lammps实例(4)
- 格式:pdf
- 大小:1.12 MB
- 文档页数:6
lammps的in文件案例(原创版)目录MMPS 简介MMPS 的 IN 文件MMPS IN 文件案例分析MMPS IN 文件的编写规则5.总结正文一、LAMMPS 简介LAMMPS(Large-scale Atomic/Molecular Massively Parallel Simulator)是一款在大规模并行计算机上模拟原子/分子系统的开源软件。
它被广泛应用于材料科学、生物物理、化学等领域,为用户提供了一个高效、灵活的研究平台。
二、LAMMPS 的 IN 文件在 LAMMPS 中,IN 文件是用于描述模拟系统的输入文件。
它包含了模拟过程中所需的所有信息,如原子/分子的类型、数目、位置和相互作用力等。
通过编写 IN 文件,用户可以自定义模拟的参数,从而实现对系统的精确控制。
三、LAMMPS IN 文件案例分析下面是一个简单的 LAMMPS IN 文件案例:```# LAMMPS input file# Simulation parameterstimestep = 1000000 # Time step (in picoseconds)temperature = 300.0 # Temperature in Kelvin# Atomic dataspecies atomic_number = 1species name = Lispecies mass = 6.941species atomic_number = 2species name = Clspecies mass = 35.453# Molecular datamolecule name = LiClmolecule num_atoms = 2# Position dataxyz10.0 0.0 0.011.0 0.0 0.0```该案例描述了一个简单的锂氯化合物(LiCl)模拟系统。
首先,我们定义了模拟的时间步长(timestep)和温度(temperature)。
Project #2金属中的点缺陷:空位和间隙原子一、空位从晶体中移去一个原子,即可形成空位。
本例将运用 LAMMPS 计算空位形成能, E v. LAMMPS 输入文件为in.vacancy1) 在 fcc 结构的完整Cu晶体中引入一个空位沿<100>方向构造一个 4 ×N×N×N 的晶体。
N为input 文件中lattice命令指定的个方向上的晶胞重复单元数。
2) 弛豫当一个原子从晶体中移走之后,周围的原子将相应地调整位置以降低体系势能。
为得到稳定的构型,需要对体系进行弛豫,relaxation. LAMMPS提供两种能量最小化方式,cg 和 sd。
本例中选用 sd 方式进行能量最小化。
如下是输入文件,in.vacancy:3) 运行lammps4) 计算空位形成能空位浓度由下式给出:[n ] = exp( − F v / k B T ).其中 F v = E v − TS v 为形成一个空位所需要的Helmholtz 自由能.忽略熵S v , 空位浓度公式简化为[n ] = exp( −E v / k B T ).设 E 1 为完整晶体能量,含N 个原子;E 2 为弛豫后的晶体能量,含N – 1个原子。
空位形成能 E v 为:211v N E E E N -≡-或 ()21v coh E E N E ≡--,其中 E coh = E 1 / N , 为完整晶体的内聚能。
本例中以EAM 模型计算4×(20×20×20)=32000个原子的体系,得到空位形成能E v ~1.26 eV ,文献中的实验值为~1.28 eV ,符合较好。
另由上式计算得到,300K 温度下的空位浓度为~ 7.59×10-22 ,1350 K (T m ) 时的空位浓度~ 2.2×10-5(文献中的实验值为~2×10-4 )。
一、概述在材料科学与工程领域,对材料的机械性能进行模拟与分析是十分重要的。
LAMMPS作为一款开源的分子动力学模拟软件,可以用来模拟原子尺度的材料性能,包括应变、应力、位移等参数的计算。
本文将以模拟Cu三点弯曲为例,介绍LAMMPS软件的使用与编写相应的案例代码。
二、案例代码编写1. 创建Cu原子模型首先需要在LAMMPS中创建Cu原子模型,可以使用内建的原子模型创建指令,例如:```units metaldimension 3boundary p p patom_style atomiclattice fcc 3.615region box block 0 20 0 20 0 20create_box 1 boxcreate_atoms 1 box```2. 定义模拟参数接下来需要定义模拟所需的参数,包括弯曲速度、模拟时间等,示例代码如下:```p本人r_style eam/fsp本人r_coeff * * Cu_u3.eamvariable str本人n equal 0.05variable steps equal xxxvariable d equal 0.05/v_stepsfix 1 all nvefix 2 all setforce 0.0 0.0 0.0fix 3 all move box delta v_d 0 0 sum v_str本人n 0 0```其中,p本人r_style为相互作用模型,p本人r_coeff为相互作用参数,variable为定义参数,fix为模拟中的固定条件。
3. 运行模拟需要运行模拟并输出结果,可以使用以下指令:```timestep 0.001thermo xxxthermo_style custom step temp etotal pressdump 1 all custom 1000 mmpstrj id type x y z vx vy vz fx fy fzrun xxx```三、结果分析通过对模拟结果的分析,可以得到Cu材料在三点弯曲载荷下的应变、应力分布情况,以及原子间的位移和相互作用力等信息,这对于理解材料在应力作用下的行为具有重要意义。
lammps计算比热容的例子LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) 是一款开源的分子动力学软件,可用于模拟原子、分子和大分子等复杂系统的动力学行为。
在各种物理化学应用中,计算比热容是一个重要的问题。
本文将介绍如何使用 LAMMPS 计算比热容,并给出一个具体的例子。
比热容是一个物质对温度变化的灵敏度,表示在单位质量下,物质温度每升高 1 度所吸收的热量。
比热容是与物质本身的特性密切相关的,因此不同物质的比热容也不同。
计算比热容不仅可以帮助我们理解物质的基本性质,还可以用于各种工业应用中。
在 LAMMPS 中,我们可以通过统计机械理论计算比热容。
通过模拟系统在不同温度下的能量变化,我们可以得到热容随温度的变化曲线。
这里我们以纯铜晶体为例,介绍比热容的计算过程。
首先,我们需要准备铜原子的分子动力学模型。
在这个模型中,我们使用了长程库伦相互作用、Lennard-Jones 相互作用和弹簧力相互作用三种力的组合。
具体地,我们可以通过以下命令来生成模型:# 初始化units metaldimension 3atom_style atomicboundary p p p# 定义铜原子lattice fcc 3.61region box block 0 10 0 10 0 10create_box 1 boxcreate_atoms 1 boxmass 1 63.55# 力场参数pair_style hybrid/overlay coul/long 7.0 10 tersoffpair_coeff * * tersoff SiC_1989.tersoff Cupair_coeff * * coul/long这里,我们使用了 fcc 晶格结构,并将铜原子放置在一个 10x10x10 的立方体中。
我们还指定了长程库伦相互作用和 Lennard-Jones 相互作用,并添加了一个弹簧力相互作用,即 Tersoff 势能。
# Big colloid particles and small LJ particlesunits ljThis command sets the style of units used for a simulation. It determines the units of all quantities specified in the input script and data file, as well as quantities output to the screen, log file, and dump files. Typically, this command is used at the very beginning of an input script.这个指令设定模拟的格式,它决定了在输入脚本文件和数据文件以及在屏幕上显示的输出物,日志文件和垃圾文件中所有的单元格式。
典型的是,它经常用于输入脚本的开头For style lj, all quantities are unitless. Without loss of generality, LAMMPS sets the fundamental quantities mass, sigma, epsilon, and the Boltzmann constant = 1. The masses, distances, energies you specify are multiples of these fundamental values. The formulas relating the reduced or unitless quantity (with an asterisk) to the same quantity with units is also given. Thus you can use the mass & sigma & epsilon values for a specific material and convert the results from a unitless LJ simulation into physical quantities.对于lj格式,所有数量都是无量纲的。
一、简介1.SiC热分解制备石墨烯自2004年Novoselov、Geim和合作者们从石墨上剥离出世界上第一种二维材料——单层石墨:石墨烯(Graphene)以来,石墨烯就受到了科技界的广泛重视[1]。
Novoselov 和Geim两人因此在2010年获得了诺贝尔物理学奖。
因为石墨烯的独特特性,在许多技术领域例如光电子学上它都被寄予厚望。
研究石墨烯这种材料相关的物理化学特性和发展大面积、高质量生长石墨烯的技术,同时将其与器件物理学联系起来是我们研究和应用石墨烯的必由途径。
石墨烯是由碳元素组成的二维六边形材料,其在光学、电学、热学、力学等性质十分优异。
它有可能在后摩尔定律时代成为硅(Silicon)的继任者,在单分子气体传感器[2]、自旋电子学[3]、量子计算[4]、太赫兹振荡器[5]等等领域发挥重要作用。
如今,从石墨上剥离出石墨烯仍然是一种重要的石墨烯制备方方法。
然而,这种方法产生的石墨烯大小通常不超过1000 μm2,只适合实验室研究,尚不能在工业上大规模应用。
科学家发展了其他的石墨烯制备方法,包括将石墨烯视作一种薄膜来生长的化学气相沉积(Chemical Vapor Deposition, CVD)法、热分解碳化硅法(SiC thermal decomposition)、氧化石墨烯还原法(Graphene oxide reduction)等。
CVD法通过使含碳气源在有催化作用的金属表面分解或者使溶入到这些有催化作用的金属中的碳(C)发生表面偏析,使得在金属表面生成石墨烯或者多层石墨烯(Few-Layer Graphene, FLG)。
能否直接在半导体/绝缘体上生长石墨烯呢?碳化硅热分解成功的解决了这一问题。
最早试图使六方晶系的SiC晶体石墨化的研究报告见于1961年,Badami在高温和真空环境下得到了发生了一定石墨化的SiC[6]。
在一定的退火条件下,SiC晶体表面发生热分解,Si原子发生解吸附,而C原子留下来重新排列和组合可以生长成外延型的石墨烯层[7]。
Project #2
金属中的点缺陷:空位和间隙原子
一、空位
从晶体中移去一个原子,即可形成空位。
本例将运用 LAMMPS 计算空位形成能, E v. LAMMPS 输入文件为in.vacancy
1) 在 fcc 结构的完整Cu晶体中引入一个空位
沿<100>方向构造一个 4 ×N×N×N 的晶体。
N为input 文件中lattice命令指定的个方向上的晶胞重复单元数。
2) 弛豫
当一个原子从晶体中移走之后,周围的原子将相应地调整位置以降低体系势能。
为得到稳定的构型,需要对体系进行弛豫,relaxation. LAMMPS提供两种能量最小化方式,cg 和 sd。
本例中选用 sd 方式进行能量最小化。
如下是输入文件,in.vacancy:
3) 运行lammps
4) 计算空位形成能
空位浓度由下式给出:
[n ] = exp( − F v / k B T ).
其中 F v = E v − TS v 为形成一个空位所需要的Helmholtz 自由能.
忽略熵S v , 空位浓度公式简化为
[n ] = exp( −E v / k B T ).
设 E 1 为完整晶体能量,含N 个原子;E 2 为弛豫后的晶体能量,含N – 1个原子。
空位形成能 E v 为:
211v N E E E N -≡-
或 ()21v coh E E N E ≡--,
其中 E coh = E 1 / N , 为完整晶体的内聚能。
本例中以EAM 模型计算4×(20×20×20)=32000个原子的体系,得到空位形成能E v ~
1.26 eV ,文献中的实验值为~1.28 eV ,符合较好。
另由上式计算得到,300K 温度下的空位浓度为~ 7.59×10-22 ,1350 K (T m ) 时的空位浓度~ 2.2×10-5(文献中的实验值为~2×10-4 )。
换算时注意(1 eV/k B = 1.1604×10−4 K)
图1. 空位处于4×(6×6×6) 的 FCC 晶体中心,106c a =,206c a =,306c a =. 颜色依据原子势能标注。
二、间隙原子
向完整晶体中插入一个原子,即形成间隙原子。
如果新插入的原子和晶体原子相同,则为自间隙原子,self-interstitial 。
与空位计算类似,我们用如下式子计算金属Cu 中的自间隙原子形成能E i
211i N E E E N
+≡- E i 可能取决于间隙原子引入的初始位置。
但对应最小的E i 值的,应该是唯一的位置。
在 Cu, Ni 和 Pt 等 FCC 金属中,最稳定的自间隙原子构型均为[100]方向的哑铃型。
如下图:
图2. FCC 金属中的哑铃状自间隙原子构型。
右图为 LAMMPS 得到的 Cu 的构型。
晶体中引入间隙原子后,周围原子将做相应的位置调整以期达到最低能量状态。
为了得到弛豫后的构型,我们采用LAMMPS 里的cg 和 sd 的能量最小化方法。
本例中采用的是 sd 方法。
相对于空位,间隙原子的引入需要更大程度的弛豫。
结合能量最小化方法,我们采用 NVT 或 NVE 系统的热力学平衡方法。
给体系升温,让原子充分动起来,找到最稳定的位置,得到最稳定的构型。
然后淬火 quench 到0K 。
最后再运用能量最小化。
The input file in.interstitial looks like
计算32000个原子的体系,得到Cu的自间隙原子形成能为E i ~ 3.1 eV.
类似上述计算,Cu在T=300 K和1350 K (T m) 时的间隙原子浓度分别为 ~ 8.4×10-53 和~ 2.7×10-12.
讨论
如果体系未得到充分弛豫,可以得到各种不同的间隙原子构型,如图3和图4.
1.观察E i与模拟体系大小的关系。
改变盒子大小。
2.改变间隙原子的引入位置,计算可能的间隙原子构型,并指出最稳定的间隙原子构
型和形成能。
(a)
(b) (c)
图3. (a) FCC晶体中的八面体(红色)和四面体(蓝色)间隙位置;(b) LAMMPS计算所得最稳定的间隙原子位置,恰为八面体中心;(c) LAMMPS 计算所得的另一构型,为四面体中心,体系能量比较高。
图4. LAMMPS计算得到的五种可能的间隙原子构型。