频率与频数
- 格式:ppt
- 大小:970.50 KB
- 文档页数:15
频数与频率名词解释频数:是指一定时间内发生的事件,即事件发生的次数。
(一)简述频数与频率的概念1。
关于事件的频数。
第二,频数并不是每个人都有的,所以才把频率称为事件的频数。
2。
频数与频率的区别:频率反映的是事物的次数,如“李华每天上学、放学要走500米”这句话里的“ 500米”就是频数。
而频数则是指事件发生的次数,如某班同学说“今天早上李华迟到了”就是在说“李华迟到了”这一事实,但是李华迟到了几次呢?一次、两次还是五次?我们要用“频数”这个词来表示,即500÷5= 30(次)。
如果单纯地写成“迟到几次”,那么就只能算作频数,而不是频率。
3。
有的名称中没有“频率”一词,例如:成语“事半功倍”的频率。
虽然“倍”和“倍数”这两个词均可表示“增加或增加的次数”,但是“倍数”更加形象化,能给人留下更深刻的印象。
当“事半功倍”四个字摆在我们面前时,它会使我们产生许多联想:( 1)“事”和“倍”究竟是什么关系?( 2)事情做得越多,效果就越好吗?……其实,要回答上面的问题,也不难,只要记住它们的频率就行了。
如:半个月的星期日,按频率排列应该是星期六、星期日和星期一,可是由于工作的关系,星期一被挤掉了,因此,我每个星期的星期一最难熬。
因此,我总盼望着星期六的到来。
我们再看成语“事半功倍”。
如果改成“事半功未倍”,意思就截然相反了。
在一般的交谈中,我们常用“频数”这个词,所以频数也就代替了频率,成了频数=频率,不过我们仍要说频率,以表示事件的次数。
第三,同样一个事件,一年有十二个月,发生的次数叫做频数。
如果按季度来计算的话,就叫做频率,如去年4月份发生了12件事情, 5月份又发生了12件事情,就叫做了6个事件的频数,从以上举例中可知:第一,频数大于频率,如上例, 4月份发生的12件事情的频数,就比5月份发生的12件事情的频数多。
第二,频数小于频率,如上例,去年4月份发生的12件事情的频数,就比5月份发生的12件事情的频数少。
频数与频率一、一周知识概述1、频数、频率、频数分布表一般我们称落在不同小组中的数据个数为该组的频数.频数与数据总数的比为频率.频率反映各组频数的大小在总数中所占的份量,频率×100%就是百分比.而反映数据分布的统计表叫做频数分布表,也称频数表.2、频数分布直方图用来表示频数分布的基本统计图叫做频数分布直方图,简称直方图.基本步骤为:①计算数据的最大值与最小值的差;②决定组距与组数;③决定分点;④列频数分布表;⑤绘制频数分布直方图.二、重难点知识归纳1、频数、频率、频数分布表的概念.2、频数分布直方图的应用.三、典型例题剖析例1、2002年12月3日22点16秒,从摩纳哥蒙特卡洛举行的国际展览局大会上传来了振奋人心的消息——中国当选为2010年世博会的东道主!选举方式是由国际展览局89个成员国的代表以无记名方式进行投票.在首轮投票中,中国以36票居第一,韩国28票,俄罗斯12票,墨西哥6票,波兰被淘汰.在这轮的投票中,前四名的国家的得票的频数各是多少?频率各是多少,各国所占的百分比又是多少?[解析]例2、已知数据:2521232527292528302926242527262224252628试根据数据绘制频数分布表.[解析]例3、某中学部分同学参加全国初中数学竞赛,取得了优异的成绩.指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了频数分布直方图,如下图所示.(每组含最低分数,但不含最高分数)请回答:(1)该中学参加本次数学竞赛的有多少名同学?(2)如果成绩在90分以上(含90分)的同学获胜奖,那么该中学参赛同学的获奖率是多少?(3)图中还提供了其他信息,例如该中学没有获得满分的同学等等.请再写出两条信息.[解析]例4、为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计,请你根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示),解答下列问题.(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中,共抽取_________人的成绩进行统计;(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由)(5)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?[解析]例5、如下图所示,是某单位职工的年龄(取正整数)的频数分布直方图.根据图形提供的信息,回答下列问题:(1)该单位职工共有多少人?(2)不少于38岁但小于44岁的职工人数占职工总人数的百分比是多少?(3)如果42岁的职工有4人,那么年龄在42岁以上的职工有几人?例一分析:根据频数、频率的概念求解,但应注意这里仅取前四名的国家,其他国家未列入.解:中国、韩国、俄罗斯、墨西哥四国的频数分别为36、28、12、6频率分别为0.404, 0.315, 0. 135, 0.067,各国所占的百分比分别为40.4%、31.5%、13.5%、6.7%.例二分析:绘制频数分布表,根据其基本步骤进行,但根据数据取组距为2较合适.解:(1)计算最大值与最小值的差;最大数据是30,最小数为21,它们的差是30-21=9;(2)取组距为2,由于,∴组数为5;(3)决定分点:20.5~22.5, 22.5~24.5, 24.5~26.5, 26.5~28.5, 28.5~30.5.(4)列频数分布表:例三分析:图中横轴表示分数段,纵轴表示各分数段的人数,由此分析可知每个问题的结论.解:(1)4+6+8+7+5+2=32,所以参加本次数学竞赛的有32名同学;(2).所以该中学的参赛同学获奖率是43.75%;(3)该中学参赛同学的成绩均不低于60分;成绩在80~90分段的人数最多.例四解:(1)由频率分布表可知,抽样调查总数为:4÷0.08=50(人)∴90.5~100.5分数段的人数为50-4-8-10-16=12(人),这一分数段的频率为12÷50=0.24.“合计”中,频数是50,频率是1.00.(2)如图所示.(3)在该问题中,共抽取50人的成绩进行统计.(4)由频率分布表可以看到,80.5~90.5这一分数段的人数最多.(5)成绩在90分以上(不含90分)的占0.24,所以,900×0.24=216(人).∴该校成绩优秀的约为216人.点评:解本题的关键是填充“频率分布表”,在这一问题中,既可以利用某小组的频数和频率,用“频数÷频率=总人数”求出总人数,进而求出90.5~100.5这一分数段的人数,再求出相对应小组和合计的频率.同时,也可以从频率着眼,已知各小组的频率之和为1.00,从而求出90.5~100.5分数段的频率,进而求出这一分数段的频数.注意解题的灵活性.例如:求出90.5~100.5分数段的频率是0.24,是50.5~60.5分数段的频率的3倍,故此,90.5~100.5分数段的频数是4×3=12(人),计算起来比较简便例五解:(1)该单位共有职工50人;(2)不小于38岁但小于44岁的职工人数为30人,占总数的=60%;(3)42岁以上的职工人数为19-4=15(人).在线测试一、选择题1、某单位有职工100名,将他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是()A.0.12 B.0.38C.0.32 D.0.922、有关频数分布表和频数分布直方图的理解,正确的是()A.频数分布表能清楚地反映事物的变化情况B.频数分布直方图能清楚地反映事物的变化情况C.频数分布直方图能清楚地表示出各部分在总体中所占的百分比D.二者均不能清楚地反映变化情况和总体中所占的百分比,但能反映出每个项目的具体数目3、甲、乙两人连续7年调查某县养鸡业的情况,提供了两方面的信息图(如图所示)甲调查表明:养鸡场的平均产鸡数从第1年的1万只上升到第7年的2.8万只;乙调查表明:养鸡场的个数由第1年的46个减少到第7年的22个.现给出下列四个判断:①该县第2年养鸡场产鸡的数量为1.3万只;②该县第2年养鸡场产鸡的数量低于第1年养鸡场产鸡的数量;③该县这7年养鸡场产鸡的数量逐年增长;④这7年中,第5年该县养鸡场产鸡的数量最多,根据甲、乙两人提供的信息,可知其中正确的判断有()A.2个B.1个C.0个D.3个4、一般地,家庭用电量(千瓦时)与气温(℃)有一定的关系,图(1)表示某年12个月中每月的平均气温;图(2)表示某家庭在这年12个月中每月的用电量.根据图中信息得到下列判断:(1)气温最高时,用电量最多;(2)气温最低时,用电量最少;(3)当气温大于某一值时,用电量随气温升高而增加(或降低而减少);(4)当气温小于某一值时,用电量随气温降低而增加(或升高而减少).其中正确的判断有()A.4个B.0个C.2个D.1个5、近年来国内生产总值增长的变化情况如图所示,由图可知,下列结论不正确的是()A.1995~1999年国内生产总值的年增长率逐年减少B.2000年国内生产总值年增长率开始回升C.这7年中,每年的国内生产总值不断增长D.这7年中,每年的国内生产总值有增有减6、我校九年级三班选举班长,通过投票最后统计三名候选人A、B、C的票数分别为25票、17票、8票,则候选人B所得票数的频数为()A.25 B.17C.8 D.507、如图所示的是九年级某班60名同学参加数学毕业会考所得成绩(成绩均为整数)整理后画出的频数分布直方图,根据图示可得出该班及格(不低于60分)的同学的人数为()人.(每组含最低分,不含最高分,但满分100分在最后一组内).()A.45 B.46C.49 D.508、在统计中频数分布的主要作用是()A.可以反映一组数据的波动大小B.可以反映一组数据的平均水平C.可以反映一组数据的分布情况D.可以看出一组数据的最大值和最小值9、一组数据最大值与最小值的差为80,若确定组距为9,则分成的组数为()A.7 B.8C.9 D.1210、某班50名学生期末考试数学成绩(单位:分)的频数分布直方图如下图所示,其中数据不在分点上,对图中提供的信息作出如下的判断:(1)成绩在49.5分~59.5分段人数与89.5分~100分段的人数相等;(2)从左到右数,第四小组的频率是0.03;(3)成绩在79.5分以上的学生有20人;(4)从左往右数,第三小组的组中值为74.5.其中正确的判断有()A.4个B.3个C.2个D.1个B 卷二、解答题11、为增强学生的身体素质,某校常年坚持全员体能锻炼,并定期进行体能测试,下面将某班学生立定跳远成绩(精确到0.01米)进行整理后,分成5组(含低值不含高值):1.60~1.80, 1.80~2.00, 2.00~2.20, 2.20~2.40, 2.40~2.60,已知前4个小组的频率分别是0.05, 0.15, 0.03, 0.35,第5个小组的频数是9.(1)该班参加这次测试的人数是多少?(2)请画出各组频数的条形图.(3)成绩在2.00米以上(含2.00米)的为合格,问该班成绩的合格率是多少?[答案]12、某校课外活动小组为了解本校初三学生的睡眠时间情况,对学校若干名初三学生的睡眠时间进行了抽查,将所得的数据整理后,画出了频率分布直方图的一部分,如图所示.已知图中从左至右前五个小组的频率分别是0.04,0.08,0.24,0.28,0.24,第二小组的频数为4,请回答下列问题.(1)这次被抽查的学生人数是多少?并补全频率分布直方图;(2)被抽查的学生中,睡眠时间在哪个范围内的人数最多?这一范围内的人数是多少?(3)如果该校有900名初三学生,若合理睡眠时间为7≤t<9,那么请你估计一下这个学校初三学生中睡眠时间在此范围内的人数是多少?[答案]13、某中学同年级40名男生的体重数据如下:(单位:kg)列出频数分布表,绘出频数分布直方图.[答案]14、在一次环保知识测试中,三年一班的两名学生根据班级成绩(分数为整数)分别绘制了组距不同的频率分布直方图,如图1,图2所示.已知图1从左到右每个小组的频率分别为0.04,0.08,0.24,0.32,0.20,0.12,其中68.5~76.5小组的频数为12;图2从左到右每个小组的频数之比为1︰2︰4︰7︰6︰3︰2,请结合条件和频率分布直方图回答下列问题.(1)三年一班参加测试的人数为多少?(2)若这次测试成绩80分以上(含80分)为优秀,则优秀率是多少?(3)若这次测试成绩60分以上(含60分)为及格,则及格率是多少?测试结果第1题答案错误! 正确答案为 C第2题答案错误! 正确答案为 D第3题答案错误! 正确答案为 B第4题答案错误! 正确答案为 D第5题答案错误! 正确答案为 D第6题答案错误! 正确答案为 B第7题答案错误! 正确答案为 A第8题答案错误! 正确答案为 C第9题答案错误! 正确答案为 C第10题答案错误! 正确答案为 B提示:1、4、8月份气温最高,用电量并不是最多,1月份气温最低,用电量也不是最少,所以(1)、(2)两种说法都是错的;2月份的气温不是最低,但其用电量最多,所以(4)是错的,只有(3)正确,因为当气温高于25℃时,气温高用电量多.11、答案:(1)第5组的频率为1-0.05-0.15-0.30-0.35=0.15.9÷0.15=60(人),∴该班参加这次考试的人数为60人.(2)图略(3)合格的人数为48人,合格率为.12、解:(1)∵4÷0.08=50(人),∴这次被抽查的学生人数是50人,并补全频率分布直方图如图所示.(2)∵1-0.04-0.08-0.24-0.28-0.24=0.12,∴频率最高的是第四小组,是0.28,50×0.28=14(人).∴被抽查的学生中,睡眠时间在6≤t<7范围内的人数最多,这一范围内的人数是14人.(3)由频率分布直方图可以发现,睡眠时间在7≤t<9范围内的频率是0.24+0.12=0.36=36%.∴睡眠时间在7≤t<9范围内的学生人数占总人数的36%.∴900×36%=324(人).∴估计全校900名初三学生中睡眠时间在合理睡眠范围内的人数约是324人.13、答案:列出频数分布表如下:频数分布直方图如图答所示14、解析:(1)12÷0.24=50(人),∴三年一班参加测试的人数为50人.(2)由图2知,1+2+4+7+6+3+2=25,6+3+2=11,∴11÷25×100%=44%.∴若这次测试成绩80分以上(含80分)为优秀,则优秀率是44%.(3)由图1知,1-0.04=0.96=96%,∴若这次测试成绩60分以上(含60分)为及格,则及格率是96%.。
概率与统计的频数与频率概率与统计是数学中的两个重要概念,在现代科学和社会研究中有着广泛的应用。
其中,频数与频率是概率与统计中常用的两个概念,用于描述事件发生的次数和比例。
本文将对频数与频率的定义、计算以及在实际问题中的应用进行介绍。
首先,我们来了解频数与频率的概念。
频数表示某一事件在一系列观察中出现的次数,用N表示。
例如,我们对某一群体的身高进行观察,观察结果中身高在160cm至170cm之间的人数为15人,那么频数为15。
频率是频数与总数的比值,表示某一事件发生的概率。
频率可以用百分比或小数形式来表示。
例如,上述身高在160cm至170cm之间的人数为15人,总样本数为100人,则频率为15%或0.15。
其次,关于频数与频率的计算方法。
频数的计算较为直接,只需要统计某一事件的出现次数即可。
而频率的计算需要将频数与总数进行比较。
频率的计算公式为:频率 = 频数 / 总数。
以刚才的例子来说,如果总样本数为100人,身高在160cm至170cm之间的人数为15人,则频率为15/100=0.15。
在实际问题中,频数与频率可以广泛应用于概率和统计中。
在概率中,我们可以使用频数与频率来描述事件的发生概率。
例如,在掷骰子的问题中,我们可以统计各个点数的频数,并计算出各个点数的频率,从而得到每个点数的概率。
在统计中,频数与频率可以帮助我们了解数据的分布情况。
例如,在对某一地区的犯罪率进行统计时,我们可以统计不同类型犯罪事件的频数,并计算出每种犯罪事件的频率,从而了解各种犯罪事件的相对比例。
此外,频数与频率还可以用于比较不同样本之间的差异。
通过比较不同样本的频数与频率,我们可以发现它们之间的异同。
例如,对于两个不同地区的犯罪率进行比较,我们可以统计不同类型犯罪事件的频数,并计算出每种犯罪事件的频率,从而比较两个地区犯罪事件的类型和比例,进一步了解两个地区的犯罪情况。
在概率与统计中,频数与频率是描述事件发生次数和比例的重要工具。
频数和频率的概念
1、频数:
频数指变量值中代表某种特征的数出现的次数。
按分组依次排列的频
数构成频数数列,用来说明各组标志值对全体标志值所起作用的强度。
各
组频数的总和等于总体的全部单位数。
频数的表示方法,既可以用表的形式,也可以用图形的形式。
2、频率:
频率指的是在相同的条件下,进行了n次试验,在这n次试验中,事
件A发生的次数m称为事件A发生的频数。
某个组的频数与样本容量的比
值也叫作这个组的频率。
频率的计算:
随机事件在n次试验中发生m次的相对频次m/n。
一般物理科学中频
率指每秒中的振动次数,可以是随机的,也可以是确定性的。
在一定条件下,对所研究的对象进行观察或测验,每实现一次条件组,称为一次试验。
其结果称为事件。
在一次试验中,可能发生也可能不发生
的事件称为随机事件。
随机事件A发生的概率p(A)是该事件出现的可能性大小的度量。
其
数值在0与1之间。
在一定条件下进行试验,如果事件A不可能发生,则
p(A)=0;如果事件A必然发生,则p(A)=1。
随着试验次数n的增大,频
率接近于概率的可能性也越大。
频率与频数的关系
在统计学中,频率和频数是一种可用来表征样本中某种变量的重要概念,其中频率是指某变量的值在样本中出现的几率,而频数是指某变量的值在样本中出现的次数。
这两个概念在统计学中都被广泛应用,它们提供了客观、精确的数据,有利于科学家了解某一特定变量的表现情况。
概括起来,频率和频数的主要区别在于,频率是对某一变量在样本中出现的次数的描述,而频数也是描述变量出现的次数,但是更加精细,包括出现的频次等多种信息。
因此,当研究者或者分析师希望分析某一特定变量的时候,频率和频数都可以为他们提供有用的信息。
求取频率和频数的方法也有所不同。
要求取频率,首先需要构建一个概率分布,然后计算频率,公式如下:频率=给定变量发生的次
数/总的次数。
而频数的求取则更为简单,只要单纯的统计某一变量
在样本中出现的次数即可,也可以分别统计出现次数的不同频次,以此来反映变量在样本中的表现情况。
在统计数据分析中,频率和频数都有其重要作用。
其中频率最主要的作用是用来衡量某一变量在样本中出现的几率,而频数则能更具体地描述某一变量在样本中出现的次数。
此外,在进行大数据分析时,频率和频数也有助于进行数据筛选、汇总和可视化等操作,有效提高分析效率,也有助于建立模型,提高分析的准确性。
总而言之,频率和频数都是统计学中被广泛使用的重要概念,它们有助于科学家了解某一特定变量的表现情况,有助于大数据分析,
也有助于建立和提高分析模型的准确性。
此外,获取频率和频数的方法也不同,频率的计算要构建概率分布,而频数的求取只要分别统计出现次数的不同频次即可。
希望本文的介绍能够对读者有所帮助,让他们能够更好地理解和运用这两个重要的统计概念。
统计中的频数与频率在统计学中,频数与频率是两个非常基础且重要的概念。
它们帮助我们分析和描述数据集中的变量,从而从中得出有关数据分布和趋势的结论。
本文将介绍统计中的频数与频率,解释它们的概念和计算方法,并通过实例来说明其应用。
一、频数频数是指某个特定数值在数据集中出现的次数。
在统计学中,我们常常需要知道不同数值在数据集中的分布情况,而频数就是用来描述这种分布的一种指标。
通常情况下,我们可以将数据按顺序排列后,对每个数值进行计数,计算出每个数值的频数。
例如,假设我们有一个数据集,记录了一批学生的考试成绩,数据如下:85, 92, 76, 85, 90, 76, 85, 82, 92, 90我们可以对这些成绩进行排序,得到如下序列:76, 76, 82, 85, 85, 85, 90, 90, 92, 92然后我们可以计算每个数值的频数:76出现了2次,82出现了1次,85出现了3次,90出现了2次,92出现了2次所以,以频数的形式呈现,这批学生成绩的分布情况如下:76: 282: 185: 390: 292: 2频数为统计学中常用的一种描述分布情况的方式,它展示了不同数值出现的次数,帮助我们了解数据的分布情况。
二、频率频率是指某个特定数值在数据集中出现的相对比例。
与频数不同,频率是以百分比或小数的形式表示的。
频率可以告诉我们某个数值在整个数据集中所占的比例,帮助我们比较不同数值之间的分布情况。
频率的计算方法是将某个数值的频数除以数据集的总样本数,再乘以100(若使用百分比的形式)。
例如,上述例子中,我们可以计算每个数值的频率如下:76的频率为:2/10 * 100% = 20%82的频率为:1/10 * 100% = 10%85的频率为:3/10 * 100% = 30%90的频率为:2/10 * 100% = 20%92的频率为:2/10 * 100% = 20%从上述计算结果可以看出,85的频率最高,占总样本数的30%,其次是76和90,均为20%。
掌握简单的数据分析频数和频率的计算数据分析是当今社会中非常重要的技能之一。
了解和掌握简单的数据分析方法,特别是频数和频率的计算,对于解读和利用数据以及做出准确的决策非常重要。
本文将介绍频数和频率的概念、计算方法,并通过实例演示如何应用这些方法进行数据分析。
一、频数和频率的概念在数据分析中,频数和频率是描述数据出现次数的两个重要概念。
频数指的是某个特定数值在数据集中出现的次数,而频率指的是该数值出现的相对比例。
二、频数和频率的计算方法频数的计算非常简单,只需统计该数值在数据集中出现的次数即可。
例如,给定一个数字序列:1, 2, 2, 3, 3, 3, 4, 4, 4, 4,计算数字4的频数,结果为4。
频率的计算是将频数除以总体大小或样本大小,然后乘以100,得到百分比表示。
例如,给定一个样本大小为50的数据集,其中数字4的频数为10,则数字4的频率计算公式为:(10/50) * 100 = 20%。
三、应用实例:汽车销售数据分析为了更好地理解和应用频数和频率的概念,我们以汽车销售数据为例展示如何进行简单数据分析。
假设某汽车公司在2019年1月至12月期间销售了1000辆汽车。
以下是每个月销售记录的数据集:月份:1 2 3 4 5 6 7 8 9 10 11 12汽车销售量:70 55 80 60 75 65 50 70 90 85 75 80根据以上数据,我们可以计算每个月的汽车销售数量的频数和频率。
首先,计算月份1的销售数量的频数和频率。
在给定的数据集中,月份1的销售数量为70,因此频数为1。
考虑到总体大小为12个月,那么月份1的销售数量的频率计算公式为:(1/12) * 100 = 8.33%。
接下来,我们计算剩下的月份的销售数量的频数和频率,并将结果整理如下表:月份销售数量频数频率1 70 1 8.33%2 55 1 8.33%3 80 1 8.33%4 60 1 8.33%5 75 1 8.33%6 65 1 8.33%7 50 1 8.33%8 70 1 8.33%9 90 1 8.33%10 85 1 8.33%11 75 1 8.33%12 80 1 8.33%通过以上计算,我们可以清楚地看到每个月份的销售数量频数和频率。
一、频数和频率的关系
1.频数也称“次数”,对总数据按某种标准进行分组,统计出各
个组内含个体的个数,而频率则每个小组的频数与数据总数的比值。
2.在变量分配数列中,频数(频率)表明对应组标志值的作用程度。
频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越
大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起
的作用越小。
二、频数与频率的定义
频数:一般我们称落在不同小组中的数据个数为该组的频数。
在一组依大小顺序排列的测量值中,当按一定的组距将其分组时出现在各组内的测量值的数目。
如有一组测量数据,数据的总个数N=148最小的测量值xmin=0.03,最大的测量值xmax=31.67,按组距为△x=3.000将148个数据分为11组,其中分布在15.05~18.05范围内的数据有26个,则称该数据组的频数为26。
频率:频数与数据总数的比值为频率。
频率反映了各组频数的大小在总数中所占的分量。
‘9’出现的频数是3,出现的频率是3/18=16.7%
频数也称“次数”,对总数据按某种标准进行分组,统计出各个组内含个体的个数。
而频率则每个小组的频数与数据总数的比值。
在变量分配数列中,频数(频率)表明对应组标志值的作用程度。
频数(频率)数值越大表明该组标志值对于总体水平所起的作用也越大,反之,频数(频率)数值越小,表明该组标志值对于总体水平所起的作用越小。
数据统计中的频数与频率计算技巧数据统计是一门研究和分析数据的学科,它通过收集、整理和解释数据,帮助我们了解事物的规律和趋势。
在数据统计中,频数和频率是两个重要的概念,它们可以帮助我们更好地理解和描述数据。
频数是指某一特定数值在数据集中出现的次数。
在统计学中,频数可以用来描述数据的分布情况。
例如,我们有一组数据表示某班级学生的成绩,其中有5个学生得了90分,3个学生得了80分,2个学生得了70分,那么90分的频数为5,80分的频数为3,70分的频数为2。
频率是指某一特定数值在数据集中出现的相对比例。
频率可以通过频数与总数的比值来计算得出。
例如,在上述例子中,班级共有10个学生,90分的频率为5/10=0.5,80分的频率为3/10=0.3,70分的频率为2/10=0.2。
在实际应用中,我们经常需要计算多个数值的频数和频率。
为了更好地理解和分析数据,下面将介绍一些常用的计算技巧。
1. 分组频数和频率计算当数据较多时,我们可以将数据进行分组,然后计算每个组的频数和频率。
例如,某公司有1000名员工,我们想要了解员工的年龄分布情况。
我们可以将年龄分为不同的组,如20-30岁、31-40岁、41-50岁等,然后统计每个组的频数和频率。
2. 累计频数和频率计算有时候,我们需要计算某个数值及其以下的频数和频率,这时可以使用累计频数和频率。
例如,某商场销售了不同价格的商品,我们想要知道销售额在100元及以下的商品的频数和频率。
我们可以先对销售额进行排序,然后逐个累加,直到达到或超过100元为止,最后计算累计频数和频率。
3. 相对频数和百分比计算相对频数是指某一特定数值的频数除以总数得到的比例。
百分比是相对频数乘以100。
相对频数和百分比可以帮助我们更直观地了解数据的分布情况。
例如,在某城市的人口统计中,我们可以计算各个年龄段的相对频数和百分比,以便更好地理解人口结构。
4. 频数和频率的图形表示除了数值的计算,我们还可以通过图形来表示频数和频率。
数据统计频数与频率的计算与分析数据统计是一种常用的研究方法,通过对数据进行收集、整理和分析,可以得到对某一特定现象的客观真实的展示。
在数据统计中,频数和频率是两个常用的统计指标,用来描述数据中不同取值的出现次数和占比情况。
本文将介绍频数和频率的计算方法,并通过一个实例来阐述如何进行数据统计的分析。
1. 频数的计算频数是指某一特定取值在数据中出现的次数。
要计算频数,首先需要进行数据收集,将数据按照特定的变量进行分类。
接下来,对于每一类别,统计该类别出现的次数即可得到频数。
例如,我们有一份调查数据,要统计不同年龄段的人数。
将数据按照年龄进行分类,并统计每个年龄段的人数。
假设我们有以下数据:18, 22, 25, 30, 22, 18, 25, 18, 30, 22按照年龄分类,可以得到以下结果:年龄为18的人数:3年龄为22的人数:3年龄为25的人数:2年龄为30的人数:2因此,根据这些数据的频数统计,我们可以知道在该样本中,18岁有3人,22岁有3人,25岁有2人,30岁有2人。
2. 频率的计算频率是指某一特定取值在数据中出现的相对比例。
频率可以用来描述不同取值的分布情况,通常以百分比的形式进行表示。
要计算频率,可以通过将频数除以总数,再乘以100来得到。
利用上述的数据,接下来我们可以计算每个年龄段的频率。
假设样本的总人数为10人,因此,可以得到以下结果:年龄为18的频率:3/10 * 100% = 30%年龄为22的频率:3/10 * 100% = 30%年龄为25的频率:2/10 * 100% = 20%年龄为30的频率:2/10 * 100% = 20%通过这些频率数据,我们可以看出,年龄为18和22的人数相同,占总人数的比例最高,都为30%,而年龄为25和30的人数相同,占总人数的比例为20%。
3. 数据统计的分析通过对数据进行频数和频率的计算,可以得到对数据特点的直观展示,进一步可以进行数据统计的分析。
数据的频数与频率计算方法数据分析是现代社会中不可或缺的重要工具之一。
了解和计算数据的频数与频率是进行数据分析的基础。
在本文中,将介绍频数与频率的定义及其计算方法,并通过示例进行说明。
一、频数的定义与计算方法频数是指一组数据中某个特定值出现的次数。
在统计学中,频数常用于描述离散变量的分布情况。
频数的计算方法相对简单,只需统计数据中每个数值出现的次数即可。
示例:假设有一个班级的成绩数据,包括10个学生的考试分数,请计算每个分数值出现的频数。
分数 | 频数----------------60 | 165 | 275 | 380 | 285 | 1----------------在上表中,分数60出现了1次,分数65出现了2次,以此类推。
通过计算每个分数的出现次数,我们可以得到数据的频数分布情况。
二、频率的定义与计算方法频率是指某个数值出现的次数与总次数之比。
频率常用于描述连续变量的分布情况。
频率的计算方法需要根据数据的类型来确定。
1. 离散型数据的频率计算方法:离散型数据是指具有有限个可能取值的数据,如年龄、性别等。
离散型数据的频率计算方法为:某个数值的频率等于该数值的频数除以总样本量。
示例:假设有一份调查问卷数据,其中一项问题是性别。
样本量为100,男性出现的次数为45次,女性出现的次数为55次。
请计算男性和女性的频率。
男性的频率 = 男性的频数 / 总样本量 = 45 / 100 = 0.45女性的频率 = 女性的频数 / 总样本量 = 55 / 100 = 0.55通过计算得出,男性的频率为0.45,女性的频率为0.55。
2. 连续型数据的频率计算方法:连续型数据是指可能取任意值的数据,如身高、体重等。
连续型数据的频率计算方法需要通过将数据分组来进行。
示例:假设有一组学生的身高数据,将身高按照10cm为间隔进行分组,请计算每个身高组的频率。
身高组 | 频数 | 频率-----------------------------150 - 159 | 10 | 0.20160 - 169 | 20 | 0.40170 - 179 | 15 | 0.30180 - 189 | 5 | 0.10-----------------------------通过将身高数据按照分组进行统计,我们得到了每个身高组的频数。
频数和频率学习导航 重点频率与频数的概念,频率与频数之间的关系. 难点频率与频数的计算. 易混点频率与频数的区分. 易漏点所有频率之和等于1. 易错点只看频数大小,一般无法确定获胜对象. 精华提炼1.频数、频率的概念在数据统计时每个对象出现的次数称为频数,频数与总次数的比值称为频率.说明:频率分布反映了样本数据落在各个范围数目的多少,频率分布反映了样本数据各个范围内所占的比例,它们都能反映每个对象出现的频繁程度,但也存在区别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是实验的总次数;频率反映的是对象出现频繁程度的相对数据,所有频率之和是1. 2.频数、频率之间的关系频率=频数÷数据总数,频数=频率×频率. 说明:已知频率、频数、数据总数三个量中的任意两个可以计算出第三个. 课堂练习1.下列说法正确的是( )A .频数是表示所有对象出现的次数B .频率是表示每个对象出现的次数C .所有频率之和等于1D .频数和频率都不能够反映每个对象出现的频繁程度2. 王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A 型血的人数是( ) 组别 A 型 B 型 AB 型 O 型 频率A .16人B .14人C .4人D .6人 3.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )A .B .C .D .4. Lost time is never found again (岁月既往,一去不回).在这句谚语的所有英文字母中,字母“i”出现的频率是 .5.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、四、五组数据的个数分别是2,8,15,20,5,则第四组的频数为 ,频率为 .6.食品安全问题已经严重影响到我们的健康.某执法部门最近就食品安全抽样调查某一家超市,从中随机抽样选取20种包装食品,并列出下表: 食品质量 优 良 合格 不合格 有害或 有毒食品数量 023n4请你根据以上信息解答下列问题: (1)这次抽样调查中,“食品质量为合格以上(含合格)”的频率为 ;(2)若这家超市经销的包装食品共有1300种,请你估计大约有多少种包装食品是“有害或有毒”的?课后训练1. 小明在选举班委时得了28票,下列说法中错误的是()A.不管小明所在班级有多少学生,所有选票中选小明的选票频率不变B.不管小明所在班级有多少学生,所有选票中选小明的选票频数不变C.小明所在班级的学生人数不少于28人D.小明的选票的频率不能大于12.某校对1200名女生的身高进行了测量,身高在~(单位:m),这一小组的频率为,则该组的人数为()A.150人B.300人C.600人D.900人3. 将100个个体的样本编成组号为①~⑧的八个组,如下表:那么第⑤组的频率为()组号①②③④⑤⑥⑦⑧频数14 11 12 13 ■■13 12 10A.14 B.l5C.D.4.将某中学八年级组的全体教师按年龄分成三组,情况如表格所示.则表中a的值应该是.第一组第二组第三组频数 6 10 a频率 b c 20%5.小红统计了她家3月份的电话通话时间,并绘制成如下的频数分布表(表中数据含最大值但不含最小值):那么小红家3月份电话通话时间不超过6min的频数是.6. 为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表(图图7-5-2.请根整理情况频数频率非常好较好70一般不好36(1)本次抽样共调查了多少学生?(2)补全统计表中所缺的数据.(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?图7-5-2频数和频率课堂练习点拨:A 、频数是表示一组数据中,符合条件的对象出现的次数.故错误;B 、频率是表示一组数据中,符合条件的对象出现的次数和总次数的比值.故错误;C 、符合频率的意义.故正确;D 、频率能够反映每个对象出现的频繁程度.故错误.故选C .点拨:本班A 型血的人数为:40×=16.故选A . 点拨:读图可知:共有(15+30+20+35)=100人,参加科技活动的频数是20.故参加科技活动的频率.故选B .点拨:由题意得,总共有25个,字母“i”出现的次数为:3次,故字母“i”出现的频率是253=. ,0,4 点拨:由题意得:第四组的频数为20,第四组的频率是20÷50=.6. 解:(1)∵这次抽样中,食品质量为合格以上(含合格)”的频数是0+2+3=5,∴频率为=; (2)1300×204=260种. 答:约有260种包装食品是“有害或有毒”的. 点拨:(1)首先求出随机抽样的20种包装食品中“食品质量为合格以上(含合格)”的数量,然后根据频率=频数÷数据总数得出结果;(2)首先求出随机抽样的20种包装食品中“有害或有毒”的频率,然后根据样本估计总体的思想,得出答案. 课后训练点拨:当全班人数变化时,所有选票中选小明的选票频率也随着变化;根据各小组频数之和等于数据总和,各小组频率之和等于1,可得B ,C ,D 都正确,A 错误.故选A .点拨:该组的人数为1200×=300(人).故选B . 点拨:第5组的频数为100-(14+11+12+13+13+12+10)=15,其频率为15:100=.故选D .点拨:∵1-20%=80%,∴(6+10)÷80%=20,∴20×20%=4.即a=4. 点拨:小红家3月份电话通话时间不超过6min 的频数是:26+12+8=46.6. 解:(1)较好的所占的比例是:360126则本次抽样共调查的人数是:70÷360120=200(人); (2)非常好的频数是:200×=42(人),一般的频数是:200-42-70-36=52(人),较好的频率是:20070=,一般的频率是:20052=,不好的频率是:20036=;(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有1500×(+)=840(人)。
6.4频数与频率(2)学习指要一、知识要点1.频率:每一组数据频数与数据总数的比称为这一组数据(或事件)的频率,频率×100%即为百分比。
2.频数与频率之间的关系是:频数总次数=频率。
由此关系可导出另一些关系式:频数频率=总次数,频数=频率×总次数。
二、重要提示1.在对n个数据进行整理的频数分布表中,各组的频数之和为n,频率之和为1.2.在样本容量足够大的情况下,可以用样本的频率分布情况来估计总体的频率情况。
例题指导【例1】车站实施电脑售票后大大缩短了购票者排队等候的时间.一名记者在车站随机访问了25名购票者,了解到他们排队等候的时间分别为(单位:分)1,2,2,2,1,3,4,2,2,2,2,3,1,3,4,5,3,2,1,2,2,3,2,3,2. (1)请填写如下的频数分布表:某车站25位购票者等候购票时间的频数分布表组别(分) 频数频率12345(2)求出等待时间为2分和3分的人数和所占的百分比.解:(1) 4 0.16 12 0.48 6 0.24 2 0.08 1 0.04(2) 72%.【反思】样本容量、频数、频率间的关系:频率=频数样本容量;频数=频率×样本容量;样本容量=频数频率.【例2】某养鱼专业户去年在鱼塘中投放了一批鱼苗,为了了解鱼苗长势,从中捞取20条,测得其长度如下:(单位:cm):18,19,14,17,16,18,15,19,22,21,18,21,16,18,19,23,17,20,20,19.(1)填写表格中的空白栏:鱼的长度x /cm 频数 频率 14≤x <16 16≤x <18 18≤x <20 8 0.4 20≤x <22 22≤x <24 2 0.1 合计(2)由表格可知:①长度不小于18cm 的鱼苗所占的百分比为 .②在这批鱼苗中,有80%的鱼苗长度在大于等于 cm 到小于 cm 之间. ③求这批鱼苗的平均长度(精确到0.1cm),并估计这批鱼苗的平均长度. 解:(1) 2 0.1 4 0.2 4 0.2 20 1 (2) ①70% ②16 22③(18+19+14+17+16+18+15+19+22+21+18+21+16+18+19+23+17+20+20+19)÷20=18.5cm. 【例3】阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.1995年联合国教科文组织把每年4月23日确定为“世界读书日”.如图是某校三个年级学生人数分布扇形统计图,其中八年级人数为408人,表是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题:(1)求该校八年级的人数占全校总人数的百分率. (2)求表(1)中A B ,的值.(3)该校学生平均每人读多少本课外书?解析:(1)由于扇形图中各部分的百分率之和为1,故八年级所占百分率=1-七年级所占百分率-九年级所占百分率;(2)根据样本容量=频数÷频率可求得样本容量,再根据频率=频数样本容量可求得B 值,根据频数=样本容量×频率可求得A 值; (3)分别求得的课外书籍总数和学生总数,便可求得平均数.解:(1) 1-28%-38%=34%.(2) 8160.342400÷=,2400(840816144)600A =-++=,1(0.340.250.06)0.35B =-++=. ∴A 的值为600,B 的值为0.35.(3) 408341200÷=%,240012002÷=. 答:该校学生平均每人读2本课外书.同步训练 A 组1.某校对1200名女生的身高进行了测量,身高在1.58~1.63(单位:m)这一小组的频率为0.25,则该组的人数为………………………………………………………( B ) A .150人B .300人C .600人D .900人2.大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率是( C ) A .0.1B .0.2C .0.3D .0.73.从500个数据中用适当的方法抽取50个作为样本进行统计,频数分布表中,126.5—130.5这一组的频率是0.12,那么估计总体数据落在126.5—130.5之间的个数为…………( B ) A.120个 B.60个 C.12个 D.6个4.已知样本数据个数为30,且被分成4组,各组数据个数之比为2:4:3:1,则第二小组的频率为 .0.45.为了了解小学生的体能情况,抽取了某小学同年级学生进行跳绳测试,将所得数据整理后分成4组,画出频数分布直方图,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为4,则第四小组的频率是 ,参加这次测试的学生有 人.6. 完成如下统计表:(精确到0.01)答案:0.08 0.08 0.08 0.09 0.0967. 为了解学生的身高情况,抽测了某校17岁的50名男生的身高,数据如下(单位:米):1.57 1.59 1.60 1.62 1.63 1.64 1.65 1.66 1.68 1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1,77 身高1 12 23 2 1 6 5 8 7 2 3 2 1 2 1 1 人数若将数据分成7组,取组距为0.03米,相应的频率分布表是:请回答下列问题:(1)依据样本数据,估计这所学校17岁的男生中,身高不低于1.65米且不高于1.70米的学生所占的百分比;(2)观察频率分布表,指出该校17岁的男生中,身高在哪个数据范围内的频率最大.`如果该校17岁的男生共有350人,那么在这个身高范围内的人数估计有多少人?解:(1) (1+6+5+8+7)÷50=54%(2) 1.685~1.715内的频率最大,在这个范围内的人有350×0.34=119人.8. 为了解某校初三男生的身高情况,该校从初三随机找来50名男生进行了身高测量,根据测量结果(测量结果均为整数,单位:cm)列出了如下频率分布表.请你阅读该表后,根据表中提供的信息回答下列问题:(1) 在表中,数据在164.5~168.5范围内的频数是_________.(2) 在表中,频率最大的一组数据的范围是________.(3) 估计该校初三男生身高在172cm以上的(不包含172cm)约占百分之_____.答案:(1) 12 (2) 168.5~172.5 (3) 36同步训练B组9.已知样本10,8,6,10,13,8,7,12,10,11,10,11,10,9,12,11,9,9,8,12,那么在频率分布表中,频率为0.2的组是……………………………………………(D )A.5.5~7.5 B.7.5~9.5 C.9.5~11.5 D.11.5~13.510.某中学为了解学生的课外阅读情况.就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了尚不完整的频数分布表:类别频数(人数)频率文学m 0.42艺术22 0.11科普66 n其他28合计 1下面是自首届以来各届动漫产品成交金额统计图表(部分未完成):(1)表中m=_________,n=__________;(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多? 最喜爱阅读哪类读物的学生最少?(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普读物的学生有多少人?【解】(1)84,0.33;(2)喜爱阅读文学类的学生最多(84人),喜爱阅读艺术类的学生最少(22人);(3)1200×0.33=396(人).11.为了解某地九年级男生的身高情况,从该地的一所中学选取容量为60的样本(60名学12.未成年人思想道德建设越来越受到社会的关注.某青少年研究机构随机调查了某校100名学生寒假花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观,根据调查数据制成了右下所示的频数分布表(部分空格未填).(1)补全某校100名学生寒假花零花钱数量的频数分布表;(2)研究机构认为应对消费在150元以上的学生提出勤俭节约的建议.•试估计应对该校2500学生中约多少名学生提出该项建议?(1)10,25,0.25,1 (2)1225名13.乡镇农技站在永丰村进行某优质高产水稻品种推广实验,在秋收时对所有试验种植户开展了调查.在前30户中有28户的单位面积产量在800kg以上,以后每9户有8户的单位面积产量在800kg 以上.在已调查的种植户中单位面积产量在800kg 以上的频率不小于0.9,试估计种植这种水稻的试验户最多有 户. 解析:设最多有x 户,则28+89(x -30)≥0.9x ,解得x ≤120.答案:12014.为了解“宏亮”中学初四男生身高情况,抽测了该校初四20名男生身高,结果如下(单位:厘米): 165,172,183,179,174,175,181,170,175,171,176,175,169,188,179,172,177,176,182,173. 结合所列出的样本频率分布表回答下列问题: (1) 在这个问题中,样本的容量是 ; (2) 填写表中未完成的部分;(3) 如果该校初四男生共有400人,那么该校初四男生身高不低于175厘米的约有多少人? 解:(1) 20 (2) 6 0.3 1 0.05 (3) 400×(0.40+0.15+0.05)=240人. 数学乐园15. (2011山东聊城,19,8分)今年“世界水日”的主题是“城市用水:应对都市化挑战”.为了解城市居民用水量的情况,小亮随机抽查了阳光小区50户居民去年每户每月的用水量,将得到的数据整理并绘制了这50户居民去年每月总用水量的折线图和频数、频率分布表如下:注:x 表示50户居民月总用水量(m 3)(1)表中的a =________;d =___________. (2)这50户居民每月总用水量超过550m3的月份占全年月份的百分率是多少(精确到1%)?(3)请根据折线统计图提供的数据,估计该小区去年每户居民平均月用水量是多少?【答案】(1)3,61;(2)这50户居民月总用水量超过550m 3的月份有5个,占全年月份的百分率为(5÷12)×100%=42% (3)(378+641+456+543+550+667+693+600+574+526+423)÷50÷12=109m 3。
频数与频率的公式一、频数(Frequency)在统计学中,频数是指某一特定数值在数据集中出现的次数。
频数通常用来描述数据中每个数值的发生情况,帮助我们更好地理解数据的分布情况。
频数的计算通常使用以下公式:\[ f_i = \text{数据集中第i个数值出现的次数} \]其中 \( f_i \) 表示第i个数值的频数。
二、频率(Frequency)频率是指某一特定数值在数据集中出现的相对次数。
频率是频数和总体样本量之间的比例关系,通常用百分比或小数形式表示。
频率的计算通常使用以下公式:\[ f_i = \frac{f_i}{n} \times 100\% \]其中 \( f_i \) 表示第i个数值的频数,n表示样本总数。
频率描述了数据中每个数值在整个数据集中的相对位置和重要性。
三、频数与频率的关系频数和频率是描述数据分布特征的常用方法,它们可以帮助我们了解数据中各个数值的重要程度以及数据集的整体分布情况。
频数和频率之间的关系可以用以下公式表示:\[ f_i = f_i \times f_i \]这个公式表明了频率是频数的标准化表示,通过频率我们可以更直观地理解数据中各个数值在整个数据集中的重要性。
四、实例分析为了更好地理解频数与频率的概念,我们举一个简单的实例。
假设我们有一组数据,如下所示:\[ 2, 3, 5, 2, 4, 1, 3, 4, 2, 5 \]我们可以计算每个数值的频数:•数值1出现的频数为1•数值2出现的频数为3•数值3出现的频数为2•数值4出现的频数为2•数值5出现的频数为2然后计算每个数值的频率:•数值1的频率为10%•数值2的频率为30%•数值3的频率为20%•数值4的频率为20%•数值5的频率为20%通过频数和频率的计算,我们可以清楚地了解数据中各个数值的分布情况,并进一步进行数据分析和决策制定。
结语频数和频率是描述数据分布特征的重要概念,通过对频数和频率的计算,我们可以更好地理解数据集中数值的分布情况,为数据分析和决策提供有力支持。