7下-数学人教版七年级下册数学课本知识点归纳
- 格式:pdf
- 大小:62.70 KB
- 文档页数:12
人教版七年级下册数学课本知识点归纳本文对人教版七年级下册数学课本中的知识点进行归纳总结,帮助学生们更好地掌握和应用这些知识。
一、有理数1. 有理数的概念:有理数是整数和分数的统称。
2. 分数的基本概念:分数由分子、分母两部分组成,表示形式为“分子/分母”。
3. 分数的相等性:分数相等的条件是两个分数的乘积等于零。
4. 分数的大小比较:可以通过比较分数的分子和分母的大小来判断分数的大小关系。
5. 有理数的加减运算:两个有理数的加减运算可以通过分数化简、通分和分子的加减来实现。
6. 有理数的乘除运算:两个有理数的乘除运算可以通过分数的乘除法来实现。
二、线段和角1. 线段的概念:线段是由两个端点确定的有限长的线段。
2. 线段的比较:可以通过比较线段的长度来判断线段的大小关系。
3. 角的概念:角由两条线段的公共端点及其两侧的点组成。
4. 角的类型:角可以分为锐角、直角、钝角和平角。
5. 角的度量:使用度量单位度来表示角的大小。
6. 角的相等关系:两个角相等的条件是它们的度数相等。
7. 角的比较:可以通过比较角的度数来判断角的大小关系。
三、面积和周长1. 长方形的面积和周长:长方形的面积等于长度与宽度的乘积,周长等于两倍的长度与宽度之和。
2. 正方形的面积和周长:正方形的面积等于边长的平方,周长等于四倍的边长。
3. 直角三角形的面积和周长:直角三角形的面积等于斜边和高的乘积的一半,周长等于三条边的长度之和。
4. 圆的面积和周长:圆的面积等于半径的平方乘以π,周长等于直径乘以π。
四、代数式和方程1. 代数式的概念:代数式由数字、字母和运算符号组成,可以进行运算。
2. 代数式的运算:代数式的运算可以使用加减乘除等运算符号进行。
3. 方程的概念:方程是一个等式,其中包含一个或多个未知数。
4. 解方程:解方程的过程是将未知数从等式中分离出来,使得等式成立。
五、统计与概率1. 数据的收集与整理:通过观察、实验和调查等方法收集数据,并进行整理和分类。
人教版七年级数学下册各章节知识点归纳第一章:直线与角1. 定义平行线和垂直线的概念,了解直线的性质。
2. 知道角的概念和角的分类,包括锐角、直角、钝角和平角。
3. 掌握角的度量单位:度和弧度。
4. 学习如何用直尺和量角器画角。
第二章:平行线与平面1. 学习如何用直尺和圆规做等分线段、垂线、平行线、垂直平分线和角的平分线。
2. 理解平行线与转角的关系,学会证明平行线与转角的基本性质。
3. 掌握平面的概念,理解平面的性质和表示方法。
4. 学习如何判断平面与平面的位置关系,包括平行、垂直和交叉。
第三章:三角形1. 知道三角形的定义和分类,包括等边三角形、等腰三角形、直角三角形和普通三角形。
2. 掌握三角形内角的和定理和外角的性质。
3. 学习三角形的判定方法,包括SSS、SAS、ASA和AAS。
4. 理解三角形中的全等概念,学会判断和证明两个三角形是否全等。
第四章:四边形1. 知道四边形的定义和分类,包括矩形、正方形、菱形、平行四边形和梯形。
2. 掌握矩形、正方形和菱形的性质,包括边长、对角线、内角和面积的计算方法。
3. 学习平行四边形的性质,包括对角线的关系、内角和、面积和周长的计算方法。
4. 理解梯形的定义和性质,学会计算梯形的面积和周长。
第五章:图形的变化1. 了解图形中的平移、旋转、翻折和对称等基本变化。
2. 学习如何用折纸法进行图形变化。
3. 理解相似图形的概念和性质,学会判断和证明两个图形是否相似。
4. 掌握相似图形的计算方法,包括比例尺和相似比的计算。
第六章:数的运算1. 复习整数的概念和运算法则,包括加法、减法、乘法和除法。
2. 学习分数的概念和运算规则,包括分数的四则运算和混合运算。
3. 掌握百分数的概念和表示方法,包括百分数与分数的转换。
4. 学习用图形表示分数和百分数的大小关系,包括数轴和百分数相应的阶梯图。
第七章:方程与不等式1. 知道方程和不等式的定义和表示方法。
2. 学习一元一次方程和一元一次不等式的解法,包括等式和不等式的性质及运算规则。
人教版数学七年级下册知识点总结一、集合集合是由一些确定的事物组成的整体。
1. 集合的表示方法- 枚举法:将集合的元素一一列举出来,并用大括号{}括起来。
- 描述法:根据集合元素的某种特性描述集合。
2. 集合间的基本关系- 相等关系:两个集合具有完全相同的元素。
- 包含关系:一个集合的所有元素都是另一个集合的元素。
- 交集:两个集合共有的元素组成的新集合。
- 并集:包含两个集合所有元素的新集合。
- 差集:一个集合中除去另一个集合中的元素后的新集合。
二、整数整数是由正整数、负整数和0组成的数集。
1. 整数的概念- 正整数:大于0的整数。
- 负整数:小于0的整数。
- 0:既不是正整数也不是负整数。
2. 整数的运算- 加法:整数之间可以相加,结果的符号取决于加数的符号。
- 减法:整数之间可以相减,结果的符号取决于被减数和减数的符号。
- 乘法:整数之间可以相乘,结果的符号规律为“同号得正,异号得负”。
- 除法:整数之间可以相除,结果的符号规律同乘法。
三、分数分数是表示有理数的一种形式,由一个分子和一个非零的分母组成。
1. 分数的概念- 真分数:分子小于分母的分数。
- 假分数:分子大于分母的分数。
- 带分数:由一个整数部分和一个真分数部分组成的分数。
2. 分数的运算- 分数的加法和减法:分数的加减法需先找到分子同分母,然后按照相同的分母进行运算。
- 分数的乘法和除法:分数的乘除法分别对应分子和分母进行运算。
- 分数的化简:将分子和分母的公因数全部约去,使其最简化。
四、平方根与立方根平方根和立方根是数的运算,使得运算之后的结果的平方或立方等于原来的数。
1. 平方根给定一个非负数a,满足a的平方为b,那么b就是a的平方根。
2. 立方根给定一个数a,满足a的立方为b,那么b就是a的立方根。
以上是人教版数学七年级下册的知识点总结,希望对你有帮助!。
七年级数学下册(人教版)全册笔记超详细第一章分数1.1 分数的引入- 分数的概念:分数是整数与整数之间的比值关系。
- 分子和分母:分数的分子表示分数的份数,分母表示每份的份数。
- 分数的意义:分数表示一个数比整数大,但比下一个整数小。
1.2 分数的性质- 分数的大小比较:分数的分母相同,分子大的分数大;分数的分子相同,分母小的分数大。
- 分数的约分:分子和分母同时除以一个相同的数,得到的分数与原分数相等。
1.3 分数的加减运算- 分数的加法:分母相同,分子相加;分母不同,通分后分子相加。
- 分数的减法:分母相同,分子相减;分母不同,通分后分子相减。
1.4 分数的乘除运算- 分数的乘法:分子相乘,分母相乘。
- 分数的除法:将除数倒置后变成乘法。
第二章小数2.1 小数的引入- 小数的概念:小数是整数与整数之间的比值关系,但分子是整数,分母是10的幂次。
2.2 小数与分数的关系- 小数转分数:小数的数字部分作为分子,根据小数位数确定分母的幂次。
- 分数转小数:分子除以分母得到小数。
2.3 小数的加减运算- 小数的加法:小数部分相加,整数部分相加。
- 小数的减法:小数部分相减,整数部分相减。
2.4 小数的乘除运算- 小数的乘法:小数部分相乘,整数部分相乘。
- 小数的除法:将被除数的小数点移动与除数对齐,然后按整数除法进行计算。
第三章平方根3.1 平方根的引入- 平方根的概念:平方根是一个数的平方等于另一个数的运算。
3.2 平方根的性质- 平方根的符号:非负数的平方根为正数。
- 平方根的大小比较:对于非负数,平方根越大,被开方数越大。
3.3 平方根的计算- 尝试法计算平方根:通过试探和逼近的方法计算一个数的平方根。
3.4 平方根的运算- 平方根的加减运算:分别计算两个数的平方根,然后进行加减运算。
- 平方根的乘除运算:分别计算两个数的平方根,然后进行乘除运算。
以上是《七年级数学下册(人教版)全册笔记》的内容概要。
新人教版七年级数学下册知识点归纳
本文档旨在为七年级学生提供数学下册知识点的简洁归纳,方便学生进行研究和复。
第一章有理数
有理数基础知识
- 有理数的概念及表示方法
- 有理数的大小关系及比较
- 有理数的加减运算法则
有理数的乘除法
- 正数、负数、0之间的乘除
- 有理数的乘方
- 有理数的开方
第二章代数式
代数式的基本概念
- 代数式的定义及基本元素- 代数式的分类及例子
- 代数式的值及求值
代数式的运算
- 代数式的加减运算
- 代数式的乘除运算
- 代数式的乘方运算
第三章方程与不等式方程的基本概念
- 方程的定义及基本元素- 方程与等式的关系
- 一元一次方程的解法
不等式的基本概念
- 不等式的定义及基本元素
- 不等式的性质及解法
- 一元一次不等式的解法
第四章图形的认识
图形的基本概念
- 点、线、面的区别及联系
- 基本图形的名称及性质
- 平面图形的分类及例子
视图与投影
- 视图的基本概念及种类
- 正视图和俯视图的概念和绘制方法- 投影的基本概念及种类
第五章几何变换
平移
- 平移的定义及性质- 平移的向量表示- 平移的作用及实例
旋转
- 旋转的定义及性质- 旋转的角度表示- 旋转的作用及实例
对称
- 对称的定义及性质- 对称的种类及例子- 对称的作用及实例
以上为新人教版七年级数学下册的知识点归纳。
希望本文档能够帮助同学们更好地掌握数学知识,取得更好的研究成绩。
七年级下学期数学全部知识点人教版本文档汇总了七年级下学期数学人教版教材中的全部知识点。
单元一:有理数- 1.1 有理数的概念和表示方法- 1.2 有理数的比较和大小- 1.3 有理数的运算(加减乘除)- 1.4 有理数的乘方- 1.5 有理数的混合运算- 1.6 有理数的应用问题单元二:代数初步- 2.1 代数学的基本概念- 2.2 代数式的解法与应用- 2.3 代数式的运算- 2.4 一元一次方程的解法- 2.5 一元一次方程的应用- 2.6 一元一次方程的列式和双方程的解法单元三:平面图形的认识- 3.1 点、线、线段、直线、射线、角的认识- 3.2 三角形的分类- 3.3 三角形的性质与判定- 3.4 四边形的分类- 3.5 四边形的性质与判定- 3.6 平行四边形与菱形的性质与判断单元四:数据的选择和处理- 4.1 统计调查和数据的收集- 4.2 数据的整理和分析- 4.3 统计图的应用- 4.4 数据的概率和预测单元五:立体图形的认识- 5.1 点、线、面、体的认识- 5.2 立体图形的展开图和正视图- 5.3 立体图形的正面图和俯视图- 5.4 立体图形的性质与判定- 5.5 球的认识和性质单元六:数学应用题- 6.1 平均数与加权平均数- 6.2 常量与变量- 6.3 直接与间接概关系- 6.4 几何图形与尺寸的关系- 6.5 面积与周长的关系- 6.6 数据处理与解题方法以上是七年级下学期数学人教版教材中的全部知识点。
请学生们根据教材进行研究和复,加强对数学知识的掌握和运用。
相交线与平行线一、相交线1、相交线中的角两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角。
我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做临补角。
临补角互补,对顶角相等。
直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。
其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF 的同侧,像这样位置的两个角叫做同旁内角。
2、垂线两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。
简称:垂线段最短。
二、平行线1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。
平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。
同一平面内,两条直线的位置关系只有两种:相交或平行。
注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
简称:同位角相等,两直线平行。
平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
人教版初一数学下册知识点人教版初一数学下册知识点概述一、实数1. 有理数和无理数的概念2. 实数的比较大小3. 绝对值的概念及性质4. 实数的四则运算规则5. 根号的计算方法6. 二次根式的概念及性质二、代数1. 字母表示数的意义2. 单项式与多项式的定义3. 多项式的加减运算4. 多项式的乘法运算5. 多项式的因式分解6. 代数式的简化三、方程与不等式1. 一元一次方程的解法2. 二元一次方程组的解法3. 不等式的概念及性质4. 一元一次不等式的解法5. 一元一次不等式的解集表示6. 含有绝对值的不等式解法四、几何1. 平行线的性质2. 平行线的判定3. 三角形的基本概念4. 三角形的分类5. 三角形的内角和外角性质6. 特殊三角形(等腰三角形、等边三角形)的性质7. 全等三角形的判定8. 角平分线、线段的垂直平分线的性质9. 多边形的基本概念10. 多边形的内角和外角性质五、统计与概率1. 统计的基本概念2. 数据的收集和整理3. 频数和频率的计算4. 概率的基本概念5. 简单事件的概率计算6. 等可能事件的概率计算六、函数1. 函数的概念2. 函数的表示方法3. 线性函数的图像和性质4. 函数的基本运算七、应用题1. 实际问题的数学建模2. 利用方程(组)解决实际问题3. 利用不等式解决最优化问题4. 利用几何知识解决实际问题请注意,以上内容是根据人教版初一数学下册的常见教学大纲和章节安排进行的概括。
具体的教学内容可能会根据不同学校、教师的教学计划和学生的学习进度有所调整。
教师和学生应根据实际情况,对知识点进行适当的扩展和深化。
第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要注意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
()相等的两个角互为对顶角。
()2、垂直是两直线相交的特殊情况。
注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条互相垂直的直线的交点叫垂足。
垂直时,一定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
注:距离指的是垂线段的长度,而不是这条垂线段的本身。
所以,如果在判断时,若没有“长度”两字,则是错误的。
4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。
注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。
一、相交线与平行线1. 相交线•邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角互补。
•对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。
对顶角相等。
•垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
垂线的性质包括:过一点有且只有一条直线与已知直线垂直;连接直线外一点与直线上各点的所有线段中,垂线段最短。
2. 平行线•定义:在同一平面内,永不相交的两条直线叫做平行线。
•平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论是,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
•平行线的性质:o两直线平行,同位角相等。
o两直线平行,内错角相等。
o两直线平行,同旁内角互补。
•平行线的判定:o同位角相等,两直线平行。
o内错角相等,两直线平行。
o同旁内角互补,两直线平行。
3. 平移•定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
平移不改变物体的形状和大小。
•对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
连接各组对应点的线段平行且相等。
二、平面直角坐标系•有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。
•平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
•坐标:对于平面内任一点P,过P分别向x轴、y轴作垂线,垂足分别在x 轴、y轴上,对应的数a、b分别叫点P的横坐标和纵坐标。
三、三角形•三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
•高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
•中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
人教版数学七年级下册知识点人教版数学七年级下册知识点概述一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数- 无理数:不能表示为分数形式的实数,如√2、π2. 实数的运算- 加法、减法、乘法、除法- 乘方、开方- 绝对值的计算3. 科学记数法- 表示非常大或非常小的数4. 实数的性质- 相反数、绝对值- 有理数和无理数的性质二、代数表达式1. 单项式- 单项式的概念- 同类项2. 多项式- 多项式的概念- 多项式的加减法- 多项式乘以单项式 - 多项式乘以多项式3. 代数式的简化- 合并同类项- 分配律- 因子提取三、方程与不等式1. 一元一次方程- 方程的概念- 解一元一次方程 - 方程的应用2. 一元一次不等式- 不等式的概念- 解一元一次不等式 - 不等式的应用3. 二元一次方程组- 代入法解方程组 - 消元法解方程组 - 方程组的应用四、几何1. 平面图形- 平行线与垂线- 三角形的性质- 四边形的性质2. 圆的基本性质- 圆的定义- 弦、弧、切线- 圆周角、圆心角3. 面积和体积的计算- 三角形、四边形的面积- 圆的面积- 长方体、立方体的体积五、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制和解读2. 概率- 随机事件- 概率的初步认识- 简单事件的概率计算六、综合应用题- 结合所学知识点解决实际问题- 培养逻辑思维和解题能力请注意,以上内容是根据人教版数学七年级下册的教材大纲整理的知识点概述,具体的教学内容和顺序可能会根据不同学校和教师的教学计划有所调整。
人教版七年级下数学知识点总结一、丰富的图形世界1. 生活中存在着大量的几何图形,它们不仅是描绘实物的基本手段,也是创造美的重要元素。
2. 图形与图形的重叠与拼接是常见的,通过重叠与拼接可以把我们日常生活中的一些几何图形变化多样,使图形更富有美感和动感。
3. 图中每个三角形都有边和角相等或互补,这是三角形的重要性质,也是解决实际问题和图形推理题目的重要依据。
4. 用圆规和铅笔绘已学过的平面图形或复杂图形通常是没有问题的,但要防止遗失一些重要的细节。
二、相交线与平行线1. 相交线与平行线这部分内容在学的时候应当先记住所有的性质定理和判定定理的文字表述,然后在做题时能熟练运用。
2. 两直线相交的四个角中,有一个角是直角时,那么其它三个角也一定是直角,即“同位角相等,两直线平行”。
这是平行线的判定定理之一。
3. 同位角、内错角、同旁内角都是平行线的判定与性质的重要依据,因此要熟练地掌握这些性质定理和判定定理,并能够灵活运用。
三、平面直角坐标系1. 建立平面直角坐标系首先要确定坐标原点、坐标轴,还要会用有序实数对表示点的位置。
2. 平面直角坐标系中的点的坐标具有双向性,即横坐标与纵坐标的符号均可以作为原点的参照。
3. 在同一平面直角坐标系中,当直线$y = kx + b$经过原点时,则直线与$x$轴交点为$(0,b)$。
四、三角形1. 在三角形中,两边之和大于第三边,两边之差小于第三边。
三角形具有稳定性。
这是三角形三边关系的重要知识点。
2. 在三角形中,三角形的内角和是$180{^\circ}$。
这是三角形内角和定理。
五、二元一次方程组1. 二元一次方程组是初中数学代数部分的基础知识,也是学生学习代数知识入门的内容。
这部分知识涉及的面比较广,有数的运算、解方程(组)、应用题等。
2. 解二元一次方程组的基本思想是消元,也就是化“二元”为“一元”。
常用的解法有代入消元法与加减消元法。
在用这些方法时还要充分运用等式性质和不等式性质进行约去分式或将某些方程式变形以达到解方程的目的。
人教版七年级数学下册各章节知识点梳理人教版数学七年级下知识点梳理第五章相交线与平行线知识点5.1 相交线相交线是指两条直线相交所形成的4个角。
其中,相邻的两个角叫做邻补角,它们共用一条边,另一条边互为反向延长线,邻补角互补;相对的两个角叫做对顶角,它们的两条边互为反向延长线,对顶角相等。
垂线是指两条直线相交成直角的情况。
其中,垂直是指两条直线相交成直角,垂线是垂直的特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
两条垂线的交点叫垂足。
过一点有且只有一条直线与已知直线垂直。
点到直线的距离是指直线外一点到这条直线的垂线段的长度,连接直线外一点与直线上各点的所有线段中,垂线段最短。
两条直线被第三条直线所截形成8个角。
其中,同位角是指在两条直线的同一旁,第三条直线的同一侧;内错角是指在两条直线内部,位于第三条直线两侧;同旁内角是指在两条直线内部,位于第三条直线同侧。
5.2 平行线及其判定平行线是指两条直线不相交。
互相平行的两条直线,互为平行线。
经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线平行于同一直线,那么它们互相平行。
如果两条平行线被第三条直线所截,同位角相等,则这两条直线平行;如果内错角相等,则这两条直线平行。
3.如果一条直线与两条平行直线相交,且同旁内角互补,则这条直线与平行直线平行。
(同旁内角互补,两直线平行)推论:在同一平面内,如果两条直线垂直于同一条直线,则这两条直线平行。
5.3 平行线的性质一) 平行线的性质1.如果两条平行线被一条直线所截,那么同位角相等。
(两直线平行,同位角相等)2.如果两条平行线被一条直线所截,那么内错角相等。
(两直线平行,内错角相等)3.如果两条平行线被一条直线所截,且同旁内角互补,则这两条直线平行。
(两直线平行,同旁内角相等)二) 命题、定理、证明1.命题是判断一件事情的语句。
2.每个命题由题设和结论两部分组成,通常写成“如果。
那么。
”的形式。
七年级下册数学知识点总结人教版第一章直角三角形与勾股定理直角三角形是指三角形中包含一个直角的三角形。
直角三角形中有一个很重要的性质,即勾股定理,勾股定理是指直角三角形中,直角边上的两个边的平方和等于斜边的平方。
利用勾股定理可以求解直角三角形中的一些问题,如已知两条边的长度,求第三条边的长度;已知一个角和一条边的长度,求其他两条边的长度等。
第二章平行线及其性质平行线是指在同一个平面上,没有交点的两条直线。
平行线中有一些重要的性质,如平行线的性质;平行线与转角的关系;平行线的倾斜角等。
在平行线及其性质中,我们需要掌握平行线的判定方法,如使用转角判定、对应角相等判定、内错角相等判定等方法来判断两条直线是否平行。
同时,我们也需要掌握平行线和转角之间的关系,如同位角、内错角、外错角等的性质。
第三章三角形的面积三角形是最基本的几何图形之一,计算三角形的面积是一个重要的数学问题。
根据三角形的面积公式,三角形的面积等于底边长度和高的乘积的一半。
在计算三角形的面积时,需要注意底边的选取和高的确定,有时也需要通过分割三角形,利用相似三角形的性质求解。
第四章直角三角形的应用直角三角形是实际问题中经常遇到的三角形,在实际中有很多应用,如测量高度、距离、角度等。
在直角三角形的应用中,我们需要掌握利用正弦定理、余弦定理、正切定理等方法求解实际问题。
直角三角形的应用还涉及到一些实际问题的建模和求解,需要运用数学方法建立模型,并进行求解和分析。
第五章空间图形的认识空间图形包括三维图形和平面图形,包括球体、长方体、正方体、棱柱、棱锥等。
在空间图形的认识中,我们需要掌握这些空间图形的性质,如球体的体积和表面积的计算方法,长方体和正方体的体积和表面积的计算方法等。
在空间图形的认识中,还需要掌握空间图形的展开图和投影图的绘制,以及使用展开图和投影图求解实际问题的方法。
第六章圆的认识圆是平面上的一个特殊的几何图形,在圆的认识中,我们需要掌握圆的性质,如半径、直径、圆周、圆心等概念,以及圆的面积和周长的计算方法。
(完整版)人教版七年级下册数学知识点总结大全直角三角形- 定义:有一个角为直角(90度)的三角形。
- 勾股定理:直角三角形斜边的平方等于两腿的平方和。
- 特殊直角三角形:45-45-90度三角形和30-60-90度三角形。
圆- 定义:平面上到一个固定点的距离等于定长的点的集合。
- 元素:圆心、半径、直径、弦、弧、扇形、切线等。
- 四大关系:- 半径和弦垂直- 弦长的一半与半径的乘积等于斜边的一半与半径的乘积- 外接角等于弧对应的圆心角- 弧度与角度之间的换算关系比例与相似- 定义:表示两个或多个有对应关系的数之间的比值关系。
- 比例定理:若a/b = c/d,则a、b、c、d成比例。
- 三线一比例:三角形内部的三条连线和三角形外部的三条平行线与三角形的腰成比例。
- 相似三角形:对应角相等,对应边成比例的三角形。
科学计数法- 定义:一种简便表示极大或极小数的方法。
- 标准形式:数字部分在1到9之间,指数为整数。
- 运算法则:运算时先计算系数的乘除,再计算指数的加减。
二次根式- 定义:含有根号并且被根号包围的代数式。
- 平方根:一个数的平方等于该数。
- 二次根式的运算:相加减后化简、乘除法则。
分式- 定义:由整数与整数或整数代数式的比例组成的式子。
- 分式的性质:分母不能等于0,分子分母互质,分子分母都是整数等。
- 分式的运算:加减乘除、化简、倒数。
线性方程- 定义:等式中含有未知数的方程。
- 解方程:找到使等式成立的未知数的值。
- 一次方程:未知数的次数为1。
- 解一元一次方程:转化为等价方程,通过逆向运算得到未知数的值。
平行线与直线的交角- 定义:两条平行线与直线的交角为对应角或同位角。
- 绳分线定理:直线与两平行线相交时,对应角相等,内错角之和等于180度。
随机事件与概率- 定义:随机试验的可能结果称为随机事件。
- 基本事件与必然事件:基本事件是随机试验的单个结果,必然事件是一定发生的事件。
- 概率的计算:概率等于有利事件数除以可能事件总数。
七年级数学书下册2024人教版一、相交线与平行线。
1. 相交线。
- 邻补角:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。
例如,∠AOC和∠BOC是邻补角,它们的和为180°。
- 对顶角:一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角互为对顶角。
对顶角相等,如∠AOC和∠BOD是对顶角,∠AOC = ∠BOD。
- 垂直:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
垂直的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直;连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
2. 平行线及其判定。
- 平行线:在同一平面内,不相交的两条直线叫做平行线。
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
- 判定方法:- 同位角相等,两直线平行。
例如,若∠1 = ∠2(同位角),则a∥b。
- 内错角相等,两直线平行。
如∠2 = ∠3(内错角),则a∥b。
- 同旁内角互补,两直线平行。
若∠2+∠4 = 180°(同旁内角),则a∥b。
3. 平行线的性质。
- 两直线平行,同位角相等。
- 两直线平行,内错角相等。
- 两直线平行,同旁内角互补。
4. 平移。
- 把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
图形的这种移动叫做平移变换,简称平移。
平移的性质:- 平移前后图形的形状和大小不变。
- 对应点连线平行(或在同一条直线上)且相等。
二、实数。
1. 平方根。
- 如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根。
正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。
例如,9的平方根是±3,因为(±3)² = 9。