当前位置:文档之家› 中考数学数学勾股定理的专项培优练习题(含答案

中考数学数学勾股定理的专项培优练习题(含答案

中考数学数学勾股定理的专项培优练习题(含答案
中考数学数学勾股定理的专项培优练习题(含答案

一、选择题

1.已知长方体的长2cm 、宽为1cm 、高为4cm ,一只蚂蚁如果沿长方体的表面从A 点爬到B′点,那么沿哪条路最近,最短的路程是( )

A .29cm

B .5cm

C .37cm

D .4.5cm

2.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,

C 为圆心,大于

1

2

AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )

A .42

B .6

C .210

D .8

3.如图,在等腰三角形ABC 中,AC=BC=5,AB=8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,则DE+DF= ( )

A .5

B .8

C .13

D .4.8

4.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是

( ) A .等腰三角形

B .直角三角形

C .钝角三角形

D .等腰直角三角形

5.在直角三角形中,自两锐角所引的两条中线长分别为5和10,则斜边长为( ) A .10

B .10

C 13

D .136.如图,在ABC 中,90A ∠=?,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于

点O,过点O作⊥

OD AB于点D,若则AD的长为( )

A.2B.2 C.3D.4

7.在△ABC中,∠BCA=90°,AC=6,BC=8,D是AB的中点,将△ACD沿直线CD折叠得到△ECD,连接BE,则线段BE的长等于()

A.5 B.7

5

C.

14

5

D.

36

5

8.已知一个直角三角形的两边长分别为1和2,则第三边长是()

A.3 B.3C.5D.3或5

9.在△ABC中,AB=10,BC=12,BC边上的中线AD=8,则△ABC边AB上的高为()A.8 B.9.6 C.10 D.12

10.有一个直角三角形的两边长分别为3和4,则第三边的长为()

A.5 B.7C.5D.5或7

二、填空题

11.如图,在△中,,∠90°,是边的中点,是边上一动点,则的最小值是__________.

12.如图所示的网格是正方形网格,则ABC ACB

∠+∠=__________°(点A,B,C是网格线交点).

13.如图,在Rt ABC 中,90ACB ∠=?,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.

14.如图,现有一长方体的实心木块,有一蚂蚁从A 处出发沿长方体表面爬行到C '处,若长方体的长4cm AB =,宽2cm BC =,高1cm BB '=,则蚂蚁爬行的最短路径长是___________.

15.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________ 16.在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,且a +b =35,c =5,则ab 的值为______.

17.Rt △ABC 中,∠BAC =90°,AB =AC =2,以 AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段 BD 的长为_____.

18.如图,Rt △ABC 中,∠BCA =90°,AB =5,AC =2,D 为斜边AB 上一动点(不与点

A ,

B 重合),DE ⊥A

C ,DF ⊥BC ,垂足分别为E 、F ,连接EF ,则EF 的最小值是_____.

19.如图,把平面内一条数轴x 绕点O 逆时针旋转角θ(0°<θ<90°)得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:已知点P 是平面斜坐标系中任意一点,过点P 作y 轴的平行线交x 轴于点A ,过点P 作x 轴的平行线交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(a ,b )为点P 的斜坐标.在平面斜坐标系中,若θ=45°,点P 的斜坐标为(1,2),点G 的斜坐标为(7,﹣2),连接PG ,则线段PG 的长度是_____.

20.如图,在Rt ABC ?中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ?使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.

三、解答题

21.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD 中,∠ABC =70°,∠BAC =40°,∠ACD =∠ADC =80°,求证:四边形ABCD 是邻和四边形.

(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A 、B 、C 三点的位置如图,请在网格图中标出所有的格点.......D .,使得以A 、B 、C 、D 为顶点的四边形为邻和四边形.

(3)如图3,△ABC 中,∠ABC =90°,AB =2,BC =23,若存在一点D ,使四边形ABCD 是邻和四边形,求邻和四边形ABCD 的面积.

22.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0). (1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值; (2)若点P 恰好在∠BAC 的角平分线上,求t 的值;

(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.

23.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、

BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.

(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=?,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转

90?);

(3)在(2)的问题中,15ACM ∠=?,1AM =,求BM 的长.

24.已知ABC ?中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ?的关于点B 的二分割线.例如:如图1,Rt ABC ?中,90A ?∠=,20C ?∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ?∠=,显然直线BD 是ABC ?的关于点B 的二分割线.

(1)在图2的ABC ?中,20C ?∠=,110ABC ?∠=.请在图2中画出ABC ?关于点B 的二分割线,且DBC ∠角度是 ;

(2)已知20C ?∠=,在图3中画出不同于图1,图2的ABC ?,所画ABC ?同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;

(3)已知C α∠=,ABC ?同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).

25.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题? (2)已知ABC 为优三角形,AB c =,AC b =,BC a =,

①如图1,若90ACB ∠=?,b a ≥,6b =,求a 的值. ②如图2,若c b a ≥≥,求优比k 的取值范围.

(3)已知ABC 是优三角形,且120ABC ∠=?,4BC =,求ABC 的面积. 26.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:

(1)叙述勾股定理(用文字及符号语言叙述); (2)证明勾股定理;

(3)若大正方形的面积是13,小正方形的面积是1,求()2

a b +的值.

27.已知ABC ?中,90ACB ∠=?,AC BC =,过顶点A 作射线AP .

(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知

21AD n =-,21AB n =+,2BD n =(1n >).

①试证明ABD ?是直角三角形;

②求线段CD 的长.(用含n 的代数式表示)

(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.

28.如图,在平面直角坐标系中,点O 是坐标原点,ABC ?,ADE ?,AFO ?均为等边三角形,A 在y 轴正半轴上,点0()6,B -,点(6,0)C ,点D 在ABC ?内部,点E 在

ABC ?的外部,32=AD ,30DOE ∠=?,OF 与AB 交于点G ,连接DF ,DG ,DO ,OE .

(1)求点A 的坐标;

(2)判断DF 与OE 的数量关系,并说明理由; (3)直接写出ADG ?的周长. 29.(知识背景)

据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数. (应用举例)

观察3,4,5;5,12,13;7,24,25;…

可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且

勾为3时,股14(91)2=

-,弦1

5(91)2=+; 勾为5时,股112(251)2=

-,弦1

13(251)2

=+; 请仿照上面两组样例,用发现的规律填空: (1)如果勾为7,则股24= 弦25=

(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= . (解决问题)

观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空: (3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则

b = ,

c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式.

(4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37. 30.阅读下列材料,并解答其后的问题:

我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦?秦九韶公式”,该公式是:设△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,△ABC 的面积为S =

()()()()

a b c a b c a c b b c a +++-+-+-.

(1)(举例应用)已知△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a =4,b =5,c =7,则△ABC 的面积为 ;

(2)(实际应用)有一块四边形的草地如图所示,现测得AB =(26+42)m ,BC =5m ,CD =7m ,AD =46m ,∠A =60°,求该块草地的面积.

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.B 解析:B 【分析】

要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之

间线段最短解答.

【详解】

解:根据题意,如图所示,最短路径有以下三种情况:

(1)沿AA',A C'',C B'',B B'剪开,得图1:

22222

'=+'=++=;

(21)425

AB AB BB

(2)沿AC,CC',C B'',B D'',D A'',A A'剪开,得图2:

22222

AB AC B C

'=+'=++=+=;

2(41)42529

DD,B D'',C B'',C A'',AA'剪开,得图3:

(3)沿AD,'

22222

AB AD B D

'=+'=++=+=;

1(42)13637

AB'=.

综上所述,最短路径应为(1)所示,所以225

AB'=,即5cm

故选:B.

【点睛】

此题考查最短路径问题,将长方体从不同角度展开,是解决此类问题的关键,注意不要漏解.

2.A

解析:A

【分析】

连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD-AF=1.然后在直角△FDC中利用勾股定理求出CD的长.

【详解】

解:如图,连接FC,

∵点O是AC的中点,由作法可知,OE垂直平分AC,

∴AF=FC.

∵AD ∥BC , ∴∠FAO =∠BCO . 在△FOA 与△BOC 中,

FAO BCO OA OC

AOF COB ∠∠??

??∠∠?

=== , ∴△FOA ≌△BOC (ASA ), ∴AF =BC =6,

∴FC =AF =6,FD =AD -AF =8-6=2. 在△FDC 中,∵∠D =90°, ∴CD 2+DF 2=FC 2, ∴CD 2+22=62, ∴CD =42 故选:A . 【点睛】

本题考查了作图-基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.

3.D

解析:D 【分析】

过点C 作CH ⊥AB ,连接CD ,根据等腰三角形的三线合一的性质及勾股定理求出CH ,再利用ABC

ACD

BCD S

S

S

=+即可求出答案.

【详解】

如图,过点C 作CH ⊥AB ,连接CD , ∵AC=BC ,CH ⊥AB ,AB=8, ∴AH=BH=4, ∵AC=5, ∴2222543CH AC AH =-=-=,

∵ABC

ACD

BCD S

S

S

=+,

∴111

222AB CH AC DE BC DF ??=??+??, ∴

111

8355222

DE DF ??=?+?, ∴DE+DF=4.8, 故选:D.

【点睛】

此题考查等腰三角形三线合一的性质,勾股定理解直角三角形,根据题意得到

ABC

ACD

BCD S

S

S

=+的思路是解题的关键,依此作辅助线解决问题.

4.B

解析:B 【解析】 【分析】

根据完全平方公式利用a+b=10,ab=18求出22a b +,即可得到三角形的形状. 【详解】

∵a+b=10,ab=18,

∴22a b +=(a+b )2-2ab=100-36=64, ∵,c=8, ∴2c =64, ∴22a b +=2c ,

∴该三角形是直角三角形, 故选:B. 【点睛】

此题考查勾股定理的逆定理,完全平方公式,能够利用完全平方公式由已知条件求出

22a b +是解题的关键.

5.D

解析:D 【分析】

根据已知设AC =x ,BC =y ,在Rt △ACD 和Rt △BCE 中,根据勾股定理分别列等式,从而求得AC ,BC 的长,最后根据勾股定理即可求得AB 的长. 【详解】

如图,在△ABC 中,∠C =90°,AD 、BE 为△ABC 的两条中线,且AD =10,BE =5,求AB 的长. 设AC =x ,BC =y ,

根据勾股定理得:

在Rt△ACD中,x2+(1

2

y)2=(210)2,

在Rt△BCE中,(1

2

x)2+y2=52,

解之得,x=6,y=4,

∴在Rt△ABC中,22

64213

AB=+=,

故选:D.

【点睛】

此题考查勾股定理的运用,在直角三角形中,已知两条边长时,可利用勾股定理求第三条边的长度.

6.B

解析:B

【分析】

过点O作OE⊥BC于E,OF⊥AC于F,由角平分线的性质得到OD=OE=OF,根据勾股定理求出BC的长,易得四边形ADFO为正方形,根据线段间的转化即可得出结果.

【详解】

解:过点O作OE⊥BC于E,OF⊥AC于F,

∵BO,CO分别为∠ABC,∠ACB的平分线,

所以OD=OE=OF,

又BO=BO,

∴△BDO≌△BEO,∴BE=BD.

同理可得,CE=CF.

又四边形ADOE为矩形,∴四边形ADOE为正方形.

∴AD=AF.

∵在Rt△ABC中,AB=6,AC=8,∴BC=10.

∴AD+BD=6①,

AF+FC=8②,

BE+CE=BD+CF=10③,

①+②得,AD+BD+AF+FC=14,即2AD+10=14,

∴AD=2.

故选:B.

【点睛】

此题考查了角平分线的定义与性质,以及全等三角形的判定与性质,属于中考常考题型.

7.C

解析:C 【分析】

根据勾股定理及直角三角形的中线、翻折得CD=DE=BD=5,CE=AC=6,作DH ⊥BE 于H ,EG ⊥CD 于G ,证明△DHE ≌△EGD ,利用勾股定理求出7

5

EH DG ==,即可得到BE. 【详解】

∵∠BCA=90°,AC=6,BC=8, ∴22226810AB

AC BC ,

∵D 是AB 的中点, ∴AD=BD=CD=5,

由翻折得:DE=AD=5,∠EDC=∠ADC ,CE=AC=6, ∴BD=DE ,

作DH ⊥BE 于H ,EG ⊥CD 于G , ∴∠DHE=∠EGD=90?,∠EDH=

12∠BDE=1

2

(180?-2∠EDC )=90?-∠EDC , ∴∠DEB= 90?-∠EDH=90?-(90?-∠EDC)=∠EDC , ∵DE=DE , ∴△DHE ≌△EGD , ∴DH=EG ,EH=DG , 设DG=x ,则CG=5-x ,

∵2EG =2222DE DG CE CG -=-, ∴2

2

2

2

56(5)x x -=--, ∴7

5

x =

, ∴75

EH DG ==, ∴BE=2EH=145

, 故选:C.

【点睛】

此题考查翻折的性质,勾股定理,等腰三角形的性质,将求BE 转换为求其一半的长度的想法是关键,由此作垂线,证明△DHE ≌△EGD ,由此求出BE 的长度.

8.D

解析:D 【解析】

当一直角边、斜边为1和2时,第三边==;

当两直角边长为1和2时,第三边==

故选:D .

9.B

解析:B 【分析】

如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可. 【详解】

如图,作CE AB ⊥与E.

AD 是ABC ?的中线,BC =12, ∴BD=6,

10,8,6,AB AD BD === ∴ 222AB AD BD =+,

90,ADB ∴∠= ,AD BC ∴⊥

11

,22

ABC S BC AD AB CE ?== 128

9.6.10

CE ?∴=

= 故选B.

【点睛】

本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.

10.D

解析:D 【分析】

分4是直角边、4是斜边,根据勾股定理计算即可. 【详解】

当4是直角边时,斜边=2234+=5, 当4是斜边时,另一条直角边=22473-=, 故选:D . 【点睛】

本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.

二、填空题

11.

【解析】如图,过点作⊥

于点,延长

到点

,使

,连接

,交

于点

,连接

,此时

的值最小.连接,由对称性可知∠

45°,

,∴ ∠

90°.根据勾股定理可得

12.45 【分析】

如下图,延长BA 至网络中的点D 处,连接CD. ABC ACB DAC ∠+∠=∠,只需证△ADC 是等腰直角三角形即可 【详解】

如下图,延长BA 至网络中的点D 处,连接CD

设正方形网络每一小格的长度为1

则根据网络,555BC=5,∴5其中BD 、DC 、BC 边长满足勾股定理逆定理 ∴∠CDA=90° ∵AD=DC

∴△ADC 是等腰直角三角形 ∴∠DAC=45° 故答案为:45° 【点睛】

本题是在网格中考察勾股定理的逆定理,解题关键是延长BA ,构造处△ABC 的外角∠CAD 13.21021332【分析】

在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算

,,DF DE CE '',可得CD .

【详解】

∵90ACB ?∠=,4,2AC BC ==, ∴5AB =

情况一:当25AD AB ==AE CE ⊥于E ∴

1122BC AC AB AE ?=?,即45AE =,55

DE = ∴2285

5

CE AC AE =

-=

∴22213CD CE DE =+=

情况二:当25BD AB ==时,作BE CE ⊥于E , ∴

1122BC AC AB BE ?=?,即455BE =,1455

DE = ∴2225

5

CE BC BE =

-=

∴22210CD CE DE =+=

情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E ∴

11

22

BC AC AB BE ?=?, ∴55

BE =

35

5

CE ∴=

∵ABD △为等腰直角三角形 ∴1

52

BF DF AB ==

=∴95

DE DF E F DF BE ''=+=+=

2535

5CE EE CE BF CE ''=-=-==

∴2232CD CE E D ''=+=

故答案为:210或213或32 【点睛】

本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键.

14.5cm

【分析】

连接AC ',分三种情况进行讨论:画出图形,用勾股定理计算出AC '长,再比较大小即可得出结果. 【详解】 解:如图

展开成平面图,连接AC ',分三种情况讨论: 如图1,AB=4,BC '=1+2=3,

∴在Rt △ABC '中,由勾股定理得AC '2243+(cm ), 如图2,AC=4+2=6,CC '=1

∴在Rt △ACC '中,由勾股定理得AC '2261+37(cm ), 如图3,AD =2,DC '=1+4=5,

∴在Rt △ADC '中,由勾股定理得AC '2225+29(cm ) ∵2937,

∴蚂蚁爬行的最短路径长是5cm , 故答案为:5cm .

【点睛】

本题考查平面展开-最短路线问题和勾股定理,本题具有一定的代表性,是一道好题,注意要分类讨论.

15.310或10

【详解】

分两种情况:

(1)顶角是钝角时,如图1所示:

在Rt△ACO中,由勾股定理,得AO2=AC2-OC2=52-32=16,

∴AO=4,

OB=AB+AO=5+4=9,

在Rt△BCO中,由勾股定理,得BC2=OB2+OC2=92+32=90,

∴BC=310;

(2)顶角是锐角时,如图2所示:

在Rt△ACD中,由勾股定理,得AD2=AC2-DC2=52-32=16,

∴AD=4,

DB=AB-AD=5-4=1.

在Rt△BCD中,由勾股定理,得BC2=DB2+DC2=12+32=10,

∴10;

综上可知,这个等腰三角形的底的长度为1010.

【点睛】

本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.16.10

【分析】

先根据勾股定理得出a2+b2=c2,利用完全平方公式得到(a+b)2﹣2ab=c2,再将a+b=5c=5代入即可求出ab的值.

【详解】

解:∵在Rt△ABC中,直角边的长分别为a,b,斜边长c,

∴a2+b2=c2,

∴(a+b)2﹣2ab=c2,

∵a+b=c=5,

∴(2﹣2ab=52,

∴ab=10.

故答案为10.

【点睛】

本题考查勾股定理以及完全平方公式,灵活运用完全平方公式是解题关键.

17.4或

【分析】

分三种情况讨论:①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.

【详解】

①以A为直角顶点,向外作等腰直角三角形DAC,如图1.

∵∠DAC=90°,且AD=AC,

∴BD=BA+AD=2+2=4;

②以C为直角顶点,向外作等腰直角三角形ACD,如图2.

连接BD,过点D作DE⊥BC,交BC的延长线于E.

∵△ABC是等腰直角三角形,∠ACD=90°,

∴∠DCE=45°.

又∵DE⊥CE,

∴∠DEC=90°,

∴∠CDE=45°,

∴CE=DE=2=

在Rt△BAC中,BC==BD===

③以AC为斜边,向外作等腰直角三角形ADC,如图3.

∵∠ADC=90°,AD=DC,且AC=2,

=

∴AD=DC=AC sin45°=2

2

又∵△ABC、△ADC是等腰直角三角形,

∴∠ACB=∠ACD=45°,

∴∠BCD=90°.

又∵在Rt△ABC中,BC==

∴BD==

勾股定理培优练习修订版

勾股定理培优练习集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

勾股定理 【知识点】1、勾股定理__________________________________________________________________ 2、勾股定理逆定理_____________________________________________________________________ 【基础练习】 1.如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为() A.30° B.45° C.60° D.90° 2.下列四组线段中,能组成直角三角形的是() A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.如图,已知∠AOB=60°,点P在边OA上,OP=20,点M,N在边OB上,PM=PN.若MN=6,则OM=() A.4 B.5 C.6 D.7 第1题第3题第5题第6题 4.在△ABC中,∠ABC=30°,AB边长为10,AC边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是() A.3个B.4个C.5个D.6个 5.(2015?石家庄模拟)图1是我国古代着名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是() A.51 B.49 C.76 D.无法确定 6.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行() A.8米 B.10米 C.12米 D.14米 7.下列命题中,是假命题的是( ). A.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形 B.在△ABC中,若a2=(b+c) (b-c),则△ABC是直角三角形 C.在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC是直角三角形 D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形 8.如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需米. 第8题第9题第10题 9.如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF= . 10.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度. 【例题讲解】 例1、)阅读以下解题过程: 已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状. 错解:∵a2c2﹣b2c2=a4﹣b4…(1), ∴c2(a2﹣b2)=(a2﹣b2)(a2+b2)…(2), ∴c2=a2+b2 (3) 问:(1)上述解题过程,从哪一步开始发现错误请写出该步的代号. (2)错误的原因是. (3)本题正确的结论是. 例2.如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON 方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时. (1)求对学校A的噪声影响最大时卡车P与学校A的距离; (2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间. 例3、我们学习了勾股定理后,都知道“勾三、股四、弦五”.

浙教版初中数学中考培优题(含答案)

1、在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积是1.28 ㎡,已知床单的长是2 m ,宽是1.2 m ,求花边的宽度. 解:设花边的宽度是x m. ()()28.122.122=--x x 028.06.12=+-x x ()36.08.02 =-x 2.01=x ,4.12=x (舍去) 答:花边的宽度是0.2 m. 2、某商场将进货价为30元的台灯以 40 元售出,平均每月能售出600个。调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个。 ⑴ 为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个? ⑵ 台灯的售价应定为多少时销售利润最大? 解:⑴ 设台灯的售价为x 元,(x ≥40)根据题意得 [(600-10×(x -40))](x -30)=10000 解得:x 1=80 x 2=50 当x =80时 进台灯数为600-10×(x -40)=200 当x =50时 600-10×(x -40)=500 ⑵ 设台灯的售价定为x 元时,销售利润最大,利润为y y =[600-10(x -40)]·(x -30) 答:⑴ 台灯的售价为80元,进台灯数为200个,台灯的售价为50元时,进台灯数为500个。 ⑵ 3、学校有若干个房间分配给九年级(1)班的男生住宿,已知该班男生不足50人。若每间住4人,则余15人无住处;若每间住6人,则恰有一间不空也不满(其余均住满),那么该班男生人数是多少? 解:设有x 间,每间住4人,4x 人,15人无处住 所以有4x +15人 每间住6人,则恰有一间不空也不满 所以x -1间住6(x -1)=6x -6人 还有4x +15-6x +6=-2x +21人 不空也不满 所以0<-2x +21<6 -6<2x -21<0 15<2x <21 7.5<x <10.5 所以x =8, x =9, x =10 不到50人 一共4x +15<50 所以x =8 所以应该是4×8+15=47人

专题勾股定理培优版(综合)

WORD格式 . 专题勾股定理在动态几何中的应用一.勾股定理与对称变换 (一)动点证明题 1.如图,在△ABC中,AB=AC, (1)若P为边BC上的中点,连结 22 AP,求证:BP×CP=AB-AP; (2)若P是BC边上任意一点,上面的结论还成立吗?若成立请证明,若不成立请说明理由; A B C P (3)若P是BC边延长线上一点,线段AB、AP、BP、CP之间有什么样的关系?请证明你的结论 A . B C P (二)最值问题 2.如图,E为正方形ABCD的边AB上一点,AE=3,BE=1,P为AC上的动点,则PB+PE的最小值是

A D E P 3.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点, B C . 专业资料整理

WORD格式 . 将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1) 求证:△AMB≌△ENB; A D (2)①当M点在何处时,AM+CM的值最小; N E M C B C ②当M点在何处时,AM+BM+CM的值最小,并说明理由; A D N E M B C C (3)当AM+BM+CM的最小值为31时,求正方形的边长. A D N E M B C C

4.问题:如图①,在ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的. 专业资料整理

WORD格式 . 长.小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题得到解决. (1)请你回答:图中BD的长为; (2)参考小明的思路,探究并解答问题:如图②,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD和AB的长. A A B D C B D C 图①图②

人教版八年级下册第17章《勾股定理》培优提高试题(附答案)

人教版八年级下册第17章《勾股定理》培优提高试题 一.选择题(共8小题) 1.下列条件中,不能判断△ABC为直角三角形的是() A.a=1.5 b=2 c=2.5B.a:b:c=5:12:13 C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5 2.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是() A.18cm2 B.36cm2C.72cm2D.108cm2 3.现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为() A.30厘米B.40厘米C.50厘米D.以上都不对4.在△ABC中,∠A=30°,AB=4,BC=,则∠B为() A.30°B.90°C.30°或60°D.30°或90°5.如图,一架25米的梯子AB靠在一座建筑物AO上,梯子的底部B距离建筑物AO的底部O有7米(即BO=7米),如果梯子顶部A下滑4米至A1,则梯子底部B滑开的距离BB1是() A.4米B.大于4米C.小于4米D.无法计算 6.为比较与的大小,小亮进行了如下分析后作一个直角三角形,使其两直

角边的长分别为与,则由勾股定理可求得其斜边长为 .根据“三角形三边关系”,可得.小亮的这一做法体现的数学思想是() A.分类讨论思想B.方程思想 C.类此思想D.数形结合思想 7.“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是() A.9B.36C.27D.34 8.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是() A.12B.15C.20D.30 二.填空题(共6小题) 9.直角三角形的斜边长是5,一直角边长是3,则此直角三角形另一直角边是.10.设a>b,如果a+b,a﹣b是三角形较小的两条边,当第三边等于时,这个三角形为直角三角形. 11.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的. 12.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC扩充为等腰三角形ABD,使扩充的部分是以AC为直角边的直角三角形,则CD的长为.

中考数学 专题 四边形培优试题

四边形 1、如图,在正方形ABCD中,点E是CD边上的一点,过C作AE的垂线交AE的延长线于点F,连结DE,过点D作DF的垂线交AF于点G。 (1)求证:AG=CF。 (2)连结BG,若BG⊥AE,取BC的中点H,试判断线段BD与线段EH的数量关系和位置关系,并给出证明。 2、(1)如图1,已知正方形ABCD,E是边CD上一点,延长CB到点F,使BF=DE,作∠EAF 的平分线交边BC于点G,求证:BG+DE=E G。 (2)如图2,已知△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=2,CD=1,求△ABC的面积。

3、如图1,摆放矩形AB CD与矩形ECGF,使B,C,G三点在一条直线上,CE在边CD上,连结AF,若M为AF的中点,连结DM、ME,猜想DM与ME的关系,并证明你的结论。 拓展与延伸: (1)若将图1中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM 和ME的关系为。 (2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立。

4、在正方形ABCD中,动点E、F分别从D、C两点同时出发,以相同速度在直线DC、CB上移动。 (1)如图1,当点E在线段CD上,点F在线段BC上时,连结AE和DF交于点P,请写出AE与DF的关系,并说明理由。 (2)如图2,点E、F分别移动到边DC、CB的延长线上时,连结AE和DF,(1)中的结论还成立吗?真接写出结论,无需证明。 (3)如图3,当点E、F分别在CD、BC的延长线上移动时,连结AE与D F,(1)的结论还成立吗?请说明理由。 (4)如图4,当点E、F分别在边DC、CB上移动时,连结AE和DF交于点P,由于点E、F 的移动,使得点P也随之移动,请画出点P的运动路径的草图,若AD=2,试求出线段CP的最小值。

勾股定理经典例题(含答案)

类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。 分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。 解析:延长AD、BC交于E。 ∵∠A=∠60°,∠B=90°,∴∠E=30°。 ∴AE=2AB=8,CE=2CD=4, ∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2= CE2-CD2=42-22=12,∴DE==。 ∴S四边形ABCD=S△ABE-S△CDE=AB2BE-CD2DE= 类型三:勾股定理的实际应用(一) 用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了 到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)

中考数学培优专题复习相似练习题及答案

中考数学培优专题复习相似练习题及答案 一、相似 1.如图,在Rt△ABC中,,角平分线交BC于O,以OB为半径作⊙O. (1)判定直线AC是否是⊙O的切线,并说明理由; (2)连接AO交⊙O于点E,其延长线交⊙O于点D,,求的值; (3)在(2)的条件下,设的半径为3,求AC的长. 【答案】(1)解:AC是⊙O的切线 理由:, , 作于, 是的角平分线, , AC是⊙O的切线 (2)解:连接, 是⊙O的直径, ,即 . . 又 (同角) , ∽ ,

(3)解:设 在和中,由三角函数定义有: 得: 解之得: 即的长为 【解析】【分析】(1)利用角平分线的性质:角平分线上的点到角两边的距离相等证得点O到AC的距离为半径长,即可证得AC与圆O相切;(2)先连接BE构造一个可以利用正切值的直角三角形,再证得∠1=∠D,从而证得两个三角形ABE与ABD相似,即可求得两个线段长的比值;(3)也可以应用三角形相似的判定与性质解题,其中AB的长度是利用勾股定理与(2)中AE与AB的比值求得的. 2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题: (1)求证:△BEF∽△DCB; (2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值; (3)当t为何值时,△PQF为等腰三角形?试说明理由. 【答案】(1)解:∵四边形ABCD是矩形, ∴ AD∥BC, 在中, ∵别是的中点, ∴EF∥AD, ∴ EF∥BC,

勾股定理培优试题

勾股定理培优试题 1.如图,正方形的边长是1个单位长度,则图中B点所表示的数是;若点C是数轴上一点,且点C到A点的距离与点C到原点的距离相等,则点C所表示的数是. 2.如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E. (1)当m=3时,点B的坐标为_________,点E的坐标为_________; (2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由. 3.如图,将竖直放置的长方形砖块ABCD推倒至长方形A'B'C'D'的位置,长方形ABCD 的长和宽分别为a,b,AC的长为c. (1)你能用只含a,b的代数式表示S△ABC,S△C'A'D'和S直角梯形A'D'BA吗?能用只含c的代数式表示S△ACA'吗?(2)利用(1)的结论,你能验证勾股定理吗? 4.如图,一圆柱高8 cm,底面半径为6/cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是()cm. A.6 B.8 C.10 D.12 5.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25B.14C.7D.7或25 6.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图4所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么(a+b)2的值为().(A)49(B)25(C)13(D)1 7.如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于. 8.将一根长24cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是() A.5≤h≤12 B.5≤h≤24C.11≤h≤12D.12≤h≤24 9.如图,将一根长为15cm的筷子置于底面直径为5cm的装满水的圆柱形水杯中,已知水深为12cm,设筷子露出水面的长为hcm,则h的取值范围是.

勾股定理经典例题(含答案)

勾股定理经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32

=16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于 , 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中,

. ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

中考数学总复习 培优专题精选经典题

专项训练一 一元二次方程 一、选择题 1.(2016·新疆中考)一元二次方程x 2-6x -5=0配方后可变形为( ) A .(x -3)2=14 B .(x -3)2=4 C .(x +3)2=14 .(x +3)2=4 2.(2016·攀枝花中考)若x =-2是关于x 的一元二次方程x 2+3 2ax -a 2=0的一个根,则a 的值为( ) A .-1或4 B .-1或-4 C .1或-4 D .1或4 3.(2016·凉山州中考)已知x 1、x 2是一元二次方程3x 2=6-2x 的两根,则x 1-x 1x 2+x 2的值是( ) A .-43 B.83 C .-83 D.43 4.(2016·随州中考)随州市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次, 2016年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ) A .20(1+2x )=28.8 B .28.8(1+x )2=20 C .20(1+x )2=28.8 D .20+20(1+x )+20(1+x )2=28.8 5.(2016·潍坊中考)关于x 的一元二次方程x 2-2x +sin α=0有两个相等的实数根,则锐角α等于( ) A .15° B .30° C .45° D .60° 6.已知三角形两边的长是3和4,第三边长是方程x 2-12x +35=0的根,则该三角形的周长是( ) A .14 B .12 C .12或14 D .以上都不对 7.(2016·深圳中考)给出一种运算:对于函数y =x n ,规定y ′=nx n - 1.例如:若函数y =x 4,则有y ′=4x 3.已知函数y =x 3,则方程y ′=12的解是( ) A .x 1=4,x 2=-4 B .x 1=2,x 2=-2 C .x 1=x 2=0 D .x 1=23,x 2=-2 3 8.★关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m =0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都是负根;②(m -1)2+(n -1)2≥2;③-1≤2m -2n ≤1,其中正确结论的个数是( ) A .0个 B .1个 C .2个 D .3个 二、填空题 9.(2016·菏泽中考)已知m 是关于x 的方程x 2-2x -3=0的一个根,则2m 2-4m =________. 10.方程(2x +1)(x -1)=8(9-x )-1的根为____________. 11.(2016·聊城中考)如果关于x 的一元二次方程kx 2-3x -1=0有两个不相等的实数根,那么k 的取值范围是______________. 12.(2016·黄石中考)关于x 的一元二次方程x 2+2x -2m +1=0的两实数根之积为负,则实数m 的取值范围是________. 13.关于x 的反比例函数y = a +4 x 的图象如图所示,A 、P 为该图象上的点,且关于原点成中心对称.△P AB 中,PB ∥y 轴,AB ∥x 轴,PB 与AB 相交于点B .若△P AB 的面积大于12,则关于x 的方程(a -1)x 2-x +1 4 =0的根的情况是______________. 14.一个容器盛满纯药液40L ,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这

(完整版)初中数学培优教材勾股定理专题(附答案-全面、精选)

初中数学勾股定理培优教材 一、探索勾股定理 【知识点1】勾股定理 定理内容:在RT△中, 勾股定理的应用:在RT△中,知两边求第三边,关键 在于确定斜边或直角 典型题型 1、对勾股定理的理解 (1)已知直角三角形的两条直角边长分别为a, b,斜边 长c,则下列关于a,b,c的关系不成立的是() A、c2- a2=b2 B、c2- b2=a2 C、a2- c2=b2 D、a2+b2= c2 (2)在直角三角形中,∠A=90°,则下列各式中不成 立的是() A、BC2- AB2=AC2 B、BC2- AC2=AB2 C、AB2+AC2= BC2 D、AC2+BC2= AB2 2、应用勾股定理求边长 (3)已知在直角三角形ABC中,AB=10 cm, BC=8 cm, 求AC的长. (4)在直角△中,若两直角边长为a、b,且满足,则 该直角三角形的斜边长为. 3、利用勾股定理求面积 (5)已知以直角△的三边为直径作半圆,其中两个半圆 的面积为25π,16π,求另一个半圆的面积。 (6)如图(1),图中的数字代表正方形的面积,则正 方形A的面积为。 (7)如图(2),三角形中未知边x与y的长度分别是 x=,y=。 (8)在Rt△ABC中,∠C=90°,若AC=6,BC=8, 则AB的长为() A、6 B、8 C、10 D、12 (9)在直线l上依次摆放着七个正方形(如图4所示)。 已知斜放置的三个正方形的面积分别是1、2、3,正放 置的四个正方形的面积依次是S S 12 、、 S S S S S S 341234 、,则+++=_____________。 【知识点2】勾股定理的验证 推导勾股定理的关键在于找面积相等,由面积之间 的等量关系并结合图形利用代数式恒等变形进行推导。 (等积法) 拼图法推导一般步骤:拼出图形---找出图形面积的 表达式---恒等变形—推出勾股定理。 (10)用四个相同的直角三角形(直角边为a、b,斜边 为c)按图拼法。 问题:你能用两种方法表示下 图的面积吗?对比两种不同的表 示方法,你发现了什么? (11)用两个完全相同的直角三角形(直角边为a、b, 斜边为c)按下图拼法, 论证勾股定理: 2 2 2c b a= + 3、运用勾股定理进行 计算(重难点) (12)如图,一根旗杆在离地面9米处折断倒下,旗杆顶 部落在离旗杆底部12米 处,旗杆折断前有多高?

数学勾股定理的专项培优易错试卷练习题含答案

数学勾股定理的专项培优易错试卷练习题含答案 一、选择题 1.图中不能证明勾股定理的是( ) A . B . C . D . 2.如图,在RtΔABC 中,∠ACB =90°,AC =9,BC =12,AD 是∠BAC 的平分线,若点P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是( ) A . 245 B . 365 C .12 D .15 3.如图,已知ABC 中,10,86,AB AC BC AB ===,的垂直平分线分别交,AC AB 于 ,,D E 连接BD ,则CD 的长为( ) A .1 B . 54 C . 74 D . 254 4.如图是一块长、宽、高分别为6cm 、4cm 、3cm 的长方体木块,一只蚂蚁要从长方体木

块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( ) A .cm B . cm C . cm D .9cm 5.如图,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45?,若AD =4,CD =2,则BD 的长为 ( ) A .6 B .27 C .5 D .25 6.如图,在数轴上点A 所表示的数为a ,则a 的值为( ) A .15-- B .15- C .5- D .15-+ 7.A 、B 、C 分别表示三个村庄,AB 1700=米,800BC =米,AC 1500=米,某社区拟建一个文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( ) A .AB 的中点 B .BC 的中点 C .AC 的中点 D .C ∠的平分线与AB 的交点 8.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm ,则该圆柱底面周长为( ) A .12cm B .14cm C .20cm D .24cm 9.在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是( ) A .如果∠A ﹣∠B =∠C ,那么△ABC 是直角三角形 B .如果∠A :∠B :∠C =1:2:3,那么△ABC 是直角三角形 C .如果 a 2:b 2:c 2=9:16:25,那么△ABC 是直角三角形 D .如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠A =90°

2020年中考数学培优 专题讲义 第17讲 二次函数与面积

第17讲 二次函数与面积 解这类问题一般用到以下与面积相关的知识:图形割补、等积转换、等比转化. 【例题讲解】 例题1 如图1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ABC S △=1 2 ah ,即三角形面积等于水平宽与铅垂高乘积的一半. 解答问题: 如图2,顶点为C (1,4)的抛物线y =ax 2+bx +c 交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)点P 是抛物线(在第一象限内)上的一个动点,连接P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S △; ②是否存在抛物线上一点P ,使PAB S △=CAB S △?若存在,求出P 点的坐标;若不存在,请说明理由. C B 1把A (3,0)代入解析式求得a =-1, 所以1y =-(x -1)2+4=-x 2+2x +3, 设直线AB 的解析式为:2y =kx +b 由1y =-x 2+2x +3求得B 点的坐标为(0,3) 把A (3,0),B (0,3)代入2y =kx +b 中 解得:k =-1,b =3 所以2y =-x +3; (2)①因为C 点坐标为(1,4) 所以当x =1时,1y =4,2y =2 所以CD =4-2=2 CAB S △= 1 2 ×3×2=3(平方单位);

②假设存在符合条件的点P ,设P 点的横坐标为x ,△P AB 的铅垂高为h ,则h =1y -2y =(-x 2+2x +3)-(-x +3)=-x 2+3x 由PAB S △=CAB S △ 得: 1 2 ×3×(-x 2+3x )=3 化简得:x 2-3x +2=0, 解得:1x =1,2x =2, 将1x =1代入1y =-x 2+2x +3中, 解得P 点坐标为(1,4). 将2x =2代入1y =-x 2+2x +3中, 解得P 点坐标为(2,3). ∵点P 是抛物线(在第一象限内)上的一个动点, 综上所述,P 点的坐标为(1,4),(2,3). 模型讲解 竖切 面积公式均为1 = 2 S dh C B h C B h C B 横切 面积公式均为1 = 2 S dh D 【总结】 这种“铅垂高×水平宽的一半”的求解方法可过三角形的任意一点,并且“横竖”均可.而在选择时,如何选用,取决于点D 的坐标哪种更易求得. 例题2 已知一次函数y =(k +3)x +(k -1)的图像与x 轴、y 轴分别相交于点A 、B ,P (-1,-4).

勾股定理培优训练

八年级下勾股定理培优训练 一.选择题 1.如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则BD AB、AC于E、F,给出以下四个结论: ①AE=CF ②△EPF是等腰直角三角形③EF=AP ④S四边形AEPF=S△ABC 4.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有dm 2dm 7.如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交

8.已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第 2 (1)若直角三角形的两条边长为5和12,则第三边长是13; (2)如果a≥0,那么=a (3)若点P(a,b)在第三象限,则点P(﹣a,﹣b+1)在第一象限; (4)对角线互相垂直且相等的四边形是正方形; (5)两边及第三边上的中线对应相等的两个三角形全等. 图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为2 EF的长是() 二.填空题 14.如图,△ABD和△CED均为等边三角形,AC=BC,AC⊥BC.若BE=,则CD= .15.在Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,AB=2,则BC的长是.

16.已知a,b,c是直角三角形的三条边,且a<b<c,斜边上的高为h,则下列说法中正确的是.(只填序号) ①a2b2+h4=(a2+b2+1)h2;②b4+c2h2=b2c2;③由可以构成三角形;④直角三角形的面积的最大值是. 17.如图,在四边形ABCD中,AB=2,CD=1,∠A=60°,∠B=∠D=90°,则四边形ABCD的面积是. 18.如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G是DF的中点.若BE=2,AG=8,则AB的长为. 三.解答题 19.如图,已知AD是△ABC的高,∠BAC=60°,BC=3,AC=2,试求AB的长. 20.操作发现:将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合. 问题解决:将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC 与BD交于点O,连接CD,如图②. (1)求证:△CDO是等腰三角形;(2)若DF=8,求AD的长.

勾股定理经典例题(含答案)29050

经典例题透析 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长 是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长.

思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长, 进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余) ∴(在中,如果一个锐角等于, 那么它所对的直角边等于斜边的一半). 根据勾股定理,在中, . 根据勾股定理,在中, . ∴. 举一反三【变式1】如图,已知:,,于P. 求证:. 解析:连结BM,根据勾股定理,在中, . 而在中,则根据勾股定理有 . ∴ 又∵(已知), ∴. 在中,根据勾股定理有 , ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD

中考数学总复习培优专题精选经典题

初三数学中考总复习培优资料一 一、选择题(本大题共有12小题,每小题2分,共24分.) 1.-2的绝对值是 A .-2 B .- 12 C .2 D .12 2.下列运算正确的是 A .x 2+ x 3= x 5 B .x 4·x 2= x 6 C .x 6÷x 2 = x 3 D .( x 2)3 = x 8 3.下面四个几何体中,俯视图为四边形的是 4.已知a -b =1,则代数式2a -2b -3的值是 A .-1 B .1 C .-5 D .5 5.若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1O 2=8,则⊙O 1与⊙O 2的位置关系是 A .内切 B .相交 C .外切 D .外离 6.对于反比例函数y =1 x ,下列说法正确的是 A .图象经过点(1,-1) B .图象位于第二、四象限 C .图象是中心对称图形 D .当x <0时,y 随x 的增大而增大 7.某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是 A .平均数为30 B .众数为29 C .中位数为31 D .极差为5 8.小亮从家步行到公交车站台,等公交车去学校. 折线表示小亮的行程s (km)与所花时间t (min)之间的函数关系. 下列说法错误..的是 A .他离家8km 共用了30min B .他等公交车时间为6min C .他步行的速度是100m/min D .公交车的速度是350m/min 9.一元二次方程x x 22 =的根是( ) A .2=x B .0=x C .2,021==x x D .2,021-==x x 10.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是( ) A .1 B . 21 C .31 D .4 1 A B C D (第8题图)

勾股定理培优专项练习

勾股定理练习(根据对称求最小值) 基本模型:已知点A、B为直线m 同侧的两个点,请在直线m上找一点M,使得AM+BM 有最小值。 1、已知边长为4的正三角形ABC上一点E,AE=1,AD⊥BC于D,请在AD上找一点N, 使得EN+BN有最小值,并求出最小值。 2、.已知边长为4的正方形ABCD上一点E,AE=1,请在对角线AC上找一点N, 使得EN+BN有最小值,并求出最小值。 3、如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到 直线b的距离为3,AB=230.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=() A. 6 B.8 C.10 D.12 4、已知AB=20,DA⊥AB于点A,CB⊥AB于点B,DA=10,CB=5. (1)在AB上找一点E,使EC=ED,并求出EA的长; (2)在AB上找一点F,使FC+FD最小,并求出这个最小值

5、如图,在梯形ABCD 中,∠C=45°,∠BAD=∠B=90°,AD=3 ,CD=2 2, M为BC上一动点,则△AMD 周长的最小值为. 6、如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB 边上一点,则EM+BM的最小值为. 7、如图∠AOB = 45°,P是∠AOB内一点,PO = 10,Q、R分别是OA、OB上的动点, 求△PQR周长的最小值. 8.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为() A.2 B.2 6C.3 D.6 9、在边长为2 cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________cm 10、在长方形ABCD中,AB=4,BC=8,E为CD边的中点,若P、Q是BC边上的两动点,且PQ=2,当四边形APQE的周长最小时,求BP的长.

中考数学二轮 旋转 专项培优易错试卷及答案

一、旋转真题与模拟题分类汇编(难题易错题) 1.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F. (1)如图①,当点D落在BC边上时,求点D的坐标; (2)如图②,当点D落在线段BE上时,AD与BC交于点H. ①求证△ADB≌△AOB; ②求点H的坐标. (3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可). 【答案】(1)D(1,3);(2)①详见解析;②H(17 5 ,3);(3) 30334 - ≤S≤30334 + . 【解析】 【分析】 (1)如图①,在Rt△ACD中求出CD即可解决问题; (2)①根据HL证明即可; ②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题; (3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题; 【详解】 (1)如图①中, ∵A(5,0),B(0,3),

∴OA=5,OB=3, ∵四边形AOBC是矩形, ∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°, ∵矩形ADEF是由矩形AOBC旋转得到, ∴AD=AO=5, 在Rt△ADC中,CD=22 AD AC -=4, ∴BD=BC-CD=1, ∴D(1,3). (2)①如图②中, 由四边形ADEF是矩形,得到∠ADE=90°, ∵点D在线段BE上, ∴∠ADB=90°, 由(1)可知,AD=AO,又AB=AB,∠AOB=90°, ∴Rt△ADB≌Rt△AOB(HL). ②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC, ∴∠CBA=∠OAB, ∴∠BAD=∠CBA, ∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m, 在Rt△AHC中,∵AH2=HC2+AC2, ∴m2=32+(5-m)2, ∴m=17 5 , ∴BH=17 5 , ∴H(17 5 ,3). (3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=1 2 ?DE?DK= 1 2 ×3× (34 ) 30334 -

相关主题
文本预览
相关文档 最新文档