北师大版八年级数学上册教案《一次函数与正比例函数》教学设计
- 格式:docx
- 大小:440.81 KB
- 文档页数:6
最新北师大版八年级数学上册《一次函数与正比例函数》教学设计(精品教案)1.探究:引导学生观察生活中的实例,探究变量之间的关系,初步感受函数的概念。
2.归纳:通过多个实例,引导学生总结一次函数和正比例函数的概念和特点。
3.巩固和反馈:通过练和讨论,巩固学生的知识点,及时反馈学生的问题和疑惑。
2.研究方法:学生需要积极参与探究和讨论,注重归纳总结,勤于练和思考,及时反馈自己的问题和困惑。
五、教学内容分析本节课的主要内容是一次函数和正比例函数的概念和特点,以及如何根据已知条件写出简单的一次函数表达式。
教学重点是理解一次函数和正比例函数的概念,教学难点是能根据所给条件写出简单的一次函数表达式,需要发展学生的抽象思维能力。
六、教学过程设计1.引入新知识:通过一些实例引导学生思考变量之间的关系,初步感受函数的概念。
2.讲解一次函数和正比例函数的概念和特点,引导学生总结归纳。
3.演示如何根据已知条件写出简单的一次函数表达式,让学生进行练。
4.讨论和解决学生的问题和疑惑,及时给予反馈。
5.巩固练:让学生通过实例练,巩固所学知识。
6.总结归纳:让学生总结一次函数和正比例函数的概念和特点,及如何根据已知条件写出简单的一次函数表达式。
七、教学资源准备教师需要准备课件、实例、练题等教学资源,以及黑板、白板、笔等教学工具。
八、教学评估方法教师可以通过学生的课堂表现、练成绩、小组讨论等方式进行评估,及时发现学生的问题和困惑,做好及时反馈和指导。
同时,教师可以通过课后作业和考试等方式进行综合评估。
教学过程设计本节课设计了七个环节:复引入、新课讲述、巩固练、知识提高、反馈练、课堂小结和布置作业。
复引入在这个环节,教师提出了三个问题,分别是什么是函数、函数有哪些表示方式和在现实生活中有哪些问题可以归结为函数问题。
这个环节的意图是为了激发学生的求知欲望,吸引同学们的注意力,采用了“复旧知识,诱导新内容”的引入方法。
问题(1)(2)复上节课的内容,问题(3)是让学生把所学知识运用于实际生活,提高学生的运用意识。
一次函数第四章一次函数与正比例函数2.4 一、学生起点分析在七年级下期学生已经探索了变量之间关系,在此基础上,本章前一节继续通过对变量关系的考察,让学生初步体会函数的概念,能判断两变量之间的关系是否可看作函数。
本节课进一步研究其中最简单的一种函数——一次函数。
由于有前面内容的铺垫,学生已经会建立变量之间的关系,可能有部分学生表述上还不太规范,在教学中,教师要注意纠正学生的一些错误习惯,如将解析式写成等,培养学生良好的书写习惯。
二、教学任务分析八年级《一次函数》是义务教育课程标准北师大版实验教科书个课时:让学生1第六章《一次函数》的第二节。
本节内容安排了)上(理解一次函数和正比例函数的概念,能根据已知信息写出简单的一次并初步形成利用函数的观点认识现实世界的意识和能力。
函数表达式,与原传统教材相比,新教材更注重借助生活中的实际背景,让学生经历一般规律的探究过程来理解一次函数和正比例函数的概念;同时,新教材调整了知识的安排顺序,原来教材正比例函数在一次函数前面,而新教材是将正比例函数作为一次函数特殊情况给出来的。
三、教学目标分析)结合具体情境体会一次函1依据新课程标准中一次函数中关于(制定。
)58(参见例能根据已知条件确定一次函数的表达式数的意义,教学目标:.教学目标:1理解一次函数和正比例函数的概念;(1) 能根据所给条件写出简单的一次函数表达式。
(2) 知识目标:2. 经历一般规律的探索过程,发展学生的抽象思维能力;(1)经历从实际问题中得到函数关系式这一过程,发展学生的数学(2) 应用能力。
能力目标3. (1)体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣。
在探索过程中体验成功的喜悦,树立学习的自信心。
(2) 。
依据新课程标准制定教学重点2 理解一次函数和正比例函数的概念。
依据学情制定教学难点3发展学生的抽象思,能根据所给条件写出简单的一次函数表达式维能力。
北师大版数学八年级上册2《一次函数与正比例函数》教学设计2一. 教材分析《一次函数与正比例函数》是北师大版数学八年级上册第2章的内容。
本节内容是在学生已经掌握了函数概念的基础上,进一步学习一次函数与正比例函数的定义、性质及应用。
一次函数与正比例函数是初中的重要内容,也是后续学习函数及其他数学知识的基础。
二. 学情分析学生在学习本节内容时,已经具备了初步的函数概念,能够理解变量之间的关系。
但是,对于一次函数与正比例函数的定义和性质,以及如何运用这些知识解决实际问题,可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解函数的概念,通过实例让学生感受一次函数与正比例函数的应用。
三. 教学目标1.理解一次函数与正比例函数的定义及其性质。
2.能够运用一次函数与正比例函数解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.一次函数与正比例函数的定义及其性质。
2.一次函数与正比例函数在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探索、发现问题,培养学生的独立思考能力。
2.利用多媒体课件,直观展示一次函数与正比例函数的图象,帮助学生理解其性质。
3.通过实例分析,让学生感受一次函数与正比例函数在实际问题中的应用。
4.采用小组合作学习,培养学生的团队协作能力。
六. 教学准备1.多媒体课件。
2.相关实例资料。
3.练习题。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些生活中的实例,如购物时商品的价格变化,让学生观察并思考这些实例中变量之间的关系。
引导学生回顾已学的函数概念,为新课的学习做好铺垫。
2.呈现(10分钟)介绍一次函数与正比例函数的定义,并通过多媒体课件展示其图象,让学生直观地感受一次函数与正比例函数的特点。
3.操练(10分钟)让学生分组讨论,分析实例中的一次函数与正比例函数,并尝试用数学语言描述其性质。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对一次函数与正比例函数的理解。
《一次函数与正比例函数》教案一、教材分析(一)教材的地位和作用《一次函数与正比例函数》八年级上册第四章第二节的内容,一次函数是初中阶段研究的较为简单、应用较为广泛的函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。
同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。
三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。
(二)教学目标知识与技能目标:(1)理解一次函数和正比例函数的概念;(2)能根据所给条件写出简单的一次函数表达式.过程与方法目标:(1)经历一次函数概念的抽象过程,体会模型思想,从实际问题中得到函数关系式,并感受它们之间的一种依存关系。
(2)能根据所给的实际生活背景,列出简单的一次函数关系式。
情感态度与价值观目标:通过具体问题的解决,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.在探索过程中体验成功的喜悦,树立学习的自信心.教学重点、难点:重点:从具体情境中列出相应的一次函数表达式,从而抽象出一次函数的概念。
难点:根据具体情境所给的信息确定一次函数的表达式二、教法与学法:在本节课的教学中我准备采用的教学方法主要是引导——自学交流的方式。
根据学生的理解能力和生理特征,一方面运用现实生活实例,引发学生的兴趣,使他们的注意力集中到解决现实生活问题上,另一方面通过学生小组合作交流、展示,尽可能充分发挥学生的主动性。
通过本节课的学习,使学生学会在独立思考的基础上与同伴进行交流、讨论,培养学生的合作意识,感受数学源于生活有应用于生活。
三、教学过程设计下面是我说课的重点,也就是教学过程的设计,整节课我共设为六个环节:第一个环节是复习回顾:1、什么叫函数:在某个变化过程中,有两个 x和y,如果给定一个x值,相应地就确定一个y值,那么我们称y是x的函数,其中x是 ,y是 .2、函数的三种表达方式有:、、。
3、已知一个长方形的面积为y,长为5,宽为x,则长方形的面积表示为y= . 设计意图:复习函数的概念及其表达方式。
北师大版数学八年级上册2《一次函数与正比例函数》教案3一. 教材分析《一次函数与正比例函数》是北师大版数学八年级上册第2单元的内容。
本节课主要介绍了一次函数与正比例函数的概念、性质及其应用。
通过本节课的学习,学生能够理解一次函数与正比例函数的本质联系,掌握一次函数与正比例函数的图象和性质,并能运用一次函数与正比例函数解决实际问题。
二. 学情分析学生在七年级已经学习了正比例函数的基础知识,对正比例函数的概念和性质有一定的了解。
但学生在理解一次函数与正比例函数的联系方面可能存在一定的困难。
因此,在教学过程中,教师需要注重引导学生发现一次函数与正比例函数之间的内在联系,并通过丰富的实例让学生感受一次函数与正比例函数在实际生活中的应用。
三. 教学目标1.知识与技能:理解一次函数与正比例函数的概念,掌握一次函数与正比例函数的性质;能够运用一次函数与正比例函数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,探索一次函数与正比例函数的关系;学会用数学的眼光观察现实世界,提高运用数学解决实际问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,激发学生学习数学的积极性;培养学生合作交流的能力,提高学生的团队协作意识。
四. 教学重难点1.重点:一次函数与正比例函数的概念、性质及其应用。
2.难点:一次函数与正比例函数的本质联系。
五. 教学方法1.情境教学法:通过生活实例引入一次函数与正比例函数的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生发现一次函数与正比例函数之间的内在联系,培养学生的思维能力。
3.小组合作学习:学生进行小组讨论,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教师准备:对本节课的内容进行深入研究,了解一次函数与正比例函数的相关知识。
2.学生准备:回顾七年级学习过的正比例函数知识,预习本节课的内容。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如购物时商品的优惠券使用、行程问题等,引导学生发现这些问题都可以用一次函数与正比例函数来解决。
第四章一次函数2 一次函数与正比例函数一、教学目标1.经历一次函数概念的抽象过程,理解正比例函数和一次函数的概念,体会模型思想,发展符号意识.2.能辨别正比例函数与一次函数的区别与联系.3.能根据所给条件写出正比例函数和简单的一次函数表达式.4.能利用一次函数解决简单的实际问题.通过实例让学生经历思考,分析问题中量与量之间的关系,提高学生的归纳概括能力和辨别能力.二、教学重难点重点:掌握正比例函数和一次函数的概念.难点:能根据所给条件写出正比例函数和简单的一次函数表达式.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计问题1:什么是函数?预设答案:一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.追问:表示函数的方法一般有哪些呢?预设答案:表示函数的一般方法有:图象法、列表法和关系式法.教师活动:三种函数表示法可以互相转化.问题2:购买一些签字笔,单价3元,总价为y元,签字笔为x支,根据题意填表:(1)y随x变化的关系y= ,是自变量,是的函数;【探究】情景一:某弹簧的自然长度为3 cm,在弹性限度内,所挂物体的质量x每增加1kg,弹簧长度y增加0.5 cm.(1) 计算所挂物体的质量分别为1 kg,2 kg,3 kg,4 kg,5 kg时弹簧的长度,并填入下表:预设答案:3;3.5;4;4.5;5;5.5(2)你能写出y与x之间的关系吗?当x=0时,y=3;当x=1时,y=3+1×0.5=3.5;当x=2时,y=3+2×0.5=4;当x=3时,y=3+3×0.5=4.5;...它们之间的数量关系是:弹簧长度=原长+增加的长度,因此,x与y之间的关系式为:y=3+0.5x 情景二:某辆汽车油箱中原有油60 L,汽车每行驶50 km耗油6 L.(1)填写下表:预设答案:0;6;12;18;24;36(2) 你能写出耗油量y(L)与汽车行驶路程x(km)之间的关系式吗?预设答案:y=0.12x(3) 你能写出油箱剩余油量z(L)与汽车行驶路程x(km)之间的关系式吗?预设答案:z=60–0.12x教师活动:上面的三个函数关系式,有什么共同点?y=3+0.5x y=0.12x z=60–0.12x共同特点:(1)都是含有两个变量x,y的等式;(2)x和y的指数都是一次;(3)自变量x的系数都不为0.【归纳】若两个变量x、y间的对应关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数.特别地,当b=0时,称y是x的正比例函数.一次函数的结构特征:(1)k≠0;(2)x的次数是1;(3)常数项b可以为一切实数.一次函数与正比函数的关系:正比例函数是一种特殊的一次函数.(即当常数b=0时)【做一做】下列关系式中,哪些是一次函数,哪些是正比例函数?(1)y=3πx;(2)y=8x–6;(3)y=1;x(4)y=2–8x;(5)y=5x2–4x+1;(6)y=8x2+x(1–8x).解:(1)是一次函数,也是正比例函数;(2)是一次函数,不是正比例函数;(3)不是一次函数,也不是正比例函数;(4)是一次函数,不是正比例函数;(5)不是一次函数,也不是正比例函数;(6)是一次函数,也是正比例函数;已知y–2与x成正比例,且当x=1时,y=7,求y与x之间的函数关系式,并求出当x=–2时,y的值.解:由y–2与x成正比例,设y–2=kx(k≠0),因为当x=1时,y=7,所以7–2=k,得k=5,所以y与x之间的函数关系式为y=5x+2.当x=–2时,y=5×(–2)+2=–8,所以当x=–2时,y的值是–8.。
一次函数与正比例函数一、教材分析《一次函数与正比例函数》是北师大版八年级上册第四章第二节的内容,在学生掌握了变量之间的关系、函数概念的基础上继续学习本节内容。
一次函数的研究方法具有一般性和代表性,为学习后面的反比例函数、二次函数奠定了基础,起着承上启下的作用。
二、学情分析认知基础:学生刚刚学习了函数的概念,在应用与理解时并不是很熟练、透彻,需要通过本节内容进一步加深巩固,对于规律性的问题,需进一步加强训练。
活动经验基础:在第一节函数的学习中,学生已经接触了较为丰富的生活实例,他们的参与意识和活动能力都很强,有一定的生活经验,因此在教学时,教师应结合学生的生活实际和认知状况,选择丰富的生活素材,启发学生从实例中归纳出一次函数的概念,加深理解,体会数学的广泛应用。
三、教学任务分析知识与技能目标(1)掌握一次函数和正比例函数的概念。
(2)能根据所给条件写出正比例函数和简单的一次函数表达式。
过程与方法目标(1)经历一次函数概念的抽象过程。
(2)体会模型思想,发展符号意识与数学应用能力。
情感与态度价值观目标(1)感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣。
(2)在探索过程中体验成功的喜悦,树立学生学习的自信心。
教学重点:掌握一次函数、正比例函数的概念;教学难点:能根据条件求出一次函数的关系式。
四、教法与学法分析说教学方法:针对八年级学生的年龄特点和本班的实际情况,遵循学生的认知规律,采用分组讨论法、引导发现法、讲练结合法为主的教法,让学生充分经历抽象一次函数模型的过程。
同时借助多媒体为辅进行演示、以增加课堂容量和教学的直观性。
学法指导:结合本节课的内容以及学生的心理特点,在学法上,引导学生采用自主探究与合作交流相结合的方法,让学生经历观察思考,交流讨论,归纳总结,以及将结论推广应用的过程。
五、教学过程分析(一)测1、下列关系式中,哪个不是表示y是x的函数()A. y=2xB. y=x2C. y2 =xD. y=-2x+11、什么是函数?2、函数有哪些表达方式?(二)探情景1、某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x 每增加1kg,弹簧长度y 增加.(1)计算所挂物体的质量分别为1kg 、2kg 、3kg 、4kg 、5kg 时的弹簧长度,并填入下表:(2)你能写出x 与y 之间的关系式吗?(2)你能写出x 与y 之间的关系式吗?(3)你能写出油箱剩余油量z(L)与汽车行驶路程x(km)之间的关系式吗?(三)得学生观察三个函数关系式30.5y x ,y = ,z=60 的共同特征?①等式左右两边为整式②自变量前的系数k 是常数且不为0③x 的次数为1④常数项b 可以为一切实数总结:一般地,若两个变量x,y 间的关系式可以表示成y=kx+b (k,b 为常数, k ≠0)的形式,则称y 是x 的一次函数(x 是自变量,y 为因变量).特别地,当b=0时,则y 是x 的正比例函数. 思考:一次函数与正比例函数的关系是什么?(四)辨练习:判断下列函数关系式中,一次函数是 ,正比例函数是 。
北师大版八年级数学上册:4.2《一次函数与正比例函数》教学设计一. 教材分析《一次函数与正比例函数》是北师大版八年级数学上册第4章的内容,主要介绍了正比例函数和一次函数的定义、性质和应用。
本节课的内容是学生进一步学习函数的基础,对于学生理解函数的概念、掌握函数的性质、提高解决问题的能力具有重要意义。
二. 学情分析学生在七年级时已经学习了比例和方程,对比例的概念和方程的解法有一定的了解。
但他们对函数的概念和性质还不够清晰,特别是对于函数图像的理解和应用。
因此,在教学过程中,需要引导学生将已有的知识与函数内容相结合,通过实例和练习让学生感受函数的意义和应用。
三. 教学目标1.知识与技能:使学生理解正比例函数和一次函数的定义,掌握它们的性质和图象特征,能运用一次函数和正比例函数解决实际问题。
2.过程与方法:通过实例和问题,培养学生的观察、分析和解决问题的能力,提高学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极思考、勇于探索的精神,使学生感受数学与生活的密切联系。
四. 教学重难点1.重点:正比例函数和一次函数的定义、性质和图象特征。
2.难点:一次函数和正比例函数在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题情境,引导学生观察、分析和解决问题;通过案例教学,让学生感受数学与生活的联系;通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关案例和问题,以便在教学中进行案例分析和问题讨论。
2.准备一次函数和正比例函数的图象和性质的PPT,以便进行讲解和展示。
3.准备一些练习题,以便进行课堂练习和巩固。
七. 教学过程1.导入(5分钟)通过一个实际问题引出函数的概念,例如:某商品的原价是100元,打8折后的价格是多少?让学生思考和讨论,引导学生认识到函数是数学建模的基础。
2.呈现(10分钟)介绍正比例函数和一次函数的定义、性质和图象特征,通过PPT展示相关图象,让学生直观地感受函数的性质。
北师大版八年级上册2一次函数与正比例函数教学设计任务目标1.掌握一次函数与正比例函数的概念及其特点。
2.能够应用一次函数及正比例函数解决实际问题。
教学内容一次函数1.一次函数的概念,一次函数的一般式和斜率截距式。
2.一次函数的图像及其特点。
正比例函数1.正比例函数的概念。
2.正比例函数的图像及其性质。
3.应用正比例函数解决实际问题。
教学方法1.分组讨论法:以小组为单位,讨论课前教师提供的问题,培养学生间的互动和合作。
2.多媒体教学法:利用多媒体软件,呈现一次函数和正比例函数的图像和特点,让学生直观理解函数的性质。
3.创设情境法:通过举例讲解,把抽象的函数概念具体化,让学生能够将函数应用到实际问题中。
教学步骤第一步:引入1.引入课题:今天我们将学习一次函数和正比例函数,这两个函数在生活中具有很重要的作用。
2.引入问题:在生活中,我们会遇到什么样的问题可以使用这些函数来解决?第二步:一次函数1.呈现一次函数的概念及其一般式和斜率截距式,解释一次函数的特点。
2.授课例题:给出一条直线的斜率和截距,让学生完成该直线的方程。
3.让学生通过图像辨别数据的斜率和截距,并计算出该直线的方程。
4.利用多媒体软件展示一些实际问题,并让学生用一次函数求解。
第三步:正比例函数1.呈现正比例函数的概念及其图像和特点,并让学生判断正比例函数的图像特征。
2.授课例题:给出两个变量的比例关系,让学生填写相应的表格。
3.让学生通过数据计算出两个变量的比例系数,并写出相应的公式。
4.利用多媒体软件展示一些实际问题,并让学生用正比例函数求解。
第四步:综合性实例1.给出一个综合性的例题,让学生用一次函数和正比例函数求解。
2.让学生分组讨论,找出实际问题,应用函数求解。
第五步:总结1.对本节课的内容进行总结,提醒学生需要掌握的重点。
2.鼓励学生积极参与实践,独立解决实际问题。
课堂小结通过本节课的学习,学生能够掌握一次函数和正比例函数的概念及其性质,并能够应用函数解决实际问题。
《一次函数与正比例函数》
◆教材分析
《一次函数》是义务教育课程标准北师大版实验教科书八年级 (上) 第四章《一次函数》的第二节。
本节内容安排了1个课时:让学生理解一次函数和正比例函数的概念,能根据已知信息写出简单的一次函数表达式,并初步形成利用函数的观点认识现实世界的意识和能力。
与原传统教材相比,新教材更注重借助生活中的实际背景,让学生经历一般规律的探究过程来理解一次函数和正比例函数的概念;同时,新教材调整了知识的安排顺序,原来教材正比例函数在一次函数前面,而新教材是将正比例函数作为一次函数特殊情况给出来的。
◆教学目标
(1)理解一次函数和正比例函数的概念;
(2)能根据所给条件写出简单的一次函数表达式;
(3)经历一般规律的探索过程,发展学生的抽象思维能力;
(4)经历从实际问题中得到函数关系式这一过程,发展学生的数学应用能力;
(5)体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学,用数学的兴趣;
(6)在探索过程中体验成功的喜悦,树立学习的自信心。
【教学重点】
理解一次函数和正比例函数的概念。
【教学难点】
发展学生的抽象思维能力。
能根据所给条件写出简单的一次函数表达式,
教师准备课件,图片,三角板。
第一环节:复习引入
内容:复习上节课学习的函数,教师提出问题:
a)什么是函数?
b)函数有哪些表示方式?
c)在现实生活中有许多问题都可以归结为函数问题,大家能不能举一些例子呢?
意图:为了激发学生的求知欲望,吸引同学们的注意力,这里采用了“复习旧知识,诱导新内容”的引入方法.问题(1)(2)复习上节课的内容,问题(3)是让学生把所学知识运用于实际生活,提高学生的运用意识。
效果:
问题(1)(2)学生都能快而准的回答,问题(3)是在一个开放的环境中回答,学生不能很准确的表述出来,可让学生互相补充,也可教师进行补充、完善。
通过学生亲身经历了感受函数在生活中的运用过程,初步形成数学建模的思想,感受成功的喜悦,充分体现了本节课的情感、态度目标。
若课堂气氛比较沉闷,也可由教师先举例,让学生来列函数表达式,激发学生的学习激情,再让学生举例:(如可补充如下习题)
①假设某学生骑自行车的速度为10km/h,则他骑自行车用的时间t(h)和所走过的路程s 之间的关系是什么?
②上网费用是2元/小时,则上网t(小时),费用y(元)的关系式是什么?
第二环节:新课讲述
内容:
例1 某弹簧的自然长度为3cm,在弹簧限度内,所挂物体的质量x每增加1kg,弹簧长度y 增加0.5cm。
(1)计算所挂物体的质量分别为1kg、2kg、3kg、4kg、5kg时的弹簧长度,并填入下表:
(2)你能写出x与y之间的关系式吗?
y x。
答案 (1) 3、3.5、4、4.5、5、5.5 ;(2) 30.5
例2 某辆汽车油箱有汽油100L,汽车每行驶50km耗油9L。
(1)完成下表:
(2)你能写出x与y之间的关系式吗?
(3)汽车行驶的路程x可以无限增大吗?有没有一个取值范围?剩余油量y呢?
答案 (1) 100、91、82、73、64、46;
y x;
(2) x与y之间的关系式为1000.18
(3) 汽车行驶路程x不可能无限增大,因为汽油只有100L,每行驶50km耗油9L,行驶560km后,油箱就没有油了,所以x不会超过560km.y代表油箱剩余油量,所以y应该小于100但不能小于零。
通过观察、探索、总结,归纳出一次函数与正比例函数的概念:
一般地,若两个变量x,y间的关系式可以表示成y kx b(,k b为常数,k≠0)的形式,
b时,则y是x的正比例则称y是x的一次函数(x是自变量,y为因变量).特别地,当0
函数。
意图:从生动有趣的问题情景(弹簧的长度、汽车油箱中的余油量)出发,通过对一般规律的探索过程,从实际问题中抽象出一次函数和正比例函数的概念。
效果:
从两个具体问题的函数表达式出发,互相讨论,教师在教学上恰当地设疑立障,引导学生大胆猜想,勇于探索,鼓励学生积极思维,总结出一次函数的定义,提高学生的分析问题、解决问题、总结归纳的能力。
主要从函数解析式这一角度去研究一次函数,这是学生第一次正式接触函数的表达式,教学中可根据学生状况多加一些例子,让学生逐步学会从函数表达式去认识函数,进一步掌握一次函数的定义。
第三环节:巩固练习
内容: 1.在函数(1)3
y x
,(2)5y x ,(3)4y x ,(4)223y x x , (5)2y
x
(6)1
2
y x 中是一次函数的是 ,是正比例函数的是。
2.若函数(63)44y
m x n 是一次函数,则,m n 应满足的条件是 ;
若是正比例函数,则,m n 应满足的条件是 。
3.当k = 时,函数2
8
(3)5k
y
k
x 是关于x 的一次函数。
意图:对本节知识进行巩固练习。
效果:学生基本能交好的独立完成练习题,收到了较好的教学效果。
在第3题中,学生易忘记3k ≠0的条件,而错误的将答案写成±3。
第四环节:知识提高
内容:
例 3 写出下列各题中x 与y 之间的关系式,并判断:y 是否为x 的一次函数?是否为正比例函数?
(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系;
(2)圆的面积y (厘米2
)与它的半径x (厘米)之间的关系;
(3)一棵树现在高50厘米,每个月长高2厘米,x 个月后这棵树的高度为y (厘米),则y 与x 的关系。
答案: (1)由路程=速度×时间,得60y x ,y 是x 的一次函数,也是x 的正比例函数;
(2)由圆的面积公式,得2y
x ,y 不是x 的一次函数,也不是x 的正比例函数;
(3)这棵树每月长高2厘米,x 个月长高了2x 厘米,因而50
20y
x ,y 是x
的一次函数,但不是x 的正比例函数。
例4 某地区电话的月租费为25元,在此基础上,可免费打50次市话(每次3分钟),超过50次后,每次0.2元。
(1)写出每月电话费y (元)与通话次数x (x >50)的函数关系式; (2)求出月通话150次的电话费;
(3)如果某月通话费为53.6元,求该月通话的次数。
分析:解决此类问题首先要理解题意,然后找出相等关系.此题相等关系为:每月通话费=月租费+超过50次后电话费。
答案: (1)根据题意得: 25(50)y x ×0.2,即0.215y x ;
(2)当150x
时,0.2y ×1501545;
(3)因为53.6>25,可知通话次数大于50次,即当53.6y
时,求x 的值。
53.60.215x ,解得193x 。
意图:通过丰富的现实背景的例题,进一步理解一次函数和正比例函数的概念,根据所给的条件写出简单的一次函数的表达式,让学生体会数学的广泛应用,发展学生的抽象思维能力。
充分加强数学与现实的联系,促进学生新的认知结构的建立和数学应用能力的发展。
效果:
根据已知条件写出简单的一次函数的表达式,教学时,学生会出现一定的差异,此时,要给予学生足够的思考时间,必要的时候可组织学生交流讨论,而不能是简单的“告诉”。
另外,在教学上还必须注意培养学生的书面表达能力,这些都是逻辑思维训练的一部分。
在例4中的(1)中,易错解为250.2y
x 。
应让学生仔细审题,找准等量关系;(2)、
(3)两问是给定自变量的值,求函数数值,这类问题的实质就是解方程。
第五环节:反馈练习
内容:
1.下列语句中,具有正比例函数关系的是( ) (A) 长方形花坛的面积不变,长y 与宽x 之间的关系; (B) 正方形的周长不变,边长x 与面积S 之间的关系;
(C) 三角形的一条边不变,这条边上的高h与面积S之间的关系;
(D) 圆的面积为S,半径为r,S与r之间的关系。
2.我国现行个人工资、薪金所得税征收办法规定:月收入低于1600元的部分不收税;月收入超过1600元但低于2100元的部分征收5%的所得税……如果某人月收入1960元.他应缴纳个人工资、薪金所得税为(19601600)×5%=18(元)。
(1)当月收入大于1600元而又小于2100元时,写出应缴纳所得税y(元)与月收入x(元)之间的关系式。
(2)某人月收入为1760元,他应该缴纳所得税多少元?
(3)如果某人本月缴所得税19.2元,那么此人本月工资、薪金是多少以元?
意图:对本节知识进行巩固练习。
效果:学生基本能较好地独立完成练习题,收到了较好的教学效果。
在第2题,学生容易遗忘几何的相关内容,在此教师可作适当的提醒,让学生更顺利地完成习题。
第六环节: 课堂小结
内容:
这节课我们学习了一类很有用的函数——一次函数,只要解析式可以表示成y kx b(,k b为常数,k≠0)的形式的函数则称为一次函数。
正比例函数是一次函数b时的特殊情形。
(方式:师生互相交流总结。
)
当0
目的:鼓励学生结合本节课的学习内容,谈谈自己的收获和感想,进一步巩固本节课的知识。
实际效果:学生畅所欲言自己对本节课的感受与收获,都能准确的说出一次函数与正比例函数的概念。
但学生容易忽略一次函数与实际生活的联系,教师应做适当补充。
略。