非线性电阻元件及其约束关系讲解
- 格式:ppt
- 大小:80.50 KB
- 文档页数:3
实验十二非线性元件伏安特性的测量和研究给一个元件通以直流电,用电压表测出元件两端的电压,用电流表测出通过元器件的电流。
通常以电压为横坐标、电流为纵坐标,画出该元件电流和电压的关系曲线,称为该元件的伏安特性曲线。
这种研究元件特性的方法称为伏安法。
伏安特性曲线为直线的元件称为线性元件,如电阻;伏安特性曲线为非直线的元件称为非线性元件,如二极管、三极管等。
伏安法的主要用途是测量研究线性和非线性元件的电特性。
非线性电阻总是与一定的物理过程相联系,如发热、发光和能级跃迁等,江崎玲、於奈等人因研究与隧道二极管负电阻有关的现象而获得1973年的诺贝尔物理学奖。
【实验目的】通过实验测量普通二极管、稳压二极管和发光二极管的伏安特性,掌握非线性元件伏安特性的测量方法、基本电路、误差计算,能够给出所测量元件的特性参数(如正向、反向导通电压,反向饱和电流。
击穿电压等)。
【实验仪器】非线性元件伏安特性实验仪,其控制面板如图1所示。
仪器由直流稳压电源、数字电压表、数字电流表、可变电阻器、普通二极管、稳压二极管、发光二极管、待测电阻等组成。
图1 非线性元件伏安特性实验仪控制面板仪器的使用及注意事项1、在实验过程中,通过调节分压调节以及分流调节旋钮来调节待测元件两端的电压。
2、面板的左部分电路为用来测试待测元件的正向特性;右部分电路用来测试待测元件的反向特性。
3、待测元件两端的电压由电压表给出,在测正向特性的时候,应该使用2V电压挡;在测量反向电压特性的时候,要使用20V电压挡。
4、 在接线的过程中,注意不要将各个元件的正负向接反。
5、 由于本实验需要连接线较多,在实验中应注意正确连接线路,且在使用时不可用力过猛。
6、 在测量反向特性时,当反向电流开始增大时应注意缓慢调节电压。
如果观测到反向电流有突变趋势,应该立即减小电压。
图2 非线性元件伏安特性实验仪实物照片【实验原理】1、伏安特性根据欧姆定律,电阻R 、电压U 、电流I,有如下关系:R U I = (1)由电压表和电流表的示值U 和I 计算可得到待测元件Rx 的阻值。
线性元件和非线性元件山东省邹平县第一中学李进在金属导体中,电流跟电压成正比,伏安特性曲线是通过坐标原点的直线,具有这种伏安特性的电学元件叫做线性元件。
对欧姆定律不适用的导体和器件,电流和电压不成正比的电学元件叫做非线性元件。
非线性元件是一种通过它的电流与加在它两端电压不成正比的电工材料,即它的阻值随外界情况的变化而改变.1.只有在其它外界参量(如温度)一定的情况下,线性元件的伏安特性曲线才是通过坐标原点的直线。
实际情况下由于温度的变化,线性元件的伏安曲线仍为过原点的曲线。
学生实验中描绘的小灯泡的伏安曲线就是这样的。
2.线性与非线性的实质:R =是电阻的定义式,是普适的,非线性并不是这个关系不成立了,而是在温度等外界参数不变的情况下,电流不随电压同比变化。
3.非线性的原因:设载流子在与正离子(或空穴)的两次碰撞之间是由静止做匀加速直线运动的,载流子定向移动的速率为v==l为电阻的长度λ为载流子的平均自由程,v热为载流子热运动平均速率对于线性元件,在温度一定的情况下,载流子体密度n,载流子热运动平均速率v热,载流子的平均自由程λ均为定值,ρ、R为定值,因此I与U的正比关系成立。
对于非线性元件,影响载流子体密度n的因素不仅仅是温度,外加电场的强度也会影响载流子的数量(如气体导电过程,随着电压的增大,越来越多的空气分子被电场力“撕裂”成离子,成为载流子),因此即便在温度一定的情况下,I与U的正比关系也是不成立的。
公式也可以用来解释半导体与金属导体的导电特性的差异。
对金属导体,温度升高后,λ减小(正离子运动加剧)、v热增大,n几乎不变(由于金属正离子结构稳定,自由电子浓度受电场影响极小),电阻率升高,电阻增大。
第十二章 非线性电路§12.1 非线性元件12.1.1 非线性电阻电阻元件的特性可以用电压u 和电流i 之间的关系来描述,称之为伏安特性关系。
线性电阻的伏安特性可以用欧姆定律来表示,即Ri u =,在i u -平面上是一条通过坐标原点的直线。
而非线性电阻元件的电压和电流关系不满足欧姆定律,它一般用某种特定的非线性函数来表示。
图12-1(a )表示非线性电阻元件的电路符号,图12-1(b )表示某种非线性电阻的伏安特性曲线。
根据非线性电阻元件的伏安特性,可以分为以下几类。
(a) (b)图12-1 非线性电阻及伏安特性曲线 1. 单调型非线性电阻元件单调型非线性电阻元件的伏安特性是单调增加或单调减小的函数。
如图12-2(a )所示的PN 结二极管是典型的单调增加型非线性电阻,伏安特性如图12-2(b )所示,从图12-2(b )可以看出,电流i 随着电压u 的变化单调递增,但是图像过原点而关于原点不对称,其伏安特性可以用下列函数表示:)1(-=kT quS e I i (12-1)其中S I 为反向饱和电流,是常数,C q 19106.1-⨯=,是电子的电荷量,K J k /1038.123-⨯=,是玻尔兹曼常数,T 为热力学温度。
在K T 300=(室温)时,140-=V kTq 则 )1(40-=u S e I i从上式可以看出,电流i 随着电压u 单调增加。
-u(a) (b)图12-2 PN 结二极管及其伏安特性2. 电压控制型非线性电阻元件如果非线性电阻元件两端的电流是其电压的单值函数,这种电阻就称为电压控制型电阻,其伏安特性可以用下列函数关系表示)(u g i = (12-2)其典型的伏安特性曲线如图12-3所示。
从特性曲线可以看出,对于每一个电压值u ,有且只有一个电流值i 与之对应,但是,对于某一个电流值,则可能对应多个电压值。
隧道二极管就具有这样的伏安特性。
图12-3 隧道二极管的伏安特性曲线3. 电流控制型非线性电阻元件如果非线性电阻元件两端的电压是电流的单值函数,这种电阻就称为电流控制型电阻,其伏安特性可以用下列函数关系表示)(i f u = (12-3)其典型的伏安特性曲线如图12-4所示,从特性曲线可以看出,对于每一个电流值i ,有且只有一个电压u 值与之对应,但是,对于某一个电压值,则可能对应多个电流值。