整式的乘除
- 格式:docx
- 大小:79.69 KB
- 文档页数:5
整式的乘除教案原文一、教学目标:1. 知识与技能:(1)理解整式乘除的概念和意义;(2)掌握整式乘除的运算方法和相关性质;(3)能够熟练地进行整式乘除的计算。
2. 过程与方法:(1)通过实例演示和练习,培养学生的观察、分析、推理能力;(2)运用归纳总结的方法,让学生掌握整式乘除的运算规律;(3)注重培养学生运用整式乘除解决实际问题的能力。
3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和自信心;(2)培养学生勇于探索、积极思考的科学精神;(3)培养学生合作交流、共同进步的良好习惯。
二、教学内容:1. 整式乘法:单项式乘单项式、单项式乘多项式、多项式乘多项式。
2. 整式除法:单项式除以单项式、多项式除以单项式、多项式除以多项式。
3. 整式乘除的运算法则和性质。
三、教学重点与难点:1. 教学重点:整式乘除的运算方法和相关性质。
2. 教学难点:整式乘除的运算规律和灵活应用。
四、教学过程:1. 导入新课:通过生活实例或数学故事,引出整式乘除的概念和意义。
2. 讲解与演示:运用多媒体课件或板书,讲解整式乘除的运算方法,并进行示范性计算。
3. 练习与交流:学生独立完成练习题,教师选取典型答案进行讲解和交流,引导学生发现和总结整式乘除的运算规律。
4. 拓展与应用:布置一些实际问题,让学生运用整式乘除进行解决,提高学生的应用能力。
5. 总结与反思:对本节课的内容进行归纳总结,强调整式乘除的运算方法和注意事项。
五、课后作业:1. 完成课后练习题,巩固整式乘除的基本运算方法。
2. 举一反三,运用整式乘除解决实际问题,提高学生的应用能力。
六、教学评价:1. 评价目标:本节课主要评价学生对整式乘除的概念理解、运算方法和应用能力的掌握程度。
2. 评价方法:(1)课堂问答:通过提问,了解学生对整式乘除概念和运算方法的理解情况;(2)练习批改:检查学生课后作业完成情况,评估其运算能力和应用水平;七、教学反思:1. 教学内容:回顾本节课的教学内容,梳理整式乘除的概念、运算方法和应用实例;2. 教学过程:反思教学过程中的亮点和不足,如课堂问答、练习与交流、拓展与应用等环节;3. 学生反馈:根据学生课堂表现、作业完成情况和学习感悟,了解学生的学习效果和需求;4. 改进措施:针对教学中的不足和学生反馈,调整教学策略和方法,为后续教学做好准备。
整式的乘除教案教案:整式的乘除一、教学内容本节课的教学内容选自人教版小学数学五年级上册第三单元《整式的乘除》。
本节课主要内容包括:1. 整式的乘法:单项式乘以单项式,单项式乘以多项式,多项式乘以多项式。
2. 整式的除法:单项式除以单项式,多项式除以单项式,多项式除以多项式。
二、教学目标1. 理解整式乘除的概念,掌握整式乘除的计算方法。
2. 能够运用整式乘除解决实际问题,提高解决问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
三、教学难点与重点1. 教学难点:整式的乘除运算规则,以及如何运用这些规则解决实际问题。
2. 教学重点:整式乘除的计算方法,以及如何将这些方法应用到实际问题中。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体课件。
2. 学具:练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:假设有一块长方形的地,长为8米,宽为6米,求这块地的面积。
2. 例题讲解:(1) 单项式乘以单项式:例如,3x × 4x = 12x²。
(2) 单项式乘以多项式:例如,2x × (x + 3) = 2x² + 6x。
(3) 多项式乘以多项式:例如,(x + 2) × (x + 3) = x² + 3x+ 2x + 6 = x² + 5x + 6。
(4) 单项式除以单项式:例如,12x² ÷ 4x = 3x。
(5) 多项式除以单项式:例如,(x² + 5x + 6) ÷ x = x + 5 +6/x。
(6) 多项式除以多项式:例如,(x² + 5x + 6) ÷ (x + 2) = x+ 3。
3. 随堂练习:a. 3x × 4xb. 2x × (x + 3)c. (x + 2) × (x + 3)a. 12x² ÷ 4xb. (x² + 5x + 6) ÷ xc. (x² + 5x + 6) ÷ (x + 2)4. 板书设计:整式的乘法:a. 3x × 4x = 12x²b. 2x × (x + 3) = 2x² + 6xc. (x + 2) × (x + 3) = x² + 5x + 6整式的除法:a. 12x² ÷ 4x = 3xb. (x² + 5x + 6) ÷ x = x + 5 + 6/xc. (x² + 5x + 6) ÷ (x + 2) = x + 35. 作业设计:a. 4y × 5yb. 3x × (2x 3)c. (2x + 4) × (3x 2)a. 15x² ÷ 5xb. (x² 5x + 6) ÷ xc. (x² 5x + 6) ÷ (x + 3)六、课后反思及拓展延伸1. 课后反思:本节课通过实践情景引入,使学生能够更好地理解整式的乘除概念。
整式的乘除知识点
嘿,亲爱的小伙伴们!今天咱们要来聊聊整式的乘除知识点,这可超级重要哦!
先来说整式的乘法吧!就像搭积木一样,把各种式子组合起来。
比如,3x 乘以 4x,哎呀,那不就是12x² 嘛,就像把 3 块红色积木和 4 块蓝色积木搭在一起变成了 12 块彩色积木一样简单!还有呀,(x+2)(x-3),这可得仔细想想喽,展开之后就是x²-x-6 呀,是不是很神奇呢?
再讲讲整式的除法。
这就像是分东西一样啦。
比如12x² 除以 4x,那不就是 3x 嘛。
你看,原来是那么大一堆“宝贝”,现在分成几份啦!再举个例子,(x²-4)÷(x+2),哈哈,算一下就知道等于 x-2 啦!
整式的乘除里还有很多好玩的呢!比如说同底数幂的运算,那可真是像在玩魔法一样,底数不变,指数相加或相减。
就好像一群小伙伴,底数就是他们的队伍,指数就是他们的编号,根据规则变来变去。
小伙伴们,整式的乘除知识点是不是很有意思呀?咱们可得把这些都牢牢掌握哦,这样在数学的世界里就能玩得更嗨啦!。
第4课 整式的乘除 目的:复习幂的运算法则,整式的乘除运算.中考基础知识1. 幂的运算法则:a m ·a n=______(m ,n 都是正整数),(a m )n =_______(m ,n 都是正整数).a m ÷a n =_______(m ,n 都是正整数,且m>n ,a ≠0),(ab )n =______(n 为正整数).2.整式的乘除(1)单项式×单项式:4a 2x 5·(-3a 3bx )=_________,(2)单项式×多项式:m (a+b+c )=__________,(3)多项式×多项式:(a+b )(m+n-d )=_______.(4)单项式÷单项式:-12a 5b 3x 2÷4a 3x 2=________.3.乘法公式(1)平方差公式:(a+b )(a-b )=________.(2)完全平方公式:(a+b )2=_______,(a-b )2=_________.(3)立方和、立方差公式:(a+b )(a 2-ab+b 2)=________,__________=a 3-b3 4.在做整式乘除时,严格按照运算法则进行,做每一步都应有计算依据,•充分利用乘法公式简化计算. 备考例题指导例1.下列计算正确的是( )(A )x 5+x 5=x 10 (B )(3ab 2)3=9a 3b6 (C )a 2·a 3=a 6 (D )(-c )6÷(-c )5=-c (c ≠0)选(D )例2.(2005,金华市)如图,沿正方形的对角线对折,•把对折后重合的两个小正方形内的单项式相乘,乘积是___________(只要写出一个结论)a2a b-2b 答案:2a 2或-2b 2任写一个.例3.化简(a-b )3·(b-a )2÷(b-a )3.分析:底数不同,不能直接乘除,但注意到a-b 与b-a 是互为相反数,而且(a-b )3=-(b-a )3 解:原式=-(b-a )3·(b-a )2÷(b-a )3 =-(b-a )3+2-3 (注意乘除在一起要依次运算)=-(b-a )2 例4.计算(1)(-2b-5)(2b-5);(2)(a+b-1)(a-b+1).分析:在(a+b )(a-b )=a 2-b 2中,其左边的两个多项式有两项(a 与a )相同,有两项b 与-b 是互为相反数.这里平方差公式的使用条件.解:(1)原式=(-5)2-(2b)2=25-4b2.(2)原式=[a+(b-1)][a-(b-1)]=a2-(b-1)2=a2-(b2-2b+1)=a2-b2+2b-1备考巩固练习1.填空题(1)-x3·(-x)5=________;[(-x)3]2·(-x)3=________;(-2x2y3)2·(-12xy)3=________.(2)-6x(x-2y)=_______;(x-6)(x+7)=________;(x-2)(x-y)=________.(3)(2x-3y)2=________;(3a+b)2=________.(4)(x+1)(x2-x+1)=_______;(_______-2b)(_______)=a3-(________).(5)若4m·8m-1÷2m=32,则m=________.2.选择题(1)下列各式中,计算正确的是()(A)a2·a3=a6(B)a3÷a2=a2 (C)(a2)3=a6(D)(3a2)4=9a8(2)(2005,黄冈)下列计算中正确的是()(A)x5+x5=2x10(B)-(-x)3·(-x)5=-x8(C)(-2x2y)3·4x-3=-24x3y3(D)(12x-3y)(-12x+3y)=14x2-9y23.(2004,太原市)某公园一块草坪的形状如图所示(阴影部分),用代数式表示它的面积为__________.4.化简求值:(a+2b)(a2+4b2)(a-2b),其中a=2,b=-12.5.解答下列各题:(1)若a-1a=3,求a2+21a的值.(2)若3x2-mxy+6y2是一个完全平方式,求m的值.(3)已知x+y=2,xy=12,求x3+y3的值.(4)计算(8x2m-3-6x m+2-4x m)÷(-2x m-3).6.(2003,四川)观察下面的式子:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,39=19683,……它们的个位数字的变化有一定规律,用你发现的规律直接写出910的个位数字是几?7.(2005,苗城)先化简后求值:[(x-y)2+(x+y)(x-y)]÷2x,其中x=3,y=1.5 答案:1.(1)x8;-x9;-12x7y9(2)-6x2+12xy;x2+x-42;x2-xy-2x+2y(3)4x2-12xy+9y2,9a2+6ab+b2(4)x3+1;(a-2b)(a2+2ab+b2)=a3-8b3(5)22m·23m-3÷2m=25,m=22.(1)D (2)C 3.22a24.原式=(a2-4b2)(a2+4b2)=a4-16b4,当a=2,b=-1 2原式=24-16×(-12)4=16-1=155.(1)由a-1a=3得(a-1a)2=9∴a 2-2+21a =9 ∴a 2+21=11(2)∵3x 2-mxy+6y 2=x )2-mxy+y )2∴m=±=± 或用△=0,求m .(3)x 3+y 3=(x+y )(x 2-xy+y 2)=(x+y )[(x+y )2-3xy] =2(22-3×12)=2×52=5 (4)原式=-4x m +3x 5+2x 36.17.原式=1.5。
整式乘除时注意什么整式乘除是数学中的一种基本运算法则,它涉及到的概念和技巧相对较多,需要我们注意和掌握一些要点。
下面我将详细阐述整式乘除时需要注意的事项。
首先,整式是由字母和常数通过加减乘除运算得到的,它常常包含有整数、分数、根式等不同形式的数字,其中字母可以表示任意数值。
而整式乘除主要是针对这些整式进行相乘和相除的操作。
在进行整式乘除时,我们应该注意以下几个方面的内容。
第一,整式的同底同幂相乘。
当整式相乘时,我们要根据指数法则,将同底的指数相加,保留底数,如:(a^2)(a^3)=a^(2+3)=a^5。
如果底数不同,那么无法合并,如:(a^2)(b^3)不能简化合并。
第二,整式的系数相乘。
在整式乘法中,我们要将系数与变量分别相乘。
例如,3x乘以2x,结果为6x^2。
另外,对于系数是分数的情况,我们要将它们化为通分形式后进行乘法计算,最后将结果化简。
第三,注意乘法和除法运算的顺序。
乘法和除法的运算顺序是从左到右,即从左到右进行优先计算。
例如,a+b-c 是先计算a+b,再减去c。
而在整式相除时,我们要根据因式分解的原则寻找公共因式,然后进行约简。
例如(a^2b^3)/(a^2b) = a^(2-1)b^(3-1)=ab^2。
第四,注意乘方的运算规则。
当整式进行乘方运算时,我们要应用乘方运算规则,即将指数应用于底数和整个乘式中的每个项。
例如,(a+b)^2 = a^2 + 2ab + b^2。
而当整式进行开方运算时,我们需要找出整式中完全平方因式,然后进行开方。
例如,√(a^2 + 2ab + b^2) = a+b第五,注意乘法和除法的运算法则。
乘法和除法具有交换律和结合律。
在整式的乘法中,a*b = b*a。
在除法中,a/b ≠b/a,我们要将分母有理化,即将其化为整数形式,再进行除法计算。
第六,多项式的乘法运算。
多项式是由多个项相加或减得到的整式。
在进行多项式的乘法运算时,我们要将每个项分别与另一个多项式中的每个项相乘,然后将结果进行合并。
初中数学整式的乘除与分解因式知识点
整式的乘法与除法是初中数学中的重点内容之一。
下面是一些相关的知识点:
1. 整式的乘法:整式的乘法要注意项的乘法和系数的乘法。
将每一项的系数分别相乘,并将指数分别相加,得到乘积的系数和指数。
例如:(3x+2)(4x-1)
首先扩展,得到12x^2 + 5x - 2。
2. 整式的除法:整式的除法是通过“乘除消数”的方法来完成的。
将除数乘以一个适
当的式子,使得结果与被除式的某个部分相等或尽量接近。
然后将乘积减去被除式,
重复之前的步骤,直到无法再减少为止。
例如:(2x^2 + 5x + 3) ÷ (x + 1)
首先将被除式分解为(x + 1)(2x + 3),然后进行乘法,得到2x^2 + 5x + 3。
然后将乘积减去被除式,得到0。
所以结果为2x + 3。
3. 因式的分解:整式的因式分解是将一个整式写成几个因式的乘积的形式。
例如:6x^2 + 11x + 3的因式分解为(2x + 1)(3x + 3)。
这些知识点在初中数学中是比较基础的内容,掌握了整式的乘除与分解因式的方法,
将有助于解决更复杂的数学问题。
《整式的乘除》学情分析一、学情分析目的《整式的乘除》是继七年级上册第5、6章代数式中学习了代数式、整式及其加减运算后,进一步学习整式的乘除,是七年级上册第5、6章的延续和发展。
本章的主要内容有同底数幂的乘法和除法,幂的乘方和积的乘方,以及单项式与单项式相乘、单项式与多项式相乘、多项式与多项式相乘,单项式除以单项式、多项式除以单项式等运算,以及零指数、负整数指数幂的意义和用科学记数法表示绝对值较小的数等。
整式的乘除法既是七年级上册整式的加减的后续学习,也是本册第12章《乘法公式与因式分解》和八年级分式学习的基础,因此,本章内容的地位也至关重要。
二、教学内容及地位本章属于《课程标准》中的“数与代数”领域,其核心知识是:整式的乘除运算。
这些知识是在学习了有理数的运算、列代数式、整式加减和解一元一次方程的基础引入的。
也是进一步学习分式和根式运算、一元二次方程以及函数等知识的基础,同时又是学习物理、化学等学科及其他科学技术不可缺少的数学工具,因此,本章在初中学段占有重要地位。
三、本章教学内容本章内容的突出的特点是:内容联系紧密、以运算为主。
全章紧紧围绕整式的乘除运算,分层递进,层层深入。
在整式的乘除中,单项式的乘除是关键,这是因为其他乘除都要转化为单项式除法。
实际上,单项式的乘除进行的是幂的运算与有理数的运算,因此幂的运算是学好整式乘除的基础。
四、本节教学重点、难点(1)教学重点是整式的乘除运算(2)教学难点乘法公式的灵活应用五、学情分析的方法和工具1、观察法。
教师的观察可分为课前、课上、课后三个阶段。
课前主要是通过预习新课暴露学生存在的问题,寻找大部分学生在本节课上的最近发展区进行教学。
在课上,教师要观察在各个教学环节中应全面观察学生的学习状态、学习热情、学习心理以及学习风格等学情信息并适当的做出调整。
在课后,教师可根据学生的作业情况了解到学习效果,对学情信息进行分析,以便于在以后的教学中加以调整。
2、访谈法。
七年级下册整式的乘除一、整式乘除的意义和基本概念在七年级下册的数学课程中,我们将会学习一项重要的内容——整式的乘除。
整式的乘除是数学基本技能的重要组成部分,它不仅在日常生活和实际应用中有着广泛的应用,而且对于培养我们的逻辑思维和抽象思维能力也具有关键作用。
我们来理解一下什么是整式。
整式是包含加、减、乘、除四种运算的代数式,它不同于我们过去学习的算术式,例如:2x + 3y就不能简单地通过加减得到结果,而是需要我们进行进一步的运算。
二、整式乘除的规则和方法整式的乘除是按照特定的规则进行的。
乘法满足交换律、结合律和分配律,例如,(ab)c=ab(c),(ab)c=a(bc),(a+b)c=ac+bc等。
这些规则可以帮助我们进行大规模的运算,简化复杂的问题。
而除法则有一些不同。
在整式除法中,我们通常通过乘以一个数的倒数来将除法问题转化为乘法问题。
例如,如果我们要计算a除以b,我们可以乘以b的倒数1/b,这样就可以转化为乘法问题a×(1/b)。
三、整式乘除的应用整式的乘除不仅在数学中有着广泛的应用,在我们的日常生活中也有着广泛的应用。
例如,在解决物理问题、化学问题以及工程问题时,我们都需要使用到整式的乘除。
通过这些应用,我们可以看到数学在我们生活中的重要性,以及我们学习数学的意义。
四、结语七年级下册的整式乘除是一项非常重要的数学技能。
我们需要理解其基本概念和规则,掌握其方法,才能有效地应用到实际生活和各种问题中。
通过学习整式的乘除,我们也可以进一步培养我们的逻辑思维和抽象思维能力。
因此,我们应该认真对待这一部分的学习,打好数学基础。
七年级上册整式乘除试卷及答案一、填空题(每题2分,共20分)1、单项式相乘,把他们的_________分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
2、多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的_________,再把所得的积_________。
第十四章 整式的乘法与因式分解第19讲 整式的乘除知识导航1.幂的运算:同底数幂的乘法,幂的乘方,积的乘方;2.整式的乘法:单项式乘单项式,单项式乘多项式,多项式乘多项式;3.整式的除法:单项式除以单项式,多项式除以单项式,多项式除以多项式【板块一】幂的运算运算法则:(1)同底数幂相乘:同底数幂相乘,底数不变,指数相加,用式子表示为:m n m n a a a +⋅=(m ,n 都是正整数).(2)幂的乘方:幂的乘方,底数不变,指数相乘,用式子表示为:()n m mn a a =(m ,n 都是正整数).(3)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,用式子表示为:()n n n ab a b =(n 都是正整数).(4)同底数幂相除:同底数的幂相除,底数不变,指数相减,用式子表示为:m n m n a a a -÷=(m >n )(5)规定:01a =(a ≠0),零的零次幂无意义.(6)负整数幂的运算法则:1n na a -=(n 是正整数,a ≠0).方法技巧:1.从已知出发,构造出结果所需要的式子;2.从结果出发,构造符合已知条件的式子.题型一 基本计算【例1】计算:(1)()()32x x -⋅-;(2)()()2332a a -⋅-;(3)()22248x yy ÷; (4)323221334a b ab ⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭.【例2】计算:()()()2014201420150.12524-⨯-⨯-.题型二 逆向运用幂运算 【例3】(1)已知2228162x x ⋅⋅=,求x 的值;(2)已知4a y =,16b y =,求22a b y +的值.题型三 灵活进行公式变形【例4】已知:5210a b ==,求11a b+的值.题型四 比较大小【例5】已知552a =,334b =,225c =,试比较a ,b ,c 的大小.针对练习11.计算:(1)3224a a a a a ⋅⋅+⋅;(2)()57x x -⋅;(3)()()57x y x y +⋅--;(4)()()2332y y ⋅.2.计算:(1)6660.12524⨯⨯;(2)599329961255⎛⎫⨯ ⎪⎝⎭;(3)()()2018201720172 1.513⎛⎫⨯⨯- ⎪⎝⎭;(4)4322023452%3%4%5%103456⎛⎫⎛⎫⎛⎫⎛⎫-⨯⨯-⨯⨯-⨯⨯-⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.3.(1)若()3915n m a b ba b =,求m ,n 的值;(2)已知27a =,86b =,求()322a b +的值;(3)若a +3b -2=0,求327a b ⋅的值;(4)已知:21233324m m ++=,求m 的值;(5)已知124x y +=,1273x -=,求x -y 的值;(6)已知129372n n +-=,求n 的值.4.已知252000x =,802000y =,求11x y+的值.5.已知k >x >y >z ,且16522228k x y z +++=,k ,x ,y ,z 是整数,求k 的值.6.是否存在整数a ,b ,c 使9101628915a b c⎛⎫⎛⎫⎛⎫⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭?若存在,求出a ,b ,c 的值;若不存在,说明理由.7.比较653,524,396,2615四个数的大小.8.你能比较两个数20122011和20112012的大小吗?为了解决这个问题,我们先写出它的一般形式,即比较1n n +与(1)n +n 的大小(n 是自然数),然后,我们分析1n =,2n =,3n =,⋯中发现规律,经过归纳,猜想得出结论.(1)通过计算,比较下列各组中两个数的大小(在空格内填写“>”、“ =”、“<”号)①21 12;②32 23;③43 34;④54 45;⑤65 56….(2)从第(1)题的结果经过归纳,可猜想出1n n +与(1)n n +的大小关系是 .(3)根据上面的归纳猜想得到的一般结论,试比较下面两个数的大小20122011,20112012.9.(1)已知()432a =,()342b =,()423c =,()234d =,()324e =,比较a ,b ,c ,d ,e 的大小关系;(2)已知:220002001200220012002200120022001200220012002a =+⨯+⨯++⨯+⨯,20022002b =,试比较a 与b 的大小.【板块二】整式的乘法方法技巧:(1)单项式与单项式相乘:系数、同底数幂分别相乘作为积的因式,只在一个单项式里还有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加,公式为:()m a b c ma mb mc ++=++,其中m 为单项式,a +b +c 为单项式.(3)多项式与多项式相乘:将一个多项式中的每一个单项式分别与多项式中的每一个单项式相乘,然后把积相加,公式为:()()m n a b ma mb na nb ++=+++.题型一 基本计算【例6】计算:(1)()()23234x y x y -⋅= ;(2)()()223234x y x y -⋅= ; (3)()254342x x y xy -⋅-= ;(4)()()22323253a b ab a b ⋅-+= ;(5)()()322a b x y +-= ;(6)()()332a b a b +-= .题型二 混合运算 【例7】计算:()()()()242422325235333x x x x x x +++-+++.题型三 展开后不含某项【例8】若()()2283x ax x x b ++-+的乘积中不含x 2项和x 3项,则a = ,b = .题型四 比较对应项的系数求值【例9】已知()()2226x my x ny x xy y ++=+-,求()m n mn +的值.【板块二】整式的乘法方法技巧(1)单项式与单项式相乘:系数、同底数幂分别相乘作为积的因式,只在一个单项式里还有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:单项式分别与多项式中的每一项相乘,然后把所得的积相加,公式为: m (a+b+c) =ma+mb+mc,其中m为单项式,a+b+c为多项式.(3)多项式与多项式相乘:将一个多项式中的每一个单项式分别与另一个多项式中的每一个单项式相乘,然后把积相加,公式为:(m+n)( a+b) =ma+mb+na+nb.题型一基本计算【例6】计算:(1)(-3x2y)·(4x3y2)=__________;(2)(-3x2y) 2·(4x3y2)=__________;(3)-3x2·(4x5y-2xy4)=__________;(4)(2a2b3)·(-5ab2+3a3b)=__________;(5)(3a+2b)·(2x-y)=__________;(6)(3a+b)·(3a-2b)=__________;题型二混合运算【例7】计算:(3x2+2)( 5x4+2x2+3)-(5x4+x2+3)( 3x2+3)题型三展开后不含某项【例8】若(x2+ax+8)( x2-3x+b)的乘积中不含x2和x3项,则a=__________,b=__________.题型四比较对应项的系数求值【例9】已知(x+my)( x-ny)=x2+2xy-6y2,求(m+n) mn的值题型五巧设特殊值【例10】设()5=a5x5+a4x4+a3x3+a2x2+a 1x+a0(1)a1+a2+a3+a4+a5+a0的值;(2)a0-a1+a2-a3+a4-a5的值;(3)a0+a2+a4的值;针对练习21.计算:(1)(x+2y)(4a+3b)=__________;(2)(3x-y)( x+2y)=__________;(3)(x+3)( x-4)=__________;(4)(43a2b-83a3b2+1)×(-0.25ab)=__________;(5)3a b2 [(-ab) 2-2b2 (a2-23a3b)]=__________;(6)(5x3+2x-x2-3)(2-x+4x2)=__________;2.计算:(1)(x2-2x+3)(x-1)( x+1);(2)[(12x-y)2+(12x+y)2] (12x2-2y2);(3)(-x3+2x2-5)(2x2-3x+1);(4)(x+y)( x2-xy+y2);(5)(x-y)( x2+xy+y2);(6)(-2x-y)(4x2-2xy+y2).3.(1)多项式x2+ax+2和x2+2x-b的积中没有x2和x3两项,求a,b的值;(2)若(1+x)(2x2+ax+1)的结果中x2项的系数为-2,求a的值;(3)已知多项式3x2+ax+1与bx2+x+2的积中不含x2和x项,求系数a,b的值.4.(1)已知多项式x4+x3+x2+2=(x 2+m x+1)( x 2+n x+2),求m与n的值;(2)若不论x取何值,多项式x3-2x3-4x-1与(x+1)(x2+m x+n)都相等,求m和n的值;(3)已知(x+a y)(2 x-b y)=2x2-3xy-5y 2,则2a2b-ab2的值.5.已知ab2=6,求ab (a 2b5-ab3-b)的值.6.已知x-y=-1,xy=2,求(x-1)( y+1)的值.7.已知2 a 2+3 a-6,求3a (2a+1)-(2a+1)( 2a-1)的值.8.已知x2-8x-3=0,求(x-1)( x-3)( x-5)( x-7)的值.9.已知2 x+3x (x+1)( x+2)( x+3)的值.【板块三】整式的除法方法技巧(1)单项式除以单项式:系数、同底数的幂分别相除作为商的因式,对于只在被除式中含有的字母,则连同它的指数作为商的一个因式.(2)多项式除以单项式:多项式中的每一项分别除以单项式,然后把所得的商相加,公式为:(3)多项式除以多项式:大除法.题型一基本计算【例11】计算:(1)(23a4b2-19a2b8)÷(-12ab3)2(2)(35a3b7-65a3b4-1.8a2b3)÷0.6ab2题型二大除法【例12】计算:(1)(x3-1)÷(x-1);(2)(3 x4-5x3+x2+2)÷(x2+3);。
整式的乘除练习题整式的乘除练习题整式是数学中的一个重要概念,它由数字和字母的乘积或除法组成。
掌握整式的乘除运算是数学学习的基础,也是解决实际问题的关键。
本文将通过一些练习题来帮助读者巩固整式的乘除运算。
1. 乘法练习题1)计算:(2x + 3)(4x - 5)解析:使用分配律,将每个项分别与另一个整式的每个项相乘,然后将结果相加。
(2x + 3)(4x - 5) = 2x * 4x + 2x * (-5) + 3 * 4x + 3 * (-5)= 8x^2 - 10x + 12x - 15= 8x^2 + 2x - 152)计算:(3a - 2b)(5a + 4b)解析:同样使用分配律,将每个项分别与另一个整式的每个项相乘,然后将结果相加。
(3a - 2b)(5a + 4b) = 3a * 5a + 3a * 4b + (-2b) * 5a + (-2b) * 4b= 15a^2 + 12ab - 10ab - 8b^2= 15a^2 + 2ab - 8b^22. 除法练习题1)计算:(6x^2 - 9x) ÷ 3x解析:使用除法的原则,将被除数的每一项除以除数。
(6x^2 - 9x) ÷ 3x = 6x^2 ÷ 3x - 9x ÷ 3x= 2x - 32)计算:(10a^2 - 15a) ÷ 5a解析:同样使用除法的原则,将被除数的每一项除以除数。
(10a^2 - 15a) ÷ 5a = 10a^2 ÷ 5a - 15a ÷ 5a= 2a - 33. 综合练习题1)计算:(2x + 3)(4x - 5) ÷ (2x + 3)解析:先将乘法计算出结果,再进行除法运算。
(2x + 3)(4x - 5) ÷ (2x + 3) = (8x^2 + 2x - 15) ÷ (2x + 3)使用长除法进行计算,首先将 8x^2 除以 2x,得到 4x。
整式的乘除
知识点归纳:
1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
如:0。
2
如:
为x1,
5、同底数幂的乘法法则:n m
m a
n
∙(n
=
a
a+
m,都是正整数)同底数幂相乘,底数不变,指数相加。
注意底数可以是多项
式或单项式。
如:5
2)
3
a+
b
=
∙
+
a
+
(b
)
(
(
)
a
b
6、幂的乘方法则:mn n m a a =)((n m ,都是正整数)
幂的乘方,底数不变,指数相乘。
如:10253)
3(=- 幂的乘方法则可以逆用:即m n n m mn a a a
)()(== 如:23326)4()4(4==已知:23a =,326b =,求3102a b +的值;
7、积的乘方法则:
n n n b a ab =)((n 是正整数)
8)n m
33b a =
p a =-1011它的指数作为积的一个因式。
注意:
①积的系数等于各因式系数的积,先确定符号,再计算绝对值。
②相同字母相乘,运用同底数幂的乘法法则。
③只在一个单项式里含有的字母,则连同它的指数作为积的一个
因式
④单项式乘法法则对于三个以上的单项式相乘同样适用。
⑤单项式乘以单项式,结果仍是一个单项式。
如:=
2
23
x3
-xy
y
∙
z
12
14、平方差公式:2
2
a-
=
-
+注意平方差公式展开只有两项
a
b
)
b
)(
a
(b
公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。
右边是相同项的平方减去相反项
的平方。
如:(a+b-1)(a-b+1)=。
计算(2x+y-z+5)(2x-y+z+5)
15、完全平方公式:2
22
2
±
=
±
a+
a
b
(b
)
ab
公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两
项乘积的2倍。
2倍。
18、多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,
在把所的的商相加。
即:c
÷
=
=
÷
÷
+
+
(
+
+)
÷
=
a
m
cm
m
b
bm
m
bm
cm
m
am+
am
方法总结:①乘法与除法互为逆运算。
②被除式=除式×商式+余式
例如:已知一个多项式除以多项式243a a +-所得的商式是21a +,余式是28a +,求这个多项式。
怎样熟练运用公式:
(一)、明确公式的结构特征
这是正确运用公式的前提,如平方差公式的结构特征是:符号左边是两个二项式相乘,且在这四项中有两项完全相同,另两项是互为相反数;等号右边是乘式中两项的平方差,且是相同项
的平方减去相反项的平方.明确了公式的结构特征就能在各种情况下正确运用公式.
(二)、理解字母的广泛含义
乘法公式中的字母a 、b 可以是具体的数,也可以是单项式或多项式.理解了字母含义的广泛性,就能在更广泛的范围内正确运用公式.如计算(x +2y -3z )2,若视x +2y 为公式中的a ,3z 222
23)2后就能
45(a 2+1)2·(a 2计算(。