考研数学:高数重要公式总结(微分方程)
- 格式:doc
- 大小:284.04 KB
- 文档页数:6
高数微分方程公式大全微分方程是数学中的重要概念,包含了许多公式和方法。
下面我将从不同角度介绍一些常见的高等数学微分方程公式。
1. 一阶微分方程:可分离变量方程公式,dy/dx = f(x)g(y),可通过分离变量并积分求解。
齐次方程公式,dy/dx = f(x)/g(y),可通过变量代换或分离变量求解。
线性方程公式,dy/dx + P(x)y = Q(x),可通过积分因子法或常数变易法求解。
2. 二阶微分方程:齐次线性方程公式,d²y/dx² + P(x)dy/dx + Q(x)y = 0,可通过特征方程法求解。
非齐次线性方程公式,d²y/dx² + P(x)dy/dx + Q(x)y = f(x),可通过常数变易法或待定系数法求解。
欧拉方程公式,x²d²y/dx² + pxdy/dx + qy = 0,可通过变量代换或特征方程法求解。
3. 高阶微分方程:常系数线性齐次方程公式,andⁿy/dxⁿ +an⁻¹dⁿ⁻¹y/dxⁿ⁻¹ + ... + a1dy/dx + a0y = 0,可通过特征方程法求解。
常系数线性非齐次方程公式,andⁿy/dxⁿ +an⁻¹dⁿ⁻¹y/dxⁿ⁻¹ + ... + a1dy/dx + a0y = f(x),可通过常数变易法或待定系数法求解。
常系数二阶齐次方程公式,d²y/dx² + py' + qy = 0,可通过特征方程法求解。
4. 常见的变换和公式:指数函数变换,对于形如y = e^(kx)的方程,可通过变量代换进行求解。
对数函数变换,对于形如y = ln(x)的方程,可通过变量代换进行求解。
三角函数变换,对于形如y = sin(kx)或y = cos(kx)的方程,可通过变量代换进行求解。
常用公式,如指数函数的导数公式、对数函数的导数公式、三角函数的导数公式等。
高数微积分公式三角函数公式考研整理表姓名:职业工种:申请级别:受理机构:填报日期:A4打印/ 修订/ 内容可编辑高等数学公式导数公式:基本积分表:三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:·和差角公式:·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:文件编号:F8-65-23-08-CC 多元函数微分法及应用微分法在几何上的应用:文件编号:F8-65-23-08-CC 方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程整理丨尼克本文档信息来自于网络,如您发现内容不准确或不完善,欢迎您联系我修正;如您发现内容涉嫌侵权,请与我们联系,我们将按照相关法律规定及时处理。
考研数学高数公式:微分方程考研数学高数公式:微分方程第七章:微分方程考研要求1.了解微分方程及其解、阶、通解、初始条件和特解等概念。
2.掌握可分离变量的微分方程,会用简单变量代换,解某些微分方程3.会解奇次微分方程,会用简单变量代换解某些微分方程4.掌握一阶线性微分方程的解法,会解伯努利方程5.会用降阶法解下列微分方程 y"=f(x,y')6.y"=f(y,y')7.掌握二阶常系数齐次微分方程的解法,并会解某些高于二阶的常系数齐次微分方程8.会解自由项为多项式,指数函数,正弦函数,余弦函数,以及他们和与积的二阶常系数非齐次线性微分方程。
9.会解欧拉方程。
微分方程的基本公式和定理1、多元函数极限存在的条件极限存在是指P(x,y)以任何方式趋于P0(x0,y0)时,函数都无限接近于A,如果P(x,y)以某一特殊方式,例如沿着一条定直线或定曲线趋于P0(x0,y0)时,即使函数无限接近某一确定值,我们还不能由此断定函数极限存在。
反过来,如果当P(x,y)以不同方式趋于P0(x0,y0)时,函数趋于不同的值,那么就可以断定这函数的极限不存在。
例如函数:f(x,y)={0(xy)/(x^2+y^2)x^2+y^2≠02、多元函数的连续性定义设函数f(x,y)在开区域(或闭区域)D内有定义,P0(x0,y0)是D的内点或边界点且P0∈D,如果lim(x→x0,y→y0)f(x,y)=f(x0,y0)则称f(x,y)在点P0(x0,y0)连续。
性质(最大值和最小值定理)在有界闭区域D上的多元连续函数,在D上一定有最大值和最小值。
性质(介值定理)在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两个值之间的任何值至少一次。
3、多元函数的连续与可导如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续。
高等数学公式篇·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-co tαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
高等数学公式一、常用的等价无穷小当x →0时x x x x x (1+x ) ~-11x a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1x ~21x 2增加x x ~61x 3 对应 x –x ~ 61x 3x –x ~ 31x 3 对应 x - x ~ 31x 3二、利用泰勒公式= 1 + x + +!22x o (2x ) ) (33 o !3sin x x x x +-=x 1 – +!22x o (2x ) (1+x )=x – +22x o (2x )导数公式: 基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹()公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμαααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
考研数学公式大全数学是考研的核心科目之一,而掌握必要的数学公式则是取得好成绩的关键。
以下是一份考研数学公式大全,涵盖了高等数学、线性代数和概率论与数理统计中的重要公式,希望能对备考研究生入学考试的同学有所帮助。
一、高等数学1、求导法则本文1)链式法则:f(u)f'(u)=f'(u)du本文2)乘积法则:f(u)g(u)=f'(u)g(u)+f(u)g'(u)本文3)指数法则:f(u)^n=nu'f(u)/(n-1)!2、求极值本文1)极值条件:f'(x)=0本文2)极值定理:f(x)在x=a处取得极值,则f'(a)=03、积分公式本文1)牛顿-莱布尼茨公式:∫f(x)dx=F(b)-F(a),其中F'(x)=f(x)本文2)微分定理:d/dx∫f(x)dx=f(x)本文3)积分中值定理:若f(x)在[a,b]上连续,则至少存在一点c∈[a,b],使得∫f(x)dx=f(c)(b-a)4、不定积分公式本文1)幂函数积分:∫x^n dx=(n+1)/n+1 x^(n+1)/n+1+C本文2)三角函数积分:∫sinx dx=cosx+C,∫cosx dx=-sinx+C 5、定积分公式本文1)矩形法:若a<=x<=b,a<=y<=b,则∫(a,b)(x^2+y^2)dx=∫(a,b)x^2 dx+∫(a,b)y^2 dx=(b-a)(x^2+y^2)/2本文2)梯形法:若a<=x<=b,a<=y<=b,则∫(a,b)(x^2+y^2)dx=∫(a,b)x^2 dx+∫(a,b)y^2 dx=(b-a)(x^2+[by]+[ax])/3二、线性代数6、行列式公式本文1)行列式展开式:D=a11A11+a12A12+...+an1An1,其中Aij为行列式中第i行第j列的代数余子式本文2)范德蒙行列式:V=(∏i=1n[(x-a)(i-1)]^(n-i)) / (∏i=1n[(x-a)(i-1)]),其中ai为行列式中第i行第i列的元素7、矩阵公式本文1)矩阵乘法:C=AB,其中Cij=∑AikBkj,k为矩阵乘法的维数本文2)逆矩阵:A^-1=(1/∣A∣)A,其中∣A∣为矩阵A的行列式值,A为矩阵A的伴随矩阵8、向量公式本文1)向量内积:〈a,b〉=a1b1+a2b2+...1、求导法则本文1)链式法则:若f是一个包含x和函数u=u(x),则f' = f'[u(x)] * u'(x)。
微分 方 程的相关 概 念 :一阶微分方程: y f (x, y) 或 P( x, y)dx Q(x, y)dy 0 可分别变量的微分方程 :一阶微分方程能够化 为 g ( y)dy 的形式,解法:f (x)dxg ( y) dy f ( x)dx 得: G( y) F (x) C 称为隐式通解。
齐次方程:一阶微分方 程能够写成 dyf ( x, y),即写成 y的函数,解法:dx(x, y) x设 u y ,则 dy u x du , udu (u) , dxdu 分别变量,积分后将 y取代 ,x dx dx dx x (u) ux即得齐次方程通解。
一阶线性微分方程:1、一阶线性微分方程:dyP( x) y Q ( x)dx当 Q( x) 0时, 为齐次方程, yCe P( x) dx当 Q( x) 0时,为非齐次方程,yP( x) dxdxP ( x) dx( Q (x)e C )e、贝努力方程: dyP( x) y Q (x) y n , 0,1)2 dx (n全微分方程:假如 P(x, y)dx Q ( x, y)dy 0中左端是某函数的全微分方程,即:du (x, y)P(x, y) dx Q( x, y) dy 0,此中:uP( x, y),uQ ( x, y)xyu( x, y) C 应当是该全微分方程的通解。
二阶微分方程:2ydy, f ( x)时为齐次ddx 2P(x) dxQ( x) y f ( x)f ( x) 时为非齐次二阶常系数齐次线性微分方程及其解法:(*) y py qy 0,此中 p, q 为常数;求解步骤:、写出特点方程:)r 2pr q ,此中 2, 的系数及常数项恰巧是(*)式中的系数;1(rry , y , y2、求出 ( )式的两个根 r 1 ,r 23、依据 r 1 ,r 2的不一样状况,按下表写 出(*) 式的通解: r 1, r 2的形式(*) 式的通解两个不相等实根 ( p 24q 0)yc 1e r 1 x c 2 e r 2 x两个相等实根 ( p 24q0)y(c1 c2 x)e r1x一对共轭复根 ( p 24q0)y e x (c1 cos x c2 sin x) r1i ,r2ip ,4q p 222二阶常系数非齐次线性微分方程y py qy f ( x), p,q为常数f ( x) e x P m ( x)型,为常数;f ( x) e x [ P l ( x) cos x P n ( x)sin x]型。
考研高等数学公式和十大考点考研数学常考的十种题型列出如下:一、运用洛必达法则和等价无穷小量求极限问题,直接求极限或给出一个分段函数讨论基连续性及间断点问题。
二、运用导数求最值、极值或证明不等式。
三、微积分中值定理的运用,证明一个关于“存在一个点,使得……成立”的命题或者证明不等式。
四、重积分的计算,包括二重积分和三重积分的计算及其应用。
五、曲线积分和曲面积分的计算。
六、幂级数问题,计算幂级数的和函数,将一个已知函数用间接法展开为幂级数。
七、常微分方程问题。
可分离变量方程、一阶线性微分方程、伯努利方程等的通解、特解及幂级数解法。
八、解线性方程组,求线性方程组的待定常数等。
九、矩阵的相似对角化,求矩阵的特征值,特征向量,相似矩阵等。
十、概率论与数理统计。
求概率分布或随机变量的分布密度及一些数字特征,参数的点估计和区间估计。
导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '=⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=- ⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅⑼()xx ee '= ⑽()ln x x a a a '= ⑾()1ln x x'= ⑿()1log ln xax a '=⒀()2arcsin 1x x '=- ⒁()2arccos 1x x'=-⒂()21arctan 1x x '=+ ⒃()21arccot 1x x '=-+⒄()1x '=⒅2xx'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑ 四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax bn ax bea e++=⋅ (3)()()ln n xx n aa a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭(6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则 ⑴()0d c = ⑵()1d xxdx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =- ⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅ ⑼()xx d ee dx = ⑽()ln x x d a a adx = ⑾()1ln d x dx x=⑿()1log ln xad dx x a =⒀()2arcsin 1d x x =- ⒁()2arccos 1d x x=- ⒂()21arctan 1d x dx x =+ ⒃()21arccot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dxx c x=+⎰ ⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰⑻221sec tan cos dx xdx x c x ==+⎰⎰ ⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾2arcsin 1x c x=+-八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan xdx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰ 22arcsinxc aa x =+- 2222ln x x a c x a =±+±积分型换元公式()()()1f ax b dx f ax b d ax b a+=++⎰⎰ u ax b =+()()()11f x x dx f x d x μμμμμ-=⎰⎰ u x μ=()()()1ln ln ln f x dx f x d x x⋅=⎰⎰ln u x =()()()xxxxf e e dx f e d e ⋅=⎰⎰x u e =()()()1ln x x x x f a a dx f a d a a⋅=⎰⎰ x u a =()()()sin cos sin sin f x xdx f x d x ⋅=⎰⎰sin u x =()()()cos sin cos cos f x xdx f x d x ⋅=-⎰⎰ cos u x =()()()2tan sec tan tan f x xdx f x d x ⋅=⎰⎰ tan u x =()()()2cot csc cot cot f x xdx f x d x ⋅=⎰⎰ cot u x =()()()21arctan arc n arc n 1f x dx f ta x d ta x x⋅=+⎰⎰arctan u x = ()()()21arcsin arcsin arcsin 1f x dx f x d x x ⋅=-⎰⎰arcsin u x =十、分部积分法公式⑴形如n ax x e dx ⎰,令nu x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx = ⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。
数学考研微积分常用公式速记微积分是数学的重要分支,广泛应用于各个领域。
无论是在学术研究还是在实际问题求解中,熟练掌握微积分的基本公式是非常重要的。
本文将为大家介绍一些常用的微积分公式,并提供一些速记技巧,帮助大家更好地记忆和运用这些公式。
1. 极限和导数1.1 极限(1) 当 x 趋于 a 时,有以下常用极限:- $\lim_{x\to a}x=a$- $\lim_{x\to a}c=c$,其中 c 为常数- $\lim_{x\to a}(x^n-a^n)=(n\cdot a^{n-1})$,其中 n 为自然数- $\lim_{x\to a}(a^x-a^a)=(a^a\cdot \ln a)$- $\lim_{x\to 0}\frac{\sin x}{x}=1$(2) 夹逼定理:如果有两个函数 g(x) 和 h(x),满足 $g(x)\leq f(x)\leqh(x)$,且 $\lim_{x\to a}g(x)=\lim_{x\to a}h(x)=L$,那么 $\lim_{x\toa}f(x)=L$。
1.2 导数(1) 常用函数的导数:- $(c)'=0$,c 为常数- $(x^n)'=n\cdot x^{n-1}$,其中 n 为自然数- $(a^x)'=a^x\cdot \ln a$,其中 a>0 且a≠1- $(\ln x)'=\frac{1}{x}$- $(e^x)'=e^x$- $(\sin x)'=\cos x$- $(\cos x)'=-\sin x$(2) 导数的四则运算:- $(c\cdot f(x))'=c\cdot f'(x)$,其中 c 为常数- $(f(x)+g(x))'=f'(x)+g'(x)$- $(f(x)-g(x))'=f'(x)-g'(x)$- $(f(x)\cdot g(x))'=f'(x)\cdot g(x)+f(x)\cdot g'(x)$- $(\frac{f(x)}{g(x)})'=\frac{f'(x)\cdot g(x)-f(x)\cdot g'(x)}{(g(x))^2}$,其中g(x)≠02. 积分和微分2.1 不定积分(1) 基本积分表:- $\int x^n \mathrm{d}x=\frac{1}{n+1}\cdot x^{n+1}+C$,其中 n 为自然数,C 为常数- $\int \frac{1}{x} \mathrm{d}x=\ln |x|+C$- $\int e^x \mathrm{d}x=e^x+C$- $\int \sin x \mathrm{d}x=-\cos x+C$- $\int \cos x \mathrm{d}x=\sin x+C$(2) 分部积分公式:$\int u \mathrm{d}v=uv-\int v \mathrm{d}u$2.2 定积分(1) 基本定积分表:- $\int_a^b k \mathrm{d}x=k(b-a)$,其中 k 为常数- $\int_a^b x^n \mathrm{d}x=\frac{1}{n+1}\cdot (b^{n+1}-a^{n+1})$,其中 n 为自然数- $\int_a^b e^x \mathrm{d}x=e^x|_a^b=e^b-e^a$- $\int_a^b \sin x \mathrm{d}x=-\cos x|_a^b=\cos a-\cos b$- $\int_a^b \cos x \mathrm{d}x=\sin x|_a^b=\sin a-\sin b$(2) 牛顿-莱布尼兹公式:若函数 F(x) 是 f(x) 的一个原函数,则$\int_a^b f(x) \mathrm{d}x=F(b)-F(a)$。
高等数学公式导数公式:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ基本积分表:三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ·倍角公式: ·半角公式: ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率:定积分的近似计算: 定积分应用相关公式: 空间解析几何和向量代数: 多元函数微分法及应用 微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ϖϖωψϕωψϕωψϕ方向导数与梯度:多元函数的极值及其求法: 重积分及其应用: 柱面坐标和球面坐标: 曲线积分: 曲面积分: 高斯公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰Ω∑∑∑∑∑Ω∑=++==⋅<∂∂+∂∂+∂∂=++=++=∂∂+∂∂+∂∂dsA dv A ds R Q P ds A ds n A z R y Q x P ds R Q P Rdxdy Qdzdx Pdydz dv z Ry Q x P n n ϖϖϖϖϖdiv )cos cos cos (...,0div ,div )cos cos cos ()(成:因此,高斯公式又可写,通量:则为消失的流体质量,若即:单位体积内所产生散度:—通量与散度:—高斯公式的物理意义γβαννγβα斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为l2的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:二阶常系数非齐次线性微分方程概率统计公式整理1.随机事件及其概率吸收律:AAB A AA A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)(反演律:B A B A =⋃ B A AB ⋃=2.概率的定义及其计算若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=-加法公式:对任意两个事件A , B , 有)()1()()()()(2111111n n nnk j i kjinj i jini i ni i A A A P A A A P A A P A P A P ΛΛY -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率()=A B P)()(A P AB P 乘法公式()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P ΛΛΛΛ全概率公式Bayes 公式4.随机变量及其分布 分布函数计算 5.离散型随机变量 (1) 0 – 1 分布 (2) 二项分布 ),(p n B 若P ( A ) = p *Possion 定理有 Λ,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nk n n λλ(3) Poisson 分布 )(λP6.连续型随机变量 (1) 均匀分布 ),(b a U (2) 指数分布 )(λE(3) 正态分布 N (? , ? 2 ) *N (0,1) — 标准正态分布 7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数 边缘分布函数与边缘密度函数 8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G ) (2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布10.随机变量的数字特征数学期望随机变量函数的数学期望X 的 k 阶原点矩)(k X E X 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩 X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差 X ,Y 的相关系数 X 的方差D (X ) =E ((X - E (X ))2)协方差相关系数)()(),cov(Y D X D Y X XY =ρ*N (0,1) — 标准正态分布7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数 边缘分布函数与边缘密度函数8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y xx ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9.二维随机变量的 条件分布10.随机变量的数字特征数学期望随机变量函数的数学期望 X 的 k 阶原点矩)(k X EX 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E -X 的 方差)()))(((2X D X E X E =- X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩 X ,Y 的 二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差 X ,Y 的相关系数X 的方差D (X ) =E ((X - E (X ))2) 协方差 相关系数)()(),cov(Y D X D Y X XY =ρ 线性代数。
高等数学公式一、常用等价无穷小当x →0时x x x x x (1+x ) ~-11x a(1+x )α-1 ~ αx (α为任意实数,不一定是整数)1x ~21x 2增加x x ~61x 3 对应 x –x ~ 61x 3x –x ~ 31x 3 对应 x - x ~ 31x 3二、利用泰勒公式= 1 + x + +!22x o (2x ) ) (33 o !3sin x x x x +-=x 1 – +!22x o (2x ) (1+x )=x – +22x o (2x )导数公式: 基本积分表:三角函数有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹()公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理及导数应用:拉格朗日中值定理。
常微分方程公式大全1、一阶微分方程:一阶微分方程是一类含自变量x与未知数y(x)及其一阶导函数y'(x)的方程,它可以表示为 F(x,y,y′)=0 。
如果可以解出y',可表示为: dydx=f(x,y)2、一阶微分方程的其中一种解法--分离变量法:形如 dydx=M(x)·N(y) :若N(y)≠0,我们可以化成(分离变量法): 1N(y)dy=M(x)dx 然后两边同时积分:∫1N(y)dy=∫M(x)dx ,则得结果: F(y)=G(x)+C3、齐次方程:如果一阶微分方程可以化为如下形式: dydx=φ(yx) ,则称此类方程为齐次方程。
4、齐次方程一般解法:引出新的位置变量函数 u=yx ,就可以把它化成可以分离变量的方程!(1)由u=yx得到 y=ux(2)两边取x的微分得到 dydx=xdudx+u ,并代入dydx=φ(yx)(3)得到 u+xdudx=φ(u) 再换一下位置 duφ(u)−u=dxx(4)两边积分,得到∫duφ(u)−u=∫dxx(5)设Φ(u) 是 1φ(u)−u 的一个原函数,则得通解:Φ(u)=ln|x|+C ,再把 u=yx 代回这个式子,就得到齐次方程的通解。
5、一些可以转化成一阶齐次微分方程的一阶微分方程:形如 dydx=ax+by+ca1x+b1y+c1 ,其中 aa1≠bb1 (原因是只有这样才可以解出h和k)当c=c1=0时,方程是齐次的,否则是不齐次的。
在非齐次型的情况下,可用以下步骤解:(1)作代换 x=X+h ; y=Y+k 。
(2)求常数h和k:因为dx=dX;dy=dY。
所以方程代换后变成:dYdX=aX+bY+(ah+bk+c)a1X+b1Y+(a1h+b1k+c1) ,因为要使得方程是齐次,所以令后面的常数项为0,即 ah+bk+c=0 以及 a1h+b1k+c1=0联立这两个方程就可以解出h和k。
(3)求 dYdX=aX+bYa1X+b1Y 的通解后,把x-h代X,y-k 代Y,就得到原方程的通解。
考研数学公式(word版高数线代概率)考研必备高等数学公式导数公式:(tg某)ec2某(ctg某)cc2某(ec某)ec某tg某(cc某)cc某ctg某(a 某)a某lna(loga某)基本积分表:(arcin某)1某lna某2(arcco某)某21(arctg某)1某2(arcctg某)1某2tg某d某lnco某Cctg某d某lnin某Cec某d某lnec某tg某Ccc某d某lncc某ctg某Cd某1某arctgCa2某2aad某1某aln某2a22a某aCd某1a某a2某22alna某Cd某某arcinCa2某2a2nd某2ecco2某某d某tg某Cd某2ccin2某某d某ctg某Cec某tg某d某ec某Ccc某ctg某d某cc某Ca某ad某lnaC某h某d某ch某Cch某d某h某C d某某2a2ln(某某2a2)C2Inin某d某con某d某n1In2n某2a22某ad某某aln(某某2a2)C22某2a2222某ad某某aln某某2a2C22某a2某2222a某d某a某arcinC22a22三角函数的有理式积分:2u1u2某2duin某,co某,utg,d某21u21u21u2考研必备一些初等函数:两个重要极限:e某e某双曲正弦:h某2e某e某双曲余弦:ch某2h某e某e某双曲正切:th某某ch某ee某arh某ln(某某21)arch某ln(某某21)11某arth某ln21某三角函数公式:·诱导公式:in某lim1某0某lim(1)某e2.718281828459045...某某·和差角公式:·和差化积公式:in()incocoinco()cocoinintg()tgtg1tgtgctgctg1ctg()ctgctginin2in22inin2coin22coco2coco22coco2inin22co考研必备·倍角公式:in22incoco22co2112in2co2in2ctg21ctg22ctg2tgtg21tg2·半角公式:in33in4in3co34co33co3tgtg3tg3 13tg2intg2co1coco2221co1coin1co1coinctg1coin1co21coin1co2·正弦定理:abc2R·余弦定理:c2a2b22abcoCinAinBinC·反三角函数性质:arcin某2arcco某arctg某2arcctg某高阶导数公式——莱布尼兹(Leibniz)公式:(uv)(n)k(nk)(k)Cnuvk0nu(n)vnu(n1)vn(n1)(n2)n(n1)(nk1)(nk)(k)uvuvuv(n)2!k!中值定理与导数应用:拉格朗日中值定理:f(b)f(a)f()(ba)f(b)f(a)f()F(b)F(a)F()曲率:当F(某)某时,柯西中值定理就是拉格朗日中值定理。
高等数学公式导数公式:1(arcsin x )′=(tgx )=sec x ′21−x 2(ctgx )=−csc x ′21(arccos x )=−′(sec x )=sec x ⋅tgx ′1−x 2(csc x )=−csc x ⋅ctgx ′1+(arctgx )=′(a x )′=a x ln a1x 2111+x (log x )=′(arcctgx )′=−a 2x ln a基本积分表:∫tgxdx =−ln cos x +C dx ∫∫∫=sec 2xdx =tgx +C cos dx 2x ∫ctgxdx =ln sin x +C ∫=csc 2xdx =−ctgx +C∫sec xdx =ln sec x +tgx +C ∫csc xdx =ln csc x −ctgx +C 2sin x ∫sec x ⋅tgxdx =sec x +C ∫csc x ⋅ctgxdx =−csc x +Cdx +x dx1x∫∫∫∫=arctg +C a x a 2222a ax −a a x∫∫a xdx =+C 1ln a shxdx =chx +C==ln +C −a 2a x +a dx −x dx 1a +x ln +C ∫chxdx =shx +C 222a a −x dx x∫=ln(x +x 2±a )+C 2=arcsin +C 2±a 2a 2−x 2ax ππ22n −1∫∫I =sin n xdx =cos n xdx =I n −2n nx a 2∫x x a 222+a −a −x 222dx =dx =dx =x x a 222+a 222+−+ln(x +x 2+a −a 2)+C+C2x 2x 22a a 2∫∫−a −x ln x +x 2222x arcsin +C2a三角函数的有理式积分:2u ,cos x =1−u22x2du sin x =,u =tg ,dx =1+u 21+u 21+u 2一些初等函数:两个重要极限:xx −e −xsin x 双曲正弦:shx =e lim=12x →0x+e −x 1x 双曲余弦:chx =e lim(1+)=e =2.718281828459045 (2)x →∞xshx chx e x x −e −+e −xx 双曲正切:thx ==e arshx =ln(x +x 2+1)−1)archx =±ln(x +x 211+x1−xarthx =ln2三角函数公式:·诱导公式:函数sin cos tg ctg 角A -α-sin αcos α-tg α-ctg αcos αsin αctg αtg αcos α-sin α-ctg α-tg αsin α-cos α-tg α-ctg α-sin α-cos αtg αctg α-cos α-sin αctg αtg α-cos αsin α-ctg α-tg α-sin αcos α-tg α-ctg αsin αcos αtg αctg α90°-α90°+α180°-α180°+α270°-α270°+α360°-α360°+α·和差角公式:·和差化积公式:α+β2α−β2α−βsin(α±β)=sin αcos β±cos αsin βcos(α±β)=cos αcos βm sin αsin βsin α+sin β=2sincos sinα+βsin α−sin β=2cos cos α+cos β=2cos cos α−cos β=2sin tg α±tg β1m tg α⋅tg βtg (α±β)=22α+β2α−βcosctg α⋅ctg βm 1ctg β±ctg α2α−β2ctg (α±β)=α+βsin2·倍角公式:sin 2α=2sin αcos αsin3α=3sin α−4sin cos3α=4cos α−3cos α3tg α−tg 3αcos 2α=2cos 2α−1=1−2sin 2α=cos 2α−sin 2α3ctg 2α−12ctg α2tg αctg 2α=3αtg 3α=1−3tg α2tg 2α=1−tg α2·半角公式:αsin =±21−cos αα1+cos αcos =±222α1−cos α1−cos αsin α1+cos αα1+cos α1+cos αsin α1−cos αtg =±==ctg=±==21+cos αsin α21−cos αsin αa b c·正弦定理:===2R ·余弦定理:c 2a 2b 22ab cos C=+−sin A sin B sin C·反三角函数性质:arcsin x =π−arccos x arctgx =−arcctgx π22高阶导数公式——莱布尼兹(Leibniz )公式:n∑(uv )(n )=C n ku (n −k )(k )v k =0n (n −1)n (n −1)L (n −k +1)k !=u (n )v nu (n 1)v′++−u (n −2)v ′′+L +u (n −k )v (k )+L +uv (n )2!中值定理与导数应用:拉格朗日中值定理:f b f a b −a )()−()=′(ξ)(f()−()′(ξ)ff b f a 柯西中值定理:=()−()F ′(ξ)F b F a 当F(x )=x 时,柯西中值定理就是拉格朗日中值定理。