半导体物理 第三章回旋共振
- 格式:ppt
- 大小:202.50 KB
- 文档页数:6
《半导体物理学》课程教案大纲一、课程说明(一)课程名称:《半导体物理学》所属专业:物理学(电子材料和器件工程方向)课程性质:专业课学分:学分(二)课程简介、目标与任务:《半导体物理学》是物理学专业(电子材料和器件工程方向)本科生的一门必修课程。
通过学习本课程,使学生掌握半导体物理学中的基本概念、基本理论和基本规律,培养学生分析和应用半导体各种物理效应解决实际问题的能力,同时为后继课程的学习奠定基础。
本课程的任务是从微观上解释发生在半导体中的宏观物理现象,研究并揭示微观机理;重点学习半导体中的电子状态及载流子的统计分布规律,学习半导体中载流子的输运理论及相关规律;学习载流子在输运过程中所发生的宏观物理现象;学习半导体的基本结构及其表面、界面问题。
(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接:本课程的先修课程包括热力学与统计物理学、量子力学和固体物理学,学生应掌握这些先修课程中必要的知识。
通过本课程的学习为后继《半导体器件》、《晶体管原理》等课程的学习奠定基础。
(四)教材与主要参考书:[]刘恩科,朱秉升,罗晋生. 半导体物理学(第版)[]. 北京:电子工业出版社. .[]黄昆,谢希德. 半导体物理学[]. 北京:科学出版社. .[]叶良修.半导体物理学(第版)[]. 上册. 北京:高等教育出版社. .[]. . , ( .), , , .二、课程内容与安排第一章半导体中的电子状态第一节半导体的晶格结构和结合性质第二节半导体中的电子状态和能带第三节半导体中电子的运动有效质量第四节本征半导体的导电机构空穴第五节回旋共振第六节硅和锗的能带结构第七节族化合物半导体的能带结构第八节族化合物半导体的能带结构第九节合金的能带第十节宽禁带半导体材料(一)教案方法与学时分配课堂讲授,大约学时。
限于学时,第节可不讲授,学生可自学。
(二)内容及基本要求本章将先修课程《固体物理学》中所学的晶体结构、单电子近似和能带的知识应用到半导体中,要求深入理解并重点掌握半导体中的电子状态(导带、价带、禁带及其宽度);掌握有效质量、空穴的概念以及硅和砷化镓的能带结构;了解回旋共振实验的目的、意义和原理。
一、半导体物理学基本概念有效质量-----载流子在晶体中的表观质量,它体现了周期场对电子运动的影响。
其物理意义:1)有效质量的大小仍然是惯性大小的量度;2)有效质量反映了电子在晶格与外场之间能量和动量的传递,因此可正可负。
空穴-----是一种准粒子,代表半导体近满带(价带)中的少量空态,相当于具有正的电子电荷和正的有效质量的粒子,描述了近满带中大量电子的运动行为。
回旋共振----半导体中的电子在恒定磁场中受洛仑兹力作用将作回旋运动,此时在半导体上再加垂直于磁场的交变磁场,当交变磁场的频率等于电子的回旋频率时,发生强烈的共振吸收现象,称为回旋共振。
施主-----在半导体中起施予电子作用的杂质。
受主-----在半导体中起接受电子作用的杂质。
杂质电离能-----使中性施主杂质束缚的电子电离或使中性受主杂质束缚的空穴电离所需要的能量。
n-型半导体------以电子为主要载流子的半导体。
p-型半导体------以空穴为主要载流子的半导体。
浅能级杂质------杂质能级位于半导体禁带中靠近导带底或价带顶,即杂质电离能很低的杂质。
浅能级杂质对半导体的导电性质有较大的影响。
深能级杂质-------杂质能级位于半导体禁带中远离导带底(施主)或价带顶(受主),即杂质电离能很大的杂质。
深能级杂质对半导体导电性质影响较小,但对半导体中非平衡载流子的复合过程有重要作用。
位于半导体禁带中央能级附近的深能级杂质是有效的复合中心。
杂质补偿-----在半导体中同时存在施主和受主杂质时,存在杂质补偿现象,即施主杂质束缚的电子优先填充受主能级,实际的有效杂质浓度为补偿后的杂质浓度,即两者之差。
直接带隙-----半导体的导带底和价带顶位于k空间同一位置时称为直接带隙。
直接带隙材料中载流子跃迁几率较大。
间接带隙-----半导体的导带底和价带顶位于k空间不同位置时称为间接带隙。
间接带隙材料中载流子跃迁时需有声子参与,跃迁几率较小。
平衡状态与非平衡状态-----半导体处于热平衡态时,载流子遵从平衡态分布,电子和空穴具有统一的费米能级。
1.电子和空穴的异/同点。
答:不同点:电子带负电,空穴带正电;mp* = -mn*;电子是真实存在的,而空穴是人为假想定义的粒子;电子可以发生共有化运动,发生跃迁,空穴则不能。
相同点:电子和空穴均可以参与导电。
2.什么是回旋共振?答:半导体置于磁感应强度为B的均匀恒定磁场中,半导体中电子受到磁场作用力的方向是垂直于v与B所组成的平面。
从而, 电子在垂直于B的平面内作匀速圆周运动, 运动轨迹是一条螺旋线;再以电磁波通过半导体样品,当交变磁场的角频率ω等于回旋频率ωc时,会发生共振吸收,所以这种情况下,则称产生了回旋共振。
4.浅能级杂质电离能的计算。
答:类氢模型:氢原子中电子的能量为:E n=m0 q4/2(4)2Ч2n2其中n=1,2,3……氢原子基态电子电离能为:E0=E- E1=m0 q4/2(4)2Ч2施主杂质电离能为:受主杂质电离能为:5.杂质补偿作用:在半导体中,同时参杂有施主杂质和受主杂质,而施主杂质和受主杂质之间有相互抵消的作用,通常称为杂质的补偿作用。
6.费米能级的含义。
答:费米能级在半导体物理中是个很重要的物理参数,它是表征量子态是否被电子占据的一个界限,费米能级的位置直观的标志了电子占据量子态的情况。
在热力学零度时,能量比E F小的量子态几乎全部被电子所占据,而能量比E F大的量子态被电子战局的概率几乎为零,所以费米能级标志了电子填充能级的水平。
并且,半导体中,费米能级不是真正的能级,即不一定是允许的单电子能级,所以它可以像束缚状态的能级一样,可以处就等于系统中增加一个电子所引起的系统自由能的变化。
8.影响半导体电导率和迁移率的因素有哪些?答:迁移率的大小与杂质浓度和温度有关,也与外加电场强度有关系。
低掺杂并当室温下杂质全部电离时,杂质浓度越高,电导率越大;重参杂时或当浓度很高时,载流子迁移率随杂质浓度的增加而显著下降。
低温时,杂质散射起主要作用,温度升高,迁移率逐渐增大,电导率上升;当温度达到一定高度时,以晶格振动散射为主,温度继续升高,迁移率下降,电导率下降。
1.迁移率 参考答案: 单位电场作用下,载流子获得的平均定向运动速度,反映了载流子在电场作用下的输运能力,是半导体物理中重要的概念和参数之一。
迁移率的表达式为:*q mτμ=可见,有效质量和弛豫时间(散射)是影响迁移率的因素。
影响迁移率的主要因素有能带结构(载流子有效质量)、温度和各种散射机构。
n pneu peu σ=+2.过剩载流子 参考答案:在非平衡状态下,载流子的分布函数和浓度将与热平衡时的情形不同。
非平衡状态下的载流子称为非平衡载流子。
将非平衡载流子浓度超过热平衡时浓度的部分,称为过剩载流子。
非平衡过剩载流子浓度:00,n n n p p p ∆=-∆=-,且满足电中性条件:n p ∆=∆。
可以产生过剩载流子的外界影响包括光照(光注入)、外加电压(电注入)等。
对于注入情形,通过光照或外加电压(如碰撞电离)产生过剩载流子:2i np n >,对于抽取情形,通过外加电压使得载流子浓度减小:2i np n <。
3. n 型半导体、p 型半导体N 型半导体:也称为电子型半导体.N 型半导体即自由电子浓度远大于空穴浓度的杂质半导体.在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N 型半导体.在N 型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电.自由电子主要由杂质原子提供,空穴由热激发形成.掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强.P 型半导体:也称为空穴型半导体.P 型半导体即空穴浓度远大于自由电子浓度的杂质半导体.在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P 型半导体.在P 型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电.空穴主要由杂质原子提供,自由电子由热激发形成.掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强. 4. 能带当N 个原子处于孤立状态时,相距较远时,它们的能级是简并的,当N 个原子相接近形成晶体时发生原子轨道的交叠并产生能级分裂现象。
半导体物理学基本概念有效质量-----载流子在晶体中的表观质量,它体现了周期场对电子运动的影响。
其物理意义:1)有效质量的大小仍然是惯性大小的量度;2)有效质量反映了电子在晶格与外场之间能量和动量的传递,因此可正可负。
空穴-----是一种准粒子,代表半导体近满带(价带)中的少量空态,相当于具有正的电子电荷和正的有效质量的粒子,描述了近满带中大量电子的运动行为。
回旋共振----半导体中的电子在恒定磁场中受洛仑兹力作用将作回旋运动,此时在半导体上再加垂直于磁场的交变磁场,当交变磁场的频率等于电子的回旋频率时,发生强烈的共振吸收现象,称为回旋共振。
施主-----在半导体中起施予电子作用的杂质。
受主-----在半导体中起接受电子作用的杂质。
杂质电离能-----使中性施主杂质束缚的电子电离或使中性受主杂质束缚的空穴电离所需要的能量。
n-型半导体------以电子为主要载流子的半导体。
p-型半导体------以空穴为主要载流子的半导体。
浅能级杂质------杂质能级位于半导体禁带中靠近导带底或价带顶,即杂质电离能很低的杂质。
浅能级杂质对半导体的导电性质有较大的影响。
深能级杂质-------杂质能级位于半导体禁带中远离导带底(施主)或价带顶(受主),即杂质电离能很大的杂质。
深能级杂质对半导体导电性质影响较小,但对半导体中非平衡载流子的复合过程有重要作用。
位于半导体禁带中央能级附近的深能级杂质是有效的复合中心。
杂质补偿-----在半导体中同时存在施主和受主杂质时,存在杂质补偿现象,即施主杂质束缚的电子优先填充受主能级,实际的有效杂质浓度为补偿后的杂质浓度,即两者之差。
直接带隙-----半导体的导带底和价带顶位于k 空间同一位置时称为直接带隙。
直接带隙材料中载流子跃迁几率较大。
间接带隙-----半导体的导带底和价带顶位于k 空间不同位置时称为间接带隙。
间接带隙材料中载流子跃迁时需有声子参与,跃迁几率较小。
平衡状态与非平衡状态-----半导体处于热平衡态时,载流子遵从平衡态分布,电子和空穴具有统一的费米能级。
固态电子论半导体物理固体物理部分名词解释(精)固态电子论名词解释库(个人意见,仅供参考<固体物理部分 >晶体:构成粒子(原子,分子,集团周期性排列的固体,具有长程有序性,有固定的熔点,具有自限性, 各向异性和解理性特点的固体。
布拉伐点阵:晶体的周期性结构可以看作相同的点在空间周期性无限分布所形成的系统,称为布拉伐点阵。
布拉伐格子:在空间点阵用三组不共面平行线连起来的空间网格称为布拉伐格子。
基元:布拉伐格子中的最小重复单位称为基元。
原胞:在布拉伐格子中的最小重复区域称为原胞。
晶胞:为了同时反应晶体的周期性和对称性,常常选取最小的重复单位的整数倍作为重复单元,这种单元称为晶胞。
倒格子:分别以 b1,b2,b3, 作为基矢,构成的网格称作倒格子,其中布里渊区:在倒格子中,以某个倒格点作为原点,作出它到其他所有倒格点的矢量的垂直平分面,这些面将倒空间分割成有内置外的相等区域,称为布里渊区。
五种晶体结合力方式:离子结合和离子晶体:共价结合和共价晶体:能把两个原子结合在一起的的一对为两个原子自旋相反配对的电子结构称为共价键。
金属结合和金属晶体:作用力来自带正电原子实和负电电子云的吸引力,电子云重叠产生强烈的排斥作用的排斥力结合的称为金属晶体。
氢键结合和氢键晶体:氢原子同时与两个电负性较大的原子想结合,一个属于共价键,另一个通过库仑作用结合的称为氢键。
范德瓦耳斯结合和分子晶体:靠电偶极矩的相互作用而结合的力称作范德瓦耳斯力。
主要的晶体结构类型:声子:晶格振动的一个频率为 wq的格波等价于一个简谐振子的振动,其能量也可以表示为以下,Enl=(0.5+nhwq.能量单元是 hwq, 它是格波的能量量子,称之为声子。
点缺陷:在一个或几个原子尺寸范围内的微观区域内,晶格结构发生偏离严格周期性而形成的畸变区域。
面缺陷:如果晶体中周期性遭到破坏的区域形成一条线,称这种一维缺陷为线缺陷。
刃型位错:螺型位错:半导体物理部分电子有效质量:在一维模型下,数学表达式 ,有效质量包含了内部势场各个方向的作用,内层电子能带越窄,有效质量越大,外层电子能带越宽,有效质量越小。
第三章:平衡半导体到现在为止,我们已经讨论了一般晶体,确定了单晶晶格中电子的一些特性。
这一章,我们将运用这些概念来研究半导体材料,尤其是用导带和价带中量子态密度以及费米-狄拉克分布函数来确定导带和价带中电子和空穴的浓度。
此外,我们还会利用这些概念给出半导体材料的费米能级。
这一章我们将涉及平衡半导体:所谓平衡半导体或处于热平衡状态的半导体,是指无外界(如电压、电场、磁场或温度梯度等)作用影响的半导体。
在这种情况下,材料的所有特性均与时间无关。
平衡状态是研究半导体物理特性的起点,之后我们才会研究偏离平衡状态时出现的特性,例如给半导体材料施加电压时的情况。
这一章我们将要讨论的内容有:1.确定本征半导体热平衡时的电子和空穴浓度2.确定非本征即掺杂半导体热平衡时的电子和空穴浓度3.研究电子和空穴浓度随能量和温度变化的统计规律4.确定本征半导体费米能级的位置,讨论本征费米能级随掺杂浓度和温度的变化。
3.1本征半导体中的载流子浓度半导体器件的特性很大程度依赖于半导体材料的电导率,通过控制加入到半导体材料中的特定杂质的数量,就可以改变半导体的电学性能。
掺杂原子的类型决定了半导体材料中起作用的载流子是电子还是空穴。
掺杂原子的引入可以改变电子在有效能量状态上的分布,费米能级的位置成了杂质原子类型和浓度的函数。
电流实际上表征了电荷的流动速度。
半导体中的两种载流子电子和空穴均对电流有贡献。
因为半导体中的电流大小取决于导带中的电子数目和价带中的空穴数目,所以半导体中的载流子浓度是一个重要参数。
电子和空穴浓度与状态密度函数及费米-狄拉克分布函数有关。
3.1.1本征半导体平衡时的电子和空穴浓度分布导带中电子(关于能量)的分布为导带中的有效量子态密度与某个量子态被电子占据的概率的乘积。
()()()()3.1c F n E g E f E =其中,()F f E 是费米-狄拉克分布函数,()c g E 导带中有效量子态密度,在整个导带能量范围对上式积分便可得到导带中单位体积的总电子浓度。