专题 2019高考压轴题讲解(下)-练习
- 格式:docx
- 大小:135.15 KB
- 文档页数:6
1拿到试卷:熟悉试卷刚拿到试卷一般心情比较紧张,建议拿到卷子以后看看考卷一共几页,有多少道题,了解试卷结构,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。
2答题顺序:从卷首依次开始一般来讲,全卷大致是先易后难的排列。
所以,正确的做法是从卷首开始依次做题,先易后难,最后攻坚。
但也不是坚决地“依次”做题,虽然考卷大致是先易后难,但试卷前部特别是中间出现难题也是常见的,执着程度适当,才能绕过难题,先做好有保证的题,才能尽量多得分。
3答题策略答题策略一共有三点: 1. 先易后难、先熟后生。
先做简单的、熟悉的题,再做综合题、难题。
2. 先小后大。
先做容易拿分的小题,再做耗时又复杂的大题。
3. 先局部后整体。
把疑难问题划分成一系列的步骤,一步一步的解决,每解决一步就能得到一步的分数。
4学会分段得分。
不会会做的题目要特别注意表达准确、书写规范、语言科学,防止被“分段扣点分”做的题目我们可以先承认中间结论,往后推,看能否得到结论。
如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这。
如果题目有多个问题,也可以跳步作答,先回答自己会的问题。
一“卡壳处”5立足中下题目,力争高水平考试时,因为时间和个别题目的难度,多数学生很难做完、做对全部题目,所以在答卷中要立足中下题目。
中下题目通常占全卷的80%以上,是试题的主要构成,学生能拿下这些题目,实际上就是有了胜利在握的心理,对攻克高档题会更放得开。
6确保运算正确,立足一次性成功在答卷时,要在以快为上的前提下,稳扎稳打,步步准确,尽量一次性成功。
不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。
试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,格式是否规范。
7要学会“挤”分考试试题大多分步给分,所以理科要把主要方程式和计算结果写在显要位置,文科尽量把要点写清晰,作文尤其要注意开头和结尾。
(全国卷Ⅰ)2019年高考数学压轴卷 理(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合402x A x x ⎧-⎫=∈≥⎨⎬+⎩⎭Z,1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =I ( ) A .{}12 x x -≤≤B .{}1,0,1,2- C .{}2,1,0,1,2-- D .{}0,1,22.已知a 是实数,i1ia +-是纯虚数,则a 等于( ) A.B .1-CD .13.“0a ≤”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为( )ABCD5.若221m n >>,则( ) A .11m n> B .1122log log m n >C .()ln 0m n ->D .1m n -π>6.已知平面向量a ,b,满足(=a ,3=b ,()2⊥-a a b ,则-=a b ( ) A .2B .3C .4D .67.执行右边的程序框图,输出的2018ln =S ,则m 的值为( ) A .2017 B .2018 C .2019D .20208.据统计,连续熬夜48小时诱发心脏病的概率为0055.,连续熬夜72小时诱发心脏病的概率为019.,现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .019.9.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 10.将()2sin22cos21f x x x =-+的图像向左平移π4个单位,再向下平移1个单位,得到函数()y g x =的图像,则下列关于函数()y g x =的说法错误的是( )A .函数()y g x =的最小正周期是πB .函数()y g x =的一条对称轴是π8x = C .函数()y g x =的一个零点是3π8D .函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上单调递减11.焦点为F 的抛物线2:8C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线MA 的方程为( ) A .2y x =+或2y x =-- B .2y x =+ C .22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满足()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对[]12,0x ∀∈-,[]22,1x ∃∈-使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭UB .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦UC .(]0,8D .11,,48⎛⎤-∞-+∞ ⎥⎪⎝⎦⎡⎫⎢⎣⎭U二、填空题:本大题共4小题,每小题5分.13.已知1sin)1lg()(2++-+=xxxxf若21)(=αf则=-)(αf14.在()311nx xx⎛⎫++⎪⎝⎭的展开式中,各项系数之和为256,则x项的系数是__________.15.知变量x,y满足条件236y xx yy x≤+≥≥-⎧⎪⎨⎪⎩,则目标函数223x yzx y-=+的最大值为16.如图,在ABC△中,3sin23ABC∠=,点D在线段AC上,且2AD DC=,433BD=,则ABC△的面积的最大值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知公差不为零的等差数列{}n a和等比数列{}n b满足:113a b==,24b a=,且1a,4a,13a成等比数列.(1)求数列{}n a和{}n b的通项公式;(2)令nnnacb=,求数列{}n c的前n项和n S.18.(本小题满分12分)某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(]30,150内,其频率分布直方图如图.(1)求获得复赛资格的人数;(2)从初赛得分在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(]110,130与(]130,150各抽取多少人?(3)从(2)抽取的7人中,选出3人参加全市座谈交流,设X 表示得分在区间(]130,150中参加全市座谈交流的人数,求X 的分布列及数学期望()E X .19.(本小题满分12分)如图,底面ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D --的余弦值.20.(本小题满分12分)过抛物线22(0)x py p =>的焦点F 的直线与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF FB =u u u r u u u r,ABC △的面积为83(1)求抛物线的标准方程;(2)过焦点F 的直线与抛物线交于M ,N 两点,抛物线在M ,N 点处的切线分别为1l ,2l ,且1l 与2l 相交于P 点,1l 与x 轴交于Q 点,求证:2FQ l ∥.21.(本小题满分12分) 设函数()(2ln 1f x x x x =-++. (1)探究函数()f x 的单调性;(2)若0x ≥时,恒有()3f x ax ≤,试求a 的取值范围;请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的普通方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为πsin 4ρθ⎛⎫=+= ⎪⎝⎭(1)写出圆C 的参数方程和直线l 的直角坐标方程;(2)设直线l 与x 轴和y 轴的交点分别为A ,B ,P 为圆C 上的任意一点,求PA PB⋅u u u r u u u r的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 设函数()21f x x =-.(1)设()()15f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b ca b c---⋅⋅≥.2019全国卷Ⅰ高考压轴卷数学理科答案解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】集合{}{}40241,0,1,2,3,42x A x x x x ⎧-⎫=∈≥=∈-<≤=-⎨⎬+⎩⎭ZZ ,{}14224B x x x x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,则{}1,0,1,2A B =-I ,故选B .2.【答案】D 【解析】i 1ia +-是纯虚数,i 1+(+1)i=1i 2a a a +--,则要求实部为0,即1a =.故选D . 3.【答案】C .【解析】当0a =时,()|(1)|||f x ax x x =-=在区间(0,)+∞上单调递增;当0a <时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上单调递增,如图1-7(a)所示;当0a >时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上先增后减再增,不符合条件,如图1-7(b)所示.所以要使函数()|(1)|f x ax x =-在(0,)+∞上单调递增,只需0a ≥,即“0a ≥”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的充要条件.故选C.4.【答案】C【解析】由题意可设双曲线C 的右焦点(),0F c ,渐进线的方程为by x a=±,可得2d b a ===,可得c =,可得离心率ce a=C .5.【答案】D【解析】因为221m n >>,所以由指数函数的单调性可得0m n >>, 因为0m n >>,所以可排除选项A ,B ;32m =,1n =时,可排除选项C , 由指数函数的性质可判断1m n -π>正确,故选D . 6.【答案】B【解析】由题意可得:2=a ,且:()20⋅-=a a b ,即220-⋅=a a b ,420-⋅=a b ,2⋅=a b ,由平面向量模的计算公式可得:3-=a b .故选B .7.【答案】B【解析】第一次循环,2,2ln ==i S 第二次循环,3,3ln ln 2ln 12ln 3232==+=+=⎰i x dx xS 第三次循环,4,4ln ln 2ln 13ln 4343==+=+=⎰i x dx xS 第四次循环,5,5ln ln 4ln 14ln 5454==+=+=⎰i x dx xS ……推理可得m=2018,故选B .8.【答案】A【解析】设事件A 为48h 发病,事件B 为72h 发病,由题意可知:()0055P A =.,()019P B =.,则()0945P A =.,()081P B =., 由条件概率公式可得:()()()()()0816|09457P AB P B P B A P A P A ====...故选A . 9.【答案】C【解析】观察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C .10.【答案】D【解析】由题意可知:()2sin22cos212sin 4π21f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,图像向左平移π4个单位,再向下平移1个单位的函数解析式为: ()ππ2sin 2112sin 244π4g x x x ⎡⎤⎛⎫⎛⎫=+-+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.则函数()g x 的最小正周期为2ππ2T ==,A 选项说法正确; 当π8x =时,22ππ4x +=,函数()y g x =的一条对称轴是π8x =,B 选项说法正确;当3π8x =时,2π4πx +=,函数()y g x =的一个零点是3π8,C 选项说法正确;若5π,128πx ⎡⎤∈⎢⎥⎣⎦,则5π3π2,4122πx ⎡⎤+∈⎢⎥⎣⎦,函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上不单调,D 选项说法错误;故选D . 11.【答案】A 【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时,MAF ∠必须取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k ∆=-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .12.【答案】D【解析】因为()f x 在[]2,3上单调递减,在(]3,4上单调递增,所以()f x 在[]2,3上的值域是[]3,4,在(]3,4上的值域是119,32⎛⎤ ⎥⎝⎦,所以函数()f x 在[]2,4上的值域是93,2⎡⎤⎢⎥⎣⎦,因为()()22f x f x +=,所以()()()112424f x f x f x =+=+, 所以()f x 在[]2,0-上的值域是39,48⎡⎤⎢⎥⎣⎦,当0a >时,()g x 为增函数,()g x 在[]2,1-上的值域为[]21,1a a -++, 所以3214918a a ≥-+≤+⎧⎪⎪⎨⎪⎪⎩,解得18a ≥;当0a <时,()g x 为减函数,()g x 在[]2,1-上的值域为[]1,21a a +-+, 所以3149218a a ≥+⎧⎪≤+⎨-⎪⎪⎪⎩,解得14a ≤-,当0a =时,()g x 为常函数,值域为{}1,不符合题意,综上,a 的范围是11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U ,故选D .二、填空题:本大题共4小题,每小题5分. 13. 【答案】23【解析】解析:因为1sin )1lg()(2++-+=x x x x f 的定义域为R,关于原点对称,21sin )1lg(1sin )1lg()()(22=+-++++++-+=-+)(x x x x x x f f αα故221)(=+-αf 则=-)(αf 2314.【答案】7【解析】令1x =可得各项系数和:()31112561n⎛+⨯= ⎝,据此可得:7n =,73x x ⎛+ ⎝展开式的通项公式为:()721732177C C r r rr r r T xx x --+==, 令72102r -=可得:6r =,令72112r -=可得:407r =,不是整数解,据此可得:x 项的系数是67C 7=. 15.3【解析】作出236y x x y y x ≤+≥≥-⎧⎪⎨⎪⎩,表示的可行域,如图变形目标函数,()()()2222223,1,32cos 31x y x y z x yx y θ-⋅-===++-⋅+,其中θ为向量)3,1=-a 与(),x y =b 的夹角,由图可知,()2,0=b 时θ有最小值6π, (),x y =b 在直线y x =上时,θ有最大值56412π+=ππ,即5612θπ≤≤π,5612θπ≤≤π, 目标函数223x y z x y-=+3C .16.【答案】32 【解析】由3sin2ABC ∠=可得:6cos 2ABC ∠=, 则22sin 2sin cos 22ABC ABC ABC ∠∠∠==. 由32sin2ABC ∠<452ABC ∠<︒,则90ABC ∠<︒,由同角三角函数基本关系可知:1cos 3ABC ∠=. 设AB x =,BC y =,()30,0,0AC z x y z =>>>,在ABD △中由余弦定理可得:()22162cos z x BDA +-∠=,在CBD △中由余弦定理可得:2216cos z y BDC +-∠=由于180BDA BDC ∠+∠=︒,故cos cos BDA BDC ∠=-∠,()222216162z x z y +-+-=22216620z x y +--=.①在ABC △中,由余弦定理可知:()2221233x y xy z +-⨯=,则:2222246339z x y xy =+-,代入①式整理计算可得:2214416339x y xy ++=,由均值不等式的结论可得:4161699xy xy ≥=,故9xy ≤,当且仅当x =y =时等号成立,据此可知ABC △面积的最大值为:()max max 11sin 922S AB BC ABC =⨯⨯⨯∠=⨯= 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【答案】(1)()32121n a n n =+-=+,3n n b =;(2)223n nn S +=-. 【解析】(1)设{}n a 的公差为d ,则由已知得21134a a a =,即()()2331233d d +=+,解之得:2d =或0d =(舍),所以()32121n a n n =+-=+; 因为249b a ==,所以{}n b 的公比3q =,所以3n n b =. (2)由(1)可知213n nn c +=, 所以23357213333n n n S +=++++...,21572133333n n n S -+=++++...,所以12111211112121243323234133333313n n n n n n n n n S --⎛⎫⋅- ⎪+++⎛⎫⎝⎭=++++-=+-=- ⎪⎝⎭-...,所以223n nn S +=-. 18.(本小题满分12分)【答案】(1)520人;(2)5人,2人;(3)()67E X =. 【解析】(1)由题意知[)90,110之间的频率为:()1200.00250.0050.007520.01250.3-⨯++⨯+=,()0.30.01250.0050200.65++⨯=,获得参赛资格的人数为8000.65520⨯=人.(2)在区间(]110,130与(]130,150,0.0125:0.00505:2=, 在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人, 分在区间(]110,130与(]130,150各抽取5人,2人.结果是5人,2人. (3)X 的可能取值为0,1,2,则:()305237C C 20C 7P X ===;()215237C C 41C 7P X ===;()125237C C 12C 7P X ===;故X 的分布列为:()20127777E X =⨯+⨯+⨯=.19.(本小题满分12分) 【答案】(1)见解析(2)13(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD , ∴DE AC ⊥,又∵底面ABCD 是正方形, ∴AC BD ⊥. ∵BD DE D =I , ∴AC ⊥平面BDE .(2)解:∵DA ,DC ,DE 两两垂直, ∴建立如图所示的空间直角坐标系D xyz -,∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴3EDDB=, 由3AD =,可知32BD =36DE =6AF =则(3,0,0)A ,6)F ,(0,0,36)E ,(3,3,0)B ,(0,3,0)C ,∴(0,6)BF =-u u u r ,(3,0,26)EF =-u u u r.设平面BEF 的一个法向量为(,,)n x y z =r,则0,0,n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r 即360,360,y z x z ⎧-=⎪⎨-=⎪⎩ 令6z =(4,6)n =r.∵AC ⊥平面BDE ,∴CA u u u r为平面BDE 的一个法向量, ∴(3,3,0)CA =-u u u r , ∴||13cos ,13||||3226n CA n CA n CA ⋅<>===⋅⨯r u u u rr u u u r r u u u r . ∵二面角F BE D --为锐角, ∴二面角F BE D --的余弦值为1313. 20.(本小题满分12分)【答案】(1)24x y =;(2)证明见解析.【解析】(1)因为AF FB =u u u r u u u r,所以F 到准线的距离即为三角形ABC △的中位线的长,所以2AC p =,根据抛物线的定义AC AF =,所以24AB AC p ==,()()224223BC p p =-,1223832ABC S p =⋅⋅=△ 解得2p =,所以抛物线的标准方程为24x y =.(2)易知直线MN 的斜率存在,设直线:1MN y kx =+,设()11,M x y ,()22,N x y联立24 1x yy kx =+⎧⎪⎨⎪⎩=消去y 得2440x kx --=,得124x x =-, 24x y =,'2x y =,设()11,M x y ,()22,N x y ,111:22l y y xx +=,222:22l y y xx +=,()22212212112121121212442,22,12444p p p x x y y x x x x x x x x y x y x x x x ⎛⎫- ⎪-++⎝⎭===+⋅===---, 得P 点坐标21,12x x P +⎛⎫- ⎪⎝⎭,由111:22l y y xx +=,得1,02x Q ⎛⎫⎪⎝⎭,12QF k x =-,221141222l x k x x -==⋅=-,所以2QF l k k =,即2PQ l ∥.21.(本小题满分12分)【答案】(1)增函数;(2)1,6⎡⎫+∞⎪⎢⎣⎭;(3)见解析.【解析】(1)函数()f x 的定义域为R . 由()'10f x =≥,知()f x 是实数集R 上的增函数.(2)令()()(33ln g x f x ax x x ax =-=--, 则()2131'ax g x --,令())2131h x ax =--, 则()()23169169'x a ax a x ax h x ⎡⎤----==.(i )当16a ≥时,()'0h x ≤,从而()h x 是[)0,+∞上的减函数, 注意到()00h =,则0x ≥时,()0h x ≤,所以()'0g x ≤,进而()g x 是[)0,+∞上的减函数,注意到()00g =,则0x ≥时,()0g x ≤时,即()3f x ax ≤. (ii )当106a <<时,在⎡⎢⎣上,总有()'0h x >,从而知,当x ⎡∈⎢⎣⎭时,()3f x ax >;(iii )当0a ≤时,()'0h x >,同理可知()3f x ax >, 综上,所求a 的取值范围是1,6⎡⎫+∞⎪⎢⎣⎭.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)【答案】(1)2cos 3sin x y θθ+=+⎧⎨⎩=,20x y +-=;(2)44PA PB -⋅≤+u u u r u u u r【解析】(1)圆C 的参数方程为2cos 3sin x y θθ+=+⎧⎨⎩=(θ为参数).直线l 的直角坐标方程为20x y +-=.(2)由直线l 的方程20x y +-=可得点()2,0A ,点()0,2B .设点(),P x y ,则()()222,,2222412PA PB x y x y x y x y x y ⋅=--⋅--=+--=+-u u u r u u u r.由(1)知2cos 3sin x y θθ+=+⎧⎨⎩=,则()4sin 2cos 44PA PB θθθϕ⋅=++=++u u u r u u u r .因为θ∈R ,所以44PA PB -≤⋅≤+u u u r u u u r23.(本小题满分10分)【答案】(1)55|44A x x ⎧⎫=-<<⎨⎬⎩⎭;(2)见解析.【解析】(1)()()15f x f x ++<即21215x x -++<,当12x <-时,不等式化为12215x x ---<,∴5142x -<<-;当1122x -≤≤时,不等式化为12215x x -++<,不等式恒成立;当12x >时,不等式化为21215x x -++<,∴1524x <<. 综上,集合55|44A x x ⎧⎫=-<<⎨⎬⎩⎭.(2)由(1)知1m =,则1a b c ++=.则1a b c a a -+=1b b -≥1c c -≥则1118a b c a b c ---⋅⋅≥=,即8M ≥.。
2019上海高考压轴卷数学一、选择题(本大题共4小题,共20.0分)1.已知A,B是椭圆E:的左、右顶点,M是E上不同于A,B的任意一点,若直线AM,BM的斜率之积为,则E的离心率为A. B. C. D.2.已知a∈R,则“a>1”是“<1”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件3.已知三棱锥S-ABC,△ABC是直角三角形,其斜边AB=8,SC⊥平面ABC,SC=6,则三棱锥的外接球的表面积为()A. B. C. D.4.定义:若整数满足:,称为离实数最近的整数,记作.给出函数的四个命题:①函数的定义域为,值域为;②函数是周期函数,最小正周期为;③函数在上是增函数;④函数的图象关于直线∈对称.其中所有的正确命题的序号为()A. B. C. D.二、填空题(本大题共12小题,共60.0分)5.若=0,则x=______.6.已知双曲线=1的离心率为,则m=______.7.(-)6的展开式中常数项为______ .8.函数f(x)=4x-2x+2(-1≤x≤2)的最小值为______ .9.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是______.10.若数列{a n}满足a11=,-=5(n∈N*),则a1= ______ .11.已知,<,是R上的增函数,则a的取值范围是______ .12.已知圆的方程为(x-1)2+(y-1)2=9,P(2,2)是该圆内一点,过点P的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是______ .13.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为______.14.已知各项为正的等比数列{a n}中,a2a3=16,则数列{log2a n}的前四项和等于______.15.已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是16.函数f(x)=lg(x≠0,x∈R),有下列命题:①f(x)的图象关于y轴对称;②f(x)的最小值是2;③f(x)在(-∞,0)上是减函数,在(0,+∞)上是增函数;④f(x)没有最大值.其中正确命题的序号是______ .(请填上所有正确命题的序号)三、解答题(本大题共5小题,共60.0分)17.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=k(x+1)与C相切于点A,|AF|=2.(Ⅰ)求抛物线C的方程;(Ⅱ)设直线l交C于M,N两点,T是MN的中点,若|MN|=8,求点T到y轴距离的最小值及此时直线l的方程.18.函数f(x)=2sin(ωx+φ)(ω>0,|φ|<)的一个零点为,其图象距离该零点最近的一条对称轴为x=.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若关于x的方程f(x)+log2k=0在x∈[,]上恒有实数解,求实数k的取值范围.19.某网店经营的一种商品进行进价是每件10元,根据一周的销售数据得出周销售量件与单价元之间的关系如下图所示,该网店与这种商品有关的周开支均为25元.根据周销售量图写出件与单价元之间的函数关系式;写出利润元与单价元之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.20.如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.21.各项均为正数的数列中,前n项和.求数列的通项公式;若恒成立,求k的取值范围;是否存在正整数m,k,使得,,成等比数列?若存在,求出m和k的值,若不存在,请说明理由.答案和解析1.【答案】D【解析】由题意方程可知,A(-a,0),B(a,0),设M(x0,y0),∴,则,整理得:,又,得,即,联立,得,即,解得e=.故选D.2.【答案】A【解析】a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.3.【答案】D【解析】如图所示,直角三角形ABC的外接圆的圆心为AB中点D,过D作面ABC的垂线,球心O在该垂线上,过O作球的弦SC的垂线,垂足为E,则E为SC中点,球半径R=OS=∵,SE=3,∴R=5棱锥的外接球的表面积为4πR2=100π,故选:D.4.【答案】B【解析】∵ 中,由题意知,{x}-{x}+,则得到f(x)=x-{x}∈(-],故错误;中,由题意知函数f(x)=x-{x}∈(-]的最小正周期为1,,故正确;中,由于{x}-{x}+则得f(x)=x-{x}为分段函数,且在上是增函数,,故命题正确;中,由题意得,所以函数y=f(x)的图象关于直线x=(k∈Z)不对称,故命题错误;由此可选择,故选B.5.【答案】1【解析】=4x-2×2x=0,设2x=t,t>0,则t2-2t=0,解得:t=2,或t=0(舍去)则2x=t=2,则x=1,故答案为:1.6.【答案】2或-5【解析】双曲线-=1,当焦点在x轴时,a2=m+2,b2=m+1,可得c2=a2+b2=3+2m,∵双曲线-=1的离心率为,∴,即,解得m=2,当焦点在y轴时,a2=-m-1,b2=-m-2,可得c2=a2+b2=-3-2m,∵双曲线-=1的离心率为,∴,可得,即12+8m=7m+7,可得m=-5.故答案为2或-5.7.【答案】60【解析】(-)6的展开式中的通项公式:T r+1==(-1)r26-r,令-6=0,解得r=4.∴(-)6的展开式中常数项==60.故答案为60.8.【答案】-4【解析】f(x)=(2x)2-4•2x,令t=2x,∵-1≤x≤2,∴t∈[,4],则y=t2-4t=(t-2)2-4,y在t∈[,2]上递减,在t∈[2,4]上递增,所以当t=2时函数取得最小值-4.故答案为-4.9.【答案】【解析】复数z=(1+i)(1+2i)=1-2+3i=-1+3i,∴|z|==.故答案为:.10.【答案】【解析】-=5,∴{}是以5为公差的等差数列,∴=+5(n-1),∵a11=,∴=+5(11-1)=52,即=2,∴a1=.故答案为.11.【答案】[2,+∞)【解析】首先,y=log a x在区间[1,+∞)上是增函数且函数y=(a+2)x-2a区间(-∞,1)上也是增函数∴a>1 (1)其次在x=1处函数对应的第一个表达式的值要小于或等于第二个表达式的值,即(a+2)-2a≤log a1⇒a≥2 (2)联解(1)、(2)得a≥2.故答案为[2,+∞).12.【答案】6【解析】∵圆的方程为(x-1)2+(y-1)2=9,∴圆心坐标为M(1,1),半径r=3.∵P(2,2)是该圆内一点,∴经过P点的直径是圆的最长弦,且最短的弦是与该直径垂直的弦.结合题意,得AC是经过P点的直径,BD是与AC垂直的弦.∵|PM|==,∴由垂径定理,得|BD|=2.因此,四边形ABCD的面积是S=|AC|•|BD|=×6×2=6.故答案为613.【答案】【解析】口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,从袋中一次随机摸出2个球,基本事件总数n==6,摸出的2个球的编号之和大于4包含的基本事件有:(1,4),(2,3),(2,4),(3,4),共4个,∴摸出的2个球的编号之和大于4的概率为p=.故答案为:.从袋中一次随机摸出2个球,基本事件总数n==6,利用列举法求出摸出的2个球的编号之和大于4包含的基本事件个数,由此能求出摸出的2个球的编号之和大于4的概率.14.【答案】8【解析】各项为正的等比数列{a n}中,a2a3=16,可得a1a4=a2a3=16,即有log2a1+log2a2+log2a3+log2a4=log2(a1a2a3a4)=log2256=8.故答案为:8.15.【答案】(4,8)【解析】当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=-x2,得a=-,设g(x)=-,则g′(x)=-=-,由g′(x)>0得-2<x<-1或-1<x<0,此时递增,由g′(x)<0得x<-2,此时递减,即当x=-2时,g(x)取得极小值为g(-2)=4,当x>0时,由f(x)=ax得-x2+2ax-2a=ax,得x2-ax+2a=0,得a(x-2)=x2,当x=2时,方程不成立,当x≠2时,a=设h(x)=,则h′(x)==,由h′(x)>0得x>4,此时递增,由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为(4,8)16.【答案】①④【解析】f(-x)=lg=f(x),∴函数f(x)是偶函数,f(x)的图象关于y轴对称,故正确;2,∴f(x)=lg≥lg2,∴f(x)的最小值是lg2,故不正确;函数g(x)=在(-∞,-1),(0,1)上是减函数,在(-1,0),(1,+∞)上是增函数,故函数f(x)=lg在(-∞,-1),(0,1)上是减函数,在(-1,0),(1,+∞)上是增函数,故不正确;由知,f(x)没有最大值,故正确故答案为:.17.【答案】(Ⅰ)设A(x0,y0),直线y=k(x+1)代入y2=2px,可得k2x2+(2k2-2p)x+k2=0,由△=(2k2-2p)2-4k4=0,解得p=2k2,解得x0=1,由|AF|=1+=2,即p=2,可得抛物线方程为y2=4x;(Ⅱ)由题意可得直线l的斜率不为0,设l:x=my+n,M(x1,y1),N(x2,y2),联立抛物线方程可得y2-4my-4n=0,△=16m2+16n>0,y1+y2=4m,y1y2=-4n,|AB|=•=8,可得n=-m2,=2m,==2m2+n=+m2=+m2+1-1≥2-1=3,当且仅当=m2+1,即m2=1,即m=±1,T到y轴的距离的最小值为3,此时n=1,直线的方程为x±y-1=0..【解析】(Ⅰ)设A(x0,y0),联立直线方程和抛物线方程,运用判别式为0,结合抛物线的定义,可得抛物线方程;(Ⅱ)由题意可得直线l的斜率不为0,设l:x=my+n,M(x1,y1),N(x2,y2),联立抛物线方程,运用韦达定理和弦长公式,结合中点坐标公式和基本不等式可得所求直线方程.本题考查抛物线的方程的求法,注意运用直线和抛物线相切的条件:判别式为0,考查直线和抛物线方程联立,运用韦达定理和弦长公式,考查运算能力,属于中档题.18.【答案】(Ⅰ)由题意,f()=2sin(•ω+φ)=0,即•ω+φ=kπ,∈①,即T=,得ω=2,代入①得φ=,∈,取k=1,得φ=,∴f(x)=2sin(2x);(Ⅱ)∵x∈[,],∴∈[,],,得f(x)∈[-2,1],由f(x)+log2k=0,得log2k=-f(x)∈[-1,2],∴k∈[,4].【解析】本题考查函数与方程的应用,三角函数的最值,周期及解析式的求法,考查转化思想以及计算能力,是中档题.(Ⅰ)由函数的零点列式得到•ω+φ=kπ,,再由已知求得周期,进一步求得ω,则φ可求,函数解析式可求;(Ⅱ)由x的范围求得相位的范围,进一步求出函数值域,再由方程f(x)+log2k=0在x∈[,]上恒有实数解即可求得k的范围.19.【答案】(1)由题设知,当12≤x≤20时,设p=ax+b,则,解得a=-2,b=50.∴p=-2x+50,同理得,当20<x≤28时,p=-x+30,所以;(2)当12≤x≤20时,销售利润,因此当时,;当20<x≤28时,销售利润,∵函数在(20,28]上单调递减,∴y<75,∴该消费品销售价格为时,周利润最大,最大周利润为.【解析】本题考查了函数的表示方法,分段函数,待定系数法和一次函数、二次函数模型.(1)利用函数图象,结合分段函数的概念,运用待定系数法计算得结论;(2)利用二次函数模型,分段求最值得结论.20.【答案】(1)由题意可知:椭圆的离心率e==,则a=2c,①椭圆的准线方程x=±,由2×=8,②由①②解得:a=2,c=1,则b2=a2-c2=3,∴椭圆的标准方程:;(2)方法一:设P(x0,y0),则直线PF2的斜率=,则直线l2的斜率k2=-,直线l2的方程y=-(x-1),直线PF1的斜率=,则直线l2的斜率k1=-,直线l1的方程y=-(x+1),联立,解得:,则Q(-x0,),由P,Q在椭圆上,P,Q的横坐标互为相反数,纵坐标应相等,则y0=,∴y02=x02-1,则,解得:,则,又P在第一象限,所以P的坐标为:P(,).方法二:设P(m,n),由P在第一象限,则m>0,n>0,当m=1时,不存在,解得:Q与F1重合,不满足题意,当m≠1时,=,=,由l1⊥PF1,l2⊥PF2,则=-,=-,直线l1的方程y=-(x+1),①直线l2的方程y=-(x-1),②联立解得:x=-m,则Q(-m,),由Q在椭圆方程,由对称性可得:=±n2,即m2-n2=1,或m2+n2=1,由P(m,n),在椭圆方程,,解得:,或,无解,又P在第一象限,所以P的坐标为:P(,).【解析】(1)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=±,则2×=8,即可求得a和c的值,则b2=a2-c2=3,即可求得椭圆方程;(2)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02-1,联立即可求得P点坐标;方法二:设P(m,n),当m≠1时,=,=,求得直线l1及l1的方程,联立求得Q点坐标,根据对称性可得=±n2,联立椭圆方程,即可求得P点坐标.本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.21.【答案】(1)∵,∴,,两式相减得,,整理得(a n+a n-1)(a n-a n-1-2)=0,∵数列{a n}的各项均为正数,∴a n-a n-1=2,n≥2,∴{a n}是公差为2的等差数列,又得a1=1,∴a n=2n-1;(2)由题意得>,∵,∴=<,∴;(3)∵a n=2n-1.假设存在正整数m,k,使得a m,a m+5,a k成等比数列,即即(2m+9)2=(2m-1)•(2k-1),∵(2m-1)≠0,∴,∵2k-1∈Z,∴2m-1为100的约数,∴当2m-1=1,m=1,k=61,当2m-1=5 , m=3 , k=23,当2m-1=25, m=13, k=25.故存在.【解析】本题考查了等差数列与等比数列的通项公式与求和公式、数列的单调性、“裂项求和”方法、数列递推关系,考查了推理能力与计算能力,属于难题.(1)利用递推关系得(a n+a n-1)(a n-a n-1-2)=0,数列{a n}的各项均为正数,可得a n-a n-1=2,n≥2,利用等差数列的通项公式即可得出;(2)由题意得,利用,“裂项求和”方法即可得出;(3)a n=2n-1.假设存在正整数m,k,使得a m,a m+5,a k成等比数列,即.可得,进而得出.。
2019年高考物理压轴题集锦含答案解析1. 地球质量为M ,半径为 R ,自转角速度为ω,万有引力恒量为 G ,如果规定物体在离地球无穷远处势能为 0,则质量为 m 的物体离地心距离为 r 时,具有的万有引力势能可表示为 E p = -GrMm.国际空间站是迄今世界上最大的航天工程,它是在地球大气层上空地球飞行的一个巨大的人造天体,可供宇航员在其上居住和进行科学实验.设空间站离地面高度为 h ,如果在该空间站上直接发射一颗质量为 m 的小卫星,使其能到达地球同步卫星轨道并能在轨道上正常运行,则该卫星在离开空间站时必须具有多大的动能? 解析:由G 2rMm =r mv 2得,卫星在空间站上的动能为 E k =21 mv 2 =G)(2h R Mm+。
卫星在空间站上的引力势能在 E p = -G hR Mm+ 机械能为 E 1 = E k + E p =-G)(2h R Mm+同步卫星在轨道上正常运行时有 G2rMm=m ω2r 故其轨道半径 r =32ωMG由③式得,同步卫星的机械能E 2 = -G r Mm 2=-G2Mm32GMω=-21m (3ωGM )2 卫星在运行过程中机械能守恒,故离开航天飞机的卫星的机械能应为 E 2,设离开航天飞机时卫星的动能为 E k x ,则E k x = E 2 - E p -2132ωGM +GhR Mm+ 2. 如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg 在斜面上,用F=50N 的力沿斜面向上作用于物体,使物体沿斜面匀速上升,g 取10N/kg ,sin37°=0.6,cos37°=0.8,求:(1)物块与斜面间的动摩擦因数μ;(2)若将F 改为水平向右推力F ',如图乙,则至少要用多大的力F '才能使物体沿斜面上升。
(设最大静摩擦力等于滑动摩擦力)解析:(1)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向,由物体匀速运动知物体受力平衡0sin =--=f G F F x θ 0cos =-=θG N F y解得 f=20N N=40N因为N F N =,由N F f μ=得5.021===N f μ (2)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向。
(全国卷Ⅱ)2019年高考数学压轴卷 文(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足11i 12z z -=+,则复数z 在复平面内对应点在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合{}06M x x =≤≤, {}232x N x =≤,则M N ⋃=( ) A. (],6-∞ B. (],5-∞ C. []0,6 D. []0,53.已知向量2=a ,1=b ,()22⋅-=a a b ,则a 与b 的夹角为( )A .30︒B .60︒C .90︒D .150︒4.《莱因德纸草书》是世界上最古老的数学著作之一,书中有这样一道题目:把100个面包分给5个人,使每个人所得面包成等差数列,且较大的三份之和的等于较小的两份之和,问最小的一份为( )A.65 B.611 C. 35 D. 310 5.若n 是2和8的等比中项,则圆锥曲线221y x n+=的离心率是( )A .32 B .5 C .32或52 D .32或5 【答案】D6. 《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为( )A .4B .642+C .442+D .27.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若sin 1sin 2B C =,()2213cos2a b B BA BC-=⋅u u u v u u u v,则角C=()A.6πB.3πC.2πD.3π或2π8. 如图为函数()y f x=的图象,则该函数可能为()A.sin xyx=B.cos xyx=C.sin||xyx=D.|sin|xyx=9.执行如图所示程序框图,若输出的S值为20-,在条件框内应填写()A.3?i>B.4?i<C.4?i>D.5?i< 10.已知抛物线()220y px p=>的焦点为F,准线l与x轴交于点A,点P在抛物线上,点P到准线l的距离为d,点O关于准线l的对称点为点B,BP交y轴于点M,若BP a BM=,23OM d=,则实数a的值是()A.34B.12C.23D.3211.已知不等式组2024x yx yyx y m-≥+≤≥⎧⎪+⎨≤⎪⎪⎪⎩表示的平面区域为M,若m是整数,且平面区域M内的整点(),x y恰有3个(其中整点是指横、纵坐标都是整数的点),则m的值是()A. 1B. 2C. 3D. 412.已知函数()f x 的导函数为()f x ',且满足()32123f x x ax bx =+++, ()()24f x f x +='-',若函数()6ln 2f x x x ≥+恒成立,则实数b 的取值范围为( )A. [)64ln3,++∞B. [)5ln5,++∞C. [)66ln6,++∞D. [)4ln2,++∞ 二、填空题:本大题共4小题,每小题5分.13.某学校选修网球课程的学生中,高一、高二、高三年级分别有50名、40名、40名.现用分层抽样的方法在这130名学生中抽取一个样本,已知在高二年级学生中抽取了8名,则在高一年级学生中应抽取的人数为_______.14.设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为0,4⎡⎤⎢⎥⎣⎦π,则点P 横坐标的取值范围为 . 15.已知正四棱锥P ABCD -内接于半径为94的球O 中(且球心O 在该棱锥内部),底面ABCD 的边长为2,则点A 到平面PBC 的距离是__________.16.若双曲线()222210,0x y a b a b-=>>上存在一点P 满足以OP 为边长的正三角形的内切圆的面积等于236c π(其中O 为坐标原点, c 为双曲线的半焦距),则双曲线的离心率的取值范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小满分题12分)设数列{}n a 的前n 项和为n S ,1110,910n n a a S +==+. (1)求证:{lg }n a 是等差数列; (2)设n T 是数列13{}(lg )(lg )n n a a +的前n 项和,求使21(5)4n T m m >-对所有的*n N ∈都成立的最大正整数m 的值.18.(本小题满分12分)进入11月份,香港大学自主招生开始报名,“五校联盟”统一对五校高三学生进行综合素质测试,在所有参加测试的学生中随机抽取了部分学生的成绩,得到如图所示的成绩频率分布直方图:(1)估计五校学生综合素质成绩的平均值;(2)某校决定从本校综合素质成绩排名前6名同学中,推荐3人参加自主招生考试,若已知6名同学中有4名理科生,2名文科生,试求这2人中含文科生的概率.19.(本题满分12分)如图,在三棱锥P ADE -中, 4AD =, 22AP =, AP ⊥底面ADE ,以AD 为直径的圆经过点E .(1)求证: DE ⊥平面PAE ;(2)若60DAE ∠=︒,过直线AD 作三棱锥P ADE -的截面ADF 交PE 于点F ,且45FAE ∠=︒,求截面ADF 分三棱锥P ADE -所成的两部分的体积之比.20. (本小题满分12分)已知椭圆C 的两个焦点分别为F 1(-10,0),F 2(10,0),且椭圆C 过点P (3,2). (1)求椭圆C 的标准方程;(2)与直线OP 平行的直线交椭圆C 于A ,B 两点,求△PAB 面积的最大值.21. (本小题满分12分)已知函数()e x f x ax =-(a 为常数)的图象与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为2-.(1)求a 的值及函数()f x 的单调区间;(2)设()231g x x x =-+,证明:当0x >时,()()f x g x >恒成立. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线M 的参数方程为1cos 1sin x y ϕϕ=+=+⎧⎨⎩(ϕ为参数),过原点O 且倾斜角为α的直线l 交M 于A 、B 两点.(1)求l 和M 的极坐标方程;(2)当4π0,α⎛⎤∈ ⎥⎝⎦时,求OA OB +的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()121f x x x =++-. (1)解不等式()2f x x ≤+;(2)若()3231g x x m x =-+-,对1x ∀∈R ,2x ∃∈R ,使()()12f x g x =成立,求实数m 的取值范围.2019全国卷Ⅱ高考压轴卷数学文科答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】设复数i z a b =+,(),a b ∈R ,则i z a b =-,因为11i 12z z -=+,所以()()211i z z -=-,所以2(1)2i a b --()1i a b =+-,所以可得2221a bb a -=-⎧⎨-=+⎩,解得5343a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以54i 33z =-,所以复数z 在复平面内对应点54,33⎛⎫-⎪⎝⎭在第四象限上.故选D .2【答案】A【解析】 因为{}06M x x =≤≤, {}232{|5}x N x x x =≤=≤, 所以{|6}M N x x ⋃=≤,故选A. 3.【答案】B【解析】∵()222422⋅-=-⋅=-⋅=a a b a a b a b ,∴1⋅=a b .设a 与b 的夹角为θ,则1cos 2θ⋅==a b a b ,又0180θ︒≤≤︒,∴60θ=︒,即a 与b 的夹角为60︒.4.【答案】C【解析】分析:根据已知条件,设等差数列的公差为,将已知条件转化为等式,求出等差数列的首项和公差,再得出答案。
安徽2019年高三高考压轴(解析版)-理综物理14、静止在粗糙水平面上的物块,受方向相同但大小先后为F1、F2、F3的水平拉力作用,先做匀加速运动、再匀速运动、最后做匀减速运动到停下(F1,F2,F3分别对应上述三个过程)。
这三个力的作用时间相等,物块与水平面间的动摩擦因数处处相同,那么以下说法中正确的有A、这三个力中,F1做功最多B、加速运动过程中合力做的功大于减速运动过程中克服合力做的功C、这三个力中,F2做功最多D、在全过程中,这三个力做的总功为零15、美国宇航局2017年12月5日宣布,他们发现了太阳系外第一颗类似地球的、可适合居住的行星——“开普勒—22b”,它每290天环绕着一颗类似于太阳的恒星运转一周,距离地球约600光年,体积是地球的2.4倍,万有引力常量和地球表面的重力加速度。
根据以上信息,以下推理中正确的选项是A、假设能观测到该行星的轨道半径,可求出该行星所受的万有引力B、假设该行星的密度和半径,可求出该行星的轨道半径C、根据地球的公转周期与轨道半径,可求出该行星的轨道半径D、假设该行星的密度与地球的密度相等,可求出该行星表面的重力加速度16、在如图甲所示的电路中,电源的电动势为3.0V,内阻不计,L1、L2、L3为3个用特殊材料制成的同规格的小灯泡,这种小灯泡的伏安特性曲线如图乙所示。
当开关S闭合稳定后17、如下图,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上。
现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行。
A的质量为4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态。
释放A后,A沿斜面下滑至速度最大时C恰好离开地面。
以下说法正确的选项是18、如下图,一带电量为+q的点电荷与均匀带电的正三角形的薄板相距为2d,+q到带电薄板的垂线通过板的几何中心,假设图中a点处的合电场强度为零,正确应用等效和对称的思维方法求出带电薄板与+q在图中b点处产生的合电场强度大小为〔静电力恒20、作用在导电液体上的安培力能起到推动液体流动的作用,这样的装置称为电磁泵,它在医学技术上有多种应用,血液含有离子,在人工心肺机里的电磁泵就可作为输送血液的动力。
2019天津理科数学压轴卷一、选择题(共8题,每题5分,共40分)1.()Z M 表示集合M 中整数元素的个数,设集合{}18A xx =-<<,{}5217B x x =<<,则()Z A B =I ( ) A .3B .4C .5D .62.i 为虚数单位,若复数()()1i 1i m ++是纯虚数,则实数m =( ) A .1-B .0C .1D .0或13.阅读如图的框图,运行相应的程序,若输入n 的值为6,则输出S 的值为A.73 B. 94 C. 76 D. 98 4.不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域的面积等于( )A .32 B.23 C. 43 D.345.下列函数中,既是奇函数,又是R 上的单调函数的是( ) A .()()ln 1f x x =+B .()()()222,02,0x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩C.()()()() 20 0,012,,xxxf x xx⎧⎪<⎪⎪==⎨⎪⎛⎫⎪->⎪⎪⎝⎭⎩D.()1f x x-=6.()834132x xx⎛⎫+-⎪⎝⎭展开式中2x的系数为()A.1280-B.4864 C.4864-D.12807.已知棱长为1的正方体被两个平行平面截去一部分后,剩余部分的三视图如图所示,则剩余部分的表面积为()A.23B.33+C93+D.238.函数()2ln0f x x x ax=-+≤恰有两个整数解,则实数a的取值范围为()A.ln2212a-<≤-B.21a-<≤-C.31a-<≤-D.ln3ln23232a-<≤-二、填空题:本大题共有6小题,每小题5分,共30分.9.已知两点)2,2(),2,0(-NM以线段MN为直径的圆的方程为________________.10.学校艺术节对A、B、C、D四件参赛作品只评一件一等奖,在评奖揭晓前,甲,乙,丙,丁四位同学对这四件参赛作品预测如下:甲说:“是C或D作品获得一等奖”;乙说:“B作品获得一等奖”;丙说:“A、D两件作品未获得一等奖”;丁说:“是C作品获得一等奖”.评奖揭晓后,发现这四位同学中只有两位说的话是对的,则获得一等奖的作品是_________.11.已知长方体的长、宽、高分别为2,1,2,则该长方体外接球的表面积为__________.12.在直角坐标系xoy 中,直线l 的参数方程为32545x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=.直线l 截圆C 的弦长等于圆C 的半径长的3倍,求a 的值 .13.如图,在ABC △中,23AN NC =u u u r u u u r ,P 是BN 上一点,若13AP t AB AC =+u u u r u u u r u u u r,则实数t 的值为14.设函数()ln ,11,1x x f x x x ≥⎧=⎨-<⎩,若()1f m >,则实数m 的取值范围是______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15) (本小题满分13分)设ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,且B A c b 2,1,3=== (Ⅰ)求a 的值; (Ⅱ)求)62cos(π+A 的值.16. (本小题满分13分)田忌赛马是《史记》中记载的一个故事,说的是齐国将军田忌经常与齐国众公子赛马,孙膑发现他们的马脚力都差不多,都分为上、中、下三等于是孙膑给田忌将军制定了一个必胜策略:比赛即将开始时,他让田忌用下等马对战公子们的上等马,用上等马对战公子们的中等马,用中等马对战公子们的下等马,从而使田忌赢得公子们许多赌注假设田忌的各等级马与某公子的各等级马进行一场比赛获胜的概率如表所示:田忌的马获胜概率公子的马 上等马 中等马 下等马上等马 0.5 0.8 1 中等马 0.2 0.5 0.9 下等马0.050.4比赛规则规定:一次比由三场赛马组成,每场由公子和田忌各出一匹马出骞,结果只有胜和负两种,并且毎一方三场赛马的马的等级各不相同,三场比赛中至少获胜两场的一方为最终胜利者.(1)如果按孙膑的策略比赛一次,求田忌获胜的概率;(2)如果比赛约定,只能同等级马对战,每次比赛赌注1000金,即胜利者赢得对方1000金,每月比赛一次,求田忌一年赛马获利的数学期望. 17.(本小题13分)如图,在四棱锥P ABCD -中,AB PC ⊥,AD BC ∥,AD CD ⊥,且2222PC BC AD CD ====,2PA =.(1)证明:PA ⊥平面ABCD ;(2)在线段PD 上,是否存在一点M ,使得二面角M AC D --的大小为60︒?如果存在,求PMPD的值;如果不存在,请说明理由. 18.(本小题13分)在平面直角坐标系xOy 中,设椭圆13222=+y a x ()3>a 的右焦点为F ,右顶点为A ,已知1=-OF OA ,其中O 为原点,e 为椭圆的离心率.(Ⅰ)求椭圆的标准方程及离心率e ;(Ⅱ)设过点A 的直线l 与椭圆交于点()轴上不在x B B ,垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠≤∠,求直线l 的斜率的取值范围. 19.(本小题满分14分)数列{}n a 是等比数列,公比大于0,前n 项和nS ()n N *∈,{}nb 是等差数列,已知112a =,32114a a =+,3461a b b =+,45712a b b =+.(Ⅰ)求数列{}n a ,{}n b 的通项公式n a ,n b ; (Ⅱ)设{}n S 的前n 项和为n T ()n N *∈,(i )求n T ; (ii )证明:()21121311<⋅-∑=+++++ni i i i i i b b b b T .20. (本小题满分14分)设函数)0()(≠=k xe x f kx .(Ⅰ) 求曲线)(x f y =在点))0(,0(f 处的切线方程; (Ⅱ) 讨论函数)(x f 的单调性;(Ⅲ) 设42)(2+-=bx x x g ,当1=k 时,若对任意的R x ∈1,存在[]2,12∈x ,使得)(1x f ≥)(2x g ,求实数b 的取值范围.参考答案:1【答案】C【解析】∵()1,8A =-,517,22B ⎛⎫= ⎪⎝⎭,∴5,82A B ⎛⎫= ⎪⎝⎭I ,∴()5Z A B =I .故选C .2【答案】C【解析】∵()()()()1i 1i 11i m m m ++=-++是纯虚数,∴1010m m -=⎧⎨+≠⎩,即1m =,故选C .3.【答案】A【解析】由题意,模拟执行程序,可得:,,满足条件,,满足条件,,满足条件,,不满足条件,退出循环,输出S 的值为.故选:A . 4.【答案】【解析】由340340x y x y +-=⎧⎨+-=⎩,得(1,1)C ,如图7-8所示,故12ABC C S AB x ∆=14(4)123=⨯-⨯43=5【答案】B【解析】对于A ,()()ln 1f x x =+,有()()()()ln 1ln 1f x x x f x -=-+=+=,则函数()f x 为偶函数,不符合题意;对于B ,()()()222,02,0x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩,有()()f x f x -=-,函数()f x 为奇函数,且在R 上的单调递增,符合题意;对于C ,()()()()200,0102,,xxx f x x x ⎧⎪<⎪⎪==⎨⎪⎛⎫⎪-> ⎪⎪⎝⎭⎩,有()()f x f x -=-,函数()f x 为奇函数,但在R 上不是单调函数,不符合题意; 对于D ,()11f x x x-==,()f x 的定义域为{}0x x ≠,在R 上不是单调函数,不符合题意; 故选B . 6.【答案】A【解析】根据二项式的展开式,可以得到第一个括号里出33x 项,第二个括号里出1x项,或者340x y +-=340x y +-=yx(1,1)C BA O第一个括号里出4x ,第二个括号里出21x,具体为()231742688C C 11322x x x x ⎡⎤⎡⎤⎛⎫⎛⎫-+⋅-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎢⎥⎣⎦,化简得到21280x -,故答案为A . 7.【答案】B【解析】由三视图可得,该几何体为如图所示的正方体1111ABCD A B C D -截去三棱锥1D ACD -和三棱锥111B A B C -后的剩余部分.其表面为六个腰长为1的等腰直角三角形和两个边长为2的等边三角形, 所以其表面积为()22136122332⨯⨯+⨯⨯=+,故选B .8.【答案】D【解析】函数()2ln 0f x x x ax =-+≤恰有两个整数解,即ln xa x x≤-恰有两个整数解, 令()ln xg x x x =-,得()221ln x x g x x--'=,令()21ln h x x x =--,易知()h x 为减函数. 当()0,1x ∈,()0h x >,()0g x '>,()g x 单调递增; 当()1,x ∈+∞,()0h x <,()0g x '<,()g x 单调递减.()11g =-,()ln 2222g =-,()ln3333g =-. 由题意可得:()()32g a g <≤,∴ln3ln 23232a -<≤-.故选D . 9【答案】【解析】由题得圆心的坐标为(1,0),|MN|=所以圆的半径为所以圆的方程为.故答案为:10【答案】B【解析】若A 为一等奖,则甲、乙、丙、丁的说法均错误,不满足题意; 若B 为一等奖,则乙、丙的说法正确,甲、丁的说法错误,满足题意; 若C 为一等奖,则甲、丙、丁的说法均正确,不满足题意; 若D 为一等奖,则乙、丙、丁的说法均错误,不满足题意; 综上所述,故B 获得一等奖. 11【答案】【解析】由题意,长方体的长宽高分别为,所以其对角线长为,求得球的半径为,利用球的表面积公式,即可求解. 【详解】由题意,长方体的长宽高分别为,所以其对角线长为,设长方体的外接球的半径为,则,即,所以球的表面积为.12【答案】32a =或3211. 【解析】 圆C 的极坐标方程转化成直角坐标方程为:22224a a x y ⎛⎫+-= ⎪⎝⎭,直线l 截圆C 的弦长等于圆C 的半径长的3倍,∴3812522aa d -==⋅,整理得23165a a -=,利用平方法解得32a =或321113.【答案】16【解析】由题意及图,()()1AP AB BP AB mBN AB m AN AB mAN m AB =+=+=+-=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,又23AN NC =u u u r u u u r ,∴25AN AC =u u u r u u u r ,∴()215AP mAC m AB =+-u u u r u u u r u u u r ,又13AP t AB AC =+u u u r u u u r u u u r ,∴12153m t m -=⎧⎪⎨=⎪⎩,解得56m =,16t =.14【答案】()(),0e,-∞+∞U 【解析】如图所示:可得()ln ,11,1x x f x x x ≥⎧=⎨-<⎩的图像与1y =的交点分别为()0,1,()e,1,∴()1f m >,则实数m 的取值范围是()(),0e,-∞+∞U ,可得答案()(),0e,-∞+∞U . 15【 答案】:(Ⅰ) 解:由B A 2=,知B B B A cos sin 22sin sin ==,由正、余弦定理得acb c a b a 22222-+⋅=.因为1,3==c b ,所以122=a ,则32=a .(Ⅱ) 解:由余弦定理得31612192cos 222-=-+=-+=bc a c b A . x§]由于π<<A 0,所以322911cos 1sin 2=-=-=A A故427sin 2cos29A A ==- 1837246sin 2sin 6cos 2cos )62cos(-=-=+πππA A A16.【答案】(1)0.72;(2)见解析.【解析】(1)记事件A :按孙膑的策略比赛一次,田忌获胜,对于事件A ,三场比赛中,由于第三场必输,则前两次比赛中田忌都胜, 因此,()0.80.90.72P A =⨯=;(2)设田忌在每次比赛所得奖金为随机变量ξ, 则随机变量ξ的可能取值为1000-和1000,若比赛一次,田忌获胜,则三场比赛中,田忌输赢的分布为:胜胜胜、负胜胜、胜负胜、胜胜负,设比赛一次,田忌获胜的概率为P ,则1121139322522520P =⨯⨯⨯+⨯⨯=.随机变量ξ的分布列如下表所示:ξ1000- 1000P1120 920∴119100010001002020E ξ=-⨯+⨯=-. 因此,田忌一年赛马获利的数学期望为100121200-⨯=-金. 17.【答案】(1)见证明;(2)见解析.【解析】(1)∵在底面ABCD 中,AD BC ∥,AD CD ⊥,且2222BC AD CD ===, ∴2AB AC ==,22BC =,∴AB AC ⊥,又∵AB PC ⊥,AC PC C =I ,AC ⊂平面PAC ,PC ⊂平面PAC ,∴AB ⊥平面PAC , 又∵PA ⊂平面PAC ,∴AB PA ⊥, ∵2PA AC ==,22PC =,∴PA AC ⊥,又∵PA AB ⊥,AB AC A =I ,AB ⊂平面ABCD ,AC ⊂平面ABCD ,∴PA ⊥平面ABCD . (2)方法一:在线段AD 上取点N ,使2AN ND =,则MN PA ∥,又由(1)得PA ⊥平面ABCD ,∴MN ⊥平面ABCD , 又∵AC ⊂平面ABCD ,∴MN AC ⊥,作NO AC ⊥于O ,又∵MN NO N =I ,MN ⊂平面MNO ,NO ⊂平面MNO ,∴AC ⊥平面MNO , 又∵MO ⊂平面MNO ,∴AC MO ⊥,又∵AC NO ⊥,∴MON ∠是二面角M AC D --的一个平面角, 设PMx PD=,则()122MN x AP x =-=-,22ON AN xAD x ===, 这样,二面角M AC D --的大小为60︒, 即22tan tan603MN x MON ON x -∠===︒,即423PMx PD==- ∴满足要求的点M 存在,且423PMPD=-方法二:取BC 的中点E ,则AE 、AD 、AP 三条直线两两垂直 ∴可以分别以直线AE 、AD 、AP 为x 、y 、z 轴建立空间直角坐标系,且由(1)知()0,0,2AP =u u u r 是平面ACD 的一个法向量, 设()0,1PMx PD =∈,则()122MN x AP x =-=-,2AN xAD x ==, ∴()2,22AM x x =-u u u u r ,)2,2,0AC =u u u r,设(),,AQ a b c =u u u r是平面ACM 的一个法向量,则()2220220AQ AM xb x c AQ AC a b ⎧⋅=+-=⎪⎨⋅=+=⎪⎩u u u r u u u r u u u r u u u u r ,∴2a b x c =-⎧⎪⎨=⎪⎩,令22b x =-,则()22,22AQ x x x =-+-u u u r,它背向二面角,又∵平面ACD 的法向量()0,0,2AP =u u u r,它指向二面角,这样,二面角M AC D --的大小为60︒,即()()()222221cos cos602222222,AP AQ xAP AQ AP AQ x x x==︒=⋅-++-⋅+⋅u u u r u u u ru u u r u u u r u u u r u u u r , 即423x =-∴满足要求的点M 存在,且423PMPD=- 18. 【答案】(Ⅰ)13422=+y x (Ⅱ)⎪⎪⎭⎫⎢⎣⎡+∞⎥⎦⎤ ⎝⎛-∞-,4646,Y 【解析】(Ⅰ)由已知得1=-c a ,即132=--a a ,解得2=a ,所以1=c ,得21==a c e ,椭圆方程为13422=+y x . (Ⅱ)解: 设直线l 的斜率为()0≠k k ,则直线l 的方程为()2-=x k y ,设()B B y x B ,由方程组()⎪⎩⎪⎨⎧=+-=134222y x x k y ,消去y ,整理得()0121616342222=-+-+k x k x k 解得2=x 或346822+-=k k x ,所以B 点坐标为⎪⎪⎭⎫⎝⎛+-+-3412,3468222k k k k .由(Ⅰ)知,()0,1F ,设()H y H ,0,有()H y FH ,1-=,⎪⎪⎭⎫⎝⎛++-=3412,3449222k k k k BF ,由HF BF ⊥,则0=⋅,所以034123494222=+++-k ky k k H ,解得kk y H 12492-=, 因此直线MH 的方程为kk x k y 124912-+-=,设()M M y x M ,,由方程组()⎪⎩⎪⎨⎧-+-=-=1249122k x k y x k y 消去y ,解得()11292022++=k k x M , 在MAO ∆中,MO MA MAO MOA ≤⇔∠≤∠,即()22222MMMM y x y x +≤+-,化简得1≥M x ,即()111292022≥++k k , 解得46-≤k ,或46≥k . 所以,直线l 的斜率的取值范围为⎪⎪⎭⎫⎢⎣⎡+∞⎥⎦⎤ ⎝⎛-∞-,4646,Y 19【答案】(Ⅰ)12n n a =,1n b n =-(Ⅱ)(i )112n n T n =-+【解析】(Ⅰ)解:设数列{}n a 的公比为q (0q >)121112114a a qa q ⎧=⎪⎪⎨⎪=+⎪⎩,21120q q --=,=-1q (舍)或=2q ,12n na = 设数列{}nb 的公差为d111182(4)1116316b d b d⎧=⎪+⎪⎨⎪=⎪+⎩ 114431616b d b d +=⎧⎨+=⎩ 101b d =⎧⎨=⎩ ,1n b n =-. (Ⅱ)解:112212(1)1112n n nS -==-- 211111(111)()(1)122222n n n n T n n =+++-+++=--=-+L L111132112()(2)()(2)(1)(1)2i i i i i i i i i i T b b i b b i i i i ++++++++-⋅+-⋅+==⋅⋅+⋅+⋅1112(1)2i i i i +=-⋅+⋅ 1132231112()111111()()()122222322(1)2ni i i n n i i i T b b b b n n ++++=++-⋅=-+-++-⋅⋅⋅⋅⋅⋅+⋅∑L 11112(1)22n n +=-<+⋅20【答案】 (Ⅰ) x y =(Ⅱ) ①当0>k 时,)(x f 在)1,(k --∞上单调递减,在),1(+∞-k上单调递增 ②当0<k 时,此时)(x f 在)1,(k --∞上单调递增,在),1(+∞-k上单调递减(Ⅲ)⎪⎭⎫⎢⎣⎡+∞+,412e 【解析】(Ⅰ) 解:kx e kx x f )1()('+=, 因为0)0(=f 且1)0('=f ,所以曲线)(x f y =在点))0(,0(f 处的切线方程为 x y =(Ⅱ) 解:函数)(x f 的定义域为R ,令0)1()('>+=kx e kx x f ,由0>kx e ,知01>+kx 讨论:①当0>k 时,k x 1->,此时)(x f 在)1,(k --∞上单调递减,在),1(+∞-k上单调递增. ②当0<k 时,kx 1-<,此时)(x f 在)1,(k --∞上单调递增,在),1(+∞-k 上单调递减(Ⅲ) 解:由(Ⅱ)知,当1=k 时,)(x f 在)1,(--∞上单调递减,在),1(+∞-上单调递增. 则对任意的R x ∈1,有)(1x f ≥ef 1)1(-=-,即ex f 1)(min 1-=.又已知存在[]2,12∈x ,使得)(1x f ≥)(2x g ,所以e 1-≥[]2,1),(22∈x x g ,即存在[]2,1∈x ,使得42)(2+-=bx x x g ≤e1-, 即b 2≥x e x 14-++.因为[]2,1∈x 时,⎥⎦⎤⎢⎣⎡++∈++-e e x e x 15,21441, 所以b 2≥e 214+,即b ≥e412+.所以实数b 的取值范围是⎪⎭⎫⎢⎣⎡+∞+,412e .。
数学压轴小题专练(选择9/10-12,填空15-16) 题组一10.设函数()f x 为定义域为R 的奇函数,且()(2)f x f x =-,当[0,1]x ∈时,()s i n f x x =,则函数()cos()()g x x f x π=-在区间59[,]22-上的所有零点的和为( ) A .6 B .7 C .13 D .1411.已知函数2()s i n 20191x f x x =++,其中'()f x 为函数()f x 的导数,求(2018)(2018)f f +-'(2019)'(2019)f f ++-=( )A .2B .2019C .2018D .012.已知直线l :1()y ax a a R =+-∈,若存在实数a 使得一条曲线与直线l 有两个不同的交点,且以这两个交点为端点的线段长度恰好等于a,则称此曲线为直线l 的“绝对曲线”.下面给出的四条曲线方程:①21y x =--;②22(1)(1)1x y -+-=;③2234x y +=;④24y x =. 其中直线l 的“绝对曲线”的条数为( )A .1B .2C .3D .415.若平面向量1e ,2e 满足11232e e e =+=,则1e 在2e 方向上投影的最大值是 .16.观察下列各式:311=;3235=+;337911=++;3413151719=+++……若3*()m m N ∈按上述规律展开后,发现等式右边含有“2017”这个数,则m 的值为 . 题组二 9.如图在三棱锥中,平面平面,,,现将一小球放入三棱锥内,往三棱锥内注水,当注入水的体积是三棱锥的体积的时,小球与底面及三个侧面都相切,且小球与水面也相切,则小球的表面积等于A .B .C .D .10.如图,已知双曲线的左、右焦点分别为、,过做轴的垂线交双曲线于,若双曲线左、右顶点分别为、,直线,与轴分别交于点,点,若,则圆上的点到双曲线的渐近线的距离的最大值为A .B .C .D .11.在中,内角所对的边分别为,已知,的面积,且,则A .B .C .D .12.已知函数,若关于的不等式在上恒成立,则的值为A .B .C .D .15.若实数满足约束条件,则的范围为___________.16.已知抛物线的方程为,设直线:,交抛物线于、两点,为坐标原点,点在抛物线的部分上,则的面积最大为___________.题组三10. 已知,且,则=()A. B.C. D.11. 已知不等式264cos64cos4sin22≥--+mxxx对于]3,3[ππ-∈x恒成立,则实数m的取值范围是()A. ]2,(--∞ B.]22,(-∞(,)3παπ∈3sin()65πα+=cosα10343-10343+10343--10343+-C. ]2,22[D. ),2[+∞12. 已知双曲线()222210,0x y a b a b -=>>的左、右焦点分别为12,F F ,点05,2P x ⎛⎫ ⎪⎝⎭为双曲线上一点,若12PF F ∆的内切圆半径为1,且圆心G 到原点O)A. 2281325x y -=B. 22145x y -= C. 2221625x y -=D. 221850x y -=题组四10.若直角坐标系内A 、B 两点满足:(1)点A 、B 都在()f x 图象上;(2)点A 、B 关于原点对称,则称点对(,)A B 是函数()f x 的一个“和谐点对”,(,)A B 与(,)B A 可看作一个“和谐点对”.已知函数22(0)()2(0)x x x x f x x e ⎧+<⎪=⎨≥⎪⎩,则()f x 的“和谐点对”有( )A .1个B .2个C .3个D .4个11.设函数()xf x e x =-,()g x ax b =+,如果()()f x g x ≥在R 上恒成立,则a b +的最大值为( ) A .13e+ C .1 D .1e -12.用6种不同的颜色对正四棱锥的8条棱染色,每个顶点出发的棱的颜色各不相同,不同的染色方案共有多少种( ) A .14400 B .28800 C .38880 D .43200 15.设P 为曲线1C 上的动点,Q 为曲线2C 上的动点,则称PQ 的最小值为曲线1C 、2C 之间的距离,记作12(,)d C C .若1C :20x e y -=,2C :ln ln 2x y +=,则12(,)d C C = .16.在ABC ∆中,设b ,c 分别表示角B ,C 所对的边,AD 为边BC 上的高.若AD BC =,则c b 的最大值是 .题组五题组六 10.函数()21y f x =-是偶函数,则函数()21y f x =+的对称轴是 ( )A .1x =-B .0x =C .12x =D .12x =-11. 已知平面直角坐标系xOy 上的区域D 由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定.若M(x ,y)为D 上动点,点A 的坐标为1).则z O M O A =⋅的最大值为A. B.12.定义域和值域均为[,]a a -(常数a>0)的函数()y f x =和g()y x =大致图象如图所示,给出下列四个命题: ①方程[()]0f g x =有且仅有三个解; ②方程[()]0g f x =有且仅有三个解; ③方程[()]0f f x =有且仅有九个解;④方程[()]0g g x =有且仅有一个解。
2019年高考物理压轴题【例1】(江苏卷)16.(16分)如图所示,匀强磁场的磁感应强度大小为B .磁场中的水平绝缘薄板与磁场的左、右边界分别垂直相交于M 、N ,MN =L ,粒子打到板上时会被反弹(碰撞时间极短),反弹前后水平分速度不变,竖直分速度大小不变、方向相反.质量为m 、电荷量为-q 的粒子速度一定,可以从左边界的不同位置水平射入磁场,在磁场中做圆周运动的半径为d ,且d <L ,粒子重力不计,电荷量保持不变。
(1)求粒子运动速度的大小v ;(2)欲使粒子从磁场右边界射出,求入射点到M 的最大距离d m ;(3)从P 点射入的粒子最终从Q 点射出磁场,PM =d ,QN =2d,求粒子从P 到Q 的运动时间t .已知条件:1基本属性 质量m 电量q2外部环境 有界磁场B3几何知识 宽度L4初始条件 速度v5隐含条件 不计重力【解析】(1)粒子的运动半径mv d qB =(1分)解得qBd v m=(1分); (2)如图4所示,粒子碰撞后的运动轨迹恰好与磁场左边界相切,由几何关系得d m =d (1+sin60°)(2分)解得m 23d d +=(2分) (3)粒子的运动周期2πm T qB =(2分) 设粒子最后一次碰撞到射出磁场的时间为t ',则(1,3,5,)4Tt n t n '=+=L L (2分)(a )当 31L nd d =+-()时,粒子斜向上射出磁场112t T '= (1分) 解得 334π2L m t d qB-=+()(2分) (b )当31+L nd d =+()时,粒子斜向下射出磁场512t T '= (1分) 解得 334π2L m t d qB-=-()(2分) 【例2】(北京卷)24.(20分)雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关。
雨滴间无相互作用且雨滴质量不变,重力加速度为g 。
2019 北京市压轴卷数学试题(理科)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知(1i)i 1i(b b +=-+∈R),则b 的值为() A.1 B.1- C. i D.i - 2.下列函数中,值域为R 的偶函数是( ) A .y=x 2+1B .y=e x ﹣e ﹣xC .y=lg|x|D .2x y =3.若变量y x ,满足约束条件2,1,0x y x y +≤⎧⎪≥⎨⎪≥⎩,则y x z +=2的最大值为( )A .0B .2C .3D .44. 某程序框图如图所示,执行该程序,若输入的a 值为1,则输出的a 值为()输出输入开始结束A.1B.2C.3D.55.某四棱锥的三视图如图所示,则该四棱锥的侧面积是() A .27 B .30 C .32D .366. “4ab =”是直线210x ay +-=与直线220bx y +-=平行的() A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件7.已知点Q 及抛物线24x y =上一动点(,)P x y ,则||y PQ +的最小值是() A .12B .1C .2D . 3 8.设函数()f x 的定义域D ,如果存在正实数m ,使得对任意x D ∈,都有()()f x m f x +>,则称()f x 为D 上的“m 型增函数”,已知函数()f x 是定义在R 上的奇函数,且当0x >时,()f x x a a =--(a R ∈).若()f x 为R 上的“20型增函数”,则实数a 的取值范围是()A .0a >B .5a <C .10a <D .20a <二、填空题(本大题共6个小题,每小题5分,满分30分.把答案填在题中的横线上.) 9.函数2sin(2)16y x π=++的最小正周期是 ,最小值是 .10114=+yx ,若围是__________.11. 如果平面直角坐标系中的两点(1,1)A a a -+,(,)B a a 关于直线l 对称,那么直线l 的方程为 .12.51⎪⎭⎫ ⎝⎛-x x 的二项展开式中x 项的系数为_________.(用数字作答)13.若01a b <<<,b x a =,a y b =,log b z a =,则x ,y ,z 有小到大排列为 .14.数列{}n a 满足:*112(1,)n n n a a a n n N -++>>∈,给出下述命题:①若数列{}n a 满足:21a a >,则*1(1,)n n a a n n N ->>∈成立; ②存在常数c ,使得*()n a c n N >∈成立;③若*(,,,)p q m n p q m n N +>+∈其中,则p q m n a a a a +>+; ④存在常数d ,使得*1(1)()n a a n d n N >+-∈都成立. 上述命题正确的是____.(写出所有正确结论的序号)三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分) 在ABC △中,已知312,cos 413A C π==,13.BC = (Ⅰ)求AB 的长;(Ⅱ)求BC 边上的中线AD 的长. 16.(本小题满分13分)自由购是通过自助结算方式购物的一种形式.某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:(1)现随机抽取1名顾客,试估计该顾客年龄在[)30,50且未使用自由购的概率; (2)从被抽取的年龄在[]50,70使用自由购的顾客中,随机抽取3人进一步了解情况,用表示这3人中年龄在[)50,60的人数,求随机变量(3)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.17.(本小题满分13分)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是平行四边形,∠BCD=135°,侧面PAB ⊥底面ABCD ,∠BAP=90°,AB=AC=PA=2,E ,F 分别为BC ,AD 的中点,点M 在线段PD 上.(Ⅰ)求证:EF ⊥平面PAC ;(Ⅱ)若M 为PD 的中点,求证:ME ∥平面PAB ;(Ⅲ)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所成的角相等,求的值.18. (本小题满分14分) 已知函数2()e (1)(0)2xmf x x x m =-+≥. (Ⅰ)当0m =时,求函数()f x 的极小值; (Ⅱ)当0m >时,讨论()f x 的单调性;(Ⅲ)若函数()f x 在区间(),1-∞上有且只有一个零点,求m 的取值范围. 19.(本小题满分14分)已知圆:O 221x y +=的切线l 与椭圆:C 2234x y +=相交于A ,B 两点. (1)求椭圆C 的离心率; (2)求证:OA OB ⊥; (3)求OAB ∆面积的最大值. 20.(本小题共13分)已知曲线n C 的方程为:*1()nnx y n N +=∈.(1)分别求出1,2n n ==时,曲线n C 所围成的图形的面积;(2)若()n S n N *∈表示曲线n C 所围成的图形的面积,求证:()n S n N *∈关于n 是递增的;(3)若方程(2,)n n n x y z n n N +=>∈,0xyz ≠,没有正整数解,求证:曲线(2,)n C n n N *>∈上任一点对应的坐标(,)x y ,,x y 不能全是有理数.1.【 答案】A【 解析】试题分析:因为(1+bi )i=i+bi2=-b+i=-1+i ,所以1b -=-,1b =. 2.【 答案】C【 解析】试题分析:y=x2+1是偶函数,值域为:[1,+∞).y=ex ﹣e ﹣x 是奇函数.y=lg|x|是偶函数,值域为:R .2x y =的值域:[0,+∞).故选:C 3.【 答案】D【 解析】作出约束条件表示的可行域,如图ABC ∆内部(含边界),作直线:20l x y +=,z 是直线2x y z +=的纵截距,向上平移直线l ,z 增大,当直线l 过点(2,0)B 时,24z x y =+=为最大值.故选D .4.【 答案】C【 解析】由题知:a=1,i=1,a=2-1=1,i=2,否;a=3,i=3,否;a=6-3=3,i=4,是, 则输出的a 为3. 5.【 答案】A.【 解析】四棱锥的底面是边长为3的正方形,侧面是两个直角边长为3,4的直角三角形,两个直角边长为3,5的直角三角形,∴该四棱锥的侧面积是272532124321=⨯⨯⨯+⨯⨯⨯,故选A.6.【 答案】B【 解析】0=a 时,直线012=-+ay x 与直线022=-+y bx 不平行,所以直线012=-+ay x 与直线022=-+y bx 平行的充要条件是1222--≠=a b ,即4=ab 且)4(1≠≠b a ,所以“4=ab ”是直线012=-+ay x 与直线022=-+y bx 平行的必要不充分条件.故选B .7.【 答案】C.【 解析】由抛物线的定义知:(0,1)F ,∴||1PF y =+,∴||||1||||11312y PQ PF PQ FQ +=-+≥-==-=,即当P ,Q ,F 三点共线时,值最小,故选C.8.【 答案】B.【 解析】若0a ≤:当0x >时,()||||f x x a a x x =--==,又∵()f x 是定义在R 上的奇函数,∴()f x x =,符合题意;若0a >:当0x >时,, 0()||2, x x a f x x a a x a x a -<<⎧=--=⎨-≥⎩, 又∵()f x 是定义在R 上的奇函数,∴()f x 大致的函数图象如下图所示,根据题意可知(20)()f x f x +>对于任意x R ∈恒成立,∴问题等价于将()f x 的图象向左平移20个单位后得到的新的函数(20)f x +图象恒在()f x 图象上方,根据图象可知420a <,即05a <<,综上实数a 的取值范围是(,5)-∞,故选B.9.【 答案】1-,π. 【 解析】ππωπ===222T ,最小值是211-+=-,故填:1-,π. 10.【 答案】[]2,3- 【因为恒成立,.11.【 答案】01=+-y x 【 解析】直线AB 斜率为111-=---+aa aa ,所以l 斜率为1,设直线方程为b x y +=,由已知直线过点),1(a a -,所以b a a +-=1,即1=b 所以直线方程为01=+-y x12.【 答案】5-【 解析】展开式通项为53521551()(1)rrrr r rr T C C x x --+=-=-,令5312r -=,1r =,所以x 项的系数为115(1)5C -=-.13.【 答案】x y z << 【 解析】取特殊值,令14a =,12b =,则121142b x a ⎛⎫=== ⎪⎝⎭,141122a y b ⎛⎫==> ⎪⎝⎭,121log log 24b z a ===,则1411222⎛⎫<< ⎪⎝⎭,即x y z <<14.【 答案】①④.【 解析】试题分析:对①;因为21a a >,所以210a a ->,由已知11n n n n a a a a +-->-,所以11210n n n n a a a a a a +-->->⋅⋅⋅>->,即1n n a a ->,正确对②;假设存在在常数c ,使得n a c >,则有12n n n a a c a ++<<,所以11n n a a -++应有最大值,错,对③,因为p q m n +>+,22p q m n++>,所以假设 p q m na a a a +>+,则应有22p q m na a ++>,即原数列应为递增数列,错,对④,不妨设11a =,1n n a a n +-=,则(1)12n n n a -=+,若存在常数d ,使得1(1)n a a n d >+-,应有112n a a nd n -<=-,显然成立,正确,所以正确命题的序号为①④.15. (本小题满分13分) 解:(Ⅰ)由12cos 13C =,02C π<<,所以5sin 13C =.由正弦定理得,sin sin AB BC C A =,即5s i n =13sin 2CAB BC A =⋅=……… 6分(Ⅱ)在ABD △中,3cos cos()4B C C C π=π--=+=由余弦定理得,222+2cos AD AB BD AB BD B =-⋅, 所以2AD 21691329+2424=-⨯=.所以2AD =. 【答案】(1)17100;(2)详见解析;(3)2200.【解析】(1)在随机抽取的100名顾客中,年龄在[)30,50且未使用自由购的共有31417+=人,所以随机抽取1名顾客,估计该顾客年龄在[)30,50且未使用自由购的概率为17100P =. (2)X 所有的可能取值为1,2,3, ()124236C C 115C P X ===;()214236C C 325C P X ===;()304236C C 135C P X ===. 所以X 的分布列为所以X的数学期望为1311232555EX =⨯+⨯+⨯=.(3)在随机抽取的100名顾客中,使用自由购的共有3121764244+++++=人, 所以该超市当天至少应准备环保购物袋的个数估计为4450002200100⨯=. 17.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)【解析】试题分析:(Ⅰ)证明AB⊥AC.EF⊥AC.推出PA⊥底面ABCD ,即可说明PA⊥EF, 然后证明EF⊥平面PAC .(Ⅱ)证明MF∥PA,然后证明MF∥平面PAB ,EF∥平面PAB .即可证明平面MEF∥平面PAB ,从而证明ME∥平面PAB .(Ⅲ)以AB ,AC ,AP 分别为x 轴、y 轴和z 轴,如上图建立空间直角坐标系,求出相关点的坐标,平面ABCD 的法向量,平面PBC 的法向量,利用直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等,列出方程求解即可试题解析:(Ⅰ)证明:在平行四边形ABCD 中,因为AB=AC ,∠BCD=135°,∠ABC=45°. 所以AB⊥AC.由E ,F 分别为BC ,AD 的中点,得EF∥AB, 所以EF⊥AC.因为侧面PAB⊥底面ABCD ,且∠BAP=90°, 所以PA⊥底面ABCD .又因为EF ⊂底面ABCD ,所以PA⊥EF.又因为PA∩AC=A,PA ⊂平面PAC ,AC ⊂平面PAC ,所以EF⊥平面PAC .(Ⅱ)证明:因为M 为PD 的中点,F 分别为AD 的中点, 所以MF∥PA,又因为MF ⊄平面PAB ,PA ⊂平面PAB , 所以MF∥平面PAB .同理,得EF∥平面PAB . 又因为MF∩EF=F,MF ⊂平面MEF ,EF ⊂平面MEF , 所以平面MEF∥平面PAB .又因为ME ⊂平面MEF , 所以ME∥平面PAB .(Ⅲ)解:因为PA⊥底面ABCD ,AB⊥AC,所以AP ,AB ,AC 两两垂直,故以AB ,AC ,AP分别为x 轴、y 轴和z 轴,如上图建立空间直角坐标系,则A (0,0,0),B (2,0,0),C (0,2,0),P (0,0,2),D (﹣2,2, 0),E (1,1,0),所以(2,0,2)PB =-,(2,2,2)PD =--,(2,2,0)BC =-,设([0,1])PMPD λλ=∈,则(2,2,2)PM λλλ=--,所以M (﹣2λ,2λ,2﹣2λ),(12,12,22)ME λλλ=+--,易得平面ABCD 的法向量m =(0,0,1). 设平面PBC 的法向量为n =(x ,y ,z ),由0n BC ⋅=,0n PB ⋅=,得220220x y x z -+=⎧⎨-=⎩令x=1,得n =(1,1,1).因为直线ME 与平面PBC 所成的角和此直线与平面ABCD 所成的角相等,所以cos ,cos ,ME m ME n <>=<>,即ME mME n ME mME n⋅⋅=⋅⋅,所以22λ-=,解得λ=,或λ=(舍).18.(本小题满分14分)解:(Ⅰ)当0m =时:()(1)e x f x x '=+,令()0f x '=解得1x =-, 又因为当(),1x ∈-∞-,()0f x '<,函数()f x 为减函数; 当()1,x ∈-+∞,()0f x '>,函数()f x 为增函数. 所以,()f x 的极小值为1(1)ef -=-. (Ⅱ)()(1)(e )x f x x m '=+-.当0m >时,由()0f x '=,得1x =-或ln x m =. (ⅰ)若1e m =,则1()(1)(e )0e xf x x '=+-≥.故()f x 在(),-∞+∞上单调递增; (ⅱ)若1em >,则ln 1m >-.故当()0f x '>时,1ln x x m <->或; 当()0f x '<时,1ln x m -<<.所以()f x 在(),1-∞-,()ln ,m +∞单调递增,在()1,ln m -单调递减. (ⅲ)若10em <<,则ln 1m <-.故当()0f x '>时,ln 1x m x <>-或; 当()0f x '<时,ln 1m x <<-.所以()f x 在(),ln m -∞,()1,-+∞单调递增,在()ln ,1m -单调递减.(Ⅲ)(1)当0m =时,()e x f x x =,令()0f x =,得0x =.因为当0x <时,()0f x <,当0x >时,()0f x >,所以此时()f x 在区间(),1-∞上只有一个零点. (2)当0m >时: (ⅰ)当1e m =时,由(Ⅱ)可知()f x 在(),-∞+∞上单调递增,且1(1)0ef -=-<,2(1)e 0ef =->,此时()f x 在区间(),1-∞上有且只有一个零点. (ⅱ)当1em >时,由(Ⅱ)的单调性结合(1)0f -<,又(ln )(1)0f m f <-<, 只需讨论(1)e 2f m =-的符号: 当1ee 2m <<时,(1)0f >,()f x 在区间()1-∞,上有且只有一个零点; 当e2m ≥时,(1)0f ≤,函数()f x 在区间()1-∞,上无零点. (ⅲ)当10em <<时,由(Ⅱ)的单调性结合(1)0f -<,(1)e 20f m =->,2(ln )ln 022m mf m m =--<,此时()f x 在区间(),1-∞上有且只有一个零点. 综上所述,e02m ≤<. 19.(本小题满分14分)【答案】(1);(2)详见解析;(3)3.【解析】试题分析:(1)根据题意以及椭圆中a ,b ,c 满足的关系式即可求解;(2)联立直线方程与椭圆方程,利用韦达定理和平面向量数量积的坐标表示即可得证;(3)建立OAB S ∆的函数关系式,将问题转化为求函数最值.试题解析:(1)由题意可知24a =,243b =,∴22283c a b =-=,∴c e a ==,∴椭圆C的离心率为;(2)若切线l 的斜率不存在,则:1l x =±,在223144x y +=中令1x =得1y =±,不妨设(1,1)A ,(1,1)B -,则110OA OB ⋅=-=,∴OA OB ⊥,同理,当:1l x =-时,也有OA OB ⊥,若切线l 的斜率存在,设:l y kx m =+,1=,即221k m +=,由2234y kx m x y =+⎧⎨+=⎩,得222(31)6340k x k m x m +++-=.显然0∆>,设11(,)A x y ,22(,)B x y ,则122631kmx x k +=-+,21223431m x x k -=+,∴2212121212()()()y y kx m kx m k x x km x x m =++=+++,∴1212OA OB x x y y ⋅=+221212(1)()k x x km x x m =++++22222346(1)3131m km k km m k k -=+-+++2222222(1)(34)6(31)31k m k m k m k +--++=+22244431m k k --=+ 2224(1)44031k k k +--==+,∴OA OB ⊥,综上所述,总有OA OB ⊥成立;(3)∵直线AB 与圆O 相切,则圆O 半径即为OAB ∆的高,当l 的斜率不存在时,由(2)可知2AB =,则1OAB S ∆=,当l 的斜率存在时,由(2)可知,AB ======∴2242222242424(1)(91)4(9101)44(1)(31)961961k k k k k AB k k k k k ++++===++++++24222164164164419613396k k k k k =+⋅=+≤+=++++(当且仅当k =时,等号成立),∴3AB ≤,此时max (S )3OAB ∆=,综上所述,当且仅当3k =±时,OAB∆面积的最大值为.20.(本小题共13分)【答案】(1)π;(2)详见解析;(3)详见解析. 【解析】试题分析:(1)画出对应n 的取值的图形,根据图形即可求解; (2)由于曲线n C 具有对称性,只需证明曲线n C 在第一象限的部分与坐标轴所围成的面积递增,再根据式子推导;(3)根据条件中给出的结论利用反证法推导.试题解析:(1)当1,2n =时,由图可知1141122C =⨯⨯⨯=,2C π=;(2)要证(*)n S n N ∈是关于n 递增的,只需证明:*1()n n S S n N +<∈,由于曲线n C 具有对称性,只需证明曲线nC 在第一象限的部分与坐标轴所围成的面积递增,现在考虑曲线nC 与1n C +,因为*||||1()nnx y n N +=∈(1)因为11*||||1()n n x y n N +++=∈,在(1)和(2)中令0x x =,0(0,1)x ∈,当0(0,1)x ∈,存在1y ,2(0,1)y ∈使得011n n x y +=,11011n n x y +++=成立,此时必有21y y >,因为当0(0,1)x ∈时100n n x x +>,所以121n n y y +>,两边同时开n 次方有,1221n ny y y +>>.(指数函数单调性)这就得到了21y y >,从而*()n S n N ∈是关于n 递增的;(3)由于(2,)n n nx y z n n N +=>∈可等价转化为()()1n n x yz z +=,反证:若曲线*(2,)nC n n N >∈上存在一点对应的坐标(,)x y ,x ,y 全是有理数,不妨设q x p =,ty s =,*,,,p q s t N ∈,且,p q 互质,,s t 互质,则由||||1n n x y +=可得,||||1n n q tp s +=,即||||||n n nqs pt ps +=,这时qs ,pt ,ps 就是(2,)n n n x y z n n N +=>∈的一组解,这与方程(2,)n n n x y z n n N +=>∈,0xyz ≠,没有正整数解矛盾, 所以曲线*(2,)n C n n N >∈上任一点对应的坐标(,)x y ,,x y 不能全是有理数.。
(全国卷Ⅲ)2019年高考数学压轴卷 文(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.12i2i+=-+( ) A .41i 5-+B .4i 5-+C .i -D .i2.设1i2i 1iz +=+-,则z =( ) A .2B .3C .4D .53.设等差数列{}n a 的前n 项和为n S ,若44a =,972S =,则10a =( ) A .20B .23C .24D .284.若π5sin 4α⎛⎫-= ⎪⎝⎭,那么πcos 4α⎛⎫+⎪⎝⎭的值为( ) A .25 B .25-C .5 D .5-5.设x ,y 满足约束条件22010240x y x y x y +-≥-⎧+≥--≤⎪⎨⎪⎩,则2z x y =+的最大值是( )A .1B .16C .20D .226.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图, 则该几何体的体积为( )A .2π3B .4π3C .2πD .25π7.如图,在正方体1111ABCD A B C D -的八个顶点中任取两个点作直线,与直线1A B 异面且夹角成60︒的直线的条数为( )A .3B .4C .5D .68.已知()13ln2a =,()13ln3b =,2log 0.7c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .c a b <<C .b a c <<D .c b a <<9.过圆2216x y +=上一点P 作圆()222:0O x y m m +=>的两条切线,切点分别为A 、B ,若2π3AOB ∠=,则实数m =( )A .2B .3C .4D .910.执行如图所示程序框图,输出的S =( )A .25B .9C .17D .2011.已知1F ,2F 分别是椭圆22:14x y C m +=的上下两个焦点,若椭圆上存在四个不同点P ,使得12PF F △3则椭圆C 的离心率的取值范围是( ) A .132⎛ ⎝⎭B .1,12⎛⎫⎪⎝⎭C .3⎫⎪⎪⎝⎭D .3,13⎛⎫⎪⎪⎝⎭12.在边长为2的等边ABC △中,D 是BC 的中点,点P 是线段AD 上一动点,则AP CP ⋅u u u r u u u r的取值范围是( )A .3,4⎡⎫-+∞⎪⎢⎣⎭B .3,04⎡⎤-⎢⎥⎣⎦C .[]1,0-D .[]1,1-二、填空题:本大题共4小题,每小题5分.13.某校高三科创班共48人,班主任为了解学生高考前的心理状况,将学生按1至48的学号用系统抽样方法抽取8人进行调查,若抽到的最大学号为48,则抽到的最小学号为________.S =S +8开始 T>S ?结束S =1,T=0,n =0 n==0n =n +2输出ST =T +2n14.若x,y 满足01010y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,则2z x y =-的最大值为______.15.设函数()ln ,11,1x x f x x x ≥⎧=⎨-<⎩,若()1f m >,则实数m 的取值范围是______.16.直三棱柱111ABC A B C -的各顶点都在同一球面上,若3AB =,4AC =,5BC =,12AA =,则此球的表面积等于______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且223sin sin 302AA +-=. (1)求角A 的大小;(2)已知ABC △外接圆半径3R =,且3AC =,求ABC △的周长.18.(本小题满分12分)某中学为了丰富学生的课外文体活动,分别开设了阅读、书法、绘画等文化活动;跑步、游泳、健身操等体育活动.该中学共有高一学生300名,要求每位学生必须选择参加其中一项活动,现对高一学生的性别、学习积极性及选择参加的文体活动情况进行统计,得到数据如下:(1)在选择参加体育活动的学生中按性别分层抽取6名,再从这6名学生中抽取2人了解家庭情况,求2人中至少有1名女生的概率;(2)是否有99.9%的把握认为学生的学习积极性与选择参加文化活动有关?请说明你的理由.附:参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.(本小题满分12分)如图,多面体ABCDEF 中,底面ABCD 是菱形,π3BCD ∠=,四边形BDEF 是正方形,且DE ⊥平面ABCD .(1)求证:CF ∥平面AED ;(2)若2AE =,求多面体ABCDEF 的体积V .20.(本小题满分12分)已知椭圆()2222:10x y E a b a b +=>>经过点13,2P ⎛⎫- ⎪⎝⎭,且右焦点()23,0F .(1)求椭圆E 的方程;(2)若直线:2l y kx =+与椭圆E 交于A ,B 两点,当AB 最大时,求直线l 的方程. 21.(本小题满分12分)已知()()2ln ln a x xf x x+=.求()f x 在()1,0处的切线方程; 求证:当1a ≥时,()10f x +≥.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xoy 中,曲线1C :2cos 2sin x y αα=⎧⎨=⎩(α为参数),在以平面直角坐标系的原点为极点、x 轴的正半轴为极轴,且与平面直角坐标系xoy 取相同单位长度的极坐标系中,曲线2C :πsin 16ρθ⎛⎫-= ⎪⎝⎭.(1)求曲线1C 的普通方程以及曲线2C 的平面直角坐标方程;(2)若曲线1C 上恰好存在三个不同的点到曲线2C 的距离相等,求这三个点的极坐标. (2)∵圆心O 到曲线2C:20x -+=的距离112d r ===,23.(本小题满分10分)【选修4-5:不等式选讲】 若0a >,0b >,且(1a b +=. (1)求3311a b+的最小值; (2)是否存在a ,b ,使得1123a b+?并说明理由. 2019全国卷Ⅲ高考压轴卷数学文科(三)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】()()()()12i 2i 12i 5ii 2i 2i 2i 5+--+-===--+-+--,故选C . 2.【答案】B 【解析】()()()()1i 1i 1i 2ii 1i 1i 1i 2+++===--+,则3i z =,故3z =,故选B . 3.【答案】D【解析】由于数列是等差数列,故41913493672a a d S a d =+==+=⎧⎨⎩,解得18a =-,4d =,故101983628a a d =+=-+=.故选D . 4.【答案】D【解析】由题意可得πππππcos sin sin sin 42444αααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=-=--= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选D . 5.【答案】B【解析】由题可知,再画出约束条件所表示的可行域,如图所示,结合图象可知当:20l x y +=平移到过点A 时,目标函数取得最大值,又由10240x y x y -+=--=⎧⎨⎩,解得()5,6A ,此时目标函数的最大值为max 16z =,故选B .6.【答案】B【解析】由三视图可知,该几何体由两个同底的圆锥拼接而成,圆锥的底面半径1r =,高2h =,所以该几何体的体积为()214π2π1233V =⨯⨯⨯⨯=,故选B .7.【解析】在正方体1111ABCD A B C D -的八个顶点中任取两个点作直线,与直线1A B 异面且夹角成60︒的直线有:1AD ,AC ,11D B ,1B C ,共4条.故选B . 8.【答案】B【解析】22log 0.7log 10c =<=,()()11330ln21ln3a b <=<<=,故c a b <<,故选B . 9.【答案】A 【解析】如图所示,取圆2216x y +=上一点()4,0P ,过P 作圆()222:0O x y m m +=>的两条切线PA 、PB , 当2π3AOB ∠=时,π3AOP ∠=,且OA AP ⊥,4OP =;122OA OP ==,则实数2m OA ==.故选A .10.【答案】C【解析】按照程序框图依次执行为1S =,0n =,0T =;9S =,2n =,044T =+=;17S =,4n =,41620T S =+=>,退出循环,输出17S =.故选C .11.【答案】A【解析】由题知2a =,b m =,4c m =-,设椭圆的右顶点为(),0Am ,12AF F △的面积为12142F F m m m ⨯=-, ∴12PF F △的面积的最大值时为12AF F △,43m m ->故,13m <<解, ∴13c <<,∴13,2c e a ⎛⎫=∈ ⎪ ⎪⎝⎭,故选A . 12.【答案】B【解析】画出图像如下图所示,以DC ,DA 分别为x ,y 轴建立平面直角坐标系,故(3A ,()1,0C , 设()()0,3P t t ⎡∈⎣,所以(()20,31,3AP CP t t t t ⋅=⋅-=u u u r u u u r, 根据二次函数的性质可知,对称轴3t =, 故当0t =或3t =0,当3t =时取得最小值为233334=-⎝⎭,故AP CP ⋅u u u r u u u r 的取值范围是3,04⎡⎤-⎢⎥⎣⎦.故选B .二、填空题:本大题共4小题,每小题5分. 13.【答案】6【解析】由系统抽样方法从学号为1到48的48名学生中抽取8名学生进行调查,把48人分成8组,抽到的最大学号为48,它是第8组的最后一名,则抽到的最小学号为第一组的最后一名6号.故答案为6.14.【答案】1【解析】由x ,y 满足01010y x y x y ≥⎧⎪-+≥⎨⎪+-≤⎩,作出可行域如图,联立010y x y =⎧⎨+-=⎩,解得()1,0A ,函数2z x y =-为22x z y =-,由图可知,当直线22x zy =-过A 时,直线在y 轴上的截距最小,z 的最大值为1.故答案为1. 15.【答案】()(),0e,-∞+∞U 【解析】如图所示:可得()ln ,11,1x x f x x x ≥⎧=⎨-<⎩的图像与1y =的交点分别为()0,1,()e,1,∴()1f m >,则实数m 的取值范围是()(),0e,-∞+∞U ,可得答案()(),0e,-∞+∞U . 16.【答案】29π【解析】如图,在ABC △中,3AB =,4AC =,5BC =,由勾股定理可得90BAC ∠=︒,可得ABC △外接圆半径52r =,设此圆圆心为O ',球心为O ,在Rt OBO '△中,可得球半径R =∴此球的表面积为2294π4π29π4R =⨯=.故答案为29π. 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)【答案】(1)π3A =;(2)3+【解析】(1)2sin 02A A +=Q ,1cos sin 02A A -∴+=,即sin 0A A =,tan A ∴=, 又0πA <<,π3A ∴=.(2)2sin a R A =Q,2sin π33a R A ∴===,AC b =Q ,∴由余弦定理可得2222cos a b c bc A =+-,293c =+,∴260c -=,∵0c >,所以得c =3a b c ++=+18.(本小题满分12分) 【答案】(1)35;(2)见解析.【解析】(1)由题意知参加体育活动的学生中,男生人数为60人,女生人数为30人, 按性别分层抽取6名,则男生被抽取的人数为60646030⨯=+,女生被抽取的人数为30626030⨯=+,记4名男生分别为a ,b ,c ,d ,2名女生为A ,B ,则从这6名学生中抽取2人的情况有(),a b ,(),a c ,(),a d ,(),a A ,(),a B ,(),b c ,(),b d ,(),b A ,(),b B ,(),c d ,(),c A ,(),c B ,(),d A ,(),d B ,(),A B ,一共15种情况,2人中至少有1名女生共有9种情况,概率为93155=. (2)列联表为:学习积极性高学习积极性不高总计 参加文化活动 180 30 210 参加体育活动60 30 90 总计24060300()()()()()()22230018030603010014.28610.82824060210907n ad bc K a b c d a c b d -⨯⨯-⨯===≈>++++⨯⨯⨯, ∴有99.9%的把握认为学生的学习积极性与选择参加文化活动有关.19.(本小题满分12分) 【答案】(1)见解析;(2)3. 【解析】(1)证明:∵ABCD 是菱形,∴BC AD ∥, 又BC ⊄平面ADE ,AD ⊂平面,∴BC ∥平面ADE .又BDEF 是正方形,∴BF DE ∥.∵BF ⊄平面ADE ,DE ⊂平面ADE ,∴BF ∥平面ADE , ∵BC ⊂平面BCF ,BF ⊂平面BCF ,BC BF B =I , ∴平面BCF ∥平面AED ,∴CF ∥平面AED . (2)解:连接AC ,记AC BD O =I .∵ABCD 是菱形,AC BD ⊥,且AO BO =.由DE ⊥平面ABCD ,AC ⊂平面ABCD ,DE AC ⊥. ∵DE ⊂平面BDEF ,BD ⊂平面BDEF ,DE BD D =I , ∴AC ⊥平面BDEF 于O ,即AO 为四棱锥A BDEF -的高. 由ABCD 是菱形,60BCD ∠=︒,则ABD △为等边三角形, 由2AE ,则1AD DE ==,3AO =,1BDEF S =,133BDEF BDEF V S AO =⋅=,2BDEF V V ==20.(本小题满分12分)【答案】(1)2214x y +=;(2)2y x =±+【解析】(1)设椭圆E的左焦点()1F ,则12242a PF PF a =+=⇒=,又2221c b a c =-=,所以椭圆E 的方程为2214x y +=.(2)由()2222144044y kx k x x y ⎧⎪⎨⎪=⇒+++=+=⎩,设()11,A x y ,()22,B x y ,由()2221128161404Δk k k =-+>⇒>,且1214x x k +=+,122414x x k =+,AB == 设2114t k =+,则10,2t ⎛⎫∈ ⎪⎝⎭,AB ==, 当112t=,即k =AB:l y =21.(本小题满分12分)【答案】(1)10x y --=;(2)见解析.【解析】(1)()()()222ln 1ln ln 'a x a x x f x x ⎡⎤+-+⎣⎦=,故()11f '=,故切线方程是10x y --=. (2)令()ln 1g x x x =--,()11g x x'=-, 令()0g x '>,解得1x >,令()0g x '<,解得01x <<,故()g x 在()0,1递减,在()1,+∞,故()()min 10g x g ==,故ln 1x x ≥+, ∵1a ≥, ∴()()()()()2222ln ln ln ln ln ln ln 1ln 110a x x xx x x x x x x f x xxxx+++++++++=≥≥≥≥,故1a ≥时,()10f x +≥.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)【选修4-4:坐标系与参数方程】【答案】(1)224x y +=,320x y -+=;(2)2π2,3A ⎛⎫ ⎪⎝⎭,π2,6B ⎛⎫ ⎪⎝⎭,7π2,6C ⎛⎫ ⎪⎝⎭.【解析】(1)由2cos 2sin x y αα=⎧⎨=⎩消去参数α得224x y +=,即曲线1C 的普通方程为224x y +=,又由πsin 16ρθ⎛⎫-= ⎪⎝⎭得ππsin cos cos sin 166ρθθ⎛⎫-= ⎪⎝⎭,即为320x y -+=,即曲线2C 的平面直角坐标方程为320x y -+=. (2)∵圆心O 到曲线2C :320x y -+=的距离()22211213d r ===+,如图所示,∴直线340x y -+=与圆的切点A 以及直线30x y -=与圆的两个交点B ,C 即为所求.∵OA BC ⊥,则3OA k =OA l 的倾斜角为2π3, 即A 点的极角为2π3,∴B 点的极角为2πππ326-=,C 点的极角为2ππ7π326+=, ∴三个点的极坐标为2π2,3A ⎛⎫ ⎪⎝⎭,π2,6B ⎛⎫ ⎪⎝⎭,7π2,6C ⎛⎫⎪⎝⎭.23.(本小题满分10分)【选修4-5:不等式选讲】 【答案】(1)42(2)不存在a ,b ,使得1123a b+6. 【解析】(1)(1a b ab +=Q ,()a b ab∴+=,0a >Q ,0b >,()2a b ab ∴+≥a b =时取等号,2ab ab≥12ab ∴≤.33331111242a b a b ab ab∴+≥⋅≥ 331142a b∴+≥a b =时取等号. (2)0a >Q ,0b >,111123223236a b a b ab∴+≥⋅≥,<Q,∴不存在a ,b ,使得1123a b+。
2019高考数学压轴小题及答案解析题组一10.设函数$f(x)$为定义域为$\mathbb{R}$的奇函数,且$f(x)=f(-2x)$,当$x\in[0,1]$时,$f(x)=\sin x$,则函数$g(x)=\cos(\pi x)-f(x)$上的所有零点的和为()在区间$[-2,2]$。
11.已知函数$f(x)=\frac{2}{1+x^2}+\sin x$,其中$f'(x)$为函数$f(x)$的导数,求$f(2018)+f(-2018)+f'(2019)+f'(-2019)$的值。
12.已知直线$l:y=ax+1-a(a\in\mathbb{R})$,若存在实数$a$使得一条曲线与直线$l$有两个不同的交点,且以这两个交点为端点的线段长度恰好等于$|a|$,则称此曲线为直线$l$的“绝对曲线”。
下面给出的四条曲线方程:$y=-2x-12$,$(x-1)^2+(y-1)^2=1$,$y=4x$,$x+3y=4$。
其中直线$l$的“绝对曲线”的条数为()。
15.若平面向量$\vec{a}=\begin{pmatrix}1\\2\\1\end{pmatrix}$,$\vec{b}=\begin{pmatrix}1\\-1\\2\end{pmatrix}$,$\vec{c}=\begin{pmatrix}3\\1\\-1\end{pmatrix}$,满足$\vec{a}\cdot\vec{b}=0$,$\vec{b}\cdot\vec{c}=0$,则$\vec{1}$在$\vec{2}$方向上投影的最大值是()。
16.观察下列各式:$3=3^1$,$6=3+5$,$9=7+9+11$,$12=13+15+17+19$,$\cdots$,$3m=m^2+(m+1)^2+(m+2)^2+\cdots+(2m-1)^2$。
按上述规律展开后,发现等式右边含有“2017”这个数,则$m$的值为()。
2019上海高考压轴卷数学一、选择题(本大题共4小题,共20.0分)1.已知A ,B 是椭圆E :22221(0)x y a b a b+=>>的左、右顶点,M 是E 上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为49-,则E 的离心率为()A. 3B. 3C. 23D. 3【答案】D【解析】【分析】由题意方程可知,(,0),(,0)A a B a -,设00(,)M x y ,利用斜率公式以及直线,AM BM 的斜率之积为49-列式并化简得:2022049y x a =-- ,①,再根据M 在椭圆上可得2202220y b x a a =-- ,②,联立①②可解得. 【详解】由题意方程可知,(,0),(,0)A a B a -,设00(,)M x y ,0000,,AM BM y y k k x a x a∴==+- 则000049y y x a x a ⋅=-+- ,,整理得:2022049y x a =--,① 又2200221x y a b+=,得2222002()b y a x a =-,即2202220y b x a a =--,② 联立①②,得2249b a -=-,即22249a c a -=,解得e =. 故选D .【点睛】本题考查了斜率公式,椭圆的几何性质,属中档题.2.已知R a ∈,则“1a >”是“11a<”( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】A【解析】【分析】 “a>1”⇒“11a <”,“11a <”⇒“a>1或a <0”,由此能求出结果. 【详解】a∈R ,则“a >1”⇒“11a <”, “11a <”⇒“a>1或a <0”, ∴“a>1”是“11a<”的充分非必要条件. 故选:A .【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.3.已知三棱锥S ABC -,ABC △是直角三角形,其斜边8AB =,SC ⊥平面ABC ,6SC =,则三棱锥的外接球的表面积为( )A. 100πB. 68πC. 72πD. 64π 【答案】A【解析】如图所示,直角三角形ABC 的外接圆的圆心为AB 的中点D ,过D 作面ABC 的垂线,球心O 在该垂线上,过O 作球的弦SC 的垂线,垂足为E ,则E 为SC 的中点,球半径R OS =114,3,522CD AB SE SC R ====∴=,棱锥的外接球的表面积为24100R ππ=,故选A. 【方法点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.4.定义:若整数m 满足:1122m x m -<≤+,称m 为离实数x 最近的整数,记作{}x m =.给出函数(){}f x x x =-的四个命题:①函数()f x 的定义域为R ,值域为11,22⎛⎫- ⎪⎝⎭; ②函数()f x 是周期函数,最小正周期为1;③函数()f x 在11,22⎛⎫- ⎪⎝⎭上是增函数; ④函数()f x 的图象关于直线()2k x k Z =∈对称. 其中所有的正确命题的序号为()A. ①③B. ②③C. ①②④D. ①②③【答案】B【解析】【分析】①中,根据题意易得11(){}(,]22f x x x =-∈-,故①错误; ②中,由(1)()f x f x +=可知小正周期为1,故②正确, ③中,()f x 在11(,]22-和13(,)22上是增函数, 故命题③正确, ④中,()()f k x f x -≠, 故命题④错误. 【详解】∵①中,显然(){}f x x x =- 的定义域为R,由题意知,11{}{}22x x x -<≤+,则得到(){}f x x x =-11(,]22∈-,故①错误; ②中,由题意知:(1)(1){1}1{}1f x x x x x +=+-+=+--={}()x x f x -=,所以(){}f x x x =-的最小正周期为1,,故②正确;③中,由于11{}{}22x x x -<≤+,则得(){}f x x x =-为分段函数,且在1113,,,2222⎛⎤⎛⎫- ⎪⎥⎝⎦⎝⎭上是增函数,,故命题③正确;④中,由题意得,()(){}(){}()f k x k x k x x x f x -=---=---=-()f x ≠所以函数y =f (x )的图象关于直线x =2k (k ∈Z )不对称,故命题④错误; 由此可选择②③,故选B .【点睛】本题考查了函数的值域,周期性,对称轴,属难题.二、填空题(本大题共12小题,共60.0分)5.若42021xx =,则x =___ 【答案】1【解析】4221xx =422022,1x x x x -⋅=∴==6.已知双曲线22121x y m m -=++m = ______. 【答案】2或5-【解析】 双曲线22121x y m m -=++,当焦点在x 轴时,a 2=m+2,b 2=m+1,可得c 2=a 2+b 2=3+2m ,双曲线22121x y m m -=++的离心率为2,所以327224m m m +=∴=+ 当焦点在y 轴时,a 2=-m-1,b 2=-m-2,可得c 2=a 2+b 2=-3-2m ,所以327514m m m --=∴=--- 故答案为2或-5. 点睛:本题考查双曲线的简单性质的应用,考查计算能力,因为没有指出焦点在哪个轴上,所以讨论两种情况,要抓住双曲线方程的特征得出22,a b ,2c 即可得解7.62(x -的展开式中常数项为______ .【答案】60【解析】【分析】先求出展开式的通项公式,再令x 的指数为0,解出r ,进而可求出常数项.【详解】62(x 的展开式中的通项公式:366621662()((1)2r r r r r r r r T C C x x ---+==-. 令32r -6=0,解得r =4.∴62(x的展开式中常数项为:4246(1)2C -⨯=60. 故答案为60.【点睛】本题考查了二项式定理,属基础题.8.函数2()42x x f x +=- (12)x -≤≤的最小值为______ .【答案】-4【解析】分析】 换元,令2x t =,则1[,4]2t ∈,24y t t =-,再利用二次函数的单调性可求最小值. 【详解】2()(2)42x x f x =-⋅ ,令2x t =, 因为12x -≤≤ ,所以1[,4]2t ∈,则224(2)4y t t t =-=--, y 在1[,2]2t ∈上递减,在[2,4]t ∈上递增, 所以当t =2时函数取得最小值-4.故答案为-4.【点睛】本题考查了二次函数在闭区间上的最值,属中档题.9.已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是__________ 【解析】【分析】利用复数的运算法则、模的计算公式即可得出.【详解】解:复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ,∴|z|==.【点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()a bi c di ++=()()(,,,)ac bd ad bc i a b c d R -++∈.其次要熟悉复数相关概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭复数为a bi -.【10.若数列{a n }满足a 11=152,11n a +-1na =5(n ∈N *),则a 1=______ . 【答案】12【解析】【分析】 根据111n na a +-5=,可得1{}n a 是以5为公差的等差数列,由等差数列的通项公式可得. 【详解】因为111n na a +-5=,所以1{}n a 是以5为公差的等差数列, 所以1115(1)n n a a =+-, 所以111115(111)a a =+-, 所以111115052502a a =-=-=, 所以112a =. 【点睛】本题考查了等差数列的通项公式,属基础题.11.已知()()()()2211a a x a x f x log x x ⎧+-⎪=⎨≥⎪⎩,<,是R 上的增函数,则a 的取值范围是______ . 【答案】[2,+∞)【解析】【分析】因为分段函数为R 上的增函数,所以分段函数在两段上也是增函数,且1x < 时的函数值恒小于等于1x ≥ 时的函数值.【详解】首先,y =log a x 在区间[1,+∞)上是增函数且函数(2)2y a x a =+-在区间(-∞,1)上也是增函数∴a >1 ①其次在x =1处函数对应的第一个表达式的值要小于或等于第二个表达式的值,即(a +2)-2a ≤log a 1⇒a ≥2 ②联解(1)、(2)得a ≥2.故答案为[2,+∞).【点睛】本题考查了分段函数的单调性,属中档题.12.已知圆的方程为(x -1)2+(y -1)2=9,P (2,2)是该圆内一点,过点P 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积是______ .【答案】【解析】【分析】因为经过P 点的直径是圆的最长弦,且最短的弦是与该直径垂直的弦,根据垂径定理可求得最短弦长,由此可求得四边形的面积.【详解】∵圆的方程为(x -1)2+(y -1)2=9,∴圆心坐标为M (1,1),半径r =3.∵P (2,2)是该圆内一点,∴经过P 点的直径是圆的最长弦,且最短的弦是与该直径垂直的弦.结合题意,得AC 是经过P 点的直径,BD 是与AC 垂直的弦.∵|PM =∴由垂径定理,得|BD .因此,四边形ABCD 的面积是S =12|AC |•|BD |=12.故答案 【点睛】本题考查了圆中的垂径定理,属中档题.13.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为________. 【答案】23【解析】从袋中一次随机摸出2个球,共有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4) 6种基本事件,其中摸出的2个球的编号之和大于4的事件为 (1,4),(2,3),(2,4),(3,4),四种基本事件数,因此概率为4263=14.已知各项为正数的等比数列{}n a 中,2316a a =,则数列{}2log n a 的前四项和等于_____.【答案】8.【解析】各项为正的等比数列{a n }中,a 2a 3=16,可得a 1a 4=a 2a 3=16,即有log 2a 1+log 2a 2+log 2a 3+log 2a 4=log 2(a 1a 2a 3a 4)=log 2256=8.故答案为:8.点睛:这个题目考查是等比数列的性质和应用;解决等差等比数列的小题时,常见的思路是可以化基本量,解方程;利用等差等比数列的性质解决题目;还有就是如果题目中涉及到的项较多时,可以观察项和项之间的脚码间的关系,也可以通过这个发现规律。
专题2019高考压轴题讲解(下)课后练习
题一:如图甲所示,半径为R=0.45m的光滑四分之一圆弧轨道固定在竖直平面内,B点为轨道最低点,在光滑水平面上紧挨B点有一静止的平板车,其质量M=5kg,长度L=0.5m,车的上表面与B点等高,可视为质点的物块从圆弧轨道最高点A由静止释放,其质量m=1kg,g取10m/s2.
(1)求物块滑到B点时对轨道压力的大小;
(2)若平板车上表面粗糙,物块最终没有滑离平板车,求物块最终速度的大小;
(3)若将平板车固定且在上表面铺上一种动摩擦因数逐渐增大的特殊材料,物块在平板车上向右滑动时,所受摩擦力F f随它距B点位移L的变化关系如图乙所示,物块最终滑离了平板车,求物块滑离平板车时的速度大小。
题二:竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R=1m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度E=4×103V/m。
小球a、b、c的半径略小于管道内径,b、c球用长L=2m的绝缘细轻杆连接,开始时c静止于管道水平部分右端P点处,在M点处的a球在水平推力F的作用下由静止向右运动,当F减到零时恰好与b发生了弹性碰撞,F-t的变化图像如图乙所示,且满足
224
F t+=
π。
已知三个小球均可看做质点且m a=0.25kg,m b=0.2kg,m c=0.05kg,小球c带q=5×10-4C的正电荷,其他小球不带电,不计一切摩擦,g=10m/s2,求
(1)小球a与b发生碰撞时的速度大小v0;
(2)小球c运动到Q点时的速度大小v;
(3)从小球c开始运动到速度减为零的过程中,小球c电势能的增加量。
题三:离子推进器是新一代航天动力装置,可用于卫星姿态控制和轨道修正。
推进剂从图中P 处注入,在A处电离出正离子,BC之间加有恒定电压,正离子进入B时的速度忽略不计,经加速后形成电流为I的离子束后喷出。
已知推进器获得的推力为F,单位时间内喷出的离子质量为J.为研究问题方便,假定离子推进器在太空中飞行时不受其他外力,忽略推进器运动速度。
(1)求加在BC间的电压U;
(2)为使离子推进器正常运行,必须在出口D处向正离子束注入电子,试解释其原因。
题四:静电火箭推力器是利用电能加速工作介质,形成高速射流,而产生推力的火箭发动机。
图1为其工作过程简化图:首先电子枪发射出的高速电子将电离区的中性推进剂离子化(即电离出正离子),正离子被聚焦加速区的电场加速后从喷口喷出,从而使飞船获得推进或姿态调整的反冲动力。
这种发动机寿命长,适用于航天器的姿态控制、位置保持和星际航行等。
设每个离子的质量为m,电荷量为q,加速电压为U,从喷口喷出的正离子所形成的电流为I。
忽略电离区形成离子的初速度及离子间的相互作用力。
求:
(1)离子经电场加速后,从喷射口喷出时的速度大小v0;
(2)该发动机产生的平均推力大小F;
(3)假设航天器的总质量为M,正在以速度V1沿MP方向运动,已知现在的运动方向与预定方向MN成θ角,如图2所示。
为了使飞船回到预定的飞行方向MN,飞船启用推进器进行调整。
如果沿垂直于飞船速度V1的方向进行推进,且推进器工作时间极短,忽略离子喷射对卫星质量的影响,离子推进器喷射出的粒子数N为多少?
专题 2019高考压轴题讲解下)
课后练习参考答案
题一:(1)30N ;(2)0.5m/s ;(3)5m/s
详解:(1)物块从圆弧轨道A 点滑到B 点的过程中机械能守恒:mgR =12
mv B 2 解得:v B =3m/s
在B 点由牛顿第二定律得F N -mg =m v B 2
R
解得:F N =30N
由牛顿第三定律可得:物块滑到B 点时对轨道的压力F N ′=F N =30N
(2)物块滑上平板车后,系统的动量守恒,
mv B =(m +M )v 共
解得:v 共=0.5m/s
(3)物块在平板车上滑行时克服摩擦力做的功为F f -L 图线与横轴所围的面积,则克服摩擦力做功为:W f =(26)0.52+⨯J =2J , 物块在平板车上滑动的过程中,由动能定理得:-W f =12mv 2-12
mv B 2 解得:v =5m/s.
题二:(1)v 0=4m/s ;(2)v =2m/s ;(3)p 3.2E ∆=J
详解:(1)对小球a ,由动量定理可得:I =m a v 0-0
由题意可知,F -t 图象所围的图形为四分之一圆弧,面积为拉力F 的冲量,
由圆方程可知:F -t 图象所围的面积为S =1m 2,即I =1N ·s
代入数据可得:v 0=4m/s.
(2)小球a 与小球b 、c 组成的系统发生弹性碰撞,
由动量守恒可得:012()a a b c m v m v m m v =++
由机械能守恒可得:222012111()222
a a
b
c m v m v m m v =++ 解得:v 1=0;v 2=4m/s.
小球c 运动到Q 点时,小球b 恰好运动到P 点,由动能定理:
22211()()22
c b c b c m gR qER m m v m m v -=+-+ 代入数据可得:v =2m/s
(3)由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为θ,
从c 球运动到Q 点到减速到零的过程列能量守恒可得:
21(1cos )sin ()sin 2
b c b c m gR m gR m m v qER θθθ-+++= 解得:sin θ=0.6,θ=37°
因此小球c 电势能的增加量:p (1sin ) 3.2E qER θ∆=+=J
题三:(1)2
2F U JI
=;(2)推进器持续喷出正离子束,会使带有负电荷的电子留在其中,由于库仑力作用将严重阻碍正离子的继续喷出。
电子积累足够多时,甚至会将喷出的正离子再吸引回来,致使推进器无法正常工作。
因此,必须在出口D 处发射电子注入到正离子束,以中和正离子,使推进器获得持续推力。
详解:(1)设一个正离子的质量为m ,电荷量为q ,加速后的速度为v ,根据动能定理,有qU =12
mv 2① 设离子推进器在Δt 时间内喷出质量为ΔM 的正离子,并以其为研究对象,推进器对ΔM 的作用力为F ′,由动量定理,有F ′Δt = ΔMv ②
由牛顿第三定律知F ′ =F ③ 设加速后离子束的横截面积为S ,单位体积内的离子数为n ,则有
I =nqvS ④
J =nmv S ⑤ 由④、⑤可得
I q J m = 又M J t
∆=∆ 解得2
2F U JI
= (2)推进器持续喷出正离子束,会使带有负电荷的电子留在其中,由于库仑力作用将严重阻碍正离子的继续喷出。
电子积累足够多时,甚至会将喷出的正离子再吸引回来,致使推进器无法正常工作。
因此,必须在出口D 处发射电子注入到正离子束,以中和正离子,使推进器获得持续推力。
题四:(1)
;(2)(3) . 详解:(1)由动能定理得:2012
qU mv =
所以v 0 (2)对于单个离子,由动量定理得F 0Δt =mv 0
设在Δt 时间内,有n 个粒子被喷出,则有F =nF 0
nq I t
=∆
所以F = (3)飞船方向调整前后,其速度合成矢量如图所示;
1tan
v v θ
∆
=
离子喷出过程中,系统的动量守恒:M∆v=Nmv0(M>>Nm)所以N。