正项级数的敛散性
- 格式:pdf
- 大小:105.32 KB
- 文档页数:11
关于正项级数敛散性判定方法的总结比较正项级数指的是所有项都是正数的级数。
求解正项级数的敛散性是数学分析、高等数学、物理等学科中经常使用的基本问题。
以下是关于正项级数敛散性判定方法的总结。
1. 通项公式法如果正项级数的通项公式可以明确地表示出来,那么可以通过解析判断级数的敛散性。
例如:$\sum\limits_{n=1}^{\infty} \frac{1}{n^2}$,该级数的通项公式为$\frac{1}{n^2}$,由于是调和级数的平方,因此它是收敛的。
但如果通项公式不容易明确表示出来,就需要采用其他方法。
2. 比较判别法当正项级数与一个已知收敛或发散的级数的通项公式形式非常类似时,就可以使用比较判别法。
若存在一个收敛级数$\sum\limits_{n=1}^{\infty} a_n$,则当正项级数$\sum\limits_{n=1}^{\infty} b_n$满足$\lim\limits_{n\to\infty}\frac{b_n}{a_n}=c>0$时,$\sum\limits_{n=1}^{\infty}b_n$与$\sum\limits_{n=1}^{\infty} a_n$同时敛散。
其中,$a_n$和$b_n$都是正数。
3. 极限比值法极限比值法也叫作柯西-黎曼判别法。
该方法需要计算正项级数的项数无穷大时的比值$\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_n}$,如果该比值$<1$,则级数收敛;如果$>1$,则级数发散;如果$=1$,则判别不出敛散性。
此外,当无法计算极限时,也可以将比值的极限转化为自然对数的形式再进行计算。
将正项级数转化为积分形式,再判断积分的敛散性。
若存在一个$a>0$,使得函数$f(x)$在$[a,+\infty)$上单调递减且非负,则当正项级数$\sum\limits_{n=1}^{\infty} a_n$的通项公式为$a_n=f(n)$时,级数敛散与积分$\int_a^{+\infty} f(x)dx$的敛散性相同。
一、 正项级数敛散性的判别设∑∞=1n n u 是正项级数,假设 0lim ≠∞→n n u ,那么∑∞=1n n u 发散。
若0lim =∞→n n u ,那么∑∞=1n n u 可能收敛也可能发散。
可依照下面的思路判别其敛散性。
(1)若是通项n u 包括有n !之类的因子,或关于n 的假设干因子连乘形式,那么用比值判别法,即ρ=+→∞n n n u u 1lim ,那么当1<ρ时∑∞=1n n u 收敛,当1>ρ时∑∞=1n n u 发散。
若是nn n u u 1lim +∞→不易计算,或不存在,或存在为1,那么适当放大n u ,使得n n v u ≤,并对∑∞=1n nv 应用比值判别法,若是∑∞=1n n v 收敛,那么∑∞=1n n u 收敛;或适当缩小n u ,使得0>≥n n v u ,并对应用比值判别法,若是∑∞=1n n v 发散,则∑∞=1n n u 发散。
(2)若是通项n u 包括有n 或关于n 的函数为指数的因子,那么用根值判别法,即ρ=∞→n lim n n u ,那么当1<ρ时∑∞=1n nu收敛,当1>ρ时∑∞=1n n u 发散。
若是n lim n n u →∞不易计算,或不存在,或存在为1,那么适当放大n u ,使得n n v u ≤,并对∑∞=1n n v 应用根值判别法,若是∑∞=1n n v 收敛,那么∑∞=1n n u 收敛;或适当缩小n u ,使得0>≥n n v u ,并对应用根值判别法,若是∑∞=1n n v 发散,那么∑∞=1n n u 发散。
(3)当n u 不是以上情形时,寻觅∞→n 时n u 的等价无穷小,可利用等价无穷小的经常使用公式和麦克劳林展开式,取得)0(~>C nCu n α,第八讲 常数项级数敛散性的判别等价的通项,两级数应具有相同的敛散性。
因此当1>α时∑∞=1n n u 收敛;当1≤α时∑∞=1n nu发散。
正项级数敛散性的判别方法正项级数是指级数的所有项都是非负数的级数。
判断正项级数的敛散性的方法主要有以下几种:比较判别法、根式判别法、积分判别法、极限判别法和对数判别法。
一、比较判别法:1. 比较判别法之比较大法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≤bn,那么若∑bn收敛,则∑an也收敛;若∑bn发散,则∑an也发散。
2. 比较判别法之比较小法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≥bn,那么若∑bn发散,则∑an也发散;若∑bn收敛,则∑an也收敛。
二、根式判别法:设an≥0,如果存在正常数p使得lim[(an)^1/n]=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,根式判别法无法确定级数的敛散性。
三、积分判别法:将正项级数∑an转化为函数f(x)的积分,即∫f(x)dx,如果对于函数f(x),当x趋向于无穷大时有f(x)递减且连续,则1. 若∫f(x)dx收敛,则级数∑an也收敛;2. 若∫f(x)dx发散,则级数∑an也发散。
四、极限判别法:如果存在常数L>0,使得lim(n→∞)n*an=L,则1. 若L<1,则级数∑an收敛;2. 若L>1,则级数∑an发散;3.若L=1,极限判别法无法确定级数的敛散性。
五、对数判别法:设an≥0,如果存在正常数p使得limln(an)/ln(n)=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,对数判别法无法确定级数的敛散性。
这些判别方法在实际应用中都有其适用范围和局限性,需要根据具体情况选择合适的方法进行判断。
同时,在判断级数的敛散性时,还可以结合其他定理和方法,如柯西收敛准则、阿贝尔定理、绝对收敛等进行综合分析。
关于正项级数敛散性判定方法的总结比较正项级数是指级数中所有的项均为非负数的级数,即对于级数\sum_{n=1}^{\infty}a_n,其中a_n\geq0。
正项级数的收敛性和发散性对于数学分析和实际问题都具有重要意义,在实际应用中,我们经常需要对正项级数的收敛性进行判定。
针对正项级数的收敛性和发散性,数学中有多种方法来进行判定,本文将对这些方法进行总结比较。
一、比较判别法比较判别法是判定正项级数收敛性和发散性的常用方法之一。
该方法的基本思想是通过比较给定级数与一个已知级数的大小关系来判定。
比较判别法分为两种情况,分别是比较判别法和极限比较判别法。
比较判别法是指对于给定级数\sum_{n=1}^{\infty}a_n和另一个级数\sum_{n=1}^{\infty}b_n,如果对于任意n均有a_n\leq b_n,且级数\sum_{n=1}^{\infty}b_n收敛,则级数\sum_{n=1}^{\infty}a_n也收敛;如果级数\sum_{n=1}^{\infty}b_n发散,则级数\sum_{n=1}^{\infty}a_n也发散。
比较判别法的优点是简单易用,只需找到一个已知级数与待判定级数的大小关系即可进行判定;缺点是对于不同的级数,需要选择合适的已知级数进行比较,因此并不是所有情况都适用。
2. 极限比较判别法极限比较判别法的优点是适用范围广,可以处理更多的情况,但缺点是需要计算极限值,有时可能较为复杂。
二、积分判别法积分判别法是判定正项级数收敛性和发散性的另一种重要方法。
对于给定正项级数\sum_{n=1}^{\infty}a_n,如果a_n是连续函数f(x)在[1,+\infty)上的值,且f(x)在[1,+\infty)上单调递减,则级数\sum_{n=1}^{\infty}a_n与函数的积分\int_{1}^{\infty}f(x)dx的收敛性是一致的。
积分判别法的优点是利用了函数积分的性质,简化了级数的判定过程;但缺点是需要对函数进行积分运算,有时可能不太容易求得积分结果。
一个正项级数敛散性的判别法
正项级数敛散性是指一个级数能够在某种给定的运算规则下被加起来,表示为一个有穷的值。
它允许积分,求和,数组操作以及定义特定类型的序列的可行性。
鉴于其运算的复杂性,正项级数敛散性广泛应用于计算数学,统计学,机器学习等领域。
正项级数敛散性的判别法是指识别任意可求正项级数敛散性序列是否为有穷数的过程。
换句话说,它检查序列中是否有一项或多项位于极限,以检测序列是否有穷。
正项级数的敛散性表示的是序列的最后一项的特性。
若序列的最后一项是有限的,则该序列敛散;若序列的最后一项是无限的,则该序列不敛散。
例如,以下是一个最基本的级数:a_n=1/n^2。
该序列的最后一项是无限的,因此该序列不敛散。
正项级数敛散性的判别法测试可分为三步:首先,检查有限比,它由西格玛紧缩度度量表示;其次,计算绝对正项级数的和;最后,依据给定的条件来定义是否有限。
与奇偶性判断法相比,正项级数敛散性判断法有更少的变量限制,可使用于更多情况下。
总之,正项级数敛散性的判别法是通过检查有限比、计算绝对正项级数的和,以及依据给定条件来判断序列是否有穷的过程,作为鉴别级数是否有穷的效率高、功能强大的数学工具,可广泛应用于计算数学、统计学和机器学习等领域。