱程度C.调查全国七年级学生的身高D.调查我国首艘宇宙飞船“天舟一号”的零部件质量【解答】解:A、调查日照电视台节目《社会零距离》的收视率适合抽样调查;B、调查日照市民对京剧的喜爱程度适合抽样调查;C、调查全国七年级学生的身高适合抽样调查;D、调查我国首艘宇宙飞船“天舟一号”的零部件质量适合全面调查;故选:D.7.如图,点O在直线AB上,OD是∠AOC的平分线,OE是∠COB的平分线.若∠DOC =70°,则∠BOE的度数是()A.30°B.40°C.25°D.20°【解答】解:∵OD是∠AOC的平分线,∴∠AOC=2∠COD=140°,∴∠BOC=180°﹣∠AOC=40°,∵OE是∠COB的平分线,∴∠BOE=∠BOC=20°,故选:D.8.一种商品进价为每件100元,按进价增加20%出售,后因库存积压降价,按售价的九折出售,每件还能盈利()A.8元B.15元C.12.5元D.108元【解答】解:由题意可得,每件还能盈利为:100×(1+20%)×0.9﹣100=8(元),故选:A.9.已知a、b两数在数轴上对应的点如图所示,下列结论不正确的是()A.a﹣b>0B.|a|>|b|C.ab<0D.a+b<0【解答】解:∵a<﹣1<0<b,∴a﹣b<0,|a|>|b|,ab<0,a+b<0.故选:A.10.下列说法正确的个数是()①射线AB与射线BA是同一条直线;②两点确定一条直线;③两点之间直线最短;④若AB=BC,则点B是AC的中点.A.1个B.2个C.3个D.4个【解答】解:①射线AB与射线BA不是同一条射线,故①错误;②两点确定一条直线,故②正确;③两点之间线段最短,故③错误;④若AB=BC,则点B不一定是AC的中点,故④错误.故选:A.二、填空题(每小题4分,共16分)11.﹣的相反数是,倒数是﹣,绝对值是.【解答】解:﹣的相反数是,倒数是﹣,绝对值是,故答案为:,﹣,.12.若x=1是方程a(x﹣2)=a+2x的解,则a=﹣1.【解答】解:x=1是方程a(x﹣2)=a+2x的解,将x=1代入该方程,得:a(1﹣2)=a+2,是一个关于a为未知数的一元一次方程,去括号得:﹣a=a+2,移项得:﹣a﹣a=2,合并同类项得:﹣2a=2,两边同除以﹣2得:a=﹣1,∴a=﹣1.故填:﹣1.13.单项式﹣πx2y的系数为﹣π,次数为3.【解答】解:单项式﹣πx2y的系数为﹣π,次数为2+1=3.故答案为:﹣π,3.14.如图,OA是北偏东30°一条射线,若∠AOB=90°,则OB的方向角是北偏西60°.【解答】解:如图所示:∵OA是北偏东30°方向的一条射线,∠AOB=90°,∴∠1=90°﹣30°=60°,∴OB的方向角是北偏西60°.故答案为:北偏西60°.三、解答题(共54分)15.(1)计算:﹣12+16÷(﹣2)3×|﹣3﹣1|(2)解方程:7x﹣3(3x+2)=6(3)解方程:﹣x=【解答】解:(1)﹣12+16÷(﹣2)3×|﹣3﹣1|=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9;(2)去括号,得7x﹣9x﹣6=6移项,得7x﹣9x=6+6合并同类项,得﹣2x=12,系数化为1,得x=﹣6;(3)去分母,得x﹣6﹣4x=2(x+5)去括号,得x﹣6﹣4x=2x+10移项,得x﹣4x﹣2x=10+6,合并同类项,得﹣5x=16系数化为1,得x=﹣.16.先化简,再求值:2(ab+3a2)﹣[5a2﹣(3ab﹣b2)],其中a=,b=1.【解答】解:原式=2ab+6a2﹣5a2+3ab﹣b2=5ab+a2﹣b2,当a=,b=1时,原式=5××1+()2﹣1=+﹣1=.17.由7个棱长为1的正方体组成如图所示的几何体.(1)画出该几何体的主视图和左视图;(2)求该几何体的表面积.【解答】解:(1)该几何体的左视图,主视图如图所示.(2)每个小正方体的每个表面积为1,共计28个,故表面积为28.18.列方程解应用问题:一个车间加工轴杆和轴承,平均每人每天可以加工轴杆12根或轴承15个.该车间共有90人,应该怎样调配人力,才能使每天生产的轴承和轴杆正好配套(1根轴杆与1个轴承为一套)?【解答】解:设安排x人生产轴杆,则(90﹣x)人生产轴承,根据题意得:12x=15(90﹣x),解得:x=50,∴90﹣x=40.答:安排50人生产轴杆、40人生产轴承,才能使每天生产的轴杆和轴承正好配套.19.某中学为了了解七年级学生体能状况,从七年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图:(1)这次抽样调查的样本容量是50,请补全条形图;(2)D等级学生人数占被调查人数的百分比为8%,在扇形统计图中B等级所对应的圆心角为144°.(3)该校九年级学生有1600人,请你估计其中A等级的学生人数.【解答】解:(1)样本容量为16÷32%=50,B等级人数为50﹣16﹣10﹣4=20,如图所示:故答案为:50;(2)D等级学生人数占被调查人数的百分比为×100%=8%;B等级所对应的圆心角为×360°=144°;故答案为:8%,144°;(3)全校A等级的学生人数约有×1600=512(人).20.如图①,已知线段CD在线段AB上运动,线段AB=10cm,CD=2cm,点E、F分别是AC、BD的中点.(1)若AC=3cm,求EF的长.(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变请求出EF的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知∠COD在∠AOB内部转动,OE、OF分别平分∠AOC和∠BOD,则∠EOF、∠AOB和∠COD有何关系,请直接写出∠EOF=(∠AOB+∠COD).【解答】解:(1)∵AB=10cm,CD=2cm,AC=3cm,∴DB=5cm,∵E、F分别是AC、BD的中点,∴CE=AC=1.5cm,DF=DB=2.5cm,∴EF=1.5+2+2.5=6cm;(2)EF的长度不变.∵E、F分别是AC、BD的中点∴EC=AC,DF═DB,∴EF=EC+CD+DF═AC+CD+DB=+CD═(AB﹣CD)+CD=,∵AB=10cm,CD=2cm,∴EF=6cm;(3)∠EOF=(∠AOB+∠COD)..理由:∵OE、OF分别平分∠AOC和∠BOD,∴∠COE=∠AOC,∠DOF=∠BOD,∴∠EOF=∠COE+∠COD+∠DOF=∠AOC+∠COD+∠BOD=(∠AOC+∠BOD)+∠COD=(∠AOB﹣∠COD)+∠COD=(∠AOB+∠COD).故答案∠EOF=(∠AOB+∠COD).一、填空题(每小题4分,共20分)21.已知2(x﹣1)2+3|y+3|=0,那么代数式x﹣y=4.【解答】解:∵2(x﹣1)2+3|y+3|=0,∴x=1,y=﹣3,则x﹣y=1﹣(﹣3)=4,故答案为:4.22.如图,数a,b,c所表示的数如图所示:化简代数式的结果为:|a+b﹣c|﹣2|b﹣a|+|2c|=3b﹣a﹣3c.【解答】解:由数轴可知,c<b<0<a,∴b﹣c>0,a+b﹣c>0,b﹣a<0,2c<0,∴|a+b﹣c|﹣2|b﹣a|+|2c|=a+b﹣c﹣2(﹣b+a)+(﹣2c)=a+b﹣c+2b﹣2a﹣2c=﹣a+3b﹣3c.故答案为﹣a+3b﹣3c.23.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2016次跳后它停的点所对应的数为1.【解答】解:第1次跳后落在3上;第2次跳后落在5上;第3次跳后落在2上;第4次跳后落在1上;第5次跳后落在3上;…4次跳后一个循环,依次在3,5,2,1这4个数上循环,∵2016÷4=504,∴应落在1上.故答案为:1.24.数学中有很多奇妙现象,比如:关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”.例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.若关于x的一元一次方程5x﹣m+1=0是差解方程,则m=.【解答】解:∵5x﹣m+1=0,∴5x=m﹣1,解得:x=,∵关于x的一元一次方程5x﹣m+1=0是差解方程,∴m﹣1﹣5=,解得:m=,故答案为.25.长方形ABCD中,AB=DC=6cm,AD=BC=12cm.有一动点P从A出发以3cm/s的速度沿A﹣B﹣C运动到C时停止,动点Q从C点出发以2cm/s的速度在线段CB上沿C ﹣B方向向B运动.P,Q同时出发,当一点停止时另一个点同时停止运动,设运动的时间是t(s).当t=或或时,能使|PQ﹣CQ|=2cm.【解答】解:当点P在AB上时,即0≤t≤2,∴CQ≤4cm,BQ≥8cm,∵PQ>BQ,∴PQ﹣CQ>2cm,∴当点P在AB上时,不存在|PQ﹣CQ|=2cm.当点P在BC上时,即2<t≤6,∴CQ=2t,BQ=3t﹣6,当P,Q相遇前,PQ=12﹣(3t﹣6)﹣2t=18﹣5t,∵|PQ﹣CQ|=2cm.∴|18﹣5t﹣2t|=2∴t=或,当P,Q相遇后,PQ=3t﹣6+2t﹣12=5t﹣18,∵|PQ﹣CQ|=2cm.∴|5t﹣18﹣2t|=2∴t=或(不合题意舍去)故答案为:或或.二、解答题(8+10+12,共30分)26.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC中,∠ACB=90°,若AC=b,BC=a,请你利用这个图形解决下列问题:(1)试说明a2+b2=c2;(2)如果大正方形的面积是10,小正方形的面积是2,求(a+b)2的值.【解答】解:(1)∵大正方形面积为c2,直角三角形面积为ab,小正方形面积为(b ﹣a)2,∴c2=4×ab+(a﹣b)2=2ab+a2﹣2ab+b2即c2=a2+b2.;(2)由图可知,(b﹣a)2=2,4×ab=10﹣2=8,∴2ab=8,∴(a+b)2=(b﹣a)2+4ab=2+2×8=18.27.某镇水库的可用水量为12000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.为实施城镇化建设,新迁入了4万人后,水库只能够维持居民15年的用水量.(1)问:年降水量为多少万m3?每人年平均用水量多少m3?(2)政府号召节约用水,希望将水库的使用年限提高到25年.则该镇居民人均每年需节约多少m3水才能实现目标?(3)某企业投入1000万元设备,每天能淡化5000m3海水,淡化率为70%.每淡化1m3海水所需的费用为1.5元,政府补贴0.3元.企业将淡化水以3.2元/m3的价格出售,每年还需各项支出40万元.按每年实际生产300天计算,该企业至少几年后能收回成本(结果精确到个位)?【解答】解:(1)设年降水量为x万m3,每人年平均用水量为ym3,由题意得,解得:.答:年降水量为200万m3,每人年平均用水量为50m3.(2)设该镇居民人均每年用水量为zm3水才能实现目标,由题意得,12000+25×200=20×25z,解得:z=34,50﹣34=16m3.答:该镇居民人均每年需节约16m3水才能实现目标.(3)该企业n年后能收回成本,由题意得,[3.2×5000×70%﹣(1.5﹣0.3)×5000]×300n﹣400000n≥10000000,解得:n≥8.答:至少9年后企业能收回成本.28.【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A、点B表示的数分别为a、b,则A,B 两点之间的距离AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A表示的数为﹣2,点B表示的数为8,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t>0).【综合运用】(1)填空:①A、B两点间的距离AB=10,线段AB的中点表示的数为3;②用含t的代数式表示:t秒后,点P表示的数为﹣2+3t;点Q表示的数为8﹣2t.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=AB;(4)若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.【解答】解:(1)①10,3;②﹣2+3t,8﹣2t;(2)∵当P、Q两点相遇时,P、Q表示的数相等∴﹣2+3t=8﹣2t,解得:t=2,∴当t=2时,P、Q相遇,此时,﹣2+3t=﹣2+3×2=4,∴相遇点表示的数为4;(3)∵t秒后,点P表示的数﹣2+3t,点Q表示的数为8﹣2t,∴PQ=|(﹣2+3t)﹣(8﹣2t)|=|5t﹣10|,又PQ=AB=×10=5,∴|5t﹣10|=5,解得:t=1或3,∴当:t=1或3时,PQ=AB;(4)∵点M表示的数为=﹣2,点N表示的数为=+3,∴MN=|(﹣2)﹣(+3)|=|﹣2﹣﹣3|=5.。
四川省成都市锦江区成都七中育才学校2023-2024学年七年级上学期期末数学试题A 卷(共100分)一.选择题(本题共8个小题,每小题4分,共32分)1.12024-的绝对值是()A.2024B.2024- C.12024D.12024-2.由6个完全相同的小正方体组成的几何体如图所示,则从上面看得到的平面图形是()A.B.C.D.3.据统计,截至2023年10月21日,华为mate 60系列手机共售出约160万台,将数据1600000用科学记数法表示应为()A .70.1610⨯ B.61.610⨯ C.71.610⨯ D.61610⨯4.下列各式中,不是同类项的是()A.22ab 与23ab - B.mn 与2nm- C.3与5- D.212xy -与23x y5.运用等式性质进行的变形,正确的是()A.如果a b =,那么a c b c +=-B.如果a bc c=,那么a b =C.如果a b =,那么a b c c= D.如果25a a =,那么5a =6.下列说法正确的有()个①如果PA PB =,那么点P 是线段AB 的中点;②两点之间直线最短;③各条边都相等的多边形叫做正多边形;④三棱柱有六个顶点,九条棱.A.1B.2C.3D.47.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m ,n 的值分别为()A.4,3B.3,3C.3,4D.4,48.我国明代数学读本《算法统宗》中有一道题,其题意为∶客人一起分银子,若每人7两,还剩4两;若每人9两,还差8两.问客人有几人?设客人有x 人,则可列方程为()A.7498x x +=- B.7498x x -=+ C.4879x x +-= D.4879x x -+=二.填空题(本题共5个小题,每小题4分,共20分)9.单项式3237x y 的系数是______,次数是______.10.如图,货轮O 在航行过程中,发现灯塔A 在它的北偏西30︒方向上,同时,海岛B 在它的东南方向上,则AOB ∠=______︒.11.若2x =是方程()22a x a x -=+的解,则=a ______.12.比较大小:3815'︒______38.15︒(请在横线上选填“>”“<”“=”).13.如图,线段12AB =,点C 是线段AB 上一点,且3AC BC =,点D 为线段AC 的中点,则线段CD =______.三.解答题(本题共5个小题,共48分)14.计算:(1)()()13789-+++-;(2)653656-÷⨯;(3)()()232364-⨯--÷;(4)()52112634⎛⎫--+⨯- ⎪⎝⎭;15.解方程:(1)()122344x x -=+;(2)12225y y -+=-.16.先化简,再求值:2222111322224x xy y x xy y ⎛⎫⎛⎫-+--+- ⎪ ⎪⎝⎭⎝⎭,其中2x =,12y =.17.为了引导学生积极参与体育运动,我校举办了一分钟跳绳比赛,随机抽取了m 名学生,将一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下的统计图和统计表:等级次数频数不合格100120x ≤<4合格120140x <≤a良好140160x <≤12优秀160180x <≤10请结合上述信息完成下列问题:(1)m =______,=a ______;(2)请补全频数分布直方图;(3)求出“良好”等级在扇形统计图中对应的圆心角度数.18.如图,数轴上A ,B 两点对应的数分别是a ,b ,且()24120a b ++-=.(1)则=a ______,b =______;(2)点M 从点A 出发沿数轴正方向匀速运动,同时点N 从点B 出发沿数轴负方向匀速运动,设运动时间为t .P ,Q 分别为AM ,BN 中点,规定若“MN kPQ =”(k 为常数),则称点P ,Q 为点M ,N 的“k 型伴点”.①若点M 的运动速度为每秒2个单位,点N 的运动速度为每秒3个单位,当P ,Q 为M ,N 的“2型伴点”时,求t 的值;②若点N 保持①中的速度不变,改变点M 的速度,当点P ,Q 为M ,N 的“3型伴点”时,点P 刚好运动到线段AB 中点处,则M 的速度应变为多少?B 卷(共50分)一.填空题(本题共5个小题,每题4分,共20分)19.用“⊕”定义新运算:对于任意实数a ,b ,都有22a b a b ⊕=-.如:221221817⊕=⨯-=-=,那么()32-⊕=______.20.已知关于x 的方程32322x x +-=与33mx m x -=+的解互为倒数,则m 的值为______.21.将一张长方形纸片对折,如图所示可以得到一条折痕MN .继续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得到______条折痕,想象一下,如果对折n 次,可以得到______条折痕(用含有n 的代数式表示).22.如图,在三角形ABC 中,120BAC ∠=︒,D 、E 为边BC 上两动点,连接AD 、AE ,将三角形ABC 的AB 边和AC 边分别沿着射线AD 、AE 翻折,B 、C 两点翻折后的对应点为B '、C ',作射线AB '、AC '(AB '和AC '均落在BAC ∠内部),若30B AC ''∠=︒,则DAE ∠=______︒.23.对于数轴上两条线段a ,b ,给出如下定义:P ,Q 分别为a ,b 上任意一点,P ,Q 两点间距离的最小值记作()min ,a b ;P ,Q 两点间距离的最大值记作()max ,a b .O 为原点,线段a ,b 的长度分别为2和4,表示2-的点在线段a 上.(1)若表示4-的点也在线段a 上,表示6和10的点在线段b 上,则()()min ,max ,a b a b +=______.(2)若原点O 在线段a 上,点A 也在线段a 上,点A 表示的数为x .点B 在线段b 上,点B 表示的数为y (x ,y 均为整数).当()()min ,max ,8a b a b +=,6AB =时,对应的x y +=______.二.解答题(本题共3个小题,共30分)24.如图,在正方形BCDE 的边BE 上取一点F ,以BF 为边在正方形BCDE 的上方作正方形BFGA ,连接GE ,若正方形BFGA 与正方形BCDE 边长分别为52a b -和6a b -.(1)若3EF =,求a b +;(2)若EG mb =(m 为常数),当m 为何值时,五边形ACDEG 的周长与b 的取值无关.25.在全球信息化时代,人们的出行方式有了更多的选择.下表是A 网约车的收费标准(打车费=起步费+里程费+远途费+时长费).A 网约车起步费6元里程费 1.2元/公里远途费超过10公里后,超出部分....加收1元/公里时长费0.2元/分钟若本题中....A 网约车的平均车速均为..........40公里../.时.,请回答以下问题:(1)若乘车里程数为10公里,则时长费是______元,打车费是______元;(2)若打车费为28.5元,可乘坐的里程数是多少公里?(3)小龙同学周末去郊外写生,发现A 网约车有买券优惠活动,就用5.8元购买了3张打车折扣券.到达目的地后,软件显示里程数为28公里,用了一张打车折扣券,包括买券费5.8元在内一共花费了52元,请问本次用的折扣券是几折券?26.如图,点O 为直线MN 上一定点,作射线OA .(1)如图1,当射线OA 在直线MN 的下方时,在直线MN 的同侧作射线OA ',使AOM A ON α'∠=∠=.将射线OA 绕着点O 逆时针旋转90︒得到射线OB .①若25α=︒时,求A OB ∠'的度数.②当090α︒<<︒时,若4AOM A OB '∠=∠,求α的值.(2)如图2,若150AON ∠=︒,射线OQ 从OA 开始绕着O 点以每秒10︒的速度逆时针旋转至ON 结束,设旋转时间为t .在旋转过程中,同时将射线OQ 绕着点O 逆时针旋转90︒得到射线OP ,作射线OC 平分AOQ ∠,当2CON PON ∠+∠为定值时,求t 的取值范围及对应的定值.(本题中研究的角均为大于0︒且小于180︒的角)答案A 卷(共100分)一.选择题(本题共8个小题,每小题4分,共32分)1.12024-的绝对值是()A.2024 B.2024- C.12024D.12024-【答案】C 【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值是它的相反数,即可得出结果.【详解】解:12024-的绝对值是12024;故选:C .2.由6个完全相同的小正方体组成的几何体如图所示,则从上面看得到的平面图形是()A.B.C.D.【答案】B 【解析】【分析】本题考查从不同方向观察几何体,从上面看,可以看到三行,中间一行有3个小正方形,上面一行最右侧有1个小正方形,下面一行最左侧有1个小正方形.【详解】解:从上面看得到的平面图形为:,故选B .3.据统计,截至2023年10月21日,华为mate 60系列手机共售出约160万台,将数据1600000用科学记数法表示应为()A.70.1610⨯B.61.610⨯C.71.610⨯D.61610⨯【答案】B 【解析】【分析】本题考查了科学记数法表示绝对值大于1的数,理解表示方法“一般形式为10n a ⨯,其中110a ≤<,n 为整数,且n 比原来的整数位数少1.”是解题的关键【详解】解:由题意得61600000 1.610=⨯.故选:B .4.下列各式中,不是同类项的是()A.22ab 与23ab -B.mn 与2nm- C.3与5- D.212xy -与23x y【答案】D 【解析】【分析】本题主要考查了同类项的判断,理解同类项的定义是解题关键.根据同类项的定义:所含字母相同,并且相同字母的指数也相同,逐项分析判断即可.【详解】解:A.22ab 与23ab -,是同类项,不符合题意;B.mn 与2nm -,是同类项,不符合题意;C.3与5-,是同类项,不符合题意;D.212xy -与23x y ,不是同类项,符合题意.故选:D .5.运用等式性质进行的变形,正确的是()A.如果a b =,那么a c b c +=-B.如果a bc c=,那么a b =C.如果a b =,那么a b c c= D.如果25a a =,那么5a =【答案】B 【解析】【分析】根据等式的性质逐个判断即可.【详解】解:A .a b =∵,a cbc +=+∴,不符合题意,选项错误;B .a b c c=∵,c ⨯∴得:a b =,符合题意,选项正确;C .当0c =时,由a b =不能推出a bc c=,不符合题意,选项错误;D .当0a =时,由25a a =不能推出5a =,不符合题意,选项错误,故选:B .【点睛】本题考查了等式的性质,等式的性质1:等式的两边都加(或减)同一个数或式子,等式仍成立;等式的性质2:等式的两边都乘同一个数,等式仍成立;等式的两边都除以同一个不等于0的数,等式仍成立,熟记等式的性质是解此题的关键.6.下列说法正确的有()个①如果PA PB =,那么点P 是线段AB 的中点;②两点之间直线最短;③各条边都相等的多边形叫做正多边形;④三棱柱有六个顶点,九条棱.A.1 B.2C.3D.4【答案】A 【解析】【分析】根据线段最短、线段中点、正多边形以及三棱柱的定义和性质,分析判断即可.【详解】解:①当点P A B 、、三点在同一直线上时,如果PA PB =,那么点P 是线段AB 的中点,故原说法错误;②两点之间线段最短,故原说法错误;③各条边都相等,各内角也相等的多边形叫做正多边形,故原说法错误;④三棱柱有六个顶点,九条棱,该说法正确.综上所述,说法正确的有④,共计1个.故选:A .【点睛】本题主要考查了线段、线段中点、正多边形、三棱柱等知识,熟练掌握相关知识是解题关键.7.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m ,n 的值分别为()A.4,3B.3,3C.3,4D.4,4【答案】C 【解析】【详解】解:对角线的数量=6﹣3=3条;分成的三角形的数量为6﹣2=4个.故选C .8.我国明代数学读本《算法统宗》中有一道题,其题意为∶客人一起分银子,若每人7两,还剩4两;若每人9两,还差8两.问客人有几人?设客人有x 人,则可列方程为()A .7498x x +=- B.7498x x -=+ C.4879x x +-= D.4879x x -+=【答案】A 【解析】【分析】设客人有x 人,若每人7两,还剩4两,则银子共有()74+x 两;若每人9两,还差8两,则银子共有()9x-8两.根据银子数量不变,即可得出关于x 的一元一次方程,此题得解.【详解】解:设客人有x 人,根据题意,得7498x x +=-.故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.二.填空题(本题共5个小题,每小题4分,共20分)9.单项式3237x y 的系数是______,次数是______.【答案】①.37②.5【解析】【分析】本题主要考查了单项式的系数和次数的知识,理解单项式相关定义是解题关键.单项式的系数:单项式中的数字因数;单项式的次数:单项式中所有字母的指数和.根据单项式的系数和次数的定义解答即可.【详解】解:单项式3237x y 的系数是37,次数是5.故答案为:37,5.10.如图,货轮O 在航行过程中,发现灯塔A 在它的北偏西30︒方向上,同时,海岛B 在它的东南方向上,则AOB ∠=______︒.【答案】165【解析】【分析】根据题意,可得130,245,390∠=︒∠=︒∠=︒,然后由123AOB ∠=∠+∠+∠计算获得答案即可.【详解】解:根据题意,货轮O 在航行过程中,发现灯塔A 在它的北偏西30︒方向上,同时,海岛B 在它的东南方向上,如下图,可知130,245,390∠=︒∠=︒∠=︒,所以123304590165AOB ∠=∠+∠+∠=︒+︒+︒=︒.故答案为:165.【点睛】本题主要考查了方位角的知识,解题关键是理解题意并结合图形进行分析.11.若2x =是方程()22a x a x -=+的解,则=a ______.【答案】4-【解析】【分析】本题考查方程的解(使方程中等号左右两边相等的未知数的值),解题的关键是根据方程解的定义将2x =代入原方程得到一个关于a 的方程,求解该方程即可.【详解】解:∵2x =是方程()22a x a x -=+的解,∴()2222a a ⨯-=+⨯,解得:4a =-.故答案为:4-.12.比较大小:3815'︒______38.15︒(请在横线上选填“>”“<”“=”).【答案】>【解析】【分析】本题主要考查了角度制和角的大小比较,理解并掌握角度制是解题关键.根据160'︒=可得150.25'=︒,将3815'︒转化为38.25︒的形式,再与38.15︒进行比较即可得到答案.【详解】解:∵381538.25'︒=︒又∵38.2538.15︒>︒,∴3815'︒>38.15︒.故答案为:>.13.如图,线段12AB =,点C 是线段AB 上一点,且3AC BC =,点D 为线段AC 的中点,则线段CD =______.【答案】92【解析】【分析】本题考查线段的和差,线段中点的定义,根据AB AC BC =+,代入数据进行计算即可得解求出BC 的长;再求出AC 的长,然后根据线段中点的定义求解即可.准确识图并掌握线段中点的定义是解题的关键.【详解】解:∵12AB =,3AC BC =,∴123AB AC BC BC BC ==+=+,∴3BC =,∴3339AC BC ==⨯=,∵点D 为线段AC 的中点,∴1199222CD AC ==⨯=.故答案为:92.三.解答题(本题共5个小题,共48分)14.计算:(1)()()13789-+++-;(2)653656-÷⨯;(3)()()232364-⨯--÷;(4)()52112634⎛⎫--+⨯- ⎪⎝⎭;【答案】(1)7-(2)25-(3)27(4)15【解析】【分析】(1)根据有理数加法运算法则求解即可;(2)根据有理数乘除运算法则求解即可;(3)首先进行乘方运算,再进行乘法运算,然后相加减即可;(4)首先利用乘法分配律将原式转换为()()()521121212634⎛⎫-⨯-+-⨯-+⨯- ⎪⎝⎭,再进行乘法运算,然后相加减即可.【小问1详解】解:原式()()689=-++-()29=+-7=-;【小问2详解】解:原式553666=-⨯⨯25=-;【小问3详解】解:原式()92364=⨯--÷()189=--189=+27=;【小问4详解】解:原式()()()521121212634⎛⎫=-⨯-+-⨯-+⨯- ⎪⎝⎭()1083=++-()183=+-15=.【点睛】本题主要考查了有理数加法运算、有理数乘除运算、含乘方的有理数混合运算以及有理数乘法运算律等知识,熟练掌握相关运算法则和运算律是解题关键.15.解方程:(1)()122344x x -=+;(2)12225y y -+=-.【答案】(1)12x =(2)3y =【解析】【分析】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的方法和步骤是解题关键.(1)按照去括号,移项,合并同类项,系数化为1的步骤求解即可;(2)按照去分母,去括号,移项,合并同类项,系数化为1的步骤求解即可.【小问1详解】解:()122344x x -=+,去括号,得243644x x -=+,移项,得364424x x --=-,合并同类项,得4020x -=-,系数化为1,得12x =;【小问2详解】解:12225y y -+=-,去分母,得()()512022y y -=-+,去括号,得552024y y -=--,移项,得522045y y +=-+,合并同类项,得721y =,系数化为1,得3y =.16.先化简,再求值:2222111322224x xy y x xy y ⎛⎫⎛⎫-+--+- ⎪ ⎪⎝⎭⎝⎭,其中2x =,12y =.【答案】22x xy --,9-【解析】【分析】本题主要考查了整式化简求值,理解并掌握整式加减运算法则是解题关键.首先按照去括号,合并同类项的步骤完成化简,然后将2x =,12y =代入求值即可.【详解】解:原式2222112423x x xy y x y y =-+-+--22x xy =--,当2x =,12y =时,原式212222⨯-⨯=-12242-⨯⨯=-81=--9=-.17.为了引导学生积极参与体育运动,我校举办了一分钟跳绳比赛,随机抽取了m 名学生,将一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下的统计图和统计表:等级次数频数不合格100120x ≤<4合格120140x <≤a 良好140160x <≤12优秀160180x <≤10请结合上述信息完成下列问题:(1)m =______,=a ______;(2)请补全频数分布直方图;(3)求出“良好”等级在扇形统计图中对应的圆心角度数.【答案】(1)40;14(2)作图见解析(3)108︒【解析】【分析】本题考查频数分布直方图,频数分布表,扇形统计图,以及利用统计图获取信息的能力,(1)根据优秀等级的频数和所占百分比可求出m ,用m 减去已知各部分的频数可求出a ;(2)根据合格和优秀的人数,即可补全图形;(3)用360︒乘以“良好”等级人数所占百分比即可;解题的关键是根据直方图得到进一步解题的有关信息.【小问1详解】解:1025%40m =÷=,404121014a =---=,故答案为:40;14;【小问2详解】补全频数分布直方图如下:【小问3详解】1236010840︒⨯=︒,∴“良好”等级在扇形统计图中对应的圆心角度数是108︒.18.如图,数轴上A ,B 两点对应的数分别是a ,b ,且()24120a b ++-=.(1)则=a ______,b =______;(2)点M 从点A 出发沿数轴正方向匀速运动,同时点N 从点B 出发沿数轴负方向匀速运动,设运动时间为t .P ,Q 分别为AM ,BN 中点,规定若“MN kPQ =”(k 为常数),则称点P ,Q 为点M ,N 的“k 型伴点”.①若点M 的运动速度为每秒2个单位,点N 的运动速度为每秒3个单位,当P ,Q 为M ,N 的“2型伴点”时,求t 的值;②若点N 保持①中的速度不变,改变点M 的速度,当点P ,Q 为M ,N 的“3型伴点”时,点P 刚好运动到线段AB 中点处,则M 的速度应变为多少?【答案】(1)4-;12(2)①245秒;②M 的速度应变为每秒12个单位或每秒52个单位【解析】【分析】(1)根据平方及绝对值的非负性即可求解;(2)①根据题意可得:点M 对应的数为()42t -+,点N 对应的数为()123t -,点P 对应的数为()4t -+,点Q 对应的数为3122t ⎛⎫- ⎪⎝⎭,再根据“k 型伴点”的定义列出方程并求解即可;②设M 的速度应变为a ,则点P 对应的数是44at -+=,点M 对应的数为12,点N 对应的数为()123t -,点Q 对应的数为3122t ⎛⎫- ⎪⎝⎭,再根据“k 型伴点”的定义列出方程并求解即可;【小问1详解】解:∵()24120a b ++-=,()240a +≥,120b -≥,∴40a +=,120b -=,∴4a =-,12b =,故答案为:4-;12;【小问2详解】①∵点M 从点A 出发沿数轴正方向匀速运动,同时点N 从点B 出发沿数轴负方向匀速运动,点M 的运动速度为每秒2个单位,点N 的运动速度为每秒3个单位,设运动时间为t ,∴数轴上点M 对应的数为()42t -+,点N 对应的数为()123t -,∵P ,Q 分别为AM ,BN 中点,∴数轴上点P 对应的数为()4t -+,点Q 对应的数为3122t ⎛⎫-⎪⎝⎭,∵P ,Q 为M ,N 的“2型伴点”,∴()()()34212324122t t t ⎛⎫-+--=-+-- ⎪⎝⎭,解得:245t =,∴t 的值为245秒;②设M 的速度应变为a ,当点P 刚好运动到线段AB 中点处时,点M 此时与点B 重合,∴点P 对应的数是44at -+=,点M 对应的数为12,∵点P ,Q 为M ,N 的“3型伴点”,∴()31212334122t t ⎛⎫--=--⎪⎝⎭,解得:16t =或165t =,当16t =时,则4164a -+=,解得:12a =,当165t =时,则16445a -+=,解得:52a =,综上所述,M 的速度应变为每秒12个单位或每秒52个单位.【点睛】本题考查用数轴上的点表示数,平方的非负性,绝对值的非负性,数轴上两点间的距离,一元一次方程的应用.根据题意用数轴上的点表示数并列出方程是解题的关键.B 卷(共50分)一.填空题(本题共5个小题,每题4分,共20分)19.用“⊕”定义新运算:对于任意实数a ,b ,都有22a b a b ⊕=-.如:221221817⊕=⨯-=-=,那么()32-⊕=______.【答案】16【解析】【分析】本题主要考查了含乘方的有理数混合运算,熟练掌握相关运算法则是解题关键.根据题目中新定义运算,求解即可.【详解】解:根据题意,()()23223229218216-⊕=⨯--=⨯-=-=.故答案为:16.20.已知关于x 的方程32322x x +-=与33m x m x -=+的解互为倒数,则m 的值为______.【答案】34##0.75【解析】【分析】本题主要考查了倒数、一元二次方程的解以及解一元二次方程等知识,正确求得两方程的解是解题关键.首先分别求解两方程,然后根据两方程的解互为倒数,建立关于m 的一元一次方程,求解即可获得答案.【详解】解:解方程32322x x +-=,可得2x =,解方程33m x m x -=+,可得23x m =,∵两方程的解互为倒数,∴2213m ⨯=,解得34m =.故答案为:34.21.将一张长方形纸片对折,如图所示可以得到一条折痕MN .继续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得到______条折痕,想象一下,如果对折n 次,可以得到______条折痕(用含有n 的代数式表示).【答案】①.7②.21n -##12n-+【解析】【分析】本题主要考查了图形规律探索,结合题意确定折痕变化规律是解题关键.根据题意,确定纸片对折过程中折痕变化规律:对折n 次,把纸片分成2n 部分,可以得到条21n -折痕,即可获得答案.【详解】解:将一张长方形纸片对折,对折1次,把纸片分成2部分,可得1211-=条折痕,对折2次,把纸片分成224=部分,可得2213-=条折痕,连续对折3次后,把纸片分成328=部分,可得3217-=条折痕,……如果对折n 次,把纸片分成2n 部分,可以得到条21n -折痕.故答案为:7,21n -.22.如图,在三角形ABC 中,120BAC ∠=︒,D 、E 为边BC 上两动点,连接AD 、AE ,将三角形ABC 的AB 边和AC 边分别沿着射线AD 、AE 翻折,B 、C 两点翻折后的对应点为B '、C ',作射线AB '、AC '(AB '和AC '均落在BAC ∠内部),若30B AC ''∠=︒,则DAE ∠=______︒.【答案】75或45【解析】【分析】本题主要考查了平面几何图形中角的计算,理解题意,弄清角度关系是解题关键.根据题意可得BAD B AD '∠=∠,CAE C AE '∠=∠,结合120BAC ∠=︒,30B AC ''∠=︒,分两种情况讨论,分别求解,即可获得答案.【详解】解:分两种情况讨论:①如下图,根据题意,可得BAD B AD '∠=∠,CAE C AE '∠=∠,∵120BAC ∠=︒,30B AC ''∠=︒,∴90BAB CAC BAC B AC ''''∠+∠=∠-∠=︒,∴1()452B ADC AE BAB CAC ''''∠+∠=∠+∠=︒,∴()304575DAE B AC B AD C AE ''''∠=∠+∠+∠=︒+︒=︒.②如下图,根据题意,可得BAD B AD '∠=∠,CAE C AE '∠=∠,∵120BAC ∠=︒,30B AC ''∠=︒,∴150BAB CAC BAC B AC ''''∠+∠=∠+∠=︒,∴1()752BAD CAE BAB CAC ''∠+∠=∠+∠=︒,∴()1207545DAE BAC BAD CAE ∠=∠-∠+∠=︒-︒=︒.综上所述,75DAE ∠=︒或45︒.故答案为:75或45.23.对于数轴上两条线段a ,b ,给出如下定义:P ,Q 分别为a ,b 上任意一点,P ,Q 两点间距离的最小值记作()min ,a b ;P ,Q 两点间距离的最大值记作()max ,a b .O 为原点,线段a ,b 的长度分别为2和4,表示2-的点在线段a 上.(1)若表示4-的点也在线段a 上,表示6和10的点在线段b 上,则()()min ,max ,a b a b +=______.(2)若原点O 在线段a 上,点A 也在线段a 上,点A 表示的数为x .点B 在线段b 上,点B 表示的数为y (x ,y 均为整数).当()()min ,max ,8a b a b +=,6AB =时,对应的x y +=______.【答案】(1)22(2)8-或6-或2或4【解析】【分析】本题考查数轴上两点之间的距离及新定义,(1)根据新定义及数轴上两点之间的距离即可求解;(2)如图,先确定线段a CO =,其中点C 、O 表示的数分别为2-、0,然后分两种情况讨论即可;正确理解题意并灵活运用数轴上两点间的距离是解题的关键。
一、选择题1.甲乙两个超市为了促销一种定价相等的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买同样的商品最合算( )A .甲B .乙C .相同D .和商品的价格有关 2.绝对值不大于4的整数的积是( )A .16B .0C .576D .﹣1 3.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为( )A .58°B .59°C .60°D .61°4.下列方程变形正确的是( )A .由25x +=,得52x =+B .由23x =,得32x =C .由104x =,得4x =D .由45x =-,得54x =--5.将如图所示的Rt △ACB 绕直角边AC 旋转一周,所得几何体的主视图(正视图)是( )A .B .C .D .6.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为( )A .84.610⨯B .84610⨯C .94.6D .94.610⨯7.某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是( )A .90元B .72元C .120元D .80元8.随着我国综合国力的提升,中华文化影响日益增强,学中文的外国人越来越多,中文已成为美国居民的第二外语,美国常讲中文的人口约有210万,请将“210万”用科学记数法表示为( )A .70.2110⨯B .62.110⨯C .52110⨯D .72.110⨯ 9.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为( )A .9B .10C .11D .12 10.已知,OA ⊥OC ,且∠AOB :∠AOC =2:3,则∠BOC 的度数为( )A .30°B .150°C .30°或150°D .90° 11.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我12.下列等式变形正确的是( )A .由a =b ,得5+a =5﹣bB .如果3a =6b ﹣1,那么a =2b ﹣1C .由x =y ,得x y m m= D .如果2x =3y ,那么262955x y --= 13.000043的小数点向右移动5位得到4.3,所以0.000043用科学记数法表示为4.3×10﹣5, 故选A .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >015.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( )①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④二、填空题16.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰6”中C 的位置是有理数______,-2017应排在A 、B 、C 、D 、E 中_______的位置.17.单项式234x y -的系数是__________,次数是__________.18.观察以下一列数:3,54,79,916,1125,…则第20个数是_____. 19.如图,是小明用火柴搭的1条、2条、3条“金鱼”…,分别用去火柴棒8根、14根、 20根、…,则搭n 条“金鱼”需要火柴棒________根(含n 的代数式表示).20.太阳半径约为696000千米,数字696000用科学记数法表示为 千米.21.下列哪个图形是正方体的展开图( )A .B .C .D .22.若x 、y 互为相反数,a 、b 互为倒数,c 的绝对值等于2,则201820182()()2x y ab c +--+=_____. 23.若a 与b 互为相反数,c 与d 互为倒数,则a+b+3cd=_____.2423______.25.近似数2.30万精确到________位,用科学记数法表示为__________.三、解答题26.先化简再求值:a 2﹣(5a 2﹣3b )﹣2(2b ﹣a 2),其中a =﹣1,b =12. 27.先化简,再求值 [(xy+2)(xy-2)-2x 2y 2+4]÷xy ,其中x=10,y=-1. 28.任何一个有理数都能写成分数的形式(整数可以看作是分母为1的分数).我们知道:0.12可以写成123,0.12310025=可以写成1231000,因此,有限小数是有理数.那么无限循环小数是有理数吗?下面以循环小数2.615454542.6154••=为例,进行探索: 设 2.6154x ••=,①两边同乘以100得: 100261.54x ••=,②②-①得:99261.54 2.61258.93x =-= 25893287799001100x ∴== 因此,••261.54是有理数.(1)直接用分数表示循环小数1.5•=(2)试说明3.1415••是一个有理数,即能用一个分数表示.29.已知BAD ∠,点C 是AD 边上的一点,按要求画图,并保留作图痕迹.(1)用尺规作图法在AD 的右侧以点C 为顶点作DCP DAB ∠=∠;(2)射线CP 与AB 的位置关系是____________,理由是____________.(3)画出表示点C 到AB 的距离的线段和表示点B 到AD 的距离的线段.30.当k 取何值时,关于x 的方程2(2x -3)=1-2x 和8-k =2(x+56)的解相同?【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 题号1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案B BC BD D C B B C D D B B二、填空题16.-29A【解析】【分析】由题意可知:每个峰排列5个数求出5个峰排列的数的个数再求出峰6中C位置的数的序数然后根据排列的奇数为负数偶数为正数解答根据题目中图中的特点可知每连续的五个数为一个循环A到E从17.-4;5【解析】【分析】单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数【详解】解:单项式-4x2y3的系数是-4次数是5故答案为-45【点睛】此题考查了单项式的知识18.【解析】【分析】观察已知数列得到一般性规律写出第20个数即可【详解】解:观察数列得:第n个数为则第20个数是故答案为【点睛】本题考查了规律型:数字的变化类弄清题中的规律是解答本题的关键19.6n+2或8+6(n-1)【解析】【分析】关键是通过归纳与总结得到其中的规律【详解】解:观察图形发现:搭1条金鱼需要火柴8根搭2条金鱼需要14根即发现了每多搭1条金鱼需要多用6根火柴则搭n条金鱼需要20.【解析】试题分析:696000=696×105故答案为696×105考点:科学记数法—表示较大的数21.B【解析】【分析】根据正方体展开图的11种特征选项ACD不是正方体展开图;选项B是正方体展开图的1-4-1型【详解】根据正方体展开图的特征选项ACD不是正方体展开图;选项B是正方体展开图故选B【点睛22.3【解析】【分析】根据xy互为相反数ab互为倒数c的绝对值等于2得出x+y=0ab=1c=±2代入计算即可【详解】由题意知或则所以原式=0﹣1+4=3故答案为:3【点睛】本题主要考查相反数倒数及绝对23.【解析】【分析】【详解】解:∵ab互为相反数∴a+b=0∵cd互为倒数∴cd=1∴a+b+3cd=0+3×1=3故答案为3【点睛】本题考查代数式求值24.【解析】【分析】直接根据相反数的定义进行解答即可【详解】解:由相反数的定义可知的相反数是即故答案为:【点睛】本题考查的是相反数的定义即只有符号不同的两个数叫互为相反数25.百【解析】三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题二、填空题16.-29A【解析】【分析】由题意可知:每个峰排列5个数求出5个峰排列的数的个数再求出峰6中C位置的数的序数然后根据排列的奇数为负数偶数为正数解答根据题目中图中的特点可知每连续的五个数为一个循环A到E从解析:-29,A.【解析】【分析】由题意可知:每个峰排列5个数,求出5个峰排列的数的个数,再求出,“峰6”中C位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答,根据题目中图中的特点可知,每连续的五个数为一个循环A到E,从而可以解答本题.【详解】解:∵每个峰需要5个数,∴5×5=25, 25+1+3=29,∴“峰6”中C 位置的数的是-29,(2017-1)÷5=2016÷5=403…1,∴2017应排在A 、B 、C 、D 、E 中A 的位置,故答案为:-29;A【点睛】此题考查图形的变化规律,观察出每个峰有5个数是解题的关键,难点在于峰上的数的排列是从2开始.17.-4;5【解析】【分析】单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数【详解】解:单项式-4x2y3的系数是-4次数是5故答案为-45【点睛】此题考查了单项式的知识解析:-4; 5.【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.【详解】解:单项式-4x 2y 3的系数是-4,次数是5.故答案为-4、5.【点睛】此题考查了单项式的知识,掌握单项式的系数、次数的定义是解答本题的关键.18.【解析】【分析】观察已知数列得到一般性规律写出第20个数即可【详解】解:观察数列得:第n 个数为则第20个数是故答案为【点睛】本题考查了规律型:数字的变化类弄清题中的规律是解答本题的关键 解析:41400【解析】【分析】 观察已知数列得到一般性规律,写出第20个数即可.【详解】解:观察数列得:第n 个数为221n n ,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.19.6n+2或8+6(n-1)【解析】【分析】关键是通过归纳与总结得到其中的规律【详解】解:观察图形发现:搭1条金鱼需要火柴8根搭2条金鱼需要14根即发现了每多搭1条金鱼需要多用6根火柴则搭n条金鱼需要解析:6n+2或8+6(n-1)【解析】【分析】关键是通过归纳与总结,得到其中的规律.【详解】解:观察图形发现:搭1条金鱼需要火柴8根,搭2条金鱼需要14根,即发现了每多搭1条金鱼,需要多用6根火柴.则搭n条“金鱼”需要火柴8+6(n﹣1)=6n+2.故答案为:6n+2.【点睛】本题考查了图形的变化类问题,此类题找规律的时候一定要注意结合图形进行发现规律.20.【解析】试题分析:696000=696×105故答案为696×105考点:科学记数法—表示较大的数解析:5.6.9610【解析】试题分析:696000=6.96×105,故答案为6.96×105.考点:科学记数法—表示较大的数.21.B【解析】【分析】根据正方体展开图的11种特征选项ACD不是正方体展开图;选项B是正方体展开图的1-4-1型【详解】根据正方体展开图的特征选项ACD不是正方体展开图;选项B是正方体展开图故选B【点睛解析:B【解析】【分析】根据正方体展开图的11种特征,选项A、C、D不是正方体展开图;选项B是正方体展开图的“1-4-1”型.【详解】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.22.3【解析】【分析】根据xy互为相反数ab互为倒数c的绝对值等于2得出x+y=0ab=1c=±2代入计算即可【详解】由题意知或则所以原式=0﹣1+4=3故答案为:3【点睛】本题主要考查相反数倒数及绝对解析:3【解析】【分析】根据x 、y 互为相反数,a 、b 互为倒数,c 的绝对值等于2得出x+y=0、ab=1,c=±2,代入计算即可.【详解】由题意知x y 0+=,ab 1=,c 2=或c 2=-,则2c 4=,所以原式()20182018014--+=0﹣1+4=3,故答案为:3.【点睛】本题主要考查相反数、倒数及绝对值的计算,掌握互为相反数的两数和为0、互为倒数的两数积为1是解题的关键. 23.【解析】【分析】【详解】解:∵ab 互为相反数∴a+b=0∵cd 互为倒数∴cd=1∴a+b+3cd=0+3×1=3故答案为3【点睛】本题考查代数式求值 解析:【解析】【分析】【详解】解:∵a ,b 互为相反数,∴a+b=0,∵c ,d 互为倒数,∴cd=1,∴a+b+3cd=0+3×1=3. 故答案为3.【点睛】本题考查代数式求值.24.【解析】【分析】直接根据相反数的定义进行解答即可【详解】解:由相反数的定义可知的相反数是即故答案为:【点睛】本题考查的是相反数的定义即只有符号不同的两个数叫互为相反数【解析】【分析】直接根据相反数的定义进行解答即可.【详解】-【点睛】本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.25.百【解析】解析:百 42.3010⨯【解析】三、解答题26.﹣2a 2﹣b ,原式=﹣2.5.【解析】【分析】先将多项式化简,再将a 、b 的值代入计算.【详解】原式=a 2﹣5a 2+3b ﹣4b +2a 2=﹣2a 2﹣b ,当a =﹣1,b =12时,原式=﹣2﹣12=﹣2.5. 【点睛】此题考查多项式的化简求值,正确化简多项式是代入计算的关键. 27.xy -,10.【解析】【分析】利用去括号、合并同类项和整式的除法运算法则进行化简,然后将x 、y 的值代入即可解答.【详解】解:[(xy+2)(xy-2)-2x 2y 2+4]÷xy , = [x 2y 2-4-2x 2y 2+4] ÷xy =- x 2y 2 ÷xy=- xy当x=10,y=-1时,- xy=-10×(-1)=10.【点睛】本题主要考查了整式的混合运算,正确掌握相关运算法则是解答本题的关键. 28.(1)149;(2)见解析 【解析】【分析】 (1)设 1.5x •=,两边乘10,仿照例题可解;(2)设 3.1415x ••=,两边乘100,仿照例题可化简求解.【详解】解:(1)设 1.5x •=,①两边乘10得:1015.5x •=,②②-①得:914x =, ∴149x =, ∴141.59•=; (2)设 3.1415x ••=,①两边同乘以100得:••100314.15x =,②②-①得:314.15 3.1499311.1105x ••••=-= 311011036799003300x ∴==, 因此3.1415••是有理数【点睛】本题需理解题中的例子,将一个循环小数化为分数的方法,需要学生有很好的分析理解能力.29.(1)详见解析;(2)平行;同位角相等,两直线平行;(3)详见解析.【解析】【分析】(1)由题意直接根据尺规作图的方法进行作图即可;(2)根据平行线的判定定理进行分析判定即可;(3)由题意点C 到AB 的距离的线段和表示点B 到AD 的距离的线段可知作点C 到AB 的垂线即高线和表示点B 到AD 的垂线即高线即可.【详解】解:(1)作图如下:(2)∵DCP DAB ∠=∠,∴CP //AB .故答案为:平行;同位角相等,两直线平行.、就是所求作的线段即高.(3)作图如上,CE BF【点睛】本题考查尺规作图,熟练掌握平行线的判定定理和点和线段间垂线最短是解题的关键. 30.k=4.【解析】试题分析:根据解方程,可得方程的解,根据方程的解相同,可得关于k的一元一次方程,根据解方程,可得答案.试题解析:解方程2(2x-3)=1-2x,得x=.把x=代入8-k=2(x+),得8-k =4,即k=4.点睛:本题考查了同解方程,先求出第一个方程的解,把方程的解代入第二个方程得出关于k的方程是解题关键.。
2016-2017学年四川省成都七中育才学校七年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)﹣的相反数是()A.﹣2 B.﹣ C.D.22.(3分)10月24日成都第十五届西博会新疆代表团签约175亿元合作项目,175亿元用科学记数法表示为()A.1.75×109元 B.1.75×1010元C.0.175×1011元D.17.5×109元3.(3分)若单项式﹣2x m﹣1y mn与7x3y2是同类项,则代数式m﹣n的值是()A.﹣ B.2 C.D.﹣24.(3分)用平面截一个几何体,如果截面的形状是长方形(或正方形),那么该几何体不可能是()A.圆柱B.棱柱C.圆锥D.正方体5.(3分)数轴上到﹣4的距离等于5个单位长度的点表示的数是()A.5或﹣5 B.1 C.﹣9 D.1或﹣96.(3分)若m、n满足|2m+3|+(n﹣2)4=0,则m n的值等于()A.B.C.﹣ D.07.(3分)下列(1)=3a﹣2、(2)r+3>0、(3)3s+4=s、(4)x+7y=36,是一元一次方程的有()个.A.1 B.2 C.3 D.48.(3分)下列各组数据中,结果相等的是()A.(﹣1)4与﹣14B.﹣|﹣3|与﹣(﹣3)C.D.9.(3分)下面是小丽同学做的合并同类项的题,其中正确的是()A.2a+3b=6ab B.ab﹣ba=0 C.5a3﹣4a3=1 D.﹣a﹣a=010.(3分)如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是()A.9cm2B.9πc m2C.18πcm2D.18cm2二、填空题(每小题3分,共15分)11.(3分)比较大小:﹣32;﹣﹣;﹣π﹣3.14.12.(3分)多项式是次项式.13.(3分)如图是一个正方体盒子的展开图,在其中三个正方形A、B、C内分别添入适当的数,使他们折成正方体后相对的面上的两个数互为相反数,则添入正方形A、B、C内的三个数中最小的是面.14.(3分)若方程3x+2a=12和方程2x﹣4=12的解相同,则a的值为.15.(3分)当x=1时,代数式ax2+bx﹣1的值为3,则代数式﹣2a﹣b﹣2的值为.三、计算题(16、17题每小题4分,18题6分,共30分)16.(4分)(1)﹣4﹣28﹣(﹣29)+(﹣24)(2)2×(﹣3)2﹣×(﹣22)+6(3)﹣(﹣+)÷(﹣2)(4)﹣14+(1﹣0.5)××[2﹣(﹣3)2].17.(4分)(1)2ax2﹣3ax2﹣7ax2(2)﹣(﹣2x2y)﹣(+3xy2)﹣2(﹣5x2y+2xy2)18.(6分)先化简,后求值:﹣3(﹣x2+xy)+2y2﹣2(2y2﹣xy),其中x=,y=﹣1.四、解答题(19-21题每小题6分,22题7分,共25分)19.(6分)如图所示的几何体是由7个相同的小正方体搭成的,请画出它的左视图和俯视图.20.(6分)小明在对代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y+1化简后,没有含x的项,请求出代数式(a﹣b)2的值.21.(6分)2014年国庆十一黄金周期间,据统计,来成都古镇旅游的人数变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)若9月30日古镇的游客人数为a万人,则10月1日的游客人数为万人;七天内游客人数最大的是10月日;(2)若9月30日游客人数为0.3万人,而2013年黄金周7天游客总数为2.4万人,那么2014年“十一”黄金周比2013年同期游客总数增长的百分率是多少?22.(7分)把正整数1,2,3,4,…,2014排列成如图所示的一个表(1)用一正方形在表中随意框住16个数,把其中没有被阴影覆盖的最小的数记为x,另外没有被覆盖的数用含x的式子表示出来,从小到大依次是、、.(2)没有被阴影覆盖的这四个数之和能等于96吗?若能,请求出x的值;若不能,请说明理由.(3)那这四个数之和又能否等于3282呢?如果能,请求出x的值;如果不能,请说明理由.23.(5分)若3x|n|﹣(n﹣4)x﹣3是关于x的四次三项式,则n的值为.24.(4分)有理数a,b,c在数轴上的位置如图所示,则化简:|a﹣b|﹣|c﹣a|﹣|b+c|=.25.(6分)如图,一个正方体,6个面上分别写着6个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为9、12、13,则六个整数之和为.26.(6分)圣诞节将至,小华决定购买一些贺卡,贺卡店有一则广告如图:(1)如果小华只买15张,则购买贺卡共花去多少元钱?(2)如果小华购买x张,请用含x的代数式表示小华所花的费用;(3)如果小华此次购买共花去360元,请问购买贺卡可能多少张?27.(5分)请观察下列算式,找出规律并填空.如图所示数表,从1开始的连续自然数组成,观察规律并完成下列各题:(1)请问第六排从左到右的第二个数是;(2)设第n 排右边最后一个数字为y ,请用含n 的代数式表示y .2016-2017学年四川省成都七中育才学校七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)﹣的相反数是()A.﹣2 B.﹣ C.D.2【解答】解:由相反数的意义得:﹣的相反数是.故选:C.2.(3分)10月24日成都第十五届西博会新疆代表团签约175亿元合作项目,175亿元用科学记数法表示为()A.1.75×109元 B.1.75×1010元C.0.175×1011元D.17.5×109元【解答】解:175亿=175********=1.75×1010,故选:B.3.(3分)若单项式﹣2x m﹣1y mn与7x3y2是同类项,则代数式m﹣n的值是()A.﹣ B.2 C.D.﹣2【解答】解:由题意,得m﹣1=3,mn=2,解得m=4,n=,m﹣n=4﹣=,故选:C.4.(3分)用平面截一个几何体,如果截面的形状是长方形(或正方形),那么该几何体不可能是()A.圆柱B.棱柱C.圆锥D.正方体【解答】解:A、圆柱的轴截面是长方形,不符合题意;B、棱柱的轴截面是长方形,不符合题意;C、圆锥的截面为与圆有关的或与三角形有关的形状,符合题意;D、正方体的轴截面是正方形,不符合题意;故选:C.5.(3分)数轴上到﹣4的距离等于5个单位长度的点表示的数是()A.5或﹣5 B.1 C.﹣9 D.1或﹣9【解答】解:设该点表示的数为x,由题意可得|x﹣(﹣4)|=5,∴x+4=5或x+4=﹣5,解得x=1或x=﹣9,即该点表示的数是1或﹣9,故选:D.6.(3分)若m、n满足|2m+3|+(n﹣2)4=0,则m n的值等于()A.B.C.﹣ D.0【解答】解:由题意得,2m+3=0,n﹣2=0,解得m=﹣,n=2,所以,m n=(﹣)2=.故选:A.7.(3分)下列(1)=3a﹣2、(2)r+3>0、(3)3s+4=s、(4)x+7y=36,是一元一次方程的有()个.A.1 B.2 C.3 D.4【解答】解:(1)=3a﹣2、(3)3s+4=s是一元一次方程,故选:B.8.(3分)下列各组数据中,结果相等的是()A.(﹣1)4与﹣14B.﹣|﹣3|与﹣(﹣3)C.D.【解答】解:A、(﹣1)4=1,﹣14=﹣1,1≠﹣1,故错误;B、﹣|﹣3|=﹣3,﹣(﹣3)=3,﹣3≠3,故错误;C、,,,故错误;D、,,相等,正确.故选:D.9.(3分)下面是小丽同学做的合并同类项的题,其中正确的是()A.2a+3b=6ab B.ab﹣ba=0 C.5a3﹣4a3=1 D.﹣a﹣a=0【解答】解:A、2a与3b不是同类项,不能合并.错误;B、ab﹣ba=0.正确;C、5a3﹣4a3=a3.错误;D、﹣a﹣a=﹣2a.错误.故选:B.10.(3分)如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的面积是()A.9cm2B.9πcm2C.18πcm2D.18cm2【解答】解:所得几何体的主视图的面积是2×3×3=18cm2.故选:D.二、填空题(每小题3分,共15分)11.(3分)比较大小:﹣3<2;﹣>﹣;﹣π<﹣3.14.【解答】解:﹣3<2,∵|﹣|=,|﹣|=,∴﹣>﹣,﹣π<﹣3.14,故答案为:<,>,<.12.(3分)多项式是三次三项式.【解答】解:多项式是三次三项式,故答案为:三,三.13.(3分)如图是一个正方体盒子的展开图,在其中三个正方形A、B、C内分别添入适当的数,使他们折成正方体后相对的面上的两个数互为相反数,则添入正方形A、B、C内的三个数中最小的是B面.【解答】解:由图可知A对应﹣1,B对应2,C对应0.∵﹣1的相反数为1,2的相反数为﹣2,0的相反数为0,∴A=1,B=﹣2,C=0,∴添入正方形A、B、C内的三个数中最小的是B面.故答案为:B.14.(3分)若方程3x+2a=12和方程2x﹣4=12的解相同,则a的值为﹣6.【解答】解:解方程2x﹣4=12,得:x=8,把x=8代入3x+2a=12,得:3×8+2a=12,解得:a=﹣6.故答案为:﹣6.15.(3分)当x=1时,代数式ax2+bx﹣1的值为3,则代数式﹣2a﹣b﹣2的值为﹣10.【解答】解:将x=1代入得:a+﹣1=3,∴a+=4.等式两边同时乘以﹣2得:﹣2a﹣b=﹣8.∴﹣2a﹣b﹣2=﹣8﹣2=﹣10.故答案为:﹣10.三、计算题(16、17题每小题4分,18题6分,共30分)16.(4分)(1)﹣4﹣28﹣(﹣29)+(﹣24)(2)2×(﹣3)2﹣×(﹣22)+6(3)﹣(﹣+)÷(﹣2)(4)﹣14+(1﹣0.5)××[2﹣(﹣3)2].【解答】解:(1)﹣4﹣28﹣(﹣29)+(﹣24)=﹣32+29﹣24=﹣3﹣24=﹣27(2)2×(﹣3)2﹣×(﹣22)+6=2×9﹣×(﹣4)+6=18+1+6=25(3)﹣(﹣+)÷(﹣2)=﹣(﹣)÷(﹣2)=﹣=0(4)﹣14+(1﹣0.5)××[2﹣(﹣3)2]=﹣1+××[2﹣9]=﹣1+×(﹣7)=﹣1﹣=﹣217.(4分)(1)2ax2﹣3ax2﹣7ax2(2)﹣(﹣2x2y)﹣(+3xy2)﹣2(﹣5x2y+2xy2)【解答】解:(1)原式=(2﹣3﹣7)ax2=﹣8ax2;(2)原式=2x2y﹣3xy2+10x2y﹣4xy2=12x2y﹣7xy2.18.(6分)先化简,后求值:﹣3(﹣x2+xy)+2y2﹣2(2y2﹣xy),其中x=,y=﹣1.【解答】解:原式=x2﹣2xy+2y2﹣4y2+2xy=x2﹣2y2,当x=,y=﹣1时,原式=﹣2=﹣1.四、解答题(19-21题每小题6分,22题7分,共25分)19.(6分)如图所示的几何体是由7个相同的小正方体搭成的,请画出它的左视图和俯视图.【解答】解:如图所示:20.(6分)小明在对代数式2x2+ax﹣y+6﹣2bx2+3x﹣5y+1化简后,没有含x的项,请求出代数式(a﹣b)2的值.【解答】解:原式=(2﹣2b)x2+(a+3)x﹣6y+5,由代数式的值与字母x的取值无关,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则(a﹣b)2=16.21.(6分)2014年国庆十一黄金周期间,据统计,来成都古镇旅游的人数变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)若9月30日古镇的游客人数为a万人,则10月1日的游客人数为a+0.6万人;七天内游客人数最大的是10月3日;(2)若9月30日游客人数为0.3万人,而2013年黄金周7天游客总数为2.4万人,那么2014年“十一”黄金周比2013年同期游客总数增长的百分率是多少?【解答】解:(1)由题意可得,10月1日游客为:a+0.6,10月2日游客为:a+0.6+0.8=a+1.4,10月3日游客为:a+1.4+0.4=a+1.8,10月4日游客为:a+1.8﹣0.4=a+1.4,10月5日游客为:a+1.4﹣0.8=a+0.6,10月6日游客为:a+0.6+0.2=a+0.8,10月7日游客为:a+0.8﹣0.8=a,故答案为:(a+0.6),3;(2)∵9月30日游客人数0.3万人,∴2014年黄金周7天游客总数为0.3+1.4+0.3+0.6+0.3+1.8+0.3+1.4+0.3+0.6+0.3+0.8+0.3=8.7万人,∴2014年“十一”黄金周比2013年同期游客总数增长的百分率是×100%≈262.5%.22.(7分)把正整数1,2,3,4,…,2014排列成如图所示的一个表(1)用一正方形在表中随意框住16个数,把其中没有被阴影覆盖的最小的数记为x,另外没有被覆盖的数用含x的式子表示出来,从小到大依次是x+3、x+24、x+27.(2)没有被阴影覆盖的这四个数之和能等于96吗?若能,请求出x的值;若不能,请说明理由.(3)那这四个数之和又能否等于3282呢?如果能,请求出x的值;如果不能,请说明理由.【解答】解:(1)观察数列可知:每行有8个数,同行相邻两列数差为1,同列相邻两行的差为8.∵最小的数记为x,∴另外三个数分别为:x+3,x+24,x+27.故答案为:x+3;x+24;x+27.(2)没有被阴影覆盖的这四个数之和不能等于96,理由如下:四个数之和为x+x+3+x+24+x+27=4x+54,∴4x+54=96,解得:x=10.5,∵x为正整数,∴没有被阴影覆盖的这四个数之和不能等于96.(3)根据题意得:4x+54=3282,解得:x=807.答:这四个数之和能等于3282,此时x的值为807.23.(5分)若3x|n|﹣(n﹣4)x﹣3是关于x的四次三项式,则n的值为﹣4.【解答】解:∵3x|n|﹣(n﹣4)x﹣3是关于x的四次三项式,∴|n|=4且n≠4,∴n=﹣4,故答案为﹣4.24.(4分)有理数a,b,c在数轴上的位置如图所示,则化简:|a﹣b|﹣|c﹣a|﹣|b+c|=﹣2c.【解答】解:由数轴得a<﹣1<b<0<1<c,∴|a﹣b|﹣|c﹣a|﹣|b+c|=b﹣a﹣c+a﹣b﹣c=﹣2c.故答案为﹣2c.25.(6分)如图,一个正方体,6个面上分别写着6个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为9、12、13,则六个整数之和为69.【解答】解:根据题意分析可得:六个面上分别写着六个连续的整数,故六个整数可能为9,10,11,12,13,14,或8,9,10,11,12,13,且每个相对面上的两个数之和相等,13+10=23,12+11=23,9+14=23,故只可能为9,10,11,12,13,14,其和为69.故答案为:69.26.(6分)圣诞节将至,小华决定购买一些贺卡,贺卡店有一则广告如图:(1)如果小华只买15张,则购买贺卡共花去多少元钱?(2)如果小华购买x张,请用含x的代数式表示小华所花的费用;(3)如果小华此次购买共花去360元,请问购买贺卡可能多少张?【解答】解:(1)20×15=300(元).答:如果小华只买15张,则购买贺卡共花去300元钱.(2)设小华所花的费用为y元,根据题意可知:当0<x≤20时,y=20x;当x>20时,y=0.75×20x=15x.∴小华所花的费用y=.(3)∵20×20=400(元),21×15=315(元),315<360<400,∴若购买贺卡花去360元,则小华此次购买贺卡张数可能多于21也可能少于20,∴当y=360时,有20x=360或15x=360,解得:x=18或x=24.答:如果小华此次购买共花去360元,请问购买贺卡可能为18或24张.27.(5分)请观察下列算式,找出规律并填空.如图所示数表,从1开始的连续自然数组成,观察规律并完成下列各题:(1)请问第六排从左到右的第二个数是17;(2)设第n排右边最后一个数字为y,请用含n的代数式表示y.【解答】解:(1)第五排的第一个数字为×5×(5+1)=15,所以第六排从左到右的第二个数是17;(2)设第n排右边最后一个数字为y,偶数行y=n(n+1),奇数行y=n(n﹣1)+1.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。