简单二元系统相图的绘制
- 格式:doc
- 大小:34.00 KB
- 文档页数:2
实验一 简单二元系统相图的绘制一、目的与要求:1.用热分析法测绘P b -S n 二元金属相图。
2.了解热分析法的测量技术与热电偶测量温度的方式。
二、原理:相图是多相体系处于相平衡状态时体系的某物理性质(如温度)对体系的某一自变量(如组成)作图所得的图形,图中能反映出相平衡的情况(相对数量及性质等),故称为相图。
二元或多元体系的相图常以组成为自变量其物理性质则大多取温度。
由于相图能反映出多相平衡体系在不同自变量条件下的相平衡情况,因此,研究多相体系的性质和多相体系相平衡情况的转变,都要用到相图。
图1-1是一种类型的二元简单低共熔物相图,图中A 、B 表示二个组分的名称,纵轴是物理量温度T ,横轴是组分B 的百分含量B%,在acb 线的上方,体系只有一个相(液相)存在,在ecf 以下,体系有二个相(晶体A 和B )存在,在ace 包围的面积中,一个固相(A )和一个液相(A 在B 中的饱和熔化物)共存,在bef 所包围的面积中,也是一个固相(B )和一个液相(B 和A 中的饱和熔化物)共存。
图中C 是ace 与bef 两个相区的交点,有三相(晶相A 、晶相B 、饱和熔化物)共存。
所以测绘相图就是要将相图中这些分隔相区的线画出来。
常常利用的方式就是热分析实验法。
热分析法所观察的物理性质是被研究体系的温度,将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一按时间读体系温度一次,所以得历次温度值对时间作图,得一曲线,一般称为步冷曲线或冷却曲线。
H P 5 G A B t T T B%a b c ef1 2 3 4 图1-2 图1-1在冷却进程中,若体系发生相变,就伴随着必然热效应,因此步冷曲线的斜率发生转变而出现转折点,所以这些转折点温度就相当于被测体系在相图中分隔线上的点子,若图1-2是图1-1中组成为P的体系步冷曲线,则点二、3就别离相当于相图中的点G、H。
因此,取一系列组成不同的体系,作出它们的步冷曲线,求出各转折点,即能画出二元体系的最简单相图(对复杂的相图,还必需配合其它方式,方能画出)。
实验二二元液系气液平衡相图一、实验目得1、了解环己烷—乙醇系得沸点—组成图2、由图上得出其最低恒沸温度及最低恒沸组成(含乙醇%)3、学会使用数字阿贝折射仪4、学会使用WTS-05数字交流调压器二、原理一个完全互溶双液体系得沸点—组成图,表明在气液二相平衡时沸点与二相成分间得关系,它对了解这一体系对行为及分馏过程都有很大得实用价值。
在恒压下完全互溶双液系得沸点与组分关系有下列三种情况:1、溶液沸点介于二纯组分之间;2、溶液有最高恒沸点;3、溶液有最低恒沸点、图1表示有最低恒沸点,本次实验图形也像如此得样子,A′LB′代表液相线得交点表示在该温度时互成平衡得二相得成份。
绘制沸点—成份图得简单原理如下:当总成份为X得溶液开始蒸馏时,体系得温度沿虚线上升,开始沸腾时成份为Y得气相生成、若气相量很少,x、y二点即代表互成平衡时液气二相成份。
继续蒸馏,气相量逐渐增多,沸点沿虚线继续上升,气液二相成份分别在气相与液相线上沿箭头指示方向变化。
当二相成份达到某一对数值x′与y′,维持二相得量不变,则体系气液二相又在此成份达到平衡,而二相得物质数量按杠杆原理分配。
本实验利用回流得方法保持气液二相相对量一定,则体系温度恒定。
待二相平衡后,取出二相得样品,用阿贝折光仪测定其折射率。
得出该温度下气液二相平衡成份得坐标点,改变体系得总成份,再用上法找出一对坐标点,这样测得若干坐标点后,分别按气相点与液相点连成气相线与液相线,即得T—X平衡图。
三、步骤1、安装接通仪器,打开冷凝水;2、加入环己烷20ml,蒸馏至沸腾,待小兜有液体后回流三次,温度平衡2—3分钟基本不变,记下温度,关闭调压器;3、A组加入乙醇0。
5ml,用上法测定温度,然后关闭调压器,取出气相,液相得样品,测其折射率,以后分别加入1。
0,2.0,4、0,8.0,12、0ml乙醇;4、B组加入20ml无水乙醇,蒸馏至沸腾,待小兜有液体后回流三次,温度平衡2-3分钟基本不变,记下温度,关闭调压器;5、加环己烷0。
大学化学实验II实验报告——物理化学实验学院:化工学院专业:班级:姓名实验日期实验时间学号指导教师同组人实验项目名称二元液系相图的绘制实验目的1.掌握阿贝折射仪的使用方法。
1、学习常压下完全互溶双液系气-液平衡相图的绘制。
实验原理两种液体物质混合而成的两组分体系称为双液系。
根据两组分间溶解度的不同,可分为完全互溶、部分互溶和完全不互溶三种情况。
两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。
当压力保持一定,混合物沸点与两组分的相对含量有关。
恒定压力下,真实的完全互溶双液系的气-液平衡相图(T-x),根据体系对拉乌尔定律的偏差情况,可分为3类:(1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图(a)所示。
(2)最大负偏差:存在一个最小蒸汽压值,比两个纯液体的蒸汽压都小,混合物存在着最高沸点,如盐酸—水体系,如图(b)所示。
(3)最大正偏差:存在一个最大蒸汽压值,比两个纯液体的蒸汽压都大,混合物存在着最低沸点如图(c))所示。
二组分真实液态混合物气—液平衡相图(T-x图)后两种情况为具有恒沸点的双液系相图。
它们在最低或最高恒沸点时的气相和液相组成相同,因而不能象第一类那样通过反复蒸馏的方法而使双液系的两个组分相互分离,而只能采取精馏等方法分离出一种纯物质和另一种恒沸混合物。
为了测定双液系的T-x相图,需在气-液平衡后,同时测定双液系的沸点和液相、气相的平衡组成。
本实验以环己烷-乙醇为体系,该体系属于上述第三种类型,在沸点仪中蒸馏不同组成的混合物,测定其沸点及相应的气、液二相的组成,即可作出T-x相图。
tAtAtAtB tBtBt/oCt/oCt/oCxBxBxBA B A AB B(a)(b)(c)x'x'本实验中两相的成分分析均采用折光率法测定:折光率是物质的一个特征数值,它与物质的浓度及温度有关,因此在测量物质的折光率时要求温度恒定。
1 表示方法1.1 二元系统概述二元系统是含有两个组元(C=2)的系统,如:CaO—SiO2系统,Na2O—SiO2系统等。
根据相律F=C-P+2=4-P,由于所讨论的系统至少应有一个相,所以系统最大自由度数为3,即独立变量除温度、压力外,还要考虑组元的浓度。
对于三个变量的系统,必须用三个坐标的立体模型来表示。
但是,在通常情况下,硅酸盐系统是凝聚系统,可以不考虑压力的改变对系统相平衡的影响,此时相律可以下式表示:F=C-P+1在后面所要讨论的二元、三元、四元系统都是凝聚系统,不再做特别说明。
对于二元凝聚系统:F=C-P+1=3-P当Pmin=1时,Fmax=2;当Pmax=3,Fmin=0可见,在二元凝聚系统中平衡共存的相数最多为三个,最大自由度数为2,这两个自由度就是指温度(T)和两组元中任一组元的浓度(X)。
因此二元凝聚系统相图仍然可以用平面图来表示,即以温度一组成图表示。
1.2 二元系统组成表示法二元系统相图中横坐标表示系统的组成,因此又称为组成轴。
组成轴的两个端点分别表示两个纯组元,中间任意一点都表示由这两个组元组成的一个二元系统。
假设二元系统由AB两组元构成,则两个端点A和B分别表示纯A和纯B。
组成轴分为100等份,从A点到B点,B的含量由0%增加到100%,A的含量由100%减少到0%;从B点到A点则相反。
如图7-24。
AB之间的任意点都是由AB组成的二元系统,如图中的m点是由30%的A和70%的B组成的二元系统。
在相图中组成可以用质量百分数表示,也可以用摩尔百分数或摩尔分数表示,其图形有明显差别,应加以注意,纵坐标表示温度,又称为温度轴。
相图中的任意一点既代表一定的组成又表示系统所处的温度,如M点表示组成为30%的A和70%的B的系统处于T1温度。
由于在二元凝聚系统中温度和组成一定,系统的状态就确定了,所以相图中的每一点都和系统的一个状态相对应,即为状态点。
2 杠杆规则2.1 杠杆规则推导杠杆规则是相图分析中一个重要的规则,它可以计算在一定条件下,系统中平衡各相间的数量关系。
物理化学实验报告实验名称:完全互溶双液系统气液平衡相图的绘制专业班级:生物工程112班学生姓名:钟坤学号:1108110391实验时间:2103年5月14日8:00~10:00指导老师:刘定富老师一.实验目的1.测定常压下环己烷-乙醇二元系统的气液平衡数据,绘制沸点- 组成相图。
2.掌握双组分沸点的测定方法,通过实验进一步理解分馏原理。
3.掌握阿贝折射仪的使用方法。
二.实验原理两种液体物质混合而成的两组分体系称为双液系。
根据两组分间溶解度的不同,可分为完全互溶、部分互溶和完全不互溶三种情况。
两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。
当压力保持一定,混合物沸点与两组分的相对含量有关。
恒定压力下,真实的完全互溶双液系的气-液平衡相图(T -x ),根据体系对拉乌尔定律的偏差情况,可分为3类:(1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图2.7(a)所示。
(2)最大负偏差:存在一个最小蒸汽压值,比两个纯液体的蒸汽压都小,混合物存在着最高沸点,如盐酸—水体系,如图2.7(b)所示。
(3)最大正偏差:存在一个最大蒸汽压值,比两个纯液体的蒸汽压t A t A tAtB t B t Bt / o C t / o C t / o C x B x Bx B A B A A B B(a)(b)(c)x 'x '都大,混合物存在着最低沸点如图2.7(c))所示。
图2.7 二组分真实液态混合物气—液平衡相图(T-x图)后两种情况为具有恒沸点的双液系相图。
它们在最低或最高恒沸点时的气相和液相组成相同,因而不能象第一类那样通过反复蒸馏的方法而使双液系的两个组分相互分离,而只能采取精馏等方法分离出一种纯物质和另一种恒沸混合物。
为了测定双液系的T-x相图,需在气-液平衡后,同时测定双液系的沸点和液相、气相的平衡组成。
本实验以环己烷-乙醇为体系,该体系属于上述第三种类型,在沸点仪(如图2.8)中蒸馏不同组成的混合物,测定其沸点及相应的气、液二相的组成,即可作出T-x相图。
由DSC 曲线绘制二元相图
绘制二元相图,用两个纯组分和4个x B 分别约为0.2、0.4、0.6和0.8的混合物进行DSC 测量就足够。
DSC 升温速率不应大于5K/min 。
图6.13为以5K/min 升温速率测量的乙酰对氨苯乙醚即非那西汀(PA )和苯甲酰胺(BA )共熔体系五个不同配比混合物的DSC 曲线。
非那西汀(PA )和苯甲酰胺(BA )的质量配比分别为:PA (mg ):BA (mg )=2.378:0.031、2.215:0.189、2.540:1.043、0.843:2.036、0.078:2.257。
由于第一次升温曲线上可能出现假象(脉冲峰,因组分未完全混合),所以采用第二次升温曲线。
图
将图6.13中DSC 曲线的非那西汀/苯甲酰胺共熔峰的熔融焓与x B 作图,线性外推得到共熔体组成。
还包含了纯组分的零值。
见图6.14非那西汀/苯甲酰胺共熔峰的熔融焓与x B 的关系。
由图6.13DSC曲线得到固相线温度(共熔物熔点)和液相线点(各化合物熔点+纯非那西汀熔点134.4°C+纯苯甲酰胺的熔点27.5°C),由图6.14得到共熔体组成。
于是可绘制如图6.14所示的非那西汀/苯甲酰胺的共熔相图。
实验一 简单二元系统相图的绘制
一、目的与要求:
1.用热分析法测绘P b -S n 二元金属相图。
2.了解热分析法的测量技术与热电偶测量温度的方法。
二、原理:
相图是多相体系处于相平衡状态时体系的某物理性质(如温度)对体系的某一自变量(如组成)作图所得的图形,图中能反映出相平衡的情况(相对数目及性质等),故称为相图。
二元或多元体系的相图常以组成为自变量其物理性质则大多取温度。
由于相图能反映出多相平衡体系在不同自变量条件下的相平衡情况,因此,研究多相体系的性质以及多相体系相平衡情况的变化,都要用到相图。
图1-1是一种类型的二元简单低共熔物相图,图中A 、B 表示二个组分的名称,纵轴是物理量温度T ,横轴是组分B 的百分含量B%,在acb 线的上方,体系只有一个相(液相)存在,在ecf 以下,体系有二个相(晶体A 和B )存在,在ace 包围的面积中,一个固相(A )和一个液相(A 在B 中的饱和熔化物)共存,在bef 所包围的面积中,也是一个固相(B )和一个液相(B 和A 中的饱和熔化物)共存。
图中C 是ace 与bef 两个相区的交点,有三相(晶相A 、晶相B 、饱和熔化物)共存。
所以测绘相图就是要将相图中这些分隔相区的线画出来。
常用的方法就是热分析实验法。
热分析法所观察的物理性质是被研究体系的温度,将体系加热熔融成一均匀液相,然后让体系缓慢冷却,并每隔一定时间读体系温度一次,所以得历次温度值对时间作图,得一曲线,一般称为步冷曲线或冷却曲线。
在冷却过程中,若体系发生相变,就伴随着一定热效应,因此步冷曲线的斜率发生变化而出现转折点,所以这些转折点温度就相当于被测体系在相图中分隔线上的点子,若图1-2是图1-1中组成为P 的体系步冷曲线,则点2、3就分别相当于相图中的点G 、H 。
因此,取一系列组成不同的体系,作出它们的步冷曲线,求出各转折点,即能画出二元体系的最简单相图(对复杂的相图,还必须配合其它方法,方能画出)。
从相图定义可知,用热分析法测绘相图的要点有:
1.被测体系必须时时处于或非常接近于相平衡状态。
因此,体系冷却时,冷却速度必须足够慢,以保证上述条件近于实现。
2.测定时被测体系的组成必须与原来配制样品时的组成值一致,如果测定过程中样品处于不均匀或样品发生氧化变质。
这一要求就不能实现。
3.测得的温度值必须能真正反映体系所测时间的温度值,因此,测温仪器的热容必须H P 5 G a b 冷却曲线 Bi(s L+Bi(s) L A B
t T T B% a b c e f 1 2 3 4 图1-2 图1-1
足够小,它与被测体系的热传导必须足够良好,测温元件必须深入到被测体系内部。
总之,在实验中必须准确地测出系统在冷却过程中的“温度—时间”曲线即步冷曲线。
本实验测定铅、锡二元金属体系的相图,用热电偶作测温元件,通过保温电炉来控制体系的冷却速度。
三、仪器和试剂
立式加热保温坩埚炉五只(盛放被测样品)。
试样:纯Pb;纯S n;30%S n70% Pb;61.9%S n38.1% Pb;
80%S n20% Pb。
温度控制仪一台
铜—康铜热电偶一只
铅(化学纯)
锡(化学纯)
四、操作步骤
1.取一样品(记住其组成),将其加热丝两端与温度控制仪输出端连接,接通电源后,加热样品至熔化后切断电源(此时热电偶可以旋转)。
2.用热电偶套管稍加搅动,作好准备,一人读数,一人作记录,要求每隔30秒钟读一次温度值,直至作出完整步冷曲线(约180℃时完全析晶)。
3.重复1、2方法,作2-3个样品,两个组合作出全部样品的步冷曲线。
五、数据处理
1.将实验所得数据在坐标纸上绘出步冷曲线;
2. 根据实验结果绘制Pb~ S n相图。
思考题:为什么样品在冷却过程中会出现温度回升现象?。