电源中开关变压器设计几个重要的转换公式
- 格式:docx
- 大小:1.43 MB
- 文档页数:3
变压器计算公式范文
变压器是将电、磁能或机械能转换为相应的电能的重要组成部分,主
要应用于电力系统供电。
其基本原理是利用电磁变换、低频、高频等原理,来将电磁场相互影响着,最终将低压电动机的电能转换为高压电动机的电能。
变压器计算公式大致有以下几种:
一、初级变压器功率计算公式:
计算结果(W)=电流(A)×电压(V)
二、变压器的变比计算公式:
变比(b)=Vt/Vs
其中,Vt为变压器的高压端绕组电压;Vs为变压器的低压端绕组电压。
三、变压器容量计算公式:
容量(KVA)=Vt×Ip/1000
其中,Vt是变压器高压端绕组电压;Ip则为变压器的额定功率电流。
四、变压器额定频率计算公式:
频率(Hz)=Vt/X
其中,Vt是变压器高压端绕组电压;X则为变压器的电抗系数。
五、变压器效率计算公式:
效率(%)=100%×(P2-P1)/P1
其中,P2为变压器高压端实际输出功率;P1为变压器低压端实际输入功率。
另外,在变压器计算中,还需要考虑变压器的损耗,一般可以通过以下公式计算:
损耗(KW)=容量(KVA)×变压器损耗系数
我们还可以利用定子电流定律来计算变压器的电流,公式为:
电流(A)=E1/X
其中。
空载损耗计算公式:P0=KP t G Fe(w)K----铁心工艺系数取值1.15P t---单位重量铁损耗(w/kg)查硅钢片性能曲线G Fe---铁心总重(kg)G Fe=(4M0+3H w)A t)X7.65X10-4+G△(圆铁心)M0---铁心中心距(mm)H w---铁心窗高(mm)A t---铁心有效截面积(cm2)G△---铁心角重。
G Fe=(2(2M0+B)+3H w)A t X7.65X10-4(方铁心)B---铁心片宽(mm)负载损耗计算公式:P k=P f(P1+P m+P y) (w)P f---附加损耗系数取值1.10~1.12P1---高压绕组电阻损耗(w)P m---低压主绕组电阻损耗(w)P y---低压移相绕组电阻损耗(w)P1=3I12R1I1---高压侧额定电流(A)R1---高压绕组直流电阻(Ω)P m=3I m2R mI m---低压侧主绕组额定电流(A)R m---低压侧主绕组直流电阻(Ω)P y=3I y2R yI y---低压侧移相绕组额定电流(A)R y---低压侧移相绕组直流电阻(Ω)效率计算公式:η=(1-(P0+β2P k)/ (1000βS N cosφ+ P0+β2P k))% β---负载率%S N---变压器额定容量(kV A)cosφ---负载功率因数温升计算公式:t1=0.33kq10.8t1---高压绕组温升(K)k---风冷系数取值0.6q1---高压绕组单位热负荷(w/m2)q1=P1/S1S1---高压绕组有效散热面(m2)S1=∑a i S iS i=(L i-Nb)H k X10-6(m2)a i=0.56(A i1.6/H k)0.25S i---第i个散热面的面积L i---第i个散热面的周长(mm)kN---撑条数b---撑条宽度(mm)a i---第i个散热面的散热系数A i---第i个散热面的气道高度(mm)t2=0.3kq20.8t2---低压绕组温升(K)k---风冷系数取值0.6q2---低压绕组单位热负荷(w/m2)q2=K(P m+P k)/S2K---谐波增加系数取值1.5S2---低压绕组有效散热面(m2)S2=a n S n+S w+βT S TS n=(L n-NB)W n bX10-6S n---低压绕组内表面面积(m2)L n---低压绕组内表面周长(mm)N---撑条数B---撑条宽度(mm)W n---低压绕组饼数b---每饼并绕导线总宽度(mm)a n=0.56(A n1.6/H k)0.25a n---低压绕组内表面的散热系数iH k---低压内散热面的有效高度(mm)S w=L w W n bX10-6S w---低压绕组外表面面积(m2)L w---低压绕组外表面周长(mm)S T=2(L p-NB)WW n X10-6S T---低压绕组横向散热面积(m2)L p---低压绕组平均周长(mm)βT=1.73(1+W/H-√1+(W/H)2)βT---低压绕组横向散热面散热系数W---线饼幅向尺寸(mm)H---线饼间距离平均值(mm)对于低压绕组外有风道的,外表面的散热系数a w与内绕组公式相似。
变压器计算公式范文
变压器的主要参数有变压比、输出功率、额定电流、短路阻抗等。
以
下将介绍常用的变压器计算公式。
1.变压器变压比计算公式:
变压比是指输入和输出电压之间的比值,它可以通过变压器一次侧与
二次侧的匝数关系来计算。
变压比公式如下:
变压比=一次侧匝数/二次侧匝数
2.变压器的输出功率计算公式:
输出功率是指变压器所能输出的电功率,可以通过输入功率和变压比
来计算。
输出功率公式如下:
输出功率=输入功率×变压比
3.变压器的额定电流计算公式:
额定电流是指变压器被设计成能够连续工作的电流值,可以通过输出
功率和额定电压来计算。
额定电流公式如下:
额定电流=输出功率/额定电压
4.变压器的短路阻抗计算公式:
短路阻抗是指在变压器运行时,一次侧或二次侧发生短路时所产生的
电阻,它是变压器的一个重要参数。
可以通过短路电压和额定电压来计算。
短路阻抗公式如下:
短路阻抗=(短路电压/额定电压)×100%
5.变压器的容量计算公式:
容量是指变压器所能承受的最大负载功率,可以根据额定电流和额定
电压来计算。
容量公式如下:
容量=额定电流×额定电压
以上是常用的变压器计算公式。
在实际应用中,根据具体的需求和变
压器的参数,可以根据这些公式计算出所需的数值。
同时,在计算过程中
还需要考虑变压器的损耗、效率等因素,以保证变压器的安全和稳定运行。
设计变压器的基本公式为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T)Bm=(Up×104)/KfNpSc式中:Up——变压器一次绕组上所加电压(V)f——脉冲变压器工作频率(Hz)Np——变压器一次绕组匝数(匝)Sc——磁心有效截面积(cm2)K——系数,对正弦波为4.44,对矩形波为4.0一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。
变压器输出功率可由下式计算(单位:W)Po=1.16BmfjScSo×10-5式中:j——导线电流密度(A/mm2)Sc——磁心的有效截面积(cm2)So——磁心的窗口面积(cm2)3对功率变压器的要求(1)漏感要小图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。
图9双极性功率变换器波形功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。
(2)避免瞬态饱和一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。
它衰减得很快,持续时间一般只有几个周期。
对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。
由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。
所以一般在控制电路中都有软启动电路来解决这个问题。
(3)要考虑温度影响开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。
在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。
一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40℃考虑,磁心温度可达60~80℃,一般选择Bm=0.2~0.4T,即2000~4000GS。
原边电感量:Lp =(Dmax * Vindcmin)/ (fs * ΔIp)开关管耐压:Vmos =Vindcmax+开关管耐压裕量(一般用150V)+Vf*反激电压(Vf)的计算: Vindcmin * Dmax = Vf *(1- Dmax)原边与副边的匝比:Np / Ns = Vf / Vout原边与副边的匝比:Np / Ns = (Vdcmin * Dmax)/ [Vout * (1-Dmax)]原边电流:[1/2 * (Ip1 + Ip2)] * Dmax * Vindcmin = Pout / η磁芯:AwAe = (Lp * Ip2^2 * 10^4 / Bw * Ko * Kj) *原边匝数:Np = (Lp * Ip^2 * 10^4 )/ (Bw * Ae)气隙:lg = π * Np^2 * Ae * 10^-8 / LpLp:原边电感量, 单位:H`Vindcmin:输入直流最小电压,单位:VDmax:最大占空比: 取值~Fs:开关频率 (或周期T),单位:HzΔIp:原边电流变化量,单位:AVmos:开关管耐压,单位:VVf:反激电压:即副边反射电压,单位:VNp:原边匝数,单位:T)Ns:副边匝数,单位:T)Vout:副边输出电压,单位:Vη:变压器的工作效率Ae:磁芯截面积,单位:cm²《Ip2:原边峰值电流,单位:ABw:磁芯工作磁感应强度,单位:T 取值~Ko:窗口有效用系数,根据安规的要求和输出路数决定,一般为~Kj:电流密度系数,一般取395A/ cm²(或取500A/cm²)Lg:气隙长度,单位:cm变压器的亿裕量一般取150V什么是反激电压假定原副边的匝比为n,在原边开关管截止时,开关管的高压端电压为Vin(dc)+nVo, nVo即为反激到原边的电压。
在反激电源的工作原理中,原边开关管截止时,变压器能量传递,次级二极管导通,次级绕组两端的电压,会“折射”到原边(用同名端对电位),叠加在开关管高压端。
一、电源变压器的基本计算公式根据变压器的工作原理,对中小功率电源变压器可得到以下基本计算公式 ※.空载工作时A 、初.次级绕组空载电压比近似等于其匝数比,所以,次级空载电压U 20为 U 20=U1* (3—28) 式中 U 20————— 次级空载电压(V ); U 1————— 初级输入电压(V );N 1————— 初级绕组匝数; N 2————— 次级绕组匝数;2.初级空载电流I O 按式(3—26)计算其中,磁化电流I φO 由所确定的空载磁感应强度B O 查铁心磁化曲线(图3—13为其一例),得在该B O 下的磁场强度H ~值或磁化伏安VA φO 值后按下式计算。
I φO = (3—29) 式中 I φO —————— 磁化电流(A );H ~——————磁场强度(A/cm ); l C ——————铁心平均磁路长度(cm )。
或I φO = (3—30) 式中 VA φO ————— 空载磁化伏安(VA )铁损电流I φO 可由所确定的空载磁感应强度B O 下的铁心单位损耗值P 。
后,N2N1H~*l CN1V A φON1图3-13 铁心磁化曲线按下式计算。
I φO= (3-31)式中 I φO ————— 铁损电流(A );P S ————— 铁心单位损耗(W/kg ); G C ————— 铁心质量(kg )。
※ 负载工作时A.初级感应电势E C当忽略初级漏感时,初级感应电势E 1 按下式计算 E 1 =U 1 — I 1 r1 (3—32)式中 E 1 ————— 初级感应电势(V );I 1 ————— 初级电流的有功分量(A ); r 1 ————— 初级铜阻(Ω)。
B.次级感应电势E 1E 2= E 1 * 式中E 2 ————— 次级感应电势(V ) (3-33)C.次级负载电压U2当忽略次级漏感时,次级负载电压U 2 按下式计算式中U 2 = E 2—I 2r2 (3-34) 式中 U 2 ————— 次级负载电压(V ); U 2————— 次级负载电流(A );R 2————— 初级铜阻(Ω)。
设计变压器的基本公式————————————————————————————————作者: ————————————————————————————————日期:ﻩ设计变压器的基本公式为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T)ﻫﻫBm=(Up×104)/KfNpScﻫ式中:Up——变压器一次绕组上所加电压(V)ﻫﻫf——脉冲变压器工作频率(Hz)Np——变压器一次绕组匝数(匝)ﻫﻫSc——磁心有效截面积(cm2)K——系数,对正弦波为4.44,对矩形波为4.0ﻫﻫ一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。
ﻫ变压器输出功率可由下式计算(单位:W)Po=1.16BmfjScSo×10-5式中:j——导线电流密度(A/mm2)Sc——磁心的有效截面积(cm2)ﻫSo——磁心的窗口面积(cm2)ﻫ3对功率变压器的要求ﻫ(1)漏感要小ﻫﻫ图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。
ﻫ图9双极性功率变换器波形ﻫ功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。
ﻫ(2)避免瞬态饱和ﻫ一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。
它衰减得很快,持续时间一般只有几个周期。
对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。
由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,(3)这是不允许的。
所以一般在控制电路中都有软启动电路来解决这个问题。
ﻫﻫ要考虑温度影响ﻫ开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。
设计变压器的基本公式为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T) Bm=(Up×104)/KfNpSc式中:Up——变压器一次绕组上所加电压(V)f——脉冲变压器工作频率(Hz)Np——变压器一次绕组匝数(匝)Sc——磁心有效截面积(cm2)K——系数,对正弦波为4、44,对矩形波为4、0一般情况下,开关电源变压器的Bm值应选在比饱与磁通密度Bs低一些。
变压器输出功率可由下式计算(单位:W)Po=1、16BmfjScSo×10-5式中:j——导线电流密度(A/mm2)Sc——磁心的有效截面积(cm2)So——磁心的窗口面积(cm2)3对功率变压器的要求(1)漏感要小图9就是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰就是功率开关管损坏的原因之一。
图9双极性功率变换器波形功率开关管关断时电压尖峰的大小与集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感就是十分重要的。
(2)避免瞬态饱与一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱与而产生极大的浪涌电流。
它衰减得很快,持续时间一般只有几个周期。
对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱与。
由于脉冲变压器与功率开关管直接相连并加有较高的电压,脉冲变压器的饱与,即使就是很短的几个周期,也会导致功率开关管的损坏,这就是不允许的。
所以一般在控制电路中都有软启动电路来解决这个问题。
(3)要考虑温度影响开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱与磁通密度的降低应尽量小。
在设计与选用磁心材料时,除了关心其饱与磁通密度、损耗等常规参数外,还要特别注意它的温度特性。
一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40℃考虑,磁心温度可达60~80℃,一般选择Bm=0、2~0、4T,即2000~4000GS。
高中物理变压器公式总结篇一:变压器是电学中的重要设备,在高中物理中也是一个重要的考点。
变压器的工作原理基于电磁感应定律,其公式如下:F = B * A * sinθ其中:F 表示转矩(单位为 N·m);B 表示磁感应强度(单位为特斯拉);A 表示磁通量(单位为 A·m^2);θ表示磁感线和法向量之间的夹角。
在变压器中,磁通量发生变化时会产生感应电动势,进而产生感应电流,这个感应电流又会产生磁场,这两个磁场相互感应、相互排斥,从而产生转矩,也就是变压器的电能输出。
变压器的负载大小取决于输入功率和变压器的容量,输入功率越大,变压器的容量也越大。
变压器的容量可以通过公式:C = Q/T计算得出。
其中,C 表示变压器的容量(单位为 W),Q 表示输入功率(单位为W),T 表示变压器的负载时间(单位为 s)。
除了基本的变压器公式,还可以利用这些公式进行变压器的分析和设计。
例如,可以利用变压器的磁通量变化和感应电动势大小来计算变压器的损耗和电能损失,从而优化变压器的性能和设计。
变压器在实际应用中发挥着重要的作用,例如在电力系统中用于输电、配电和调频等。
了解变压器的工作原理和公式,对于理解和分析变压器的行为和性能都具有重要意义。
篇二:变压器是电学中的一个重要设备,它利用原动机(如电机)产生的电压和电流,通过变压器的线圈产生不同的电压和电流输出,以满足各种电路的需求。
在高中物理中,变压器的公式掌握对于理解变压器的原理和应用非常重要。
本文将对高中物理变压器公式进行总结和拓展。
一、变压器的工作原理变压器是利用电磁感应的原理来实现电能的转换的。
具体来说,变压器的工作原理可以分为三个步骤:1. 初级线圈产生磁场:当电流通过变压器的初级线圈时,会在线圈内部产生一个磁场。
这个磁场由原动机的电流产生,并通过变压器的初级线圈进入次级线圈。
2. 次级线圈产生感应磁场:当磁场穿过次级线圈时,会在线圈内部产生一个感应磁场。
电源中开关变压器设计几个转换公式
T = 1/f , T= Ton + Toff , D = Ton / T (示波器实际测试出来)
D=(V o+V F) /[ (V in-dc)•Ns/Np +V o+V F];(由设计参数决定而来)
V in * Ton / Ip
V in * Ton = Lp * Ip,
→ Lp =
Np = V in * Ton /△B * Ae , →△B = V in * Ton / Np * Ae = Lp * Ip / Np * Ae.
下面是初级/次级圈数计算所用到的公式:
Np = V in * Ton /△B * Ae ,
Ns / Np = (Vo+0.55)/ Vin Min * Toff / Ton,
Ns = Np *(Vo+0.55) / Vin Min * Toff / Ton,
Vin Min =90Vac * 1.41 – 25
下面是峰值电流Ipk计算公式:.
P in=P out/η;
I AC=P in/V in-dc
V in-dc=V ac×1.41-30;
I pk=I AV/(1-1/2K)×D;
K值影响计算出的I pk 大小, 是否合理和是否会导致磁饱和,要用△B 校验.
然后不断反复地调整优化.
K 可在0.4—1.0之间预设, K 越大越靠近不连续模式DCM ,
反之, K 越小越靠近连续模式CCM, K值. 这样I pk 大约等于I AV 的2.9—4.0倍.
下面是12V1A电源△B 校验过程.
P in=P out/η;
I AC=P in/V in-dc ,
V in-dc=V ac×1.41-30;
I pk=I AV/(1-1/2K)×D;
D=(V o+V F)/[ (V in-dc)•Ns/Np +V o+V F];
初级纹波电流I R与初级峰值电流I P的比值K,K = IR/IP
I RMS=I P√D max×(K RP2/3-K RP+1)
D Sm=1.13√I SRMS/J J为电流密度. 4.0 –6.5左右.
EE-19,Ae=21.59mm2,N p=130,N s=15,V o=12,V F=0.55V,η=78%; At Input 150V ac
P in=12.0/0.78=15.38W;
V in-dc=181Vdc;
I av=15.38/181=0.085A;
D=(12+0.55)/[(181×15/130)+12+0.55]=12.55/33.43=0.375; Power work in DCM,So K=1;
I pk=0.085/[(1-0.5)×0.375]=0.085/0.1875=0.453A;
△B=(L p•I pk×100)/ (N p•Ae);
△B=(1750 ×0.453×100)/(130×21.59)= 2824 Gauss =282.4mT; MATERIAL=JP4,@100℃B s=390mT,B r=55mT;
B s-B r=335mT;
△B< B s-B r;
At Input 264V ac
P in=12.0/0.78=15.38W;
V in-dc=342Vdc;
I av=15.38/342=0.045A;
D=(12+0.55)/[(342×15/130)+12+0.55]=12.55/52.01=0.241; Power work in DCM,So K=1;
I pk=0.045/[(1-0.5)×0.241]=0.045/0.1205=0.373A;
△B=(L p•I pk×100)/ (N p•Ae);
△B=(1750×0.373×100)/(130×0.2159)= 2326 Gauss =233mT; MATERIAL=JP4,@100℃B s=390mT,B r=55mT;
B s-B r=335mT;
△B< B s-B r;
附件是变压器图纸和磁性材料参数
UE12L1.pdf。