第三章导数及其应用(教案)
- 格式:doc
- 大小:30.00 KB
- 文档页数:5
导数及其应用教案人教版教案标题:导数及其应用教案(人教版)教学目标:1. 了解导数的概念和基本性质;2. 掌握求导法则和常见函数的导数;3. 理解导数在实际问题中的应用。
教学重点:1. 导数的定义和基本性质;2. 求导法则的掌握;3. 导数在实际问题中的应用。
教学难点:1. 导数的应用问题解析;2. 导数在实际问题中的应用方法。
教学准备:1. 教材《人教版》导数及其应用相关章节;2. 教学PPT、多媒体设备;3. 导数的应用实例和练习题。
教学过程:一、导入(5分钟)1. 利用一个生动的例子引入导数的概念,如汽车行驶过程中的速度变化;2. 提问学生对导数的理解,激发学生的兴趣。
二、导数的定义和基本性质(15分钟)1. 介绍导数的定义和符号表示;2. 解释导数的几何意义和物理意义;3. 讲解导数的基本性质,如导数的线性性、乘法法则和链式法则。
三、求导法则和常见函数的导数(20分钟)1. 介绍求导法则,包括常数函数、幂函数、指数函数、对数函数、三角函数等的导数求法;2. 给出常见函数的导数表格,帮助学生记忆和掌握。
四、导数在实际问题中的应用(25分钟)1. 通过实际问题引入导数的应用,如最优化问题、变化率问题等;2. 分析导数在实际问题中的应用方法,并给出相应的解题步骤;3. 给学生提供一些导数应用的实例和练习题,让学生进行实际操作和解答。
五、总结与拓展(10分钟)1. 总结导数的概念、基本性质和求导法则;2. 引导学生思考导数在实际问题中的应用价值;3. 提出拓展问题,鼓励学生进一步探索导数的应用领域。
六、作业布置(5分钟)1. 布置课后作业,包括练习题和思考题;2. 强调学生对导数的应用进行思考和实践。
教学反思:本节课通过引入实际问题和应用案例,使学生对导数的概念和应用有了更深入的理解。
通过讲解导数的定义、基本性质和求导法则,帮助学生掌握了导数的求导方法。
通过导数在实际问题中的应用分析和解题,培养了学生的应用能力和问题解决能力。
§3.1.1变化率问题教学目标:1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。
导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。
导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π= ⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = 分析: 343)(πV V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈-气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈-气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算:5.00≤≤t 和21≤≤t 的平均速度在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=;在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =, 所以)/(004965)0()4965(m s h h v =--=, 虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. (二)平均变化率概念:1.上述问题中的变化率可用式子1212)()(x x x f x f --表示,称为函数f (x )从x 1到x 2的平均变化率2.若设12x x x -=∆, )()(12x f x f f -=∆ (这里x ∆看作是对于x 1的一个“增量”可用x 1+x ∆代替x 2,同样)()(12x f x f y f -=∆=∆) 3. 则平均变化率为=∆∆=∆∆xfx y x x f x x f x x x f x f ∆-∆+=--)()()()(111212 思考:观察函数f (x )的图象 平均变化率=∆∆x f三.典例分析例1.已,1(x B -∆+-解:)1()1(22x x y ∆+-+∆+--=∆+-,∴x xx x x y ∆-=∆-∆+-+∆+--=∆∆32)1()1(2 例2. 求2x y =在0x x =附近的平均变化率。
第三章 导数的应用知识点:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧∞∞⎪⎩⎪⎨⎧用导数在经济分析中的应的应用函数最值在经济问题中函数的极值、最值函数的单调性函数其他类型未定式型未定式型未定式洛必达法则柯西定理拉格朗日中值定理罗尔定理微分中值定理00 教学目的要求:(1)用数形结合的思想方法掌握罗尔定理与拉格朗日中值定理的条件与结论。
会判断是否满足罗尔定理与拉格朗日中值定理的条件,会求罗尔定理与拉格朗日中值定理结论中的ξ。
(2)知道洛必达法则,能运用洛必达法则求不定式的极限,重点掌握“”型和“∞∞”型,了解“∞-∞”、“∞⋅0”型等。
(3)掌握用一阶导数的符号判别函数单调性的方法,会求函数的单调区间,并利用函数的单调性进行简单不等式的证明;理解函数极值与极值点的概念,掌握极值存在的必要条件,掌握求函数极值的方法(极值点的充分条件),搞清极值点与驻点的区别与联系。
(4)初步掌握简单实际问题中最大值和最小值的求法;会利用导数讨论一些简单的经济问题。
教学重点:1.函数单调性的判断与单调区间的求法 2.函数极值、最值的求法 3.实际应用 教学难点:1.微分中值定理 2.洛必达法则及应用 3.函数极值的求法与应用4.函数最值的求法与应用第一节 微分中值定理【教学内容】罗尔定理,拉格朗日中值定理。
【教学目的】理解罗尔定理,拉格朗日中值定理的分析意义和几何意义;会判断是否满足罗尔定理与拉格朗日中值定理的条件,会求罗尔定理和拉格朗日中值定理结论中的ξ。
初步具有应用中值定理论证问题的能力.【教学重点】1.罗尔定理;2.拉格朗日中值定理。
【教学难点】1.罗尔定理与拉格朗日中值定理条件的判断;2.罗尔定理与拉格朗日中值定理结论中ξ的求解。
【教学时数】1学时 【教学进程】一、 罗尔(Rolle )定理罗尔(Rolle 1652-1719)法国数学家。
年轻时因家境贫穷,仅受过初等教育,是靠自学精通了代数和Diophantus 分析理论。
导数及其应用教案一、引言在高中数学课程中,导数是一个非常重要的概念。
本教案旨在介绍导数及其应用,帮助学生理解导数的概念和基本性质,并学习如何在实际问题中运用导数进行分析和计算。
二、导数的概念1. 导数的定义:导数表示函数在某一点上的变化率,即函数值随自变量变化而变化的快慢程度。
2. 导数的几何意义:导数等于函数曲线在某一点切线的斜率。
3. 导数的符号表示:通常用f'(x)或dy/dx表示函数f(x)的导数。
三、导数的基本性质1. 常数的导数为0:若f(x) = a(a为常数),则f'(x) = 0。
2. 幂函数的导数:若f(x) = x^n(n为常数),则f'(x) = nx^(n-1)。
3. 和差的导数:若f(x) = u(x) ± v(x),则f'(x) = u'(x) ± v'(x)。
4. 乘积的导数:若f(x) = u(x)v(x),则f'(x) = u'(x)v(x) + u(x)v'(x)。
5. 商的导数:若f(x) = u(x)/v(x),则f'(x) = [u'(x)v(x) - u(x)v'(x)] /v(x)^2。
四、导数的应用1. 切线和法线:导数可以用于求函数曲线在某一点的切线和法线方程。
2. 极值问题:导数可以帮助我们判断函数的极值,并求出极值点和极值。
3. 函数图像的画法:导数可以提供函数图像的一些特征,如拐点、极值、单调性等。
4. 物理问题中的应用:导数可以帮助解决一些物理问题,如速度、加速度等。
五、教学活动1. 导数的计算练习:通过给出具体函数的表达式,让学生计算其导数。
2. 导数在几何中的应用:通过给出函数的图像,让学生判断函数的增减性、拐点、极值等。
3. 实际问题解析:将一些实际问题转化为数学模型,并运用导数进行分析和求解。
六、教学反思通过本教案的讲解和练习,学生应能掌握导数的概念和基本性质,具备运用导数进行实际问题分析和计算的能力。
3.3.3 函数的最大(小)值与导数如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,则该函数在[a,b]上一定能够取得最大值和最小值,并且函数的最值必在极值点或区间端点取得.思考:若函数f(x)在区间[a,b]上只有一个极大值点x0,则f(x0)是函数f(x)在区间[a,b]上的最大值吗?[提示]根据极大值和最大值的定义知,f(x0)是函数f(x)在区间[a,b]上的最大值.2.求函数y=f(x)在[a,b]上的最值的步骤(1)求函数y=f(x)在(a,b)内的极值.(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.1.下列说法正确的是( )A.函数的极大值就是函数的最大值B.函数的极小值就是函数的最小值C.函数的最值一定是极值D.在闭区间上的连续函数一定存在最值D[极值有可能是最值,但最值未必是极值,故选D.]2.函数y =x -sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π的最大值是()A .π-1B .π2-1C .πD .π+1C[y ′=1-cos x >0,故函数y =x -sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π是增函数,因此当x =π时,函数有最大值,且y max =π-sin π=π.]3.函数f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( ) A .-2 B .0 C .2D .4C [f ′(x )=3x 2-6x ,令f ′(x )=0得x =0或x =2. 由f (-1)=-2,f (0)=2,f (1)=0得f (x )max =f (0)=2.]求函数的最值(1)f (x )=2x 3-3x 2-12x +5,x ∈[-2,1]; (2)f (x )=e x (3-x 2),x ∈[2,5].[解] (1)f ′(x )=6x 2-6x -12,令f ′(x )=0得x =-1或x =2,又x ∈[-2,1],故x =-1,且f (-1)=12. 又因为f (-2)=1,f (1)=-8,所以,当x =-1时,f (x )取最大值12; 当x =1时,f (x )取最小值-8. (2)∵f (x )=3e x-e x x 2,∴f ′(x )=3e x -(e x x 2+2e xx ) =-e x (x 2+2x -3) =-e x(x +3)(x -1).∵在区间[2,5]上,f ′(x )=-e x(x +3)(x -1)<0, 即函数f (x )在区间[2,5]上单调递减,∴x =2时,函数f (x )取得最大值f (2)=-e 2;x =5时,函数f (x )取得最小值f (5)=-22e 5.求函数在闭区间上最值的步骤 1求f ′x ,解方程f ′x =0;2确定在闭区间上方程f ′x =0的根; 3求极值、端点值,确定最值.[跟进训练]1.求函数f (x )=12x +sin x ,x ∈[0,2π]上的最大值和最小值.[解] f ′(x )=12+cos x ,令f ′(x )=0,且x ∈[0,2π],解得x =2π3或x =4π3.当x 变化时,f ′(x ),f (x )的变化情况如下表:x 0 ⎝⎛⎭⎫0,2π32π3 ⎝⎛⎭⎫2π3,4π3 4π3 ⎝⎛⎭⎫4π3,2π 2π f ′(x ) + 0 - 0 + f (x )↗极大值↘极小值↗ππ3+322π3-32∴当x=0时,f(x)有最小值,为f(0)=0;当x=2π时,f(x)有最大值,为f(2π)=π.由函数的最值求参数值为3,最小值为-29,求a,b的值.[解] 由题设知a≠0,否则f(x)=b为常函数,与题设矛盾.求导得f′(x)=3ax2-12ax=3ax(x-4),令f′(x)=0,得x1=0,x2=4(舍去).(1)当a>0时,且x变化时f′(x),f(x)的变化情况如下表:x -1(-1,0)0(0,2)2f′(x)+0-f(x)-7a+b ↗ b ↘-16a+b[-1,2]上的最大值,∴f(0)=b=3.又f(-1)=-7a+3,f(2)=-16a+3<f(-1),∴f(2)=-16a+3=-29,解得a=2.(2)当a<0时,同理可得,当x=0时,f(x)取得极小值b,也就是函数在[-1,2]上的最小值,∴f(0)=b=-29.又f(-1)=-7a-29,f(2)=-16a-29>f(-1),∴f (2)=-16a -29=3,解得a =-2. 综上可得,a =2,b =3或a =-2,b =-29. 已知函数最值求参数值范围的思路已知函数在某区间上的最值求参数的值范围是求函数最值的逆向思维,一般先求导数,利用导数研究函数的单调性及极值点,用参数表示出最值后求参数的值或范围.[跟进训练]2.设23<a <1,函数f (x )=x 3-32ax 2+b (-1≤x ≤1)的最大值为1,最小值为-62,求a ,b 的值.[解] 令f ′(x )=3x 2-3ax =0,得x 1=0,x 2=a . 当x 变化时,f ′(x ),f (x )的变化情况如下表:x -1 (-1,0) 0 (0,a ) a (a,1) 1 f ′(x )+-0 +f (x )-1-32a +b ↗b↘-a 32 +b↗1-32a +b由表可知,f (x )的极大值为f (0)=b ,极小值为f (a )=b -a 32,而f (0)>f (a ),f (1)>f (-1),故需比较f (0)与f (1)及f (-1)与f (a )的大小.因为f (0)-f (1)=32a -1>0,所以f (x )的最大值为f (0)=b =1.又f (-1)-f (a )=12(a +1)2(a -2)<0,所以f (x )的最小值为f (-1)=-1-32a +b =-32a ,所以-32a =-62,a =63.所以a =63,b =1.与最值有关的恒成立问题1.对于函数y =f (x ),x ∈[a ,b ],若f (x )≥c 或f (x )≤c 恒成立,则c 满足的条件是什么?提示:c ≤f (x )min 或c ≥f (x )max .2.对于函数y =f (x ),x ∈[a ,b ],若存在x 0∈[a ,b ],使得f (x )≥c 或f (x )≤c 成立,则c 满足的条件是什么?提示:c ≤f (x )max 或c ≥f (x )min .【例3】 设函数f (x )=tx 2+2t 2x +t -1(x ∈R ,t >0). (1)求f (x )的最小值h (t );(2)若h (t )<-2t +m 对t ∈(0,2)恒成立,求实数m 的取值范围. [思路点拨] (1)利用配方法,即可求出二次函数f (x )的最小值h (t );(2)构造函数g (t )=h (t )-(-2t +m ),只需使g (t )在(0,2)上的最大值小于零即可求得m 的取值范围.[解] (1)∵f(x)=t(x+t)2-t3+t-1(x∈R,t>0),∴当x=-t时,f(x)取最小值f(-t)=-t3+t-1,即h(t)=-t3+t-1.(2)令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,由g′(t)=-3t2+3=0,得t=1或t=-1(不合题意,舍去).当t变化时,g′(t),g(t)的变化情况如下表:∴g(t)在(0,2))<-2t+m在(0,2)内恒成立等价于g(t)<0在(0,2)内恒成立,即等价于1-m<0.∴m的取值范围为(1,+∞).(变条件)若将本例(2)的条件改为“存在t∈[0,2],使h(t)<-2t+m成立”,则实数m的取值范围如何求解?[解] 令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,由g′(t)=-3t2+3=0,得t=1或t=-1(不合题意,舍去).当t变化时,g′(t),g(t)的变化情况如下表:∴g存在t∈[0,2],使h(t)<-2t+m成立,等价于g (t )的最小值g (2)<0.∴-3-m <0, ∴m >-3,所以实数m 的取值范围为(-3,+∞). 分离参数求解不等式恒成立问题1.求函数在闭区间上的最值,只需比较极值和端点处的函数值即可;若函数在一个开区间内只有一个极值,则这个极值就是最值.2.已知最值求参数时,可先确定参数的值,用参数表示最值时,应分类讨论.3.“恒成立”问题可转化为函数最值问题. 1.判断正误(1)函数的最大值一定是函数的极大值.( )(2)开区间上的单调连续函数无最值.( )(3)函数f (x )在区间[a ,b ]上的最大值和最小值一定在两个端点处取得.( )[答案] (1)× (2)√ (3)× 2.函数y =ln x x的最大值为( )A .e -1B .eC .e 2D .103A [函数y =ln xx的定义域为(0,+∞).y ′=1-ln x x 2,由1-ln x x2=0得x =e , 当0<x <e 时,y ′>0, 当x >e 时,y ′<0.因此当x =e 时,函数y =ln x x 有最大值,且y max =1e =e -1.]3.若函数f (x )=x 3-3x -a 在区间[0,3]上的最大值、最小值分别为M ,N ,则M -N 的值为( )A .2B .4C .18D .20D [f ′(x )=3x 2-3, 令f ′(x )=0得x =±1. 当0≤x <1时,f ′(x )<0; 当1<x ≤3时,f ′(x )>0.则f (1)最小,又f (0)=-a ,f (3)=18-a ,f (3)>f (0),所以最大值为f (3),即M =f (3), N =f (1),所以M -N =f (3)-f (1)=(18-a )-(-2-a )=20.]4.设函数f (x )=12x 2e x,x ∈[-2,2],若f (x )>m 恒成立,求实数m 的取值范围.[解] f′(x)=x e x+12x2e x=e x2x(x+2),由f′(x)=0得x=-2或x=0.当x∈[-2,2]时,f′(x),f(x)随x的变化情况如下表:当x=0时,min要使f(x)>m对x∈[-2,2]恒成立,只需m<f(x)min,∴m<0,即实数m的取值范围为(-∞,0).。
导数及其应用教案设计一、教学目标1.理解导数的定义和概念;2.掌握导数的计算方法;3.了解导数的几何意义和物理意义;4.应用导数解决实际问题。
二、教学重点1.导数的定义和概念;2.导数的计算方法。
三、教学难点1.导数的几何意义和物理意义;2.导数在实际问题中的应用。
四、教学准备1.教学课件;2.教学工具:黑板、彩色笔;3.教学素材:与导数相关的题目和实例。
五、教学过程Step 1 引入导数的概念(10分钟)1.引入问题:小明从家里出发骑自行车到学校,经历了不同的路段,那么他在每个路段上的速度是多少呢?2.学生思考问题,并提出速度的定义。
3.介绍导数的概念:导数是研究函数变化率的工具,它描述了一个函数在其中一点附近的变化速率。
Step 2 导数的计算方法(20分钟)1. 导数的定义:设函数y=f(x),当x在x0处有极限存在,那么函数f(x)在x0处的导数定义为:f'(x0)=lim(x→x0)[f(x)-f(x0)]/(x-x0)。
2.通过例题演示如何计算导数。
3.引入常见导数的计算法则,如幂函数、反函数、指数函数等。
Step 3 导数的几何意义和物理意义(15分钟)1.导数的几何意义:表示函数在其中一点处的切线斜率。
2.通过例题演示导数的几何意义。
3.导数的物理意义:表示物体运动的速度或速度的变化率。
4.通过例题演示导数的物理意义。
Step 4 导数在实际问题中的应用(25分钟)1.介绍导数在实际问题中的应用,如最大值最小值问题、函数的图像判断等。
2.通过例题演示导数在实际问题中的应用。
3.引入微分的概念,并介绍微分的定义和计算方法。
Step 5 拓展与巩固(20分钟)1.指导学生通过课堂练习和课后作业巩固所学知识。
2.引导学生从日常生活中发现和应用导数的问题。
六、教学反思通过引入问题、讲解定义、演示例题等方式,让学生逐步理解导数的概念和计算方法。
在讲解导数的几何意义和物理意义时,通过具体示例,帮助学生更好地理解和应用导数。
《高等数学》教案第三章导数与微分教案之一:导数的定义和性质一、教学目标1.理解导数的概念和意义;2.学习导数的计算方法;3.掌握导数的基本性质;4.能够应用导数计算函数在其中一点的切线方程及函数的近似值。
二、教学重点和难点1.导数的概念和计算方法;2.导数的性质;3.函数在其中一点的切线方程的计算。
三、教学内容和方法1.导数的概念和计算方法通过解释导数的概念,引出导数的计算方法,并通过示例进行演示和讲解。
方法:讲解、示例演示、问题解答。
2.导数的性质介绍导数的基本性质,如导数为0的函数、导数的四则运算和导数的符号性。
方法:讲解、示例演示、问题解答。
3.函数在其中一点的切线方程的计算通过解释切线的概念,推导出切线方程的计算公式,并通过示例进行演示和讲解。
方法:讲解、示例演示、问题解答。
四、教学过程1.导数的概念和计算方法a.引出导数的概念和意义;b.讲解导数的计算方法,包括使用函数的极限和差商的方法,以及导数的几何意义;c.通过示例演示导数的计算方法。
2.导数的性质a.介绍导数为0的函数及其性质;b.讲解导数的四则运算和导数的符号性;c.通过示例演示导数的性质。
3.函数在其中一点的切线方程的计算a.解释切线的概念和意义;b.推导出切线方程的计算公式,包括斜截式和点斜式;c.通过示例演示切线方程的计算方法。
五、教学反思本节课主要介绍了导数的定义和性质,通过讲解、示例演示和问题解答,帮助学生理解了导数的概念和计算方法,掌握了导数的基本性质,以及函数在其中一点的切线方程的计算方法。
在教学中,应重点讲解导数的几何意义和切线的概念,帮助学生理解导数及其应用。
同时,通过举例说明导数性质的应用,激发学生的学习兴趣和思考能力。
在教学过程中,要注意引导学生思考问题,提高其自主学习的能力。
希望通过本次教学,学生能够掌握导数的概念和性质,并能够应用导数计算函数在其中一点的切线方程及函数的近似值。
导数及其应用教案教案标题:导数及其应用教学目标:1. 理解导数的概念和意义;2. 掌握求函数导数的基本方法;3. 理解导数的几何意义和应用。
教学准备:1. 教材:包含导数概念和求导方法的教材;2. 教具:白板、彩色笔、计算器、投影仪等;3. 课件:包含导数概念、求导方法和应用实例的课件;4. 练习题:包含不同难度的求导练习题。
教学过程:Step 1:导入导数概念(15分钟)1. 利用课件和白板,引导学生回顾函数的变化率概念,并与导数进行对比;2. 解释导数的定义和符号表示,强调导数表示函数在某一点的变化率;3. 通过图示和实例,展示导数的几何意义。
Step 2:求导方法介绍(20分钟)1. 介绍求导的基本方法,包括常数函数、幂函数、指数函数、对数函数和三角函数的求导法则;2. 利用课件和实例,演示不同类型函数的求导过程;3. 强调求导法则的应用和重要性。
Step 3:导数的应用(25分钟)1. 介绍导数在实际问题中的应用,如速度、加速度、最优化问题等;2. 利用课件和实例,展示导数在实际问题中的具体应用过程;3. 引导学生思考导数在其他学科中的应用,如物理、经济等领域。
Step 4:练习与巩固(20分钟)1. 分发练习题,让学生在课堂上完成求导练习;2. 鼓励学生互相讨论和解答问题,提高求导能力;3. 收集学生的答案,进行讲评和指导。
Step 5:课堂总结(10分钟)1. 总结导数的概念、求导方法和应用;2. 强调导数在数学和其他学科中的重要性;3. 鼓励学生继续深入学习和应用导数知识。
教学延伸:1. 鼓励学生进行更多的导数应用实践,如通过编程模拟物体运动、经济模型等;2. 提供更多的挑战性练习题,培养学生的分析和解决问题的能力;3. 拓展导数概念,引入高阶导数和导数的应用领域,如微分方程等。
教学评估:1. 课堂练习题的完成情况和答案准确性;2. 学生对导数概念、求导方法和应用的理解程度;3. 学生在实际问题中应用导数的能力和创造性。
第3章 《导数及其应用-3.2.2》 教学案教学目标:1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数; 2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数; 3.能够综合运用各种法则求函数的导数.教学重点:函数的和、差、积、商的求导法则的推导与应用.教学过程:一、问题情境1.问题情境.(1)常见函数的导数公式:(默写)(2)求下列函数的导数:23x y =; x y 2=; x y 2log =.(3)由定义求导数的基本步骤(三步法).2.探究活动.例1 求x x y +=2的导数.思考:已知)(),(x g x f '',怎样求[]'+)()(x g x f 呢?二、建构数学函数的和差积商的导数求导法则:三、数学运用例1 求下列函数的导数: (1)21()t S t t+=; (2)x y tan =;(3)ln ()x f x x =; (4)x ex y =. 例2 求下列函数的导数: (1)2()sin f x x x =+; (2)323()622g x x x x =--+. 例3 求下列函数的导数:(1)x x x h sin )(=; (2)x x x f ln 2)(=;(3)用两种方法求(21)(3)y x x =-+的导数.例4 求下列函数的导数: (1)21()t S t t+=; (2)x y tan =; (3)ln ()x f x x =; (4)x ex y =. 四、巩固练习1.直线l 是抛物线20.5410y x x =-+在6x =处的切线,则直线l 在y 轴上的截距是2.如图,直线l 是曲线()y f x =在4x =处的切线,则(4)(4)f f '+=3.(1)求曲线x e y =在0=x 处的切线方程;(2)过原点作曲线x e y =的切线,求切点坐标.4.32()3f x ax x =++,若'(1)5f =,则a =__________ ____ 课后练习:1.求下列函数的导数: (1)xx x f 1)(+=; (2)2()cos f x x x =+; (3)()22ln x f x x =-; (4)22log )(x x x f +=; (5)2()x f x x e =; (6)xe xf x=)(.2.求曲线6cos 21π=-=x x x y 在处的切线方程。
3.1.3 导数的几何意义学习目标核心素养1.理解导数的几何意义,会求曲线上某点处的切线方程.(重点)2.理解导函数的概念,会求简单函数的导函数.(重点)3.理解在某点处与过某点的切线方程的区别.(难点、易混点) 1.通过学习导数的几何意义,培养学生数学抽象的素养.2.借助导数的几何意义解题,培养学生的数学运算素养.1.导数的几何意义(1)切线的概念:如图,对于割线PP n,当点P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为点P处的切线.(1)(2)(3)(4)(2)导数的几何意义:函数f(x)在x=x0处的导数就是切线PT的斜率k,则k=limΔx→0 f(x0+Δx)-f(x0)Δx=f′(x0).(3)切线方程:曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).思考:曲线的切线是不是一定和曲线只有一个交点?[提示]不一定.曲线的切线和曲线不一定只有一个交点,和曲线只有一个交点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.2.导函数的概念(1)定义:当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).(2)记法:f′(x)或y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.1.已知曲线y=f(x)在点(1,f(1))处的切线方程为2x-y+2=0,则f′(1)=()A.4 B.-4C.-2 D.2D[由导数的几何意义知f′(1)=2,故选D.]2.已知函数f(x)在x0处的导数为f′(x0)=1,则函数f(x)在x0处切线的倾斜角为________.45°[设切线的倾斜角为α,则tan α=f′(x0)=1,又α∈[0°,180°),∴α=45°.]3.若函数f(x)在点A(1,2)处的导数是-1,那么过点A的切线方程是________.x+y-3=0[切线的斜率为k=-1.∴点A(1,2)处的切线方程为y-2=-(x-1),即x+y-3=0.]导数的几何意义A BA.f′(x A)>f′(x B)B.f′(x A)<f′(x B)C.f′(x A)=f′(x B)D.不能确定(2)若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则()A.a=1,b=1B.a=-1,b=1C.a=1,b=-1 D.a=-1,b=-1(1)B(2)A[(1)由导数的几何意义,f′(x A),f′(x B)分别是切线在点A,B处切线的斜率,由图象可知f ′(x A )<f ′(x B ).(2)由题意,知k =y ′|x =0=lim Δx →(0+Δx )2+a (0+Δx )+b -bΔx =1,∴a =1.又(0,b )在切线上,∴b =1,故选A .]1.本例(2)中主要涉及了两点:①f ′(0)=1,②f (0)=b . 2.解答此类问题的关键是理解导数的几何意义.3.与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线的方程、直线间的位置关系等,因此要综合应用所学知识解题.[跟进训练]1.(1)设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B .12C .-12D .-1(2)如图所示,函数y =f (x )的图象在点P (2,y )处的切线是l ,则f (2)+f ′(2)等于( )A .-4B .3C .-2D .1(1)A (2)D [(1)由题意可知,f ′(1)=2. 又lim Δx →0f (1+Δx )-f (1)Δx =lim Δx →a (1+Δx )2-aΔx=lim Δx →0(a Δx +2a )=2a .故由2a =2得a =1.(2)直线l 的方程为x 4+y4=1,即x +y -4=0.又由题意可知f (2)=2,f ′(2)=-1, ∴f (2)+f ′(2)=2-1=1.]求切点坐标(1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.[思路点拨] 先求出函数的导函数f ′(x ),再设切点(x 0,y 0),由导数的几何意义知切点(x 0,y 0)处的切线的斜率为f ′(x 0),然后根据题意列方程,解关于x 0的方程即可求出x 0,又点(x 0,y 0)在曲线y =x 2上,易得y 0.[解] 设y =f (x ),则f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x 2Δx =lim Δx →(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4). (2)因为切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝⎛⎭⎫-32,94. (3)因为切线的倾斜角为135°,所以切线的斜率为-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝⎛⎭⎫-12,14.解答此类题目时,所给直线的倾斜角或斜率是解题的关键,由这些信息得知函数在某点处的导数,进而可求此点的横坐标.解题时要注意解析几何知识的应用,如直线的倾斜角与斜率的关系,平行,垂直等.[跟进训练]2.已知抛物线y =2x 2+1,求(1)抛物线上哪一点的切线平行于直线4x -y -2=0? (2)抛物线上哪一点的切线垂直于直线x +8y -3=0?[解]设切点坐标为(x0,y0),则Δy=2(x0+Δx)2+1-2x20-1=4x0·Δx+2(Δx)2,∴ΔyΔx=4x0+2Δx,∴y′|x=x0=limΔx→0ΔyΔx=limΔx→0(4x0+2Δx)=4x0.(1)∵抛物线的切线平行于直线4x-y-2=0,∴斜率为4,即f′(x0)=4x0=4,得x0=1,该点为(1,3).(2)∵抛物线的切线与直线x+8y-3=0垂直,∴斜率为8,即f′(x0)=4x0=8,得x0=2,该点为(2,9).求曲线的切线方程1.如何求曲线f(x)在点(x0,f(x0))处的切线方程?提示:根据导数的几何意义,求出函数y=f(x)在点(x0,f(x0))处的导数,即曲线在该点处的切线的斜率,再由直线方程的点斜式求出切线方程.2.曲线f(x)在点(x0,f(x0))处的切线与曲线过点(x0,y0)的切线有什么不同?提示:曲线f(x)在点(x0,f(x0))处的切线,点(x0,f(x0))一定是切点,只要求出k=f′(x0),利用点斜式写出切线方程即可;而曲线f(x)过某点(x0,y0)的切线,给出的点(x0,y0)不一定在曲线上,即使在曲线上也不一定是切点.【例3】已知曲线C:y=x3.(1)求曲线C在横坐标为x=1的点处的切线方程;(2)求曲线C过点(1,1)的切线方程.[思路点拨](1)求y′|x=1―→求切点―→点斜式方程求切线(2)设切点(x 0,y 0)―→求y ′|x =x 0―→由y ′|x =x 0=y 0-1x 0-1求(x 0,y 0)―→写切线方程[解] (1)将x =1代入曲线C 的方程得y =1, ∴切点P (1,1).y ′|x =1=lim Δx →0ΔyΔx =lim Δx →(1+Δx )3-1Δx=lim Δx →0[3+3Δx +(Δx )2]=3.∴k =y ′|x =1=3.∴曲线在点P (1,1)处的切线方程为y -1=3(x -1),即3x -y -2=0.(2)设切点为Q (x 0,y 0),由(1)可知y ′|x =x 0=3x 20,由题意可知k PQ =y ′|x =x 0,即y 0-1x 0-1=3x 20,又y 0=x 30,所以x 30-1x 0-1=3x 20,即2x 20-x 0-1=0,解得x 0=1或x 0=-12. ①当x 0=1时,切点坐标为(1,1),相应的切线方程为3x -y -2=0.②当x 0=-12时,切点坐标为⎝⎛⎭⎫-12,-18,相应的切线方程为y +18=34⎝⎛⎭⎫x +12,即3x -4y +1=0.(变结论)本例第(1)小题中的切线与曲线C 是否还有其他的公共点?[解] 由⎩⎪⎨⎪⎧y =3x -2,y =x 3,解得⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =-2,y =-8,从而求得公共点为P (1,1)或M (-2,-8),即切线与曲线C 的公共点除了切点外,还有另一公共点(-2,-8).1.求曲线在某点处的切线方程的步骤2.求过点(x1,y1)的曲线y=f(x)的切线方程的步骤(1)设切点(x0,y0);(2)求f′(x0),写出切线方程y-y0=f′(x0)(x-x0);(3)将点(x1,y1)代入切线方程,解出x0,y0及f′(x0);(4)写出切线方程.1.导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=limΔx→0 f(x0+Δx)-f(x0)Δx=f′(x0),物理意义是运动物体在某一时刻的瞬时速度.2.“函数f(x)在点x0处的导数”是一个数值,不是变数,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f′(x0)是其导数y=f′(x)在x=x0处的一个函数值.3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y-f(x0)=f′(x0)(x-x0);若已知点不在切线上,则设出切点(x0,f(x0)),表示出切线方程,然后求出切点.1.判断正误(1)函数y=f(x)在x=x0处的导数f′(x0)的几何意义是曲线y=f(x)在点x=x0处切线的斜率.()(2)若曲线y=f(x)在点(x0,f(x0))处有切线,则f′(x0)必存在.()(3)f′(x0)(或y′|x=x0)是函数f′(x)在点x=x0处的函数值.()(4)直线与曲线相切,则直线与已知曲线只有一个公共点.()[答案](1)√(2)×(3)√(4)×2.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0D .f ′(x 0)不存在B [由x +2y -3=0知,斜率k =-12,∴f ′(x 0)=-12<0.]3.曲线f (x )=2x 在点(-2,-1)处的切线方程为________.x +2y +4=0 [f ′(-2)=lim Δx →f (-2+Δx )-f (-2)Δx=lim Δx →02-2+Δx +1Δx =lim Δx →1-2+Δx =-12,∴切线方程为y +1=-12(x +2),即x +2y +4=0.]4.已知直线y =4x +a 和曲线y =x 3-2x 2+3相切,求切点坐标及a 的值. [解] 设直线l 与曲线相切于点P (x 0,y 0),则f ′(x )=lim Δx →(x +Δx )3-2(x +Δx )2+3-(x 3-2x 2+3)Δx =3x 2-4x .由导数的几何意义,得k =f ′(x 0)=3x 20-4x 0=4, 解得x 0=-23或x 0=2,∴切点坐标为⎝⎛⎭⎫-23,4927或(2,3). 当切点为⎝⎛⎭⎫-23,4927时,有4927=4×⎝⎛⎭⎫-23+a , ∴a =12127.当切点为(2,3)时,有3=4×2+a , ∴a =-5,因此切点坐标为⎝⎛⎭⎫-23,4927或(2,3),a 的值为12127或-5.。
如何培养学生良好的行为习惯
我国著名教育家陶行知先生说:“播种行为,就收获习惯;播种习惯,就收获性格;播种性格,就收获命运。
”这一育人哲理道出了培养行为习惯的重要性。
叶圣陶先生十分重视少年儿童良好行为习惯的培养。
他认为,“我们在学校里受教育,目的在养成习惯,增强能力。
我们离开了学校,仍然要从多方面受教育,并且要自我教育,其目的还是在养成习惯,增强能力。
”习惯越自然越好,能力越增强越好。
良好的行为习惯是促进一个人健康成长的重要条件,是健全人格形成的基础。
习惯有好坏之分,好习惯终身受其益,坏习惯终身受其累”。
生活中有两种习惯养成不得,一种是不养成习惯的习惯,另一种是妨害他人的习惯(所谓不养成习惯的习惯就是指一个人做事没有强制与警觉,今天东,明天西,今儿这样,明儿又那样,这就可能什么习惯也养不成。
久而久之,就成为一种不养成习惯的习惯)”。
陶行知先生在改造中国教育的实践中提出了“生活教育理论”。
他非常重视在做中学,主张在做中养成习惯,即实践中养成习惯。
“生活即教育”。
到处是生活,即到处是教育。
整个社会是生活的场所,亦即教育之场所。
教育无处不在。
作为教育工作者,我们应该充分挖掘各自现有教育资源,结合各种教学活动,把“做人、做事、学习”的正确习惯的培养融入平常的教学活动中。
持之以恒,自然成习惯。
班主任是学生接触最多的老师,也是给学生影响最大的人,培养学生形成好的行为习惯对于班主任来说至关重要。
那么作为班主任应该怎样培
养学生地习惯呢?下面我谈谈自己的观点:
一、教师要正确面对学生存在的不良习惯
先贤哲人孔子曾说:“少成若天性,习惯如自然。
”充分说明人在自然状态下,不假思索,不必费什么心思,更不用意志去控制而形成的某种行为,就是一种习惯。
所谓习惯也可以理解成人的一种自动化的行为,坏习惯也是一种自动化行为。
作为教育者要认识到每个学生都追求上进,都希望获得别人(尤其是老师)的肯定和赞扬,他们不想犯错更不想故意与老师作对,他们之所以犯错是因为他们已有的习惯。
这样,作为教师在教育学生的过程中就会减少一些情绪化的语言和手段,多一些理智的思考。
既有利于对学生的教育,又有利于教师的心理健康。
因为当教师在面对学生坏习惯的时候首先表现出的不能是生气和发脾气,当你用理解,用爱心去面对时问题就会变的简单化,处理起来也会更顺畅一些。
所以用平和的心态,正确的面对学生的不良习惯是关健。
作为班主任经常会遇到学生各种各样的突发事件,他们出现的一些坏习惯坏行为的确让人头痛,那么一定要先让自己心平气和,通过思考冷静的去处理。
这样的效果肯定比发怒更管用。
我们班有一位男生,进校时行为习惯特别差,经常给我带来麻烦事,起初我也很生气,认为他是朽木一个,总是以责备为主,但后来冷静思考后觉的自己处理的不好,因为责骂的效果并不好。
于是我改变了方法,当他犯错时自己先保持平和心态然后让他讲原因,和他讲道理并且从学生角度想问题,处理问题。
慢慢的他有了一些变化,虽然还是会有一些小毛病但己经有了很大进步,这学期当了校卫生督察后经
常受到老师的表扬,在班里的表现也改进了很多。
这件事让我明白一个好班主任首先应该是学生的朋友而不是他惧怕的对象。
二、营造良好的学习环境
我们的祖辈十分注重学习环境对行为习惯的影响,“昔孟母,择邻处”就是一个非常典型的例子。
在班主任工作中我们应该十分注重班集体的建设,努力创造良好的学习环境。
学生的良好的行为习惯与优良班风的形成之间具有密切的联系。
一个个具有良好行为习惯的学生就会组成一个优秀的班集体。
当一个班级具有了良好的班风,那些个别的行为习惯差的学生由于从众心理的作用自然就会向好的方面发展。
如果班级风气不正,习惯好的学生也会在从众心理的影响下向坏的方面发展。
因此培养学生良好的行为习惯,就必须注重班集体的建设,营造良好的学习环境。
这不是一个一蹴而就的过程,它需要一个长期的过程和良好有效的方法。
班主任在建设班风班貌时一定要用心思,花功夫,基础打好了,对后面的班级管理有很好的帮助。
三、习惯训练无小事
“学校无小事,件件需认真。
”对于学生行为习惯的培养更是没有小事可言。
习惯的养成正是一件件小事中情绪体验的积累。
正因为如此,我们要十分注重学校规章制度的执行,学校的规定对学生良好习惯的养成具有促进的作用,我们坚持不懈去做。
譬如,下课时关电灯,可以使学生养成勤俭节约的好习惯;学生离校时到家电话通知老师,可以使学生养成按时离校,遵守纪律的好习惯。
四、榜样的力量(教师、家长要做好表率)
首先从家庭教育来说,家长应该多和孩子沟通,自己做好榜样,比如我们职高生,很多家长在外打工,那么家长要经常和孩子联系,请老家的长辈给予关注,时常关心孩子,而不是一味给钱,其他不管。
另外家长也要注意自己的言行,如自己不赌博,教导孩子不能参于,自己不讲究吃穿,教导孩子要节约,自己尊敬老人,教育孩子也要尊敬老人,等等家长的一言一行直接影响孩子,所以家庭教育十分重要。
其次要从教师开始,身体力行,身教重于言教,教师自觉拾起一片废纸,扶正课桌椅,学生受到这种行为的影响也都会自觉坚持学习。
如要求学生守纪律、有礼貌。
教师自己就要守纪律、懂礼貌,否则学生就不听你的。
又如要求学生有干净整洁的仪容仪表,那么老师也要以朴素大方,给学生以榜样。
所以最重要的是老师必须事事处处以身作则,以自己的行动潜移默化地影响学生。
学生才会逐步形成良好的行为习惯。
另外凡是学生行为习惯好的,有进步的,改正缺点快的在班内进行表扬,促进其互相模仿行为。
并且对于屡教不改的学生要与家长多进行沟通,一起想办法来解决。
五、持之以恒
养成良好习惯不是一朝一夕的事情,师生都应作长远打算。
教师,须允许学生习惯形成有个过程;学生,须一步一个脚印,不要图快。
师生须密切配合,老师督促学生认真练、经常练,学生要持之以恒,坚持不懈。
这样必有成效。
六、协调学生的“知”与“行”
学生知道了要做什么,也知道了为什么要这样做,但做起来时往
往会因为主观的或者客观的原因而不能顺利地进行,这时就很有必要对“知”与“行”进行协调,注意调查、了解情况,及时给予指导,或与学生一道寻求方法解决问题。
七、鼓励上进,巩固习惯
为了使学生尽快形成良好的行为习惯,班级可以建立一整套评比制度,开展文明小组、爱学小组、卫生小组的评比活动,组织班干部互相督促检查,每月做好总评一次。
那个小组做得最好,给予鼓励或奖励,一步一个脚印,扣紧每一阶段,利用每一件事,用规范行为教育,每一位学生的言行举止,衣着打扮也十分注意。
对一些差生,教师只能关怀鼓励教育他们,不能疏远打击、冷淡他们,特别是后进生要注意从小事中发现学生的细微变化和刚冒出来的不良习惯,一旦发现就竭尽全力将其消灭在萌芽状态中,不给学生重复不良行为习惯的机会。
常言道,三岁定八十。
大教育家孔子云:“少年居性,习惯之为常。
”而培根在《论人生》中便明确指出:“习惯真是一种顽强而巨大的力量,它可以主宰人生。
因此人自幼年就应通过教育,去建立一种良好的习惯。
”可见,年少养成习惯的好坏对人的一生有直接影响。
因此,在班主任工作中应该十分重视培养学生良好的行为习惯,这也是具有良好师德的具体表现之一。