八年级数学上第三章《不等式》知识要点及习题
- 格式:doc
- 大小:240.23 KB
- 文档页数:5
八年级数学上册《第三章不等式的基本性质》练习题及答案-浙教版一、选择题1.已知实数a、b,若a>b,则下列结论正确的是()A. a﹣5<b﹣5B.2+a<2+bC.2a<2bD.3a>3b2.已知a<b,则下列不等式中不正确的是( )A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-43.下列不等式一定成立的是()A.5a>4aB.x+2<x+3C.-a>-2aD.4.若x>y,则下列式子错误的是()A.1﹣2x>1﹣2yB.x+2>y+2C.﹣2x<﹣2yD.2x>2y5.如果a<b,那么下列不等式中一定正确的是()A.a﹣2b<﹣bB.a2<abC.ab<b2D.a2<b26.下列不等式中,解集是x>1的不等式是()A.3x>-3B.x+4>3C.2x+3>5D.-2x+3>57.已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是( )A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>bC.因为a>b,a>b+c,所以c<0D.因为a>b,c<0,所以a>b+c8.已知四个实数a,b,c,d,若a>b,c>d,则( )A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>二、填空题9.当a<0时,6+a 6-a(填“<”或“>”).10.若a<b<0 ,则2a-1 2b-1.11.关于x的不等式(m-2)x>1的解集为x>1m-2,则m的取值范围是________.12.如果a>0,b>0,那么ab 0.13.若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为________.14.若m<n,比较下列各式的大小:(1)m-3______n-3 (2)-5m_____-5n (3)______(4)3-m______2-n (5)0_____m-n (6)_____三、解答题15.判断下列推导是否正确,并说明理由.因为4a>4b,所以a>b;16.下面是解不等式的部分过程,如果错误,说明错误原因并改正;如果正确,说明理由.(1)由2x>﹣4,得x<﹣2;(2)由16x﹣8>32﹣24x,得2x﹣1>4﹣3x;(3)由﹣3x>12,得x<﹣4.17.某单位打算和一个体车主或一出租车公司签订月租合同.个体车主答应除去每月1 500元租金外,每千米收1元;出租车公司规定每千米收2元,不收其他费用.设该单位每月用车x千米时,乘坐出租车合算,请写出x的范围.18.若不等式(2k+1)x<2k+1的解集是x>1,求k的取值范围.19.某单位为改善办公条件,欲购进20台某品牌电脑,据了解,该品牌电脑的单价大致在6000元至6500元之间,则该单位购进这批电脑应预备多少钱?20.利用不等式的基本性质,将下列不等式化为“x>a”或“x<a”的形式:(1)x+2>7. (2)3x<-12. (3)-7x>-14. (4)13x<2.参考答案1.D2.C3.B4.A5.A6.C7.D8.A9.答案为:<.10.答案为:<;11.答案为:m>2.12.答案为:>.13.答案为:11/3.14.答案为:(1)<(2)>(3)>(4)>(5)>(6)<15.解:因为4a>4b所以a>b;正确利用不等式两边同除以一个数不等号的方向不变;16.解:(1)错误.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以由2x>﹣4,得x>﹣2;(2)正确.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以把16x﹣8>32﹣24x两边都除以8得到2x﹣1>4﹣3x;(3)正确.不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,所以﹣3x>12两边都除以﹣3,得到x<﹣4.17.解:根据题意,得1 500+x>2x,解得x<1 500.∵单位每月用车x(千米)不能是负数∴x的取值范围是0<x<1 500.18.答案为:k<-0.5.19.解:设该品牌电脑的单价为x元.则6000≤x≤6500.∴6000×20≤20x≤6500×20(不等式的基本性质3)即120000≤20x≤130000.答:该单位购买这批电脑应预备的钱数在12000元至13000元之间.20.解:(1)两边都减去2,得x>5.(2)两边都除以3,得x<-4.(3)两边都除以-7,得x<2.(4)两边都乘3,得x<6.。
第三章《一元一次不等式》复习一、认识不等式1、不等式的概念:用不等号(<、≤、>、≥或≠)连接而成的数学式子叫做不等式。
不等式表示的是不等关系,是同类量的比较。
2、不等号的意义:“<”表示左边小于右边;“>”表示左边大于右边;“≤”表示左边小于或等于右边,只要有一个关系成立,则不等关系成立;“≥”表示左边大于或等于右边,只要有一个关系成立,则不等关系成立。
3、列不等式的方法:①找准题中不等关系的两个量;②正确理解题中关键词语的含义;③根据关键词语选用合适的不等号将表示不等关系的两个式子连接起来。
4、用数轴表示不等式①x<a在数轴上对应a左边的所有点;②x>b在数轴上对应b右边的所有点③b<x<a(b<a)在数轴上对应在b的右边a的左边的所有点;④含有“=”关系的用实心点,不含“=”关系的用空心点。
二、不等式的性质1、不等式的性质:①性质1:若a<b,b<c,则a<c,也叫做不等式的传递性。
利用该性质,若两个量a、c的大小不易直接比较,我们可以选取一个中间量b,分别比较a、c与b的大小,然后a、c 的大小关系就可以确定了;②性质2:不等式的两边都加上(或减去)同一个数,不等式仍成立;③性质3:不等式的两边都乘以(或都除以)同一个正数,不等式仍成立;不等式的两边都乘以(或都除以)同一个负数,不等号改向。
2、等式的性质与不等式的性质的比较相同点:①在等式或不等式的两边都加上(或减去)同一个数,等式或不等式仍成立;②在等式或不等式的两边都乘以(或都除以)同一个正数,等式或不等式仍成立。
不同点:在等式的两边都乘以(或都除以)同一个负数,等式仍成立;而在不等式的两边都乘以(或都除以)同一个负数,不等式不成立。
三、一元一次不等式1、概念:不等号的两边都是整式,而且只含有一个未知数,未知数的最高次数是一次,这样的不等式的叫做一元一次不等式。
学习时可比较一元一次不等式与一元一次方程的区别与联系。
2、不等式的解集:能使不等式成立的未知数的值的全体叫做不等式的解集,简称不等式的解。
不等式讲义最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a +b |≤|a |+|b |(a ,b ∈R ).(2)|a -b |≤|a -c |+|c -b |(a ,b ∈R ).2.会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ,|ax +b |≥c ,|x -c |+|x -b |≥a .3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法.1.含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ;(2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解.2.含有绝对值的不等式的性质|a |-|b |≤|a ±b |≤|a |+|b |.问题探究:不等式|a |-|b |≤|a ±b |≤|a |+|b |中,“=”成立的条件分别是什么?提示:不等式|a |-|b |≤|a +b |≤|a |+|b |,右侧“=”成立的条件是ab ≥0,左侧“=”成立的条件是ab ≤0且|a |≥|b |;不等式|a |-|b |≤|a -b |≤|a |+|b |,右侧“=”成立的条件是ab ≤0,左侧“=”成立的条件是ab ≥0且|a |≥|b |.3.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立.定理2:如果a 、b 为正数,则≥,当且仅当a =b 时,等号成立.a +b 2ab 定理3:如果a 、b 、c 为正数,则≥,当且仅当a =b =c 时,a +b +c 33abc 等号成立.定理4:(一般形式的算术—几何平均值不等式)如果a 1、a 2、…、a n 为n 个正数,则≥,当且仅当a 1=a 2=…=a n 时,等号成立.a 1+a 2+…+a nn n a 1a 2…a n 4.柯西不等式(1)柯西不等式的代数形式:设a ,b ,c ,d 为实数,则(a 2+b 2)·(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)若a i ,b i (i ∈N *)为实数,则()()≥(i b i )2,当且仅当b i =0(i =n ∑i =1a 2i n ∑i =1b 2i n ∑i =1a 1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立.1.判断正误(在括号内打“√”或“×”)(1)对|a +b |≥|a |-|b |当且仅当a >b >0时等号成立.( )(2)对|a -b |≤|a |+|b |当且仅当ab ≤0时等号成立.( )(3)|ax +b |≤c (c >0)的解等价于-c ≤ax +b ≤c .( )(4)不等式|x -1|+|x +2|<2的解集为Ø.( )(5)若实数x 、y 适合不等式xy >1,x +y >-2,则x >0,y >0.( )[答案] (1)× (2)√ (3)√ (4)√ (5)√2.不等式|2x -1|-x <1的解集是( )A .{x |0<x <2}B .{x |1<x <2}C .{x |0<x <1}D .{x |1<x <3}[解析] 解法一:x =1时,满足不等关系,排除C 、D 、B ,故选A.解法二:令f (x )=Error!则f (x )<1的解集为{x |0<x <2}.[答案] A3.设|a |<1,|b |<1,则|a +b |+|a -b |与2的大小关系是( )A .|a +b |+|a -b |>2B .|a +b |+|a -b |<2C .|a +b |+|a -b |=2D .不能比较大小[解析] |a +b |+|a -b |≤|2a |<2.[答案] B4.若a ,b ,c ∈(0,+∞),且a +b +c =1,则++的最大值为( )a b c A .1 B . 2C. D .23[解析] (++)2=(1×+1×+1×)2≤ (12+12+12)(a +b +c )a b c a b c =3.当且仅当a =b =c =时,等号成立.13∴(++)2≤3.a b c ++的最大值为.故应选C.a b c 3[答案] C5.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________.[解析] 利用数轴及不等式的几何意义可得x 到a 与到1的距离和小于3,所以a 的取值范围为-2≤a ≤4.[答案] -2≤a ≤4考点一 含绝对值的不等式的解法解|x -a |+|x -b |≥c (或≤c )型不等式,其一般步骤是:(1)令每个绝对值符号里的代数式为零,并求出相应的根.(2)把这些根由小到大排序,它们把定义域分为若干个区间.(3)在所分区间上,去掉绝对值符号组成若干个不等式,解这些不等式,求出它们的解集.(4)这些不等式解集的并集就是原不等式的解集.解绝对值不等式的关键是恰当的去掉绝对值符号.(1)(2015·山东卷)不等式|x -1|-|x -5|<2的解集是( )A .(-∞,4)B .(-∞,1)C .(1,4)D .(1,5)(2)(2014·湖南卷)若关于x 的不等式|ax -2|<3的解集为Error!,则a =________.[解题指导] 切入点:“脱掉”绝对值符号;关键点:利用绝对值的性质进行分类讨论.[解析] (1)当x <1时,不等式可化为-(x -1)+(x -5)<2,即-4<2,显然成立,所以此时不等式的解集为(-∞,1);当1≤x ≤5时,不等式可化为x -1+(x -5)<2,即2x -6<2,解得x <4,又1≤x ≤5,所以此时不等式的解集为[1,4);当x >5时,不等式可化为(x -1)-(x -5)<2,即4<2,显然不成立,所以此时不等式无解.综上,不等式的解集为(-∞,4).故选A.(2)∵|ax -2|<3,∴-1<ax <5.当a >0时,-<x <,与已知条件不符;1a 5a当a =0时,x ∈R ,与已知条件不符;当a <0时,<x <-,又不等式的解集为Error!,故a =-3.5a 1a[答案] (1)A (2)-3用零点分段法解绝对值不等式的步骤:(1)求零点;(2)划区间、去绝对值号;(3)分别解去掉绝对值的不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端点值.对点训练已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.[解] (1)当a =-3时,f (x )=Error!当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4;所以f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].考点二 利用绝对值的几何意义或图象解不等式对于形如|x -a |+|x -b |>c 或|x -a |+|x -b |<c 的不等式,利用绝对值的几何意义或者画出左、右两边函数的图象去解不等式,更为直观、简捷,它体现了数形结合思想方法的优越性.|x -a |+|x -b |的几何意义是数轴上表示x 的点与点a 和点b 的距离之和,应注意x 的系数为1.(1)(2014·重庆卷)若不等式|x -1|+|x +2|≥a 2+a +2对任意实数x 恒成立,12则实数a 的取值范围是________.(2)不等式|x +1|-|x -2|>k 的解集为R ,则实数k 的取值范围是__________.[解题指导] 切入点:绝对值的几何意义;关键点:把恒成立问题转化为最值问题.[解析] (1)∵|x -1|+|x +2|≥|(x -1)-(x -2)|=3,∴a 2+a +2≤3,解得≤a ≤.12-1174-1+174即实数a 的取值范围是.[-1-174,-1+174](2)解法一:根据绝对值的几何意义,设数x ,-1,2在数轴上对应的点分别为P ,A ,B ,则原不等式等价于PA -PB >k 恒成立.∵AB =3,即|x +1|-|x -2|≥-3.故当k <-3时,原不等式恒成立.解法二:令y =|x +1|-|x -2|,则y=Error!要使|x+1|-|x-2|>k恒成立,从图象中可以看出,只要k<-3即可.故k<-3满足题意.[答案] (1) (2)(-∞,-3)[-1-174,-1+174]解含参数的不等式存在性问题,只要求出存在满足条件的x即可;不等式的恒成立问题,可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.对点训练(2015·唐山一模)已知函数f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|.(1)若当g(x)≤5时,恒有f(x)≤6,求a的最大值;(2)若当x∈R时,恒有f(x)+g(x)≥3,求a的取值范围.[解] (1)g(x)≤5⇔|2x-1|≤5⇔-5≤2x-1≤5⇔-2≤x≤3;f(x)≤6⇔|2x-a|≤6-a⇔a-6≤2x-a≤6-a⇔a-3≤x≤3.依题意有,a-3≤-2,a≤1.故a的最大值为1.(2)f(x)+g(x)=|2x-a|+|2x-1|+a≥|2x-a-2x+1|+a=|a-1|+a,当且仅当(2x-a)(2x-1)≤0时等号成立.解不等式|a-1|+a≥3,得a的取值范围是[2,+∞).考点三 不等式的证明与应用不等式的证明方法很多,解题时既要充分利用已知条件,又要时刻瞄准解题目标,既不仅要搞清是什么,还要搞清干什么,只有兼顾条件与结论,才能找到正确的解题途径.应用基本不等式时要注意不等式中等号成立的条件.(2015·新课标全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则+>+;a b c d (2)+>+是|a -b |<|c -d |的充要条件.a b c d [解题指导] 切入点:不等式的性质;关键点:不等式的恒等变形.[证明] (1)因为(+)2=a +b +2,(+)2=c +d +2,a b ab c d cd 由题设a +b =c +d ,ab >cd 得(+)2>(+)2.a b c d +>+.a b c d (2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1)得+>+.a b c d +>+,则(+)2>(+)2,即a b c d a b c d a +b +>c +d +2.ab cd 因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2.因此|a -b |<|c -d |.+>+是|a -b |<|c -d |的充要条件.a b c d分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.对点训练(2014·新课标全国卷Ⅱ)设a 、b 、c 均为正数,且a +b +c =1.证明:(1)ab +bc +ac ≤;13(2)++≥1.a 2b b 2c c 2a[证明] (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤.13(2)因为+b ≥2a ,+c ≥2b ,+a ≥2c ,a 2b b 2c c 2a故+++(a +b +c )≥2(a +b +c ),a 2b b 2c c 2a即++≥a +b +c .a 2b b 2c c 2a所以++≥1.a 2b b 2c c 2a———————方法规律总结————————[方法技巧]1.绝对值不等式求解的根本方向是去除绝对值符号.2.绝对值不等式在求与绝对值运算有关的最值问题时需灵活运用,同时还要注意等号成立的条件.3.在证明不等式时,应根据命题提供的信息选择合适的方法与技巧.如在使用柯西不等式时,要注意右边为常数.[易错点睛]1.对含有参数的不等式求解时,分类要完整.2.应用基本不等式和柯西不等式证明时要注意等号成立的条件.课时跟踪训练(七十)一、填空题1.不等式|2x -1|<3的解集为__________.[解析] |2x -1|<3⇔-3<2x -1<3⇔-1<x <2.[答案] (-1,2)2.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =__________.[解析] ∵|kx -4|≤2,∴-2≤kx -4≤2,∴2≤kx ≤6.∵不等式的解集为{x |1≤x ≤3},∴k =2.[答案] 23.不等式|2x +1|+|x -1|<2的解集为________.[解析] 当x ≤-时,原不等式等价为-(2x +1)-(x -1)<2,即-3x <2,x >-12,此时-<x ≤-.当-<x <1时,原不等式等价为(2x +1)-(x -1)<2,即x <0,23231212此时-<x <0.当x ≥1时,原不等式等价为(2x +1)+(x -1)<2,即3x <2,x <,此1223时不等式无解,综上,原不等式的解为-<x <0,即原不等式的解集为.23(-23,0)[答案] (-23,0)4.已知关于x 的不等式|x -1|+|x |≤k 无解,则实数k 的取值范围是__________.[解析] ∵|x -1|+|x |≥|x -1-x |=1,∴当k <1时,不等式|x -1|+|x |≤k 无解,故k <1.[答案] (-∞,1)5.(2015·西安统考)若关于实数x 的不等式|x -5|+|x +3|<a 无解,则实数a 的取值范围是________.[解析] |x -5|+|x +3|≥|(x -5)-(x +3)|=8,故a ≤8.[答案] (-∞,8]6.(2015·重庆卷)若函数f (x )=|x +1|+2|x -a |的最小值为5,则实数a =__________.[解析] 当a =-1时,f (x )=3|x +1|≥0,不满足题意;当a <-1时,f (x )=Error!f (x )min =f (a )=-3a -1+2a =5,解得a =-6;当a >-1时,f (x )=Error!f (x )min =f (a )=-a +1+2a =5,解得a =4.[答案] -6或47.若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是__________.[解析] ∵f (x )=|x +1|+|x -2|=Error!∴f (x )≥3.要使|a |≥|x +1|+|x -2|有解,∴|a |≥3,即a ≤-3或a ≥3.[答案] (-∞,-3]∪[3,+∞)8.已知关于x 的不等式|x -a |+1-x >0的解集为R ,则实数a 的取值范围是__________.[解析] 若x -1<0,则a ∈R ;若x -1≥0,则(x -a )2>(x -1)2对任意的x ∈[1,+∞)恒成立,即(a -1)[(a +1)-2x ]>0对任意的x ∈[1,+∞)恒成立,所以Error!(舍去)或Error!对任意的x ∈[1,+∞]恒成立,解得a <1.综上,a <1.[答案] (-∞,1)9.设a ,b ,c 是正实数,且a +b +c =9,则++的最小值为__________.2a 2b 2c[解析] ∵(a +b +c )(2a +2b +2c )=[()2+()2+()2]a b c [(2a )2+(2b )2+(2c )2]≥2=18,(a ·2a +b ·2b +c ·2c )∴++≥2,∴++的最小值为2.2a 2b 2c 2a 2b 2c[答案] 210.(2014·陕西卷)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则 m 2+n 2的最小值为________.[解析] 由柯西不等式,得(a 2+b 2)(m 2+n 2)≥(am +bn )2,即5(m 2+n 2)≥25,∴m 2+n 2≥5,当且仅当an =bm 时,等号成立.∴的最小值为.m 2+n 25[答案] 511.对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为__________.[解析] ∵|x -1|+|x |+|y -1|+|y +1|=(|1-x |+|x |)+(|1-y |+|1+y |)≥|(1-x )+x |+|(1-y )+(1+y )|=1+2=3,当且仅当(1-x )·x ≥0,(1-y )·(1+y )≥0,即0≤x ≤1,-1≤y ≤1时等号成立,∴|x -1|+|x |+|y -1|+|y +1|的最小值为3.[答案] 312.若不等式|x +1|-|x -4|≥a +,对任意的x ∈R 恒成立,则实数a 的取4a值范围是________.[解析] 只要函数f (x )=|x +1|-|x -4|的最小值不小于a +即可.由于||x +1|4a-|x -4||≤|(x +1)-(x -4)|=5,所以-5≤|x +1|-|x -4|≤5,故只要-5≥a +即4a可.当a >0时,将不等式-5≥a +整理,得a 2+5a +4≤0,无解;当a <0时,4a将不等式-5≥a +整理,得a 2+5a +4≥0,则有a ≤-4或-1≤a <0.综上可知,4a实数a 的取值范围是(-∞,-4]∪[-1,0).[答案] (-∞,-4]∪[-1,0)二、解答题13.已知不等式2|x -3|+|x -4|<2a .(1)若a =1,求不等式的解集;(2)若已知不等式的解集不是空集,求a 的取值范围.[解] (1)当a =1时,不等式即为2|x -3|+|x -4|<2,若x ≥4,则3x -10<2,x <4,∴舍去;若3<x <4,则x -2<2,∴3<x <4;若x ≤3,则10-3x <2,∴<x ≤3.83综上,不等式的解集为Error!.(2)设f (x )=2|x -3|+|x -4|,则f (x )=Error!作出函数f (x )的图象,如图所示.由图象可知,f (x )≥1,∴2a >1,a >,即a 的取值范围为.12(12,+∞)14.(2015·新课标全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0.(1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围.[解] (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解;当-1<x <1时,不等式化为3x -2>0,解得<x <1;23当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为Error!.(2)由题设可得,f (x )=Error!所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ,B (2a +1,0),C (a ,a +1),△ABC 的面积为(a +1)2.(2a -13,0)23由题设得(a +1)2>6,故a >2.23所以a 的取值范围为(2,+∞).15.设函数f (x )=|x -1|+|x -a |.(1)若a =-1,解不等式f (x )≥3;(2)如果∀x ∈R ,f (x )≥2,求a 的取值范围.[解] (1)当a =-1时,f (x )=|x -1|+|x +1|,f (x )=Error!作出函数f (x )=|x -1|+|x +1|的图象.由图象可知,不等式f (x )≥3的解集为Error!.(2)若a =1,f (x )=2|x -1|,不满足题设条件;若a <1,f (x )=Error!f (x )的最小值为1-a ;若a >1,f (x )=Error!f (x )的最小值为a -1.∴对于∀x ∈R ,f (x )≥2的充要条件是|a -1|≥2,∴a 的取值范围是(-∞,-1]∪[3,+∞).16.(2015·福建卷)已知a >0,b >0,c >0,函数f (x )=|x +a |+|x -b |+c 的最小值为4.(1)求a +b +c 的值;(2)求a 2+b 2+c 2的最小值.1419[解] (1)因为f (x )=|x +a |+|x -b |+c ≥|(x +a )-(x -b )|+c =|a +b |+c ,当且仅当-a ≤x ≤b 时,等号成立.又a >0,b >0,所以|a +b |=a +b ,所以f (x )的最小值为a +b +c .又已知f (x )的最小值为4,所以a +b +c =4.(2)由(1)知a +b +c =4,由柯西不等式得(4+9+1)≥(14a 2+19b 2+c 2)2=(a +b +c )2=16,(a 2×2+b 3×3+c ×1)即a 2+b 2+c 2≥.141987当且仅当==,12a 213b 3c 1即a =,b =,c =时等号成立.8718727故a 2+b 2+c 2的最小值为.141987。
初二数学不等式部分知识点及练习题初二数学不等式部分知识点及练题不等式部分1.一般地,用符号“≤”、“≥”、“<”、“>”或“≠”连接的式子叫做不等式。
题型一:列不等式用不等式表示下面叙述:1)a的一半的相反数是非负数;2)x的三倍比它与5的差大;3)a与2的差是非正数;4)x的5倍与-2的差大于x与1的和的三倍;题型二:不等式的意义下面列出的不等式,正确的是()A。
a不是负数,可表示为a>0B。
x不大于3,可表示为x<3;C。
m与4的差是负数,可表示为m-4<0;D。
x与2的和是非负数,可表示为x+2≥0;2.不等式的基本性质一:不等式两边都加上(或减去)同一个整式,不等号的方向不变。
(重点)不等式的基本性质二:不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
(重点)不等式的基本性质三:不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
(重点、难点)题型一:利用不等式性质将不等式化为xa的形式根据不等式的基本性质,把下列不等式化为xa的形式:1)x/3>-2x/3-2;2)-3x+2<2x+3;3)(6-x)/2≥x/2;4)-5x/2≤-1;题型二:不等式的基本性质运用①若a<b,则-2a+5<-2b+5;②若x-y-z;③ a>b,且c>0,则ac+d>bc+d;④若ac>bc且c<0,则a<b;⑤如果a3-b;⑥由xa+1,那么a的取值范围是a0.XXX著⑦对不等式-3x>1变形得3x<-1.⑨有方程组2x+y=1+3m,x+2y=1-m,满足x+y<0,则m 的取值范围是m<1/3.⑩判断正误:因为5<6,所以5x<6x(错误)。
选择题⑴如果,下列不等式中错误的是()A。
ab>0B。
a+b<0C。
a/b<1D。
a-b<0⑵若x>y,则下列式子错误的是()A。
八年级数学上册《第三章一元一次不等式》练习题及答案-浙教版一、选择题1.不等式1-x≥2的解在数轴上表示正确的是( )2.下列说法中,错误的是( )A.不等式x<5的整数解有无数多个B.不等式x>-5的负数解有无限个C.不等式-2x<8的解集是x<-4D.-40是不等式2x<-8的一个解3.关于x的不等式x+m>2的解集为x>1,则m的值为( )A.0B.1C.2D.34.a、b两数在数轴上的位置如图所示,下列结论中正确的是( )A.a>0,b<0B.a<0,b>0C.ab>0D.以上均不对5.如图是关于x的不等式2x-a≤-1的解集,则a的取值是( )A.a≤-1B.a≤-2C.a=-1D.a=-26.下列解不等式2+x3>2x-15的过程中,出现错误的一步是( )①去分母,得5(x+2)>3(2x-1);②去括号,得5x+10>6x-3;③移项,得5x-6x>-10-3;④合并同类项、系数化为1,得x>13.A.①B.②C.③D.④7.不等式2x﹣7<5﹣2x正整数解有( )A.1个B.2个C.3个D.4个8.不等式7x-2(10-x)≥7(2x-5)非负整数解是( )A.0,1,2B.0,1,2,3C.0,1,2,3,4D.0,1,2,3,4,5二、填空题9.如果m是实数,且不等式(m+1)x>m+1的解是x<1,那么实数m的值为________.10.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为 .11.不等式-12x+3<0的解集是________.12.若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为.13.满足不等式2(x+1)>1-x的最小整数解是 .14.不等式2x+9≥3(x+2)的正整数解是.三、解答题15.解不等式:12(x-3)≥x-2.16.解不等式:2(2x-3)<5(x-1).17.解不等式:13(2x+1)-16(2-x)>12(x-1)-1.18.解不等式:13(2x-1)-16(9x+2)≤1.19.已知关于x的不等式2m-mx2>12x-1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.20.小明解不等式1+x2-2x+13≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.解:去分母得:3(1+x)-2(2x+1)≤1①去括号得:3+3x-4x+1≤1②移项得:3x-4x≤1-3-1③合并同类项得:-x≤-3④两边都除以-1得:x≤3⑤21.若关于x的方程x-x-m2=2-x2的解是非负数,求m的取值范围.22.定义新运算:对于任意实数a,b,都有a@b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2@5=2x(2-5)+1=2x(-3)+1=-6+1=-5.(1)求(-2)@3的值;(2)若3@x的值小于13,求x的取值范围,并在如图所示的数轴上表示出来.参考答案1.A2.C3.B4.A5.C6.D7.B 8.B9.答案为:m <-110.答案为:x >﹣1.11.答案为:x >612.答案为:11313.答案为:0.14.答案为:1,2,3.15.解:x ≤1;16.解:x >-1;17.解:x >﹣92. 18.解:x ≥﹣2;19.解:(1)当m =1时,原不等式可变形为2-x 2>x 2-1 去分母得2-x >x -2移项、合并同类项得2x <4∴x <2.(2)解不等式2m -mx 2>12x -1 移项、合并同类项2m -mx >x -2(m +1)x <2(m +1)当m ≠-1时,原不等式有解;当m >-1时,原不等式的解集为x <2; 当m <-1时,原不等式的解集为x >2.20.解:错误的是①②⑤,正确解答过程如下: 去分母,得3(1+x)-2(2x +1)≤6去括号,得3+3x -4x -2≤6移项,得3x -4x ≤6-3+2合并同类项,得-x ≤5两边都除以-1,得x ≥-5.21.解:∵x -x -m 2=2-x 2∴2x -(x -m)=2-x ,解得x=2-m 2. ∵方程的解为非负数∴x ≥0∴2-m 2≥0 ∴m ≤2.22.解:(1)11.(2)x>-1 数轴表示如图所示:。
不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(同向可加)(4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(同向同正可乘)(5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且(7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式(二)解不等式1、一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:2、简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。
()()()如:x x x +--<1120233、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。
第9讲一元一次不等式()
1.数轴上表示不等式注意“实心点”和“空心点”.
2.
常用的表示不等关系的关键词:
3.不等式的基本性质有3条,应用时要特别注意不等式两边同乘以或除以同一个负数.
4.对不等式的解的讨论题一律先将含字母系数的不等式看作已知的不等式,化成“ax>b”或“ax<b”再讨论.
二、例题精选
例1、选择和填空
1.下列式子变形正确的是()
A. 1
≥2-x≥1 B. --3 C.
3
1x>-x>-2 D. -7x≤x≥-
8
7
2.如果x<0,y>0,x+y<0,则下列关系中正确的是()
A. x>y>-y>-x
B. -x>y>-y>x
C. y>-x>-y>x
D. -x>y>x>-y
3.若0
<
<b
a,则下列式子:①2
1+
<
+b
a;②1
>
b
a
;③ab
b
a<
+;④
b
a
1
1
<;⑤2
2b
a<中,正确的有()
A.1个
B.2个
C.3个
D.4个
4.实数b
a,在数轴上表示如图,则下列判断:(1)2
>
-b
a;(2)b
a>;(3)2
-
>
b(4)0
>
ab中,正确的有()
A.1个
B.2个
C.3个
D.4个
5.已知关于x的不等式x>
2
3
-
a
表示在数轴上如图所示,则a的值为()
A. 1
B. 2
C. -1
D. -2
6.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是()
A.-3<b<-2
B.-3<b≤-2
C.-3≤b≤-2
D.-3≤b<-2
7.当1≤x≤2时,ax+2>0,则a的取值范围是()
A.a>-1
B.a> -2
C.a>0
D.a>-1且a≠0
8.已知y 满足不等式
3
2
221++
>-+y y y ,则=-++121y y . 9.不等式4
7
38332+-
>++x x 的非正整数解为 . 10.若关于x 的不等式()52+<-a x a 和12
1
<x 的解集相同,则a 的取值范围是 .
11.已知关于x 的不等式()b x b a >-2的解是21-<x ,则a
b b a +-363= . 例2.已知关于y x ,的方程组⎩⎨⎧=+=-a
y x y x 623
的解满足不等式3<+y x ,求实数a 的取值范围.
例3.已知b a ,是整数,关于x 的不等式b a x 2->的最小整数解是8,关于的不等式1932--<b a y 的最大整数解为-8, (1)求b a ,的值;
(2)若x a a x b x b x -=--=-,,求符合题意的最小整数x .
例4.若关于x 的不等式组⎩⎨
⎧<≤≤-a
x x 21
1有解,求a 的取值范围.
例5.按下列程序进行计算:
并规定:程序运行到“结果是否大于65”为一次运算,且运算4次才停止,求出可输入的整数x.
例 6.是否存在整数m ,使关于x 的不等式m m x m x 931+>+
与3
21m
x x +->
+的解集相同?若存在,求出整数m 和不等式的解集;若不存在,请说明理由.
学生练习:
1.已知-1<b<0,0<a<1,那么在代数式a -b ,a+b ,a+b 2,a 2+b 中,对于任意的a 、b ,对应的代数式的值最大的是( )
A.a+b
B.a-b
C.a+b 2
D.a 2+b
2.若x 为任意的实数,则下列不等式一定成立的是( ) A.-3x x 4> B.2
2
2
13x x >
C.5+0≥x
D.012>+x 3.设“◎”“□”“△”分别表示三种不同的物体.用天平比较它们质量的大小,再次情况如图所示,那么每个“◎”“□”“△”这样的物体,按质量从大到小的顺序排列为( ) A.◎□△ B.◎△□ C.□◎△ D.□△◎
4.张师傅下岗再就业,做起了小商品生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,每件以b 元的价格购进了30件乙种小商品;回来后,根据市场行情,他将这两种都以每件
2
b
a +元的价格出售,在这次买卖中,张师傅是( ) A.赚钱 B.赔钱 C.不赚不赔 D.无法确定 5.下列说法中错误的是( )
A.不等式x<2的正整数解有一个
B.-2是不等式2x -1<0的一个解
C.不等式-3x>9的解集是x>-3
D.不等式x<10的整数解有无数个 6.若b a >,则下列不等式不一定成立的是( )
A.m b m a +>+
B.(
)(
)
112
2
+>+n b n a C.22b
a -<-
D.22b a > 7.已知c b a ,,在数轴上的位置如图所示,则在c
a b c b a ---1
,
1,1中,最大的是 . 8.已知不等式x+8>4x+m (m 是常数)的解集是 X<3,则m = . 9.有三个不同的数a ,b ,c.用max {a,b,c }表示这三个数中最大的数.例如max {-1,2,3}=3,如果max {-3,-2,4-2x }=4-2x ,则x 的取值范围是 .
10.在方程组⎩
⎨⎧=+-=+2212y x m
y x 中,若y x ,满足0>+y x ,则m 的取值范围是 .
11.解不等式,并将偶数题号的解集在数轴上表示出来. (1)
132<-x x (2)2
235-+≥x x
(3)245231->+--x x (4)2
1
123334->--+x x x
(5)()()133125-<+x x (6)22
4
31->+--x x
(7)52221+-≥---y y y (8)28
3
7423>--+x x
12.根据你初一所学等式的有关规律,求关于x 的不等式
()11 (12)
62->-++++n n n x
x x x (n 为正整数)的
解集.
13.已知a 1,a 2,a 3,...a 2015,a 2016是互不相等的负数,且M =(a 1+a 2+a 3+...+a 2015)(a 2+a 3+...+a 2016), N =(a 1+a 2+...+a 2016)(a 2+a 3+...+a 2015),比较M 与N 的大小.
八上三章《不等式》第9讲答案:
例1ABCA ADA 7.提示:将x =1和x =3分别代入ax+2>0中求出a 的范围 8.-3y ;9.-1,0;10.9;11.-3;例2.a<0; 例3(1)⎩
⎨
⎧-=-=⎩⎨⎧-=--=-41
;9193272b a b a b a ;(2)4-=x 例4.2a x <
,且11≤≤-x ,2,12
->∴->∴a a
例5.如 2{2[2(2x -1)-1]-1}-1>65,x>5
2[2(2x -1)-1]-1<65,x<9, x =6,7,8 例6.解:
存在,(1)当m>0时,由①得29m x ->,由②得2
5
->m x , 1,759>=⇒-=-x m m m (2)若m<0时,由①得29m x -<,由②得2
5
->m x , 它们方向不同,不会同解,m 不存在
学生练习:
1-6 B D A D C D 7,
b
c -1
;8,-1;9,x<3;10.m<3 11.(1)x<6; (2)320-≤x ;(3)2
5
<x (4)x<2
(5)x<-8;(6)x<-2 ;(7)13
11
-<y ;(8)x<-9
12.x>n
13.设a 2+...+a 2015=b ,则M-N =(a 1+b )(b+a 2016)-(a 1+b+a 2016)b =a 1a 2016>0。