预应力课程设计结构设计原理最终版
- 格式:doc
- 大小:1.45 MB
- 文档页数:24
课程设计任务书一、课程设计的内容根据给定的桥梁基本设计资料(主要结构尺寸、计算内力等)设计预应力混凝土简支T 形主梁。
主要内容包括:1.预应力钢筋及非预应力钢筋数量的确定及布置; 2.截面几何性质计算;3.承载能力极限状态计算(正截面与斜截面承载力计算); 4.预应力损失估算;5.应力验算(短暂状况和持久状况的应力验算);6.抗裂验算(正截面与斜截面抗裂验算)或裂缝宽度计算; 7.主梁变形(挠度)计算; 8.锚固局部承压计算与锚固区设计; 9.绘制主梁施工图。
二、课程设计的要求与数据通过预应力混凝土简支T 形梁桥的一片主梁设计,要求掌握设计过程的数值计算方法及有关构造要求规定,并绘制施工图。
要求:设计合理、计算无误、绘图规范。
(一)基本设计资料1.设计荷载:公路—Ⅰ级荷载,人群荷载3.52kN/m ,结构重要性系数0γ=1.0 2.环境标准:Ⅱ类环境 3.材料性能参数 (1)混凝土强度等级为C50,主要强度指标为:强度标准值 ck f =32.4MPa ,tk f =2.65MPa 强度设计值 cd f =22.4MPa ,td f =1.83MPa弹性模量 c E =3.45⨯410MPa(2)预应力钢筋采用ASTM A416—97a 标准的低松弛钢绞线(1⨯7标准型), 其强度指标为:抗拉强度标准值 pk f =1860MPa 抗拉强度设计值 pd f =1260MPa弹性模量 p E =1.95⨯510MPa相对界限受压区高度 b ξ=0.4,pu ξ=0.2563 公称直径为15.24mm ,公称面积为140mm2(3)非预应力钢筋1)纵向抗拉非预应力钢筋采用HRB400钢筋,其强度指标为:抗拉强度标准值 sk f =400MPa 抗拉强度设计值 sd f =330MPa弹性模量 s E =2.0⨯510MPa相对界限受压区高度 b ξ=0.53,pu ξ=0.1985 2)箍筋及构造钢筋采用HRB335钢筋,其强度指标为: 抗拉强度标准值 sk f =335MPa 抗拉强度设计值 sd f =280MPa弹性模量 s E =2.0⨯510MPa 图1 主梁跨中截面尺寸(尺寸单位:mm )4.主要结构尺寸主梁标准跨径k L =25m ,梁全长24.96m ,计算跨径f L =24.3m 。
预应力混凝土结构设计基本原理范本一:预应力混凝土结构设计基本原理一、引言预应力混凝土结构是一种使用预先施加的压应力来抵消混凝土的弯曲和剪切应力的结构体系。
本章将介绍预应力混凝土结构设计的基本原理。
二、预应力混凝土基本概念1. 预应力混凝土的定义2. 预应力混凝土的分类3. 预应力混凝土的优点和应用领域三、预应力混凝土的应力分析1. 应力分析方法1.1 弯矩平衡法1.2 应变等效剪切力法1.3 弹性力法2. 预应力损失2.1 初始应力损失2.2 次序应力损失2.3 长期应力损失四、预应力混凝土结构的设计步骤1. 结构抗力计算1.1 预应力体系的选择1.2 荷载计算1.3 预应力设计的基本原理2. 预应力损失计算2.1 初始应力损失计算2.2 次序应力损失计算2.3 长期应力损失计算3. 锚固长度计算4. 变截面结构的预应力设计5. 预应力混凝土构件的详细设计五、结构施工与监测1. 预应力混凝土的施工工艺1.1 预应力钢筋的加工和安装1.2 预应力混凝土的浇筑与养护2. 结构监测与维护附件:1. 相关计算表格和图纸法律名词及注释:1. 预应力混凝土结构设计规范- 注释1:该规范是我国对预应力混凝土结构设计的法律规定文件。
2. 建筑法- 注释2:建筑法是我国对建筑行业的法律法规,包括建筑设计、施工、验收等方面的规定。
范本二:预应力混凝土结构设计基本原理一、前言预应力混凝土结构设计是一门重要的工程学科。
本文档将详细介绍预应力混凝土结构设计的基本原理与相关内容。
二、预应力混凝土的概念及分类1. 预应力混凝土的定义2. 预应力混凝土的分类2.1 按施加预应力的方式分类2.2 按预应力的工作特性分类2.3 按构件形状分类三、预应力混凝土结构设计的应力分析方法1. 预应力混凝土结构的应力平衡理论1.1 弯矩平衡法1.2 剪力平衡法1.3 应变平衡法2. 梁的应力分析方法2.1 材料的力学特性2.2 杆件的应力计算方法四、预应力损失与设计步骤1. 初始应力损失1.1 钢束的初始应力损失1.2 混凝土的初始应力损失2. 次序应力损失2.1 钢束预应力损失2.2 混凝土弯矩次序应力损失3. 长期应力损失3.1 混凝土的收缩和蠕变3.2 温度变形引起的长期应力损失4. 设计步骤4.1 结构抗力计算4.2 预应力损失计算4.3 锚固长度计算4.4 施工工序设计五、预应力混凝土结构的施工与监测1. 施工过程的要点1.1 钢束的张拉与锚固1.2 混凝土的浇筑与养护2. 结构的监测与维护附件:1. 相关设计计算表格和图纸法律名词及注释:1. 预应力混凝土结构设计规范- 注释1:该规范是国家对预应力混凝土结构设计进行法律约束的文件。
有些地方计算错误,需修改一.设计资料1.简支梁跨径:跨径L 标=40m ;计算跨径L 计=39.2m ;L 全=39.96m 。
2.设计荷载:汽车荷载按公路—I 级;结构重要性系数取1.10=γ。
3.环境:某高速公路车行桥,处于I 类环境条件,安全等级为一级。
4.材料:预应力钢筋采用标准型低松弛钢绞线(1×7标准型),抗拉强度标准值MPa f pk 1860=,抗拉强度设计值MPa f pd 1260=,公称直径15.24mm ,公称面积2140mm ,弹性模量MPa E P 51095.1⨯=;锚具采用夹片式群锚。
非预应力钢筋采用HRB335级钢筋,抗拉强度标准值MPa f sk 335=,抗拉强度设计值MPa f sd 280=,钢筋弹性模量为MPa E s 5100.2⨯=;采用HPB235级钢筋,抗拉强度标准值M P a f sk 235=,抗拉强度设计值MPa f sd 195=。
钢筋弹性模量为MPa E s 5101.2⨯=。
主梁混凝土采用E50, MPa E c 41045.3⨯=,抗压强度标准值MPa f ck 4.32=,抗压强度设计值M P a f cd 4.22=;抗拉强度标准值MPa f tk 65.2=,抗拉强度设计值MPa f td 83.1=。
5.设计要求:根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004)要求,按A 类预应力混凝土设计构件设计此梁。
6.施工方法:采用后张法施工,预制主梁时,预留孔道采用预埋金属波纹管成型,钢绞线采用TD 双作用用千斤顶两端同时张拉;主梁安装就位后现浇40mm 宽的湿接缝。
最后施工100mm 厚的沥青桥面铺装层。
二.主梁尺寸三.主梁全截面几何特性1.受压翼缘有效高度'f b 的计算按《公路桥规》规定,T 形截面梁受压翼缘有效高度'f b ,取下列三者中的最小值: 1)简支梁计算跨径的3/l ,即mm l 130673/392003/==; 2)相邻两梁的平均间距,对于中梁为2200mm;3) )122('f h h b b ++,式中b 为梁腹板宽度,h b 为承托长度,其中h b =38mm ,'f h 为受压区翼缘悬出板的厚度,'f h 可取跨中截面翼板厚度的平均值,即mm h f 8.2021000/)2/1203801801000('=⨯+⨯≈。
混凝土预应力结构设计原理混凝土预应力结构是一种高效的结构体系,它利用钢筋或钢缆的预应力作用来抵抗结构所受的荷载,以提高结构的承载能力和稳定性。
在实际应用中,混凝土预应力结构的设计原理是非常重要的,它涉及到结构的安全性、经济性和施工难度等方面。
本文将详细介绍混凝土预应力结构的设计原理及其应用。
一、混凝土预应力结构的基本原理混凝土预应力结构是通过在混凝土中加入钢筋或钢缆进行预应力,使得混凝土在荷载作用下不仅能够承受压力,还能够承受张力。
这种结构体系可以将混凝土的抗压性能和钢筋或钢缆的抗拉性能发挥到极致,从而提高结构的承载能力和稳定性。
在混凝土预应力结构中,预应力的作用是通过预应力钢筋或钢缆的张力传递到混凝土中,从而形成一定的预应力应力状态。
这种预应力应力状态可以抵消结构所受的荷载,从而使得结构得到加强,同时还可以减小混凝土的变形和裂缝,提高结构的耐久性和使用寿命。
二、混凝土预应力结构的设计原理混凝土预应力结构的设计原理主要包括预应力计算、截面设计、斜拉索设计和锚固系统设计等方面。
1.预应力计算预应力计算是混凝土预应力结构设计的关键环节,它直接影响到结构的安全性和经济性。
预应力计算需要考虑到结构的荷载、材料性能、结构形式和施工工艺等因素,以确定预应力的大小和分布方式。
预应力计算需要分为静载荷和动载荷两种情况进行考虑。
在静载荷情况下,预应力的大小应该能够抵消结构所受的全部荷载,并且保证结构的稳定性。
在动载荷情况下,预应力的大小应该能够抵消结构所受的最大荷载,并且保证结构的稳定性。
2.截面设计截面设计是混凝土预应力结构设计的重要环节,它直接影响到结构的承载能力和变形性能。
截面设计需要考虑到混凝土的受压区和预应力钢筋或钢缆的受拉区,以确定结构的截面形状、尺寸和钢筋或钢缆的分布方式。
在截面设计中,需要根据结构的受力状态,确定混凝土受压区的面积和位置,并确定预应力钢筋或钢缆的受拉区位置和数量。
同时还需要考虑到混凝土和预应力钢筋或钢缆的材料性能,以保证结构的稳定性和安全性。
预应力混凝土结构设计原理一、概述预应力混凝土结构是一种利用预应力技术来改善混凝土结构抗拉承载能力的结构形式。
它通过在混凝土中加入预应力钢筋,使混凝土受到压应力,并使其内部的抗拉应力得到补偿,从而提高混凝土的抗拉承载能力。
预应力混凝土结构因其高强度、高刚度和耐久性等特点,被广泛应用于桥梁、高层建筑、厂房等建筑工程中。
本文将详细介绍预应力混凝土结构的设计原理。
二、预应力混凝土结构的基本原理预应力混凝土结构的基本原理是利用预应力钢筋对混凝土施加拉应力,使混凝土中的抗拉应力得到补偿,从而提高混凝土的抗拉承载能力。
预应力钢筋的拉应力是通过张拉预应力钢筋产生的,张拉预应力钢筋时,需要对其施加足够的拉力,使其达到规定的拉应力值。
当混凝土固结后,预应力钢筋释放的拉应力会被混凝土吸收,从而使混凝土产生压应力,达到预应力状态。
预应力混凝土结构的设计原理就是通过合理的预应力钢筋布置及张拉方式,使混凝土受到预应力的作用,从而提高混凝土的抗拉承载能力。
三、预应力混凝土结构的优点预应力混凝土结构具有以下优点:1、高强度:预应力混凝土结构中的预应力钢筋能够有效地补偿混凝土中的抗拉应力,从而提高混凝土的抗拉承载能力,使结构的承载能力得到提高。
2、高刚度:预应力混凝土结构中的预应力钢筋能够有效地提高结构的刚度,使结构的变形能力降低,从而提高结构的稳定性。
3、耐久性:预应力混凝土结构中的预应力钢筋能够有效地延长结构的使用寿命,使结构的耐久性得到提高。
四、预应力混凝土结构的设计方法1、确定结构的荷载:根据结构的使用要求,确定结构所受的荷载类型及大小。
2、确定结构的几何尺寸:根据结构的使用要求,确定结构的几何尺寸,包括结构的跨度、高度、截面形状等参数。
3、确定混凝土强度等级:根据结构的使用要求及荷载大小,选择适当的混凝土强度等级。
4、确定预应力钢筋:根据结构所受的荷载及设计要求,确定预应力钢筋的截面积、数量及布置方式。
5、确定预应力钢筋的张拉方式:根据结构的几何形状及预应力钢筋的布置方式,确定预应力钢筋的张拉方式,包括单向张拉、双向张拉等方式。
预应力混凝土结构设计原理预应力混凝土(Prestressed Concrete)是一种具有高度预应力的混凝土结构材料。
与传统的钢筋混凝土结构相比,预应力混凝土具有更高的强度和刚度,能够承受更大的荷载,同时减小结构变形和裂缝的发生。
本文将详细介绍预应力混凝土结构设计的原理和方法。
一、预应力混凝土的概念和特点预应力混凝土是指在混凝土施工之前,通过预先施加一定的压应力于钢筋或者钢束上,使其产生预应力,并与混凝土一同工作以达到增强结构强度和抗震性能的目的。
其特点如下:1. 预应力混凝土具有较高的强度和刚度,能够承受较大的荷载。
2. 由于预应力的存在,混凝土结构的变形和裂缝发生的可能性较小。
3. 预应力混凝土的施工难度较大,对材料和施工质量要求较高。
二、预应力混凝土结构设计原理预应力混凝土结构的设计原理基于弹性力学和混凝土强度理论。
在设计过程中,需要考虑以下几个关键因素:1. 荷载和荷载组合:根据结构所处的使用环境和设计要求,确定荷载类型和荷载组合,包括恒载、活载和地震荷载等。
2. 结构的几何形状:包括截面形状、跨径长度和构件布置等。
3. 材料特性:包括混凝土和预应力钢材的力学性能和耐久性能等。
4. 预应力方式和力量:根据结构的要求和设计目标,确定适当的预应力方式和施加的预应力力量。
三、预应力混凝土结构设计步骤预应力混凝土结构设计的普通步骤如下:1. 了解结构要求和设计目标。
2. 确定结构的几何形状和荷载要求。
3. 选择合适的预应力方式和力量。
4. 进行结构的受力分析和计算。
5. 设计结构的截面尺寸和预应力布置方式。
6. 进行结构的验算和抗震性能评估。
7. 编制结构施工图纸和技术规范。
8. 进行结构施工和监督。
四、预应力混凝土结构设计的优点和应用领域预应力混凝土结构由于其较高的强度和刚度,广泛应用于工业和民用建造领域。
其优点包括:1. 结构强度高,能够满足大跨度和高荷载的需求。
2. 结构变形小,使得建造物使用更加舒适和稳定。
《结构设计原理》课程设计姓名:张建龙院系:交通与工程系班级:08土木工程二〇一一年六月二日课程设计任务书一、课程设计的内容根据给定的桥梁基本设计资料(主要结构尺寸、计算内力等)设计预应力混凝土简支T 形主梁。
主要内容包括:1.预应力钢筋及非预应力钢筋数量的确定及布置; 2.截面几何性质计算;3.承载能力极限状态计算(正截面与斜截面承载力计算); 4.预应力损失估算;5.应力验算(短暂状况和持久状况的应力验算);6.抗裂验算(正截面与斜截面抗裂验算)或裂缝宽度计算; 7.主梁变形(挠度)计算; 8.锚固局部承压计算与锚固区设计; 9.绘制主梁施工图。
二、课程设计的要求与数据通过预应力混凝土简支T 形梁桥的一片主梁设计,要求掌握设计过程的数值计算方法及有关构造要求规定,并绘制施工图。
要求:设计合理、计算无误、绘图规范。
(一)基本设计资料1.设计荷载:公路—Ⅰ级荷载,人群荷载3.52kN/m ,结构重要性系数0γ=1.0 2.环境标准:Ⅱ类环境 3.材料性能参数 (1)混凝土强度等级为C50,主要强度指标为:强度标准值 ck f =32.4MPa ,tk f =2.65MPa 强度设计值 cd f =22.4MPa ,td f =1.83MPa 弹性模量 c E =3.45⨯410MPa(2)预应力钢筋采用ASTM A416—97a 标准的低松弛钢绞线(1⨯7标准型), 其强度指标为:抗拉强度标准值 pk f =1860MPa 抗拉强度设计值 pd f =1260MPa弹性模量 p E =1.95⨯510MPa 相对界限受压区高度 b ξ=0.4,pu ξ=0.2563 公称直径为15.24mm ,公称面积为140mm2(3)非预应力钢筋1)纵向抗拉非预应力钢筋采用HRB400钢筋,其强度指标为:抗拉强度标准值 sk f =400MPa 抗拉强度设计值 sd f =330MPa 弹性模量 s E =2.0⨯510MPa 相对界限受压区高度 b ξ=0.53,pu ξ=0.1985 2)箍筋及构造钢筋采用HRB335钢筋,其强度指标为: 抗拉强度标准值 sk f =335MPa 抗拉强度设计值 sd f =280MPa弹性模量 s E =2.0⨯510MPa 图1 主梁跨中截面尺寸(尺寸单位:mm )4.主要结构尺寸主梁标准跨径k L =25m ,梁全长24.96m ,计算跨径f L =24.3m 。
预应力混凝土结构设计原理课程设计任务书第一部分 设计任务书一、目的通过课程设计,使每个学生掌握桥梁工程中常遇的小箱梁桥的设计计算方法和设计步骤,巩固和加强所学的有关桥梁内力计算和预应力混凝土结构的配筋计算的基本理论,并熟悉与设计相关的各种设计依据,了解有关设计的参考资料。
二、设计资料及依据 (一)设计资料1、 结构形式:标准跨径(30+x )m 预应力简支小箱梁桥,100nx =m ,其中n 为各个同学准考证号的最后两位数。
2、 设计荷载:公路—II 级,人群荷载为3.5kN/m 2。
每侧栏杆重量的作用分别为3.6kN/m ,人行道的自重为7.5kN/m 2,桥面铺装采用平均为10cm 厚钢筋混凝土。
3、 桥面净宽:净—11.1m ,详见桥梁横断面图。
4、 跨径:标准跨径:b l =(30+x )m ;计算跨径:l =(29.4+x )m ;主梁全长:L =(29.96+x ) m 。
5、 上部结构材料:混凝土标号为50号;预应力筋采用jφ15.24高强度低松弛钢绞线,面积2mm 140=A ,标准强度:by R =1860MPa ;弹性模量g E =1.95×105MPa 。
先张法施工;其它钢筋直径≥12mm 的用II 级钢,其余用I 级钢。
(二)设计依据《公路桥涵设计通用规范JTG D61-2004》《公路钢筋混凝土及预应力混凝土桥涵设计JTG D62-2004》 三、设计要求:第二部分 设计指导书一、设计计算参照文献[5、6]。
参考资料[1] 公路桥涵设计通用规范(JTG D60-2004),人民交通出版社,2004年。
[2] 公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004),人民交通出版社,2004年。
[3] 姚玲森主编,桥梁工程,人民交通出版社,1995年3月第1版。
[4] 李国平主编,预应力混凝土结构设计原理,人民交通出版社,2000年10月第1版。
课程设计任务书一、课程设计的内容根据给定的桥梁基本设计资料(主要结构尺寸、计算内力等)设计预应力混凝土简支T 形主梁。
主要内容包括:1.预应力钢筋及非预应力钢筋数量的确定及布置; 2.截面几何性质计算;3.承载能力极限状态计算(正截面与斜截面承载力计算); 4.预应力损失估算;5.应力验算(短暂状况和持久状况的应力验算);6.抗裂验算(正截面与斜截面抗裂验算)或裂缝宽度计算; 7.主梁变形(挠度)计算; 8.锚固局部承压计算与锚固区设计; 9.绘制主梁施工图。
二、课程设计的要求与数据通过预应力混凝土简支T 形梁桥的一片主梁设计,要求掌握设计过程的数值计算方法及有关构造要求规定,并绘制施工图。
要求:设计合理、计算无误、绘图规范。
(一)基本设计资料1.设计荷载:公路—Ⅰ级荷载,人群荷载3.52kN/m ,结构重要性系数0γ=1.0 2.环境标准:Ⅱ类环境 3.材料性能参数 (1)混凝土强度等级为C50,主要强度指标为:强度标准值 ck f =32.4MPa ,tk f =2.65MPa 强度设计值 cd f =22.4MPa ,td f =1.83MPa 弹性模量 c E =3.45⨯410MPa(2)预应力钢筋采用ASTM A416—97a 标准的低松弛钢绞线(1⨯7标准型), 其强度指标为:抗拉强度标准值 pk f =1860MPa 抗拉强度设计值 pd f =1260MPa 弹性模量 p E =1.95⨯510MPa相对界限受压区高度 b ξ=0.4,pu ξ=0.2563 公称直径为15.24mm ,公称面积为140mm2(3)非预应力钢筋1)纵向抗拉非预应力钢筋采用HRB400钢筋,其强度指标为:抗拉强度标准值 sk f =400MPa 抗拉强度设计值 sd f =330MPa 弹性模量 s E =2.0⨯510MPa 相对界限受压区高度 b ξ=0.53,pu ξ=0.1985 2)箍筋及构造钢筋采用HRB335钢筋,其强度指标为: 抗拉强度标准值 sk f =335MPa 抗拉强度设计值 sd f =280MPa弹性模量 s E =2.0⨯510MPa 图1 主梁跨中截面尺寸(尺寸单位:mm )4.主要结构尺寸主梁标准跨径k L =25m ,梁全长24.96m ,计算跨径f L =24.3m 。
主梁高度h =1400mm ,主梁间距S =1600mm ,其中主梁上翼缘预制部分宽为1580mm ,现浇段宽为20mm ,全桥由9片梁组成。
主梁跨中截面尺寸如图1所示。
主梁支点截面或锚固截面的梁肋宽度为360mm 。
(二)内力计算结果摘录 各种情况下的组合结果见表。
截面位置项 目基本组合d S频遇组合s S准永久组合l Sd Md Vs Ms Vl Ml V(kN.m )(kN ) (kN.m ) (kN ) (kN.m ) (kN ) 支点 最大弯矩 0.0 793.79 0.0 460.29 0.0 350.11 最大剪力 0.0 859.44 0.0 487.81 0.0 365.83 变截面最大弯矩894.61665.02528.97 390.52410.39301.62(三)施工方法要点后张法施工,采用金属波纹管和夹片锚具,钢绞线采用TD双作用千斤顶两端同时张拉,当混凝土达到设计强度时进行张拉,张拉顺序与钢束序号相同。
(四)设计要求1.方案一:按全预应力混凝土设计预应力混凝土T形主梁。
2.方案二:按部分预应力混凝土A类构件设计预应力混凝土T形主梁。
3.方案三:按部分预应力混凝土B类构件(允许裂缝宽度为0.1mm)设计预应力混凝土T形主梁。
※学生应按指导教师要求选择其中一个方案进行设计。
三、课程设计应完成的工作1.编制计算说明书;2.绘制施工图(主要包括:主梁支点横断面图、主梁跨中横断面图、主梁钢束布置图、主梁钢束数量表等,根据设计内容自己决定)。
五、应收集的资料及主要参考文献[1]叶见曙.结构设计原理(第三版).北京:人民交通出版社,2016[2]张树仁等.钢筋混凝土及预应力混凝土桥梁结构设计原理.北京:人民交通出版社,2004[3]中华人民共和国行业标准.公路钢筋混凝土及预应力桥涵设计规范(JTG D62-2004).北京:人民交通出版社,2004[4]闫志刚主编.钢筋混凝土及预应力混凝土简支梁桥结构设计.北京:机械工业出版社,2009[5]易建国主编.混凝土简支梁(板)桥(第三版).北京:人民交通出版社,2006[6]胡兆同,陈万春.桥梁通用构造及简支梁桥.北京:人民交通出版社,2001[7]白宝玉主编.桥梁工程.北京:高等教育出版社,2005方案二:部分预应力混泥土A 类简支梁设计主梁尺寸如下图:1.主梁全截面几何特性1.1受压翼缘有效宽度f b ',的计算按《公路桥规》规定,T 形截面梁受压翼缘有效宽度f b ',取下列三者中的最小值: (1) 简支梁计算跨径的l/3,即l/3=24300/3=8100mm ; (2) 相邻两梁的平均间距,对于中梁为1600mm ;(3) ()f h h b b '++122,式中b=160 mm ,h b = 0 mm ,f h '= (80+180)/2 =130 mm ; 所以,()f h h b b '++122 = 160+0+12×130 =1720 mm 故,受压翼缘的有效宽度取f b '=1600mm1.2全截面几何特性的计算这里的主梁几何特性采用分块数值求和法,其计算式为 全截面面积:∑=IAA全截面重心至梁顶的距离:iiu A yy A=∑式中 i A —— 分块面积—— 分块面积的重心至梁顶边的距离如右图所示,对T 形梁跨中截面进行分块分析,分成5大块进行计算,分别计算它们底面积与性质,计算结果列于下表。
根据整体图可知,变化点处的截面几何尺寸与跨中截面相同,故几何特性也相同,主梁跨中截面的全截面几何特性如表1所示。
`跨中截面与L/4截面全截面几何特性 表12.预应力钢筋及非预应力钢筋数量的确定及布置2.1预应力钢筋数量的确定按构件正截面抗裂性要求估算预应力钢筋数量对于A 类部分预应力混凝土构件,根据跨中截面抗裂要求,可得跨中截面所需的有效预应力为We Af W M N p tks pe +-≥17.0/式中的s M 为正常使用极限状态按作用(或荷载)短期效应组合计算的弯矩值;由资料得:Q2k Q1k G2k G1k S 17.0)(M M M M M ++++=μ= 842.56+480.51+0.7×1342.92/1.193+139.48 = 2250.52 MPa设预应力钢筋截面重心距截面下缘为 p a =120 mm ,则预应力钢筋的合理作用点至截面重心轴的距离为p b p a y e -==776mm ,65.2=tk f Mpa由表1得跨中截面全截面面积 A =4582002mm ,全截面对抗裂验算边缘的弹性抵抗矩为:==b y I W /109.981×910/896 = 122.747610⨯ 3mm ,所以有效预加力合力为:666610995.110747.122/746458200/165.27.010747.122/1052.225017.0/⨯=⨯+⨯-⨯⨯=+-≥We Af W M N ptk s pe预应力钢筋的张力控制应力为=⨯==186075.075.0pk con f σ1395 Mpa 预应力损失按张拉控制应力的20%估算,则可得需要预应力钢筋的面积为26776.178713958.010995.1)2.01(mm N A conpe p =⨯⨯=-=σ 拟采用3束5400HRB jφ刚绞线,单根钢绞线的公称截面面积,14021mm A p =则预应力钢筋的截面积为2210014053mm A p =⨯⨯=,采用夹片式锚固,70φ金属波纹管成孔。
2.3预应力钢筋及普通钢筋的布置(1)按照后张法预应力混凝土受弯构件《公路桥规》中的要求,参考已有设计图纸,对跨中截面的预应力钢筋进行布置。
如图所示,预应力钢筋与普通钢筋的布置截面图。
跨中截面尺寸要素钢束在端部的锚固位置预制梁端部(2)其他截面钢束位置及倾角计算①钢束弯起形状、弯起角及弯曲半径采用直线段中接圆弧曲线段的方式弯曲;为使预应力钢筋的预加力垂直作用于锚垫板,N1、N2、N3弯起角均取8°;各钢束的弯曲半径为:RN1=40000mm,RN2=25000mm,RN3=10000mm。
②钢束各控制点位置的确定。
以N3为例,其弯起布置图如下:计算N1、N2、N3各控制参数汇总于下表2:各钢束弯曲控制要素表 表2③各截面钢束位置( ai )及其倾角(θ)计算表表3④钢筋束平弯段的位置及平弯角N1、N2、N3三束预应力钢绞线在跨中截面布置在同一水平面上,而在锚固端三束钢绞线则都在肋板中心线上,为实现钢束的这种布筋方式,N2、N3在主梁肋板中必须从两侧平弯到肋板中心线上,为了便于在施工中布置预应力管道,N2、N3在梁中的平弯采用相同的形式,其平弯位置布置图如下所示。
平弯段有两段曲线弧,每段曲线弧弯曲角为θ=584.41808000640=∏⨯°2.4按构件承载能力极限状态要求估算按非预应力钢筋数量:设预应力钢筋和非预应力钢筋的合力点到截面底边的距离为a = 80mm ,则mm a h h 132********=-=-=先假定为第一类T 形截面,由公式)2(0'0x h x b f M r f cd d -≤计算受压区高度x ,即 )21320(16004.221099.36230.16x x -⨯=⨯⨯解得:mm h mm x f 12979'=<=根据正截面承载力计算需要的非预应力钢筋截面积为2'70.561330210012607916004.22mm f A f x b f A sdppd f cd s =⨯-⨯⨯=-=采用5根直径为12mm 的HRB400钢筋,提供的钢筋截面面积为2566mm A s =。
在梁底布置成一排如图,其间距为70MM ,钢筋重心到底边的距离mm a s 45=。
其布置图如下:3主梁截面几何特性计算各控制截面不同阶段的截面几何特性汇总表 表44,持久状况下截面承载能力极限状态计算4.1.正截面承载力计算取弯矩最大的跨中截面进行正截面承载力计算(1) 求受压区高度x先按第一类T 形截面梁,略去构造钢筋影响,计算混凝土受压区高度x 为mm h mm b f A f A f x f fcd ssd p pd 1297916004.2256633021001260''=<=⨯⨯+⨯=+=受压区全部位于翼缘板内,说明设计梁为第一类T 形截面梁。