平面图形的特征与分类复习.
- 格式:ppt
- 大小:648.00 KB
- 文档页数:20
平面图形的特征及分类平面图形是我们日常生活中经常遇到的一种形式。
无论是建筑物的设计、地图的绘制还是日常的几何题,平面图形都扮演着重要的角色。
本文将探讨平面图形的特征及分类,带领读者进一步了解这一领域。
一、平面图形的特征平面图形是二维的,由线段、直线和曲线组成。
它们没有厚度,只有长和宽。
平面图形可以用几何方式描述,也可以通过数学公式进行计算。
平面图形具有以下几个特征:1. 边界特征:每个平面图形都有一个边界,它是由一条或多条线段或曲线组成的。
边界确定了图形的形状和大小。
2. 角度特征:平面图形中的角度是由两条相交的线段或曲线形成的。
角度可以是锐角、直角、钝角或平角。
角度的大小和类型决定了图形的特性。
3. 对称特征:一些平面图形具有对称特征,即可以通过某种方式将图形分成两个相等的部分。
对称特征可以是轴对称或中心对称,它们赋予图形一种美感和平衡感。
4. 面积特征:平面图形的面积是指图形所占据的空间大小。
面积可以通过数学公式计算得出,不同的图形有不同的计算方法。
二、平面图形的分类平面图形可以根据不同的特征进行分类。
以下是几种常见的分类方式:1. 根据边界特征分类:平面图形可以分为封闭图形和开放图形。
封闭图形的边界形成一个闭合的曲线,例如圆、椭圆、正方形和长方形。
开放图形的边界没有闭合,例如直线、折线和曲线。
2. 根据角度特征分类:平面图形可以分为直角图形和非直角图形。
直角图形的角度是直角,例如正方形和长方形。
非直角图形的角度可以是锐角、钝角或平角,例如三角形和梯形。
3. 根据对称特征分类:平面图形可以分为对称图形和非对称图形。
对称图形具有对称轴或对称中心,例如正方形和圆。
非对称图形没有对称特征,例如折线和曲线。
4. 根据面积特征分类:平面图形可以分为有限图形和无限图形。
有限图形的面积是有限的,例如正方形和三角形。
无限图形的面积是无限的,例如直线和曲线。
总结平面图形作为几何学的重要组成部分,具有丰富的特征和分类方式。
平面图形总复习教学设计一、教学目标1. 理解平面图形的基本概念;2. 掌握平面图形的基本性质和特点;3. 能够运用平面图形的知识解决实际问题;4. 培养学生观察和分析的能力,提高逻辑思维能力。
二、教学内容1. 平面图形的基本概念:点、线、面等;2. 平面图形的分类与性质:直线、曲线、折线、封闭曲线、多边形等;3. 平面图形的运算:平移、旋转、对称等;4. 平面图形的应用:解决实际问题中的几何关系。
三、教学重点1. 平面图形的基本概念和性质;2. 平面图形的分类与区分;3. 平面图形的运算及应用。
四、教学步骤第一步:导入新知教师可以通过展示一些平面图形的图片,引起学生的兴趣,激发学习平面图形的兴趣和欲望。
同时,教师可以提问学生如何进行分类和区分不同的平面图形。
第二步:基础知识学习1. 学生根据教师提供的教材内容,理解平面图形的基本概念和性质,例如点、线、面等的定义和特点。
2. 学生学习平面图形的分类与区分,如直线、曲线、折线、封闭曲线、多边形等的定义和特点,以及它们之间的关系。
第三步:运算及应用学习1. 学生学习平面图形的运算,如平移、旋转、对称等操作,了解它们对图形的影响。
2. 学生学习平面图形的应用,例如计算面积、寻找对称图形等,培养解决实际问题的能力。
第四步:巩固与拓展1. 学生进行练习题,巩固所学知识,提高运用能力。
2. 学生进行拓展性任务,挑战更复杂的问题,提高思维能力。
第五步:总结与评估教师引导学生总结本节课学到的平面图形的知识和技能,并进行评估。
评估可以采用课堂小测,让学生运用所学知识解决问题。
五、教材选择根据本次复习的目标和内容,可以选择相应的教材,如教材中的几何部分,或者备课资料中的相关练习题。
六、教学资源1. 教材或备课资料;2. 平面图形的实物模型、图片等。
七、教学评价方法1. 课堂小测;2. 练习题考核;3. 学生表现评价。
八、教学反思教师可以根据学生的实际情况进行灵活调整,结合学生的实际需求,设计更加贴合学生需求的教学方案。
六年级下册数学教案 - 平面图形的整理复习 | 西师大版教学目标知识与技能1. 让学生回顾和整理平面图形的知识,包括点、线、面的基本概念,以及三角形、四边形、圆等图形的分类、性质和特征。
2. 培养学生运用平面图形知识解决实际问题的能力。
过程与方法1. 通过小组合作和探究学习,提高学生的团队协作能力和问题解决能力。
2. 通过实际操作和观察,培养学生的空间想象能力和抽象思维能力。
情感态度与价值观1. 培养学生对数学的兴趣和热情,增强学生的自信心和自主学习能力。
2. 通过对平面图形的整理复习,让学生感受数学的秩序美和逻辑美,培养学生的审美情趣。
教学内容1. 点、线、面的基本概念和性质2. 三角形的分类、性质和特征3. 四边形的分类、性质和特征4. 圆的性质和特征5. 平面图形的周长和面积的计算教学重点与难点教学重点1. 平面图形的分类、性质和特征2. 平面图形的周长和面积的计算教学难点1. 平面图形的性质和特征的深入理解2. 平面图形周长和面积计算公式的推导和应用教具与学具准备1. 教具:PPT、教学视频、模型、实物等2. 学具:练习本、草稿纸、直尺、圆规等教学过程1. 导入:通过生活中的实例,引导学生回顾平面图形的知识,激发学生的学习兴趣。
2. 新课导入:通过PPT展示平面图形的分类、性质和特征,引导学生进行观察和思考。
3. 小组讨论:让学生分组讨论平面图形的性质和特征,培养学生的团队协作能力和问题解决能力。
4. 实践操作:让学生通过实际操作和观察,深入理解平面图形的性质和特征。
5. 课堂小结:通过提问、讨论等方式,让学生总结本节课的学习内容,培养学生的归纳总结能力。
6. 课后作业:布置相关的练习题,让学生巩固所学知识,培养学生的自主学习能力。
板书设计1. 点、线、面的基本概念和性质2. 三角形的分类、性质和特征3. 四边形的分类、性质和特征4. 圆的性质和特征5. 平面图形的周长和面积的计算作业设计1. 基础题:让学生计算给定平面图形的周长和面积。
数学教案:认识平面图形的特征和分类一、平面图形的特征和分类平面图形是我们周围常见的事物,了解和认识平面图形的特征和分类对于数学学习至关重要。
在本教案中,我们将介绍平面图形的基本特征,以及如何根据其各自的特点进行分类。
1.1 平面图形的基本特征平面图形是在二维空间中存在的图形,具有以下基本特征:(1)边:平面图形由线段组成,线段的两个端点连接起来就构成了图形的边。
(2)顶点:多边形或者折线段中相邻线段交叉所成的点称为顶点。
(3)角度:位于两条相邻边之间并以这两条边为边的角称为内角。
(4)对称性:平面图形可以具有对称轴,该轴将图形分成两个互相镜像对称的部分,每个部分都与另一个部分完全一致。
1.2 平面图形的分类根据各自不同特点,我们可以将平面图形进行分类:(1)三角形:三角形是由三条线段连接而成。
根据其内角之和等于180度来分类,可以分为锐角三角形、直角三角形和钝角三角形。
(2)四边形:四边形是由四条线段连接而成。
根据其边长和内角组成的特点,可以分为等边四边形、矩形、正方形、菱形以及一般的四边形。
(3)多边形:多边形是由多条线段连接而成。
根据其边数不同,可以分为五边形、六边形、七边形以及更多的多边形。
(4)圆:由一个固定点到平面内所有点的距离都相等的轨迹称为圆。
圆通过半径、直径和周长来进行分类。
二、认识平面图形的重要作用认识平面图形的特征和分类不仅有助于我们理解数学概念,还对我们日常生活中的应用有着重要作用。
2.1 几何建模几何建模技术在工程设计中起着至关重要的作用。
了解平面图形特征和分类,可以帮助我们更好地进行几何建模,并在设计过程中合理运用各种图案和结构。
2.2 地图制作地图是人们在导航和旅行时经常使用的工具。
通过认识不同的平面图形,我们可以更准确地理解和使用地图上的标志、符号和方向。
2.3 测量与建筑建筑师、工程师以及测量员需要准确了解和使用平面图形的特征。
他们利用几何知识进行测量、规划和构建,确保工程的稳定性和合理性。
小学数学总复习——平面图形一、线和角1、线⏹直线:直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线;⏹射线:射线只有一个端点;长度无限;⏹线段:线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短;⏹平行线:在同一平面内,不相交的两条直线叫做平行线;两条平行线之间的垂线长度都相等;⏹垂线:两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足;从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离;2、角1从一点引出两条射线,所组成的图形叫做角;这个点叫做角的顶点,这两条射线叫做角的边; 2角的分类⏹锐角:小于90°的角叫做锐角;⏹直角:等于90°的角叫做直角;⏹钝角:大于90°而小于180°的角叫做钝角;⏹平角:角的两边成一条直线,这时所组成的角叫做平角;平角180°;⏹周角:角的一边旋转一周,与另一边重合;周角是360°;二、平面图形1、长方形1特征:对边相等,4个角都是直角的四边形;有两条对称轴;2计算公式: c=2a+b s=ab2、正方形1特征:四条边都相等,四个角都是直角的四边形;有4条对称轴;2计算公式: c=4a s=a²3、三角形1特征:由三条线段围成的图形;内角和是180度;三角形具有稳定性;三角形有三条高;2计算公式: s=ah/23分类按角分:⏹锐角三角形:三个角都是锐角;⏹直角三角形:有一个角是直角;等腰三角形的两个锐角各为45度,它有一条对称轴;⏹钝角三角形:有一个角是钝角;按边分:⏹不等边三角形:三条边长度不相等;⏹等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴;⏹等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴;4、平行四边形1特征:两组对边分别平行的四边形;相对的边平行且相等;对角相等,相邻的两个角的度数之和为180度;平行四边形容易变形; 2计算公式:s=ah5、梯形1特征:只有一组对边平行的四边形;等腰梯形有一条对称轴;2 公式:s=a+bh/2=mh6、圆1 圆的认识1)平面上的一种曲线图形;2)圆中心的一点叫做圆心;一般用字母o表示;3)半径:连接圆心和圆上任意一点的线段叫做半径;一般用r表示;4)在同一个圆里,有无数条半径,每条半径的长度都相等;5)通过圆心并且两端都在圆上的线段叫做直径;一般用d表示;6)同一个圆里有无数条直径,所有的直径都相等;7)同一个圆里,直径等于两个半径的长度,即d=2r;8)圆的大小由半径决定; 圆有无数条对称轴;2圆的画法1)把圆规的两脚分开,定好两脚间的距离即半径;2)把有针尖的一只脚固定在一点即圆心上;3)把装有铅笔尖的一只脚旋转一周,就画出一个圆;3 圆的周长1)围成圆的曲线的长叫做圆的周长;2)把圆的周长和直径的比值叫做圆周率;用字母∏表示;4 圆的面积圆所占平面的大小叫做圆的面积;5计算公式d=2r r=d/2 c=∏d c=2∏r s=∏r²7、扇形1扇形的认识一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形;圆上AB两点之间的部分叫做弧,读作“弧AB”;顶点在圆心的角叫做圆心角;在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关;扇形有一条对称轴;2 计算公式s=n∏r²/360 c=∏d/3608、环形1 特征:由两个半径不相等的同心圆相减而成,有无数条对称轴;2 计算公式 s=∏R²-r²9、轴对称图形特征:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形;折痕所在的这条直线叫做对称轴;1)正方形有4条对称轴, 长方形有2条对称轴;2)等腰三角形有2条对称轴,等边三角形有3条对称轴;3)等腰梯形有一条对称轴,圆有无数条对称轴;4)菱形有4条对称轴,扇形有一条对称轴;练习一、填空题:1、一个长4厘米、宽3厘米的长方形按3:1放大,得到的图形的周长是厘米.2、一张正方形纸的边长是12厘米,在它的边长上剪去一个长4厘米、宽3厘米的长方形后,剩下的周长是厘米.3、把一个长方形的框架拉成一个平行四边形,这个平行四边形的周长与原长方形周长相比-- ,这个平行四边形的面积与原长方形面积相比-- ;4、一个边长10厘米的正方形,相邻的两边中,一边增加2厘米,另一边减少2厘米,那么它的周长是 ,面积是;5、长方形的周长÷2等于;6、一个长方形长x厘米,宽厘米,周长9厘米.求长方形的长是 ;7、一张长方形纸长10厘米、宽6厘米.剪下一个正方形后如右图,剩下图形的周长;8、一个长方形的周长为a 厘米,宽边比长短3厘米,则这个长方形的长边的长度是;9、用3个边长都是1分米的正方形拼成一个长方形,这个长方形的周长是分米;10、一个长方形花坛的长是5米,宽是3米.这个花坛的周长是米;11、在一个正方形内剪一个半径为3厘米的圆,则正方形的最小周长是;12、一个正方形的边长增加13后,得到的新正方形的周长是48厘米,则原来正方形的边长是厘米,周长是厘米;13、一个正方形的周长是厘米,边长是;14、一个正方形的边长增加2厘米,它的周长增加厘米;15、围棋盘最外层每边能摆放19个棋子,最外层一共可以摆放个棋子;16、一个正方形周长是80厘米,这个正方形的面积是;17、一个正方形的边长扩大2倍,它的周长扩大倍,面积扩大倍;18、两个正方形的边长的比是2:3,那么,这两个正方形的周长比是,面积比是19、如右图,有一个半径为1厘米的小圆环,沿着边长是厘米的正方形外侧作无滑动移动.当小圆环绕正方形滚动一周后,回到原来的位置时,小圆环自转的圈数是圈;20、一个等腰梯形的周长是36厘米,它的上底是9厘米,腰长是6厘米;这个等腰梯形的下底长厘米;21、一个直角梯形的周长为50厘米,两条腰分别为4厘米和5厘米,梯形的高是 ,面积为平方厘米;22、长方形的长与宽都是质数,它们的面积一定是数;23、一个长方形的长增加了20%,宽减少了20%.那么这个长方形的面积%;24、在长方形中画一个最大的三角形,这个三角形的面积是长方形的%;25、如果一个正方形的边长扩大为原来的倍,那么正方形的面积比原来正方形面积增加%;26、平行四边形的底、高分别增加10%,那么新平行四边形的面积比原平行四边形的面积增加%;27、如右图是一个平行四边形,已知两条边分别是6厘米和10厘米其中一条底上的高是8厘米,这个平行四边形的面积是平方厘米;28、一个平行四边形与一个三角形的底相等,它们的高的比是1:2,他们的面积的比是29、一个平行四边形的周长是30厘米,相邻两条边上的高分别是2厘米和3厘米,它的面积是平方厘米;30、一个直角三角形的三条边长度分别是10厘米、8厘米和6厘米,它的面积是;31、如右图中阴影部分面积相当于长方形面积 ;32、一个三角形的底和高都扩大3倍,它的面积扩大倍;33、在图中,梯形的上底是6cm,下底4cm,阴影部分的面积是10c㎡,空白部分的面积是c㎡;34、一个梯形的上底是5厘米,下底是9厘米,面积是56平方厘米,那么这个梯形的高是35、梯形的上下底不变,如果高缩小3倍,则面积 ;36、一张长5cm,宽3cm的长方形中,画一个最大的半圆,这个半圆的周长是cm;37、一个半圆的周长厘米,这个半圆的直径厘米;38、圆面积扩大16倍,则周长随着扩大;39、一个钟表的分针长10cm,经过45分钟,分针的尖端走过了,扫过的面积是40、小圆的半径是3cm,大圆的半径是4cm,大圆与小圆的周长比是,小圆与大圆的面积比是;41、圆的半径增加1厘米,它的周长增加了厘米;42、小圆的半径是4厘米,大圆的半径是5厘米,小圆的周长是大圆周长的43、画一个周长是厘米的圆,圆规两脚间的距离应取cm;44、环形跑道的环宽是1米,如果只跑一圈,外道选手的起跑点要比内道提前米;45、小圆半径是大圆半径的23,小圆面积是大圆面积的46、用一根米的绳子围成一个半圆形,这个半圆的面积是平方米;47、把一个圆沿半径分成若干等份,拼成一个近似的长方形,长方形的周长比圆的周长多10厘米,这个圆的面积是平方厘米;48、右图中阴影部分是大圆的116,是小圆的29,大圆与小圆的面积比是49、如右图,长方形ABCD的面积是12平方分米,那么圆的面积是平方分米;50、一个圆形花坛,半径是3米,外围铺一个1米宽的小路,那么小路面积大约是平方米;得数保留整数51、一个圆形花坛,半径是5米,如果半径增加2米,那么花坛的周长增加米,面积增加平方米;52、有一座房子,长12米,宽8米,在房子外的一个墙角用一根长14米的绳子拴一条狗,这条狗活动的最大可能范围的面积是平方米;53、如右图,在直径为4cm的圆中,有两条互相垂直的线段AB和CD,圆心O到这两条线段的距离都是,则圆中阴影部分的面积是;54、如图,甲和乙是两个正方形,阴影部分的面积是平方厘米;55、如图,正方形的边长为4厘米,一个半径为1厘米的圆沿着正方形的四边内侧滚动一周,则圆滚过的面积为 ;二、求图形面积;1、求阴影的面积;单位:cm2、边长是10厘米的正方形和直径是10厘米的半圆组成如图所示,其中P点是半圆的中点,点Q 是正方形一边的中点,则阴影部分的面积3、如图,三角形AOC是边长为3厘米的正三角形,求阴影部分的面积;4、如图中阴影部分的面积是200平方厘米,求两个圆之间的环形的面积;5、一辆自行车,轮胎外直径60厘米,如果每分钟转100周,要通过一座471米的大桥,约需几分钟6、如图,以AB为直径做半圆,三角形ABC是直角三角形,阴影部分①比阴影部分②的面积小28平方厘米,AB长40厘米;求BC的长度;。