1995年普通高等学校招生全国统一考试(理工农医类)数学
- 格式:doc
- 大小:651.00 KB
- 文档页数:11
1994年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷(选择题共65分)一、选择题:本大题共15小题;第(1)—(10)题每小题4分,第(11)—(15)题每小题5分,共65分,在每小题给出的四个选项中,只有一项是符合题目要求的(1) 设全集I ={0,1,2,3,4},集合A ={0,1,2,3},集合B ={2,3,4},则B A ⋃( )(A) {0} (B) {0,1}(C) {0,1,4}(D) {0,1,2,3,4}(2) 如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 ( ) (A) (0,+∞)(B) (0,2)(C) (1,+∞)(D) (0,1)(3) 极坐标方程⎪⎭⎫⎝⎛-=θπρ4cos 所表示的曲线是 ( )(A) 双曲线(B) 椭圆(C) 抛物线(D) 圆(4) 设θ是第二象限的角,则必有 ( )(A) 2ctg 2tgθθ>(B) 2ctg 2tgθθ<(C) 2cos 2sinθθ>(D) 2cos 2sinθθ<(5) 某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3小时,这种细菌由1个可繁殖成( )(A) 511个(B) 512个(C) 1023个(D) 1024个(6) 在下列函数中,以2π为周期的函数是 ( )(A) y =sin2x +cos4x (B) y =sin2x cos4x (C) y =sin2x +cos2x(D) y =sin2x cos2x(7) 已知正六棱台的上、下底面边长分别为2和4,高为2,则其体积为( )(A) 323 (B) 283 (C) 243 (D) 203(8) 设F 1和F 2为双曲线42x -y 2=1的两个焦点,点P 在双曲线上且满足∠F 1PF 2=90°,则△F 1PF 2的面积是( )(A) 1(B)25 (C) 2(D)5(9) 如果复数z 满足│z +i │+│z -i │=2,那么│z +i +1│的最小值是 ( )(A) 1(B)2(C) 2(D)5(10) 有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担.从10人中选派4人承担这三项任务,不同的选法共有( )(A) 1260种(B) 2025种(C) 2520种(D) 5040种(11) 对于直线m 、n 和平面α、β,α⊥β的一个充分条件是 ( ) (A) m ⊥n ,m ∥α,n ∥β (B) m ⊥n ,α∩β=m ,n ⊂α (C) m ∥n ,n ⊥β,m ⊂α(D) m ∥n ,m ⊥α,n ⊥β(12) 设函数f (x )=1-21x -(-1≤x ≤0),则函数y =f -1(x )的图像是( )(13) 已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =BC =CA =2,则球面面积是( )(A)916π (B)38π (C) 4π (D)964π (14) 函数y =arccos(sin x )⎪⎭⎫ ⎝⎛<<-323ππx 的值域是 ( )(A) ⎪⎭⎫⎝⎛656ππ, (B) ⎪⎭⎫⎢⎣⎡650π,(C) ⎪⎭⎫⎝⎛323ππ, (D) ⎪⎭⎫⎢⎣⎡326ππ,(15) 定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg(10x +1),x ∈(-∞,+∞),那么( )(A) g (x )=x ,h (x )=lg(10x +10-x +2)(B) g (x )=21[lg(10x +1)+x ],h (x )=21[lg(10x +1)-x ] (C) g (x )=2x ,h (x )=lg(10x +1)-2x(D) g (x )=-2x ,h (x )=lg(10x +1)+2x第Ⅱ卷(非选择题共85分)二、填空题 (本大题共5小题,共6个空格;每空格4分,共24分.把答案填在题中横线上)(16) 在(3-x )7的展开式中,x 5的系数是 (用数字作答)(17) 抛物线y 2=8-4x 的准线方程是 ,圆心在该抛物线的顶点且与其准线相切的圆的方程是(18) 已知sin θ +cos θ =51,θ∈(0,π),则ctg θ的值是_____________ (19) 设圆锥底面圆周上两点A 、B 间的距离为2,圆锥顶点到直线AB 的距离为3,AB 和圆锥的轴的距离为1,则该圆锥的体积为_________(20) 在测量某物理量的过程中,因仪器和观察的误差,使得n 次测量分别得到a 1,a 2,…a n ,共n 个数据,我们规定所测量物理量的“最佳近似值” a 是这样一个量:与其他近似值比较,a 与各数据的差的平方和最小.依此规定,从a 1,a 2,…,a n 推出的a =三、解答题(本大题共5小题,共61分;解答应写出文字说明、证明过程或推演步骤)(21) (本小题满分11分) 已知z =1+i .(1)设ω=z 2+3z -4,求ω的三角形式;(2)如果i z z baz z -=+-++1122,求实数a ,b 的值. (22) (本小题满分12分)已知函数f (x )=tg x ,x ∈(0,2π).若x 1,x 2∈(0,2π),且x 1≠x 2,证明21[f (x 1)+f (x 2)]>f (221x x +)(23) (本小题满分12分)如图,已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1;(2)假设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角α的度数.(24) (本小题满分12分)已知直线l 过坐标原点,抛物线C 顶点在原点,焦点在x 轴正半轴上.若点)0,1(-A 和点B (0,8)关于l 的对称点都在C 上,求直线l 和抛物线C 的方程.(25) (本小题满分14分)设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的自然数n ,a n 与2的等差中项等于S n 与2的等比中项.(1)写出数列{a n }的前3项;(2)求数列{a n }的通项公式(写出推证过程); (3)令()N ∈⎪⎪⎭⎫ ⎝⎛+=++n a a a a b n n n n n 1121,求().lim 21n b b b n n -+++∞→1994年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答一、选择题(本题考查基本知识和基本运算)1.C 2.D 3.D 4.A 5.B 6.D 7.B 8.A 9.A 10.C 11.C 12.B 13.D 14.B 15.C二、填空题(本题考查基本知识和基本运算)16.-189 17.x =3,(x -2)2+y 2=1 18.43- 19. π322 20.()n a a a n+++ 211三、解答题21.本小题考查共轭复数、复数的三角形式等基础知识及运算能力. 解:(1)由z =1+i ,有ω=z 2+3z -4=(1+i )2+3()i +1-4 =2i +3(1-i )-4=-1-i ,ω的三角形式是⎪⎭⎫ ⎝⎛+ππ45sin 45cos 2i .(2)由z =1+i ,有()()()()1111112222++-+++++=+-++i i b i a i z z b az z =()()ii a b a 2+++()()i b a a +-+=2 由题设条件知(a +2)-(a +b )i =1-i . 根据复数相等的定义,得⎩⎨⎧-=+-=+1)(12b a a解得⎩⎨⎧=-=.2,1b a22.本小题考查三角函数基础知识、三角函数性质及推理能力. 证明:tg x 1+tg x 2=2211cos sin cos sin x x x x + 212121cos cos sin cos cos sin x x x x x x +=()2121cos cos sin x x x x +=()()()212121cos cos sin 2x x x x x x -+++=∵x 1,x 2∈(0,2π),x 1≠x 2, ∴2sin(x 1+x 2)>0,cos x 1cos x 2>0,且0<cos (x 1-x 2)<1, 从而有0<cos (x 1+x 2)+cos (x 1-x 2)<1+cos (x 1+x 2), 由此得tg x 1+tg x 2>()()2121cos 1sin 2x x x x +++=,∴21( tg x 1+tg x 2)>tg 221x x +,即21[f (x 1)+f (x 2)]>f (221x x +)23.本小题考查空间线面关系、正棱柱的性质、空间想象能力和逻辑推理能力.(1)证明:∵A 1B 1C 1-ABC 是正三棱柱,∴四边形B 1BCC 1是矩形. 连结B 1C 交BC 1于E ,则B 1E =EC .连结DE . 在△AB 1C 中,∵AD =DC ,∴DE ∥AB 1.又AB 1⊄平面DBC 1,DE ⊂平面DBC 1,∴AB 1∥平面DBC 1.(2)解:作DF ⊥BC ,垂足为F ,则DF ⊥面B 1BCC 1,连结EF ,则EF 是ED 在平面B 1BCC 1上的射影.∵AB 1⊥BC 1,由(1)知AB 1∥DE ,∴DE ⊥BC 1,则BC 1⊥EF ,∴∠DEF 是二面角α的平面角. 设AC =1,则DC =21.∵△ABC 是正三角形,∴在Rt △DCF 中, DF =DC ·sin C =43,CF =DC ·cos C =41.取BC 中点G .∵EB =EC ,∴EG ⊥BC . 在Rt △BEF 中,EF 2=BF ·GF ,又BF =BC -FC =43,GF =41,∴EF 2=43·41,即EF =43.∴tg ∠DEF =14343==EF DF .∴∠DEF =45°. 故二面角α为45°.24.本小题考查直线与抛物线的基本概念和性质,解析几何的基本思想方法以及综合运用知识解决问题的能力.解法一:依题设抛物线C 的方程可写为y 2=2px (p >0),且x 轴和y 轴不是所求直线,又l 过原点,因而可设l 的方程为y =kx (k ≠0).①设A '、B '分别是A 、B 关于l 的对称点,因而A 'A ⊥l ,直线A 'A 的方程为()11+-=x ky ② 由①、②联立解得AA '与l 的交点M 的坐标为⎪⎭⎫ ⎝⎛+-+-11122k k k ,. 又M 为AA '的中点,从而点A '的坐标为x A '=111112222+-=+⎪⎭⎫ ⎝⎛+-k k k , y A '=1201222+-=+⎪⎭⎫⎝⎛+-k k k k . ③ 同理得点B '的坐标为x B '=1162+k k, y B '= ()11822+-k k . ④ 又A '、B '均在抛物线y 2=2px (p >0)上,由③得112122222+-⋅=⎪⎭⎫ ⎝⎛+-k k p k k ,由此知k ≠±1, 即 1242-=k k p ⑤同理由④得()11621182222+⋅=⎪⎪⎭⎫ ⎝⎛+-k k p k k . 即 ()()kk k p 112222+-=. 从而 1242-k k =()()kk k 112222+-,整理得 k 2-k -1=0. 解得.25125121-=+=k k , 但当251-=k 时,由③知055<-='A x , 这与A '在抛物线y 2=2px (p >0)上矛盾,故舍去2512-=k . 设251+=k ,则直线l 的方程为x y 251+=. 将251+=k 代入⑤,求得552=p .所以直线方程为x y 251+=. 抛物线方程为x y 5542=. 解法二:设点A 、B 关于l 的对称点分别为A '(x 1、y 1)、B '(x 2,y 2),则|OA '|=|OA |=1,|OB '|=|OB |=8.设由x 轴正向到OB '的转角为α,则x 2=8cos α,y 2=8s in α. ①因为A '、B '为A 、B 关于直线l 的对称点,而∠BOA 为直角,故∠B 'OA '为直角,因此 x 1=cos ⎪⎭⎫⎝⎛-2πα=sin α,y 1=sin ⎪⎭⎫ ⎝⎛-2πα=-cos α, ②由题意知x 1>0,x 2>0,故α为第一象限角. 因为A '、B '都在抛物线y 2=2px 上,将①、②代入得cos 2α=2p ·sin α,64sin 2α=2p ·8cos α.∴8sin 3α=cos 3α, ∴2sin α=cos α, 解得 52cos 51sin ==αα,.将52cos 51sin ==αα,代入cos 2α=2p sin α得552sin 2cos 2==ααp ,∴抛物线C 的方程为x y 5542=. 因为直线l 平分∠B 'OB ,故l 的斜率 ⎪⎭⎫⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=42221πααπαtg tg k 251sin 1cos 2cos 12sin +=-=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=ααπαπα ∴直线l 的方程为x y 215+=. 25.本小题考查等差数列、等比数列、数列极限等基础知识考查逻辑推理能力和分析问题与解决问题的能力.解:(1)由题意,当n =1时有11222S a =+,S 1=a 1, ∴11222a a =+, 解得a 1=2.当n =2时有22222S a =+,S 2=a 1+ a 2,a 1=2代入,整理得 (a 2-2)2=16.由a 2>0,解得 a 2=6. 当n =3时有33222S a =+,S 3=a 1+ a 2+ a 3,将a 1=2,a 2=6代入,整理得 (a 3-2)2=64.由a 3>0,解得 a 3=10. 故该数列的前3项为2,6,10.(2)解法一:由(1)猜想数列{a n }有通项公式a n =4n -2. 下面用数学归纳法证明数列{ a n }的通项公式是a n =4n -2 (n ∈N ).①当n =1时,因为4×1-2=2,又在(1)中已求出a 1=2,所以上述结论成立. ②假设n =k 时结论成立,即有a k =4k -2.由题意,有k k S a 222=+, 将a k =4k -2代入上式,得2k =k S 2,解得S k =2k 2.由题意,有11222++=+k k S a ,S k +1=S k +a k +1, 将S k =2k 2代入,得2122⎪⎭⎫ ⎝⎛++k a =2(a k +1+2k 2),整理得21+k a -4 a k +1+4-16 k 2=0.由a k +1>0,解得a k +1=2+4k .所以a k +1=2+4k =4(k +1)-2. 这就是说,当n =k +1时,上述结论成立. 根据①、②,上述结论对所有的自然数n 成立. 解法二:由题意,有()N n S a n n ∈=+222,整理得S n =81(a n +2)2, 由此得 S n +1 =81(a n +1+2)2, ∴a n +1= S n +1-S n =81[(a n +1+2)2-(a n +2)2],整理得(a n +1+ a n )( a n +1-a n -4)=0,由题意知 a n +1+a n ≠0,∴a n +1-a n =4.即数列{ a n }为等差数列,其中a 1=2,公差d =4.∴a n =a 1+(n -1)d =2+4(n -1), 即通项公式为a n =4n -2.(3)解:令c n =b n -1,则⎪⎪⎭⎫ ⎝⎛-+=++22111n n n n n a a a a c ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛--+=112121121221n n n n 121121+--=n n , b 1+b 2+…+b n -n =c 1+c 2+…+c n =⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1211215131311n n 1211+-=n . ∴()11211lim lim 21=⎪⎭⎫ ⎝⎛+-=-+++∞→∞→n n b b b n n n。
1999年普通高等学校招生全国统一考试数 学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷第1至 2页。
第II 卷3至8页。
共150分。
考试时间120分钟。
第I 卷(选择题共60分)注意事项1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写 在答题卡上。
2. 每小题选出答案后,用铅笔把答题卡对应题目的答案标号涂黑,如需改 动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3. 考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin()()[]βαβαβα--+=sin sin 21sin cos()()[]βαβαβα-++=cos cos 21cos cos()()[]βαβαβα--+-=cos cos 21sin sin正棱台、圆台的侧面积公式()l c c S +'=21台侧其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式()h S S S S V +'+'=31台体其中S '、S 分别表示上、下底面积,h 表示高一、 选择题:本大题共14小题;第(1)—(10)题每小题4分,第(11)—(14)题每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 如图,I 是全集,M 、P 、S 是I3个子集,则阴影部分所表示的集合是(A )(M ∩P )∩S (B )(M ∩P )∪S(C )(M ∩P )∩S (D )(M ∩P )∪S(2) 已知映射f :B A →,其中,集合{},4,3,2,1,1,2,3---=A射f 下的象,且对任意的,A a ∈在B (A )4 (B )5 (C )6 (D )7 (3)若函数()x f y =的反函数是()()0,,≠==ab b a f x g y ,则()b g 等于(A )a (B )1-a (C )b (D )1-b(4)函数()()()0sin >+=ωϕωx M x f 在区间[]b a ,上是增函数,且 ()(),,M b f M x f =-=则函数()()ϕω+=x M x g cos在[]b a ,上 (A )是增函数 (B )是减函数(C )可以取得最大值M (D )可以取得最小值M - (5)若()x x f sin 是周期为π的奇函数,则()x f 可以是(A )x sin (B )x cos (C )x 2sin (D )x 2cos(6)在极坐标系中,曲线⎪⎭⎫ ⎝⎛-=3sin 4πθρ关于(A )直线3πθ=轴对称 (B )直线πθ65=轴对称 (C )点⎪⎭⎫⎝⎛3,2π中心对称 (D )极点中心对称(7)若干毫升水倒入底面半径为cm 2的圆柱形器皿中,量得水面的高度为cm 6, 若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是(A )cm 36 (B )cm 6 (C )cm 3182 (D )cm 3123(8)若(),323322104x a x a x a a x +++=+则()()2312420a a a a a +-++的值为(A )1 (B )1- (C )0 (D )2 (9)直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为(A )6π (B )4π (C )3π (D )2π (10)如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF 23=,EF 与面AC 的距离为2,则该多面体的体积为(A )29 (B )5 (C )6 (D )215(11)若,22sin ⎪⎭⎫ ⎝⎛<<->>παπαααctg tg 则∈α(A )⎪⎭⎫ ⎝⎛--4,2ππ (B )⎪⎭⎫⎝⎛-0,4π (C )⎪⎭⎫ ⎝⎛4,0π (D )⎪⎭⎫⎝⎛2,4ππ(12)如果圆台的上底面半径为5,下底面半径为R ,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R=(A )10 (B )15 (C )20 (D )25(13)已知两点,45,4,45,1⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛N M 给出下列曲线方程:①0124=-+y x ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是(A )①③ (B )②④ (C )①②③ (D )②③④(14)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元 的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒, 则不同的选购方式共有(A )5种 (B )6种 (C )7种 (D )8种1999年普通高等学校招生全国统一考试 数 学(理工农医类) 第II 卷(非选择题共90分)注意事项:1.第II 卷共6页,用钢笔或圆珠笔直接写答在试题卷中。
1999年普通高等学校招生全国统一考试数 学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷第1至 2页。
第II 卷3至8页。
共150分。
考试时间120分钟。
第I 卷(选择题共60分)注意事项1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写 在答题卡上。
2. 每小题选出答案后,用铅笔把答题卡对应题目的答案标号涂黑,如需改 动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3. 考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin()()[]βαβαβα--+=sin sin 21sin cos()()[]βαβαβα-++=cos cos 21cos cos()()[]βαβαβα--+-=cos cos 21sin sin正棱台、圆台的侧面积公式()l c c S +'=21台侧其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式()h S S S S V +'+'=31台体其中S '、S 分别表示上、下底面积,h 表示高一、 选择题:本大题共14小题;第(1)—(10)题每小题4分,第(11)—(14)题每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 如图,I 是全集,M 、P 、S 是I3个子集,则阴影部分所表示的集合是(A )(M ∩P )∩S (B )(M ∩P )∪S(C )(M ∩P )∩S (D )(M ∩P )∪S(2) 已知映射f :B A →,其中,集合{},4,3,2,1,1,2,3---=A射f 下的象,且对任意的,A a ∈在B (A )4 (B )5 (C )6 (D )7 (3)若函数()x f y =的反函数是()()0,,≠==ab b a f x g y ,则()b g 等于(A )a (B )1-a (C )b (D )1-b(4)函数()()()0sin >+=ωϕωx M x f 在区间[]b a ,上是增函数,且 ()(),,M b f M x f =-=则函数()()ϕω+=x M x g cos在[]b a ,上 (A )是增函数 (B )是减函数(C )可以取得最大值M (D )可以取得最小值M - (5)若()x x f sin 是周期为π的奇函数,则()x f 可以是(A )x sin (B )x cos (C )x 2sin (D )x 2cos(6)在极坐标系中,曲线⎪⎭⎫ ⎝⎛-=3sin 4πθρ关于(A )直线3πθ=轴对称 (B )直线πθ65=轴对称 (C )点⎪⎭⎫⎝⎛3,2π中心对称 (D )极点中心对称(7)若干毫升水倒入底面半径为cm 2的圆柱形器皿中,量得水面的高度为cm 6, 若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是(A )cm 36 (B )cm 6 (C )cm 3182 (D )cm 3123(8)若(),323322104x a x a x a a x +++=+则()()2312420a a a a a +-++的值为(A )1 (B )1- (C )0 (D )2 (9)直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为(A )6π (B )4π (C )3π (D )2π (10)如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF 23=,EF 与面AC 的距离为2,则该多面体的体积为(A )29 (B )5 (C )6 (D )215(11)若,22sin ⎪⎭⎫ ⎝⎛<<->>παπαααctg tg 则∈α(A )⎪⎭⎫ ⎝⎛--4,2ππ (B )⎪⎭⎫⎝⎛-0,4π (C )⎪⎭⎫ ⎝⎛4,0π (D )⎪⎭⎫⎝⎛2,4ππ(12)如果圆台的上底面半径为5,下底面半径为R ,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R=(A )10 (B )15 (C )20 (D )25(13)已知两点,45,4,45,1⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛N M 给出下列曲线方程:①0124=-+y x ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是(A )①③ (B )②④ (C )①②③ (D )②③④(14)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元 的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒, 则不同的选购方式共有(A )5种 (B )6种 (C )7种 (D )8种1999年普通高等学校招生全国统一考试 数 学(理工农医类) 第II 卷(非选择题共90分)注意事项:1.第II 卷共6页,用钢笔或圆珠笔直接写答在试题卷中。
1996年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共65分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一.选择题:本大题共15小题,第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知全集I N =,集合{}{}2,,4,A x x n n N B x x n n N ==∈==∈||,则 A .B A I = B .B A I = C .B A I = D .B A I = 【答案】C【解析】由于B A Þ,所以AB I =.2.当1a >时,在同一坐标系中,函数xy a -=与log a y x =的图像【答案】A【解析】当1a >时,函数xy a -=是减函数,且过点(0,1);而函数log a y x =为增函数,且过点(1,0).3.若22sin cos x x >,则x 的取值范围是 A .⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,412432ππππ B .⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,452412ππππ C .⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,4141ππππ D .⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ 【答案】D【解析】2221sin cos sin sin 22x x x x >⇒>⇒>或sin 2x <-,解得24k x ππ+< 32()4k k Z ππ<+∈或322()44k x k k Z ππππ-<<-∈,即(21)(21)4k x k πππ-+<<- 3()4k Z π+∈,所以x 的取值范围是⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ.4.复数54)31()22(i i -+等于A .i 31+B .i 31+-C .i 31-D .i 31--【答案】B44425(2)12()i ω===-+-.5.如果直线,l m 与平面,,αβγ满足:,//,l l m βγαα=⊂和m γ⊥,那么必有A .αγ⊥且l m ⊥B .αγ⊥且//m βC .//m β且l m ⊥D .//αβ且αγ⊥ 【答案】A 【解析】略. 6.当22x ππ-≤≤时,函数()sin f x x x =+的A .最大值是1,最小值是1-B .最大值是1,最小值是12-C .最大值是2,最小值是2-D .最大值是2,最小值是1- 【答案】D【解析】因为()sin 2sin()3f x x x x π==+,由已知5636x πππ-≤+≤.故当 32x ππ+=,即6x π=时,()f x 有最大值是2;当36x ππ+=-,即2x π=-时,()f x 有最小值是1-. 7.椭圆⎩⎨⎧+-=+=ϕϕsin 51,cos 33y x 的两个焦点坐标是A .(3,5),(3,3)---B .(3,3),(3,5)-C .(1,1),(7,1)-D .(7,1),(1,1)--- 【答案】B【解析】消去参数可得直角坐标方程22(1)(3)1259y x +-+=,故焦点坐标是(3,3),(3,5)-.8.若02πα<<,则arcsin[cos()]arccos[sin()]2παπα+++等于A .2πB .2π-C .22πα-D .22πα--【答案】A【解析】解法一:由于已知sin 0,cos()02παα>+<,原式arcsin(sin )arccos(sin )arccos(sin )αααπααπ=-+-=-+-=-+arccos[cos()]()222πππααπα--=-+--=.解法二:当1x ≤时arcsin arccos 2x x π+=,而1sin 0α-<-<,∴原式arcsin(sin )arccos(sin )2παα=-+-=.9.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD a =,则三棱锥D ABC -的体积为A .63aB .123a C .3123a D .3122a 【答案】D【解析】取AC 的中点O ,连接,BO DO ,如图所示.,ABC ADC ∆∆均为等腰直角三角形,22AC BO DO ===, ∴2BOD π∠=,则DO ⊥面ABC ,DO 就是三棱锥D ABC -的高,所以231132212D ABC V a -=⋅⋅=.10.等比数列{}n a 的首项11a =-,前n 项和为n S ,若3231510=S S 则n n S ∞→lim 等于 A .32 B .23- C .2 D .2- 【答案】B【解析】显然1q ≠,由3231510=S S 得10151(1)31(1)32a q a q -=-,则105323110q q --=,解得 5132q =-,得12q =-,所以12lim 13n n a S q →∞==--.11.椭圆的极坐标方程为θρcos 23-=,则它在短轴上的两个顶点的极坐标是A .(3,0),(1,)π B.3)22ππ C .5(2,),(2,)33ππD .(2arctg )22π- 【答案】C【解析】将极坐标方程为θρcos 23-=化为直角坐标方程22(1)143x y -+=,在短轴上的两个顶点的直角坐标是,所以极坐标是5(2,),(2,)33ππ.12.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为A .130B .170C .210D .260 【答案】C【解析】由已知得230,100m m S S ==,则232,,m m m m m S S S S S --成等差数列,所以323()210m m m S S S =-=.13.设双曲线)0(12222b a by a x <<=-的半焦距为c ,直线l 过(,0),(0,)a b 两点.已知原点到直线l 的距离为c 43,则双曲线的离心率为 A .2 B .3 C .2 D .332 【答案】A【解析】直线l 的方程为0bx ay ab +-=,原点到直线l 4c =,则22222316a b c a b =+,即22222()316a c a c c -=,解得2e =或e =0a b <<,所以e ==>,所以3e =不合题意.14.母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于 A .π322 B .π332 C .π2 D .π362 【答案】D15.设()f x 是(,)-∞+∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f 等于A .0.5B .0.5-C .1.5D . 1.5- 【答案】B【解析】(7.5)(5.52)(5.5)[(3.5)](3.5)(1.5)[(0.5)]f f f f f f f =+=-=--==-=---(0.5)0.5f =-=-.第Ⅱ卷(非选择题共85分)二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.16.已知圆07622=--+x y x 与抛物线)0(22>=p px y 的准线相切,则p = . 【答案】2【解析】圆的标准方程为22(3)16x y -+=,圆心和半径分别为(3,0),4,所以4312p=-=,则2p =.17.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个.(用数字作答) 【答案】32【解析】从7个点中取3个点有37C 种取法,3个点共线的有3种,三角形共有37332C -=个.18.tg20tg403tg20tg40++的值是 . 【答案】3【解析】∵tg20tg40tg(2040)31tg20tg40++==-,∴tg20tg403(1-tg20tg40)+=,tg20tg403tg20tg403++=.19.如图,正方形ABCD 所在平面与正方形ABEF 所在平面成60的二面角,则异面直线AD与BF 所成角的余弦值是 .【答案】42 【解析】由于//AD BC ,所以CBF ∠即为异面直线AD 与BF 所成角,设正方形边长为a ,在CBF ∆中,,,BF BC a FC =====,222cos 24BF BC FC CBF BF BC +-∠==⋅.三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤. 20.(本小题满分11分)解不等式1)11(log >-xa .【解】本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.满分11分.(Ⅰ)当1>a 时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧>->-.11,011a xx——2分由此得xa 11>-. 因为10a -<,所以0x <,∴101x a<<-. ——5分 (Ⅱ)当01a <<时,原不等式等价于不等式组:110,11.xa x⎧->⎪⎪⎨⎪-<⎪⎩——7分由①得,1x >或0x <, 由②得,101x a <<-,∴ax -<<111. ——10分 综上,当1>a 时,不等式的解集为⎭⎬⎫⎩⎨⎧<<-011x a x;当10<<a 时,不等式的解集为⎭⎬⎫⎩⎨⎧-<<a x x 111. ——11分 21.(本小题满分12分)已知ABC ∆的三个内角,,A B C 满足:BC A B C A cos 2cos 1cos 1,2-=+=+,求 2cosCA -的值. 【解】本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.满分12分.解法一:由题设条件知60,120B A C =+=. ——2分∵cos 60=-22cos 1cos 1-=+CA .将上式化为C A C A cos cos 22cos cos -=+. 利用和差化积及积化和差公式,上式可化为)]cos()[cos(22cos 2cos2C A C A CA C A -++-=-+. ——6分 将21)cos(,2160cos 2cos-=+==+C A C A 代入上式得cos)22A C A C -=-. 将1)2(cos 2)cos(2--=-CA C A 代入上式并整理得 023)2cos(2)2(cos 242=--+-CA C A ——9分(2cos3)022A C A C ---+=,∵302A C -+≠,∴2cos 02A C-=.从而得cos2A C -=. ——12分 解法二:由题设条件知60,120B A C =+=.设2A Cα-=,则2A C α-=,可得60,60A C αα=+=-, ——3分 所以)60cos(1)60cos(1cos 1cos 1αα-++=+ C A ααααsin 23cos 211sin 23cos 211++-=ααα22sin 43cos 41cos -=43cos cos 2-=αα. ——7分 依题设条件有Bcos 243cos cos 2-=-αα, ∵21cos =B ,∴2243cos cos 2-=-αα.整理得22cos 0,αα+-= ——9分(2cos 3)0αα-+=,∵03cos 22≠+α,∴02cos 2=-α.从而得222cos=-C A . ——12分22.(本小题满分12分)如图1,在正三棱柱111ABC A B C -中,1E BB ∈,截面1A EC ⊥侧面1AC . (Ⅰ)求证:1BE EB =;(Ⅱ)若111AA A B =;求平面1A EC 与平面111A B C 所成二面角(锐角)的度数. 注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ). (Ⅰ)证明:(如图2)在截面1A EC 内,过E 作1EG AC ⊥,G 是垂足.① ∵ ,∴EG ⊥侧面1AC ;取AC 的中点F ,连结,BF FG ,由AB BC = 得BF AC ⊥.② ∵ ,∴BF ⊥侧面1AC ;得//,,BF EG BF EG 确定一个平面,交侧面1AC 于FG .③ ∵ ,∴//BE FG ,四边形BEGF 是平行四边形,BE FG =. ④ ∵ ,∴11//,FG AA AAC FGC ∆∆,⑤ ∵ ,∴112121BB AA FG ==,即112BE BB =,故1BE EB =. (Ⅱ)解:【解】本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.满分12分.(Ⅰ)①面1A EC ⊥侧面1AC , ——2分②面ABC ⊥侧面1AC , ——3分 ③//BE 侧面1AC , ——4分 ④1//BE AA , ——5分 ⑤//AF FC , ——6分 (Ⅱ)分别延长11,CE C B 交于点D ,连结1A D .∵1111111//,22EB CC EB BB CC ==,∴,21111111B A C B DC DB ===∵11111160B AC C B A ∠=∠=︒,1111111(180)302DA B A DB DB A ∠=∠=︒-∠=︒,∴111111190DAC DA B B AC ∠=∠+∠=︒, 即111DA AC ⊥. ——9分∵1CC ⊥面111AC B ,即11A C 是1A C 在平面11AC D 上的射影, 根据三垂线定理得11DA A C ⊥,所以11CAC ∠是所求二面角的平面角. ——11分 ∵11111111,90CC AA A B AC AC C ===∠=︒,∴1145CA C ∠=,即所求二面角为45. ——12分 23.(本小题满分10分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=耕地面积总产量,人均粮食占有量=总人口数总产量)【解】本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.设耕地平均每年至多只能减少x 公顷,又设该地区现有人口为P 人,粮食单产为M 吨/公顷.依题意得不等式%)101(10%)11()1010(%)221(4104+⨯⨯≥+⨯-⨯+⨯P M P x M .——5分 化简得]22.1)01.01(1.11[10103+⨯-⨯≤x . ——7分 ∵103312210101.1(10.01) 1.110[1]10[1(10.010.01)]1.22 1.22C C ⨯+⨯-=⨯-⨯+⨯+⨯+3 1.110[1 1.1045] 4.11.22≈⨯-⨯≈. —— 9分 ∴4x ≤(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷. ——10分 24.(本小题满分12分)已知12,l l 是过点)0,2(-P 的两条互相垂直的直线,且12,l l 与双曲线122=-x y 各有两个交点,分别为11,A B 和22,A B .(Ⅰ)求1l 的斜率1k 的取值范围;(Ⅱ)若1122A B B =,求12,l l 的方程.【解】本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.(I )依题设,12,l l 的斜率都存在,因为1l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=1)0)(2(2211x y k x k y ① ——1分 有两个不同的解.在方程组①中消去y ,整理得01222)1(2121221=-++-k x k x k . ②若0121=-k ,则方程组①只有一个解,即1l 与双曲线只有一个交点,与题设矛盾,故0121≠-k ,即11≠k ,方程②的判别式为2222211111)4(1)(21)4(31)k k k ∆=---=-.设2l 的斜率为2k ,因为2l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=.1),0)(2(2222x y k x k y ③ 有两个不同的解.在方程组③中消去y ,整理得01222)1(2222222=-++-k x k x k . ④同理有)13(4,0122222-=∆≠-k k .又因为12l l ⊥,所以有121l l ⋅=-. ——4分于是,12,l l 与双曲线各有两个交点,等价于⎪⎪⎩⎪⎪⎨⎧≠-=⋅>->-.1,1,013,0131212221k k k k k解得⎪⎩⎪⎨⎧≠<<.1,33311k k——6分∴)3,1()1,33()33,1()1,3(1 ----∈k . ——7分 (Ⅱ)设),(),,(221111y x B y x A .由方程②知112,122212121212121--=⋅--=+k k x x k k x x . ∴22222111212112()()(1)()A B x x y y k x x =-+-=+-22112214(1)(31)(1)k k k +-=-. ⑤ ——9分 同理,由方程④可求得222B A ,整理得2212121222)1()3)(1(4k k k B A --+= ⑥ 由22115B A B A =,得2211225A B A B =将⑤、⑥代入上式得22121212212121)1()3)(1(45)1()13)(1(4k k k k k k --+⨯=--+,解得21±=k 取21=k 时,)2(22:),2(2:21+-=+=x y l x y l ; 取21-=k 时,)2(22:),2(2:21+=+-=x y l x y l . ——12分25.(本小题满分12分)已知,,a b c 是实数,函数2(),()f x ax bx c g x ax b =++=+,当11x -≤≤时,()1f x ≤. (Ⅰ)证明:1c ≤;(Ⅱ)证明:当11x -≤≤时,()2g x ≤;(Ⅲ)设0a >,当11x -≤≤时,()g x 的最大值为2,求()f x .【解】本小题主要考查函数的性质、含有绝对值的不等式的性质,以及综合运用数学知识分析问题与解决问题的能力.满分12分.(Ⅰ)证明:由条件当11x -≤≤时,()1f x ≤,取0x =得(0)1c f =≤,即1c ≤.——2分(Ⅱ)证法一:当0a >时,()g x ax b =+在[1,1]-上是增函数,∴(1)(0)(1)g g g -≤≤,∵()1(11),1f x x c ≤-≤≤≤,∴(1)(1)(1)2g a b f c f c =+=-≤+≤,(1)(1)((1))2g a b f c f c -=-+=--+≥--+≥-,由此得()2g x ≤. ——5分 当0a <时,()g x ax b =+在[1,1]-上是减函数,∴(1)(0)(1)g g g -≥≥, ∵()1(11),1f x x c ≤-≤≤≤,∴(1)(1)(1)2g a b f c f c -=-+=--+≤-+≤,(1)(1)((1))2g a b f c f c =+=-≥-+≥-,由此得()2g x ≤; ——7分当0a =时,(),()g x b f x bx c ==+.∵11x -≤≤,∴()(1)(1)2g x f c f c =-≤+≤.综上得()2g x ≤. ——8分证法二:由4)1()1(22--+=x x x ,可得221111()[()()]()2222x x x x g x ax b a b +-+-=+=-+- ])21()21([])21()21([22c x b x a c x b x a +-+--++++= 11()()22x x f f +-=-, ——6分当11x -≤≤时,有,0211,1210≤-≤-≤+≤x x 根据含绝对值的不等式的性质,得2)21()21()21()21(≤-++≤--+x f x f x f x f ,即()2g x ≤. ——8分 (Ⅲ)因为0a >,()g x 在[1,1]-上是增函数,当1x =时取得最大值2,即(1)(1)(0)2g a b f f =+=-=. ①∵1(0)(1)2121f f -≤=-≤-=-,∴(0)1c f ==-. ——10分 因为当11x -≤≤时,()1f x ≥-,即()(0)f x f ≥,根据二次函数的性质,直线0x =为()f x 的图像的对称轴,由此得02ba-=,即0b =.由①得2a =.所以 2()21f x x =-. ——12分。
1996年普通高等学校招生全国统一考试 数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟. 第Ⅰ卷(选择题共65分)一、选择题:本大题共15小题;第(1) (10)题每小题4分,第(11) (15)题每小题5分,共65分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知全集I =N,集合A ={x │x =2n,n ∈N},B ={x │x =4n,n ∈N},则B A I )D (B A I )C (B A I )B (B A I )A (⋃=⋃=⋃=⋃=[Key] C(1)已知全集I =N,集合A ={x │x =2n,n ∈N},B ={x │x =4n,n ∈N},则B A I )D (B A I )C (B A I )B (B A I )A (⋃=⋃=⋃=⋃=[Key] C(3)若sin 2x>cos 2x,则x 的取值范围是}Z k ,43k x 41k 2|x ){D (}Z k ,43k x 41k |x ){C (}Z k ,45k 2x 41k 2|x ){B (}Z k ,41k 2x 43k 2|x ){A (∈π+π<<π+π∈π+π<<π-π∈π+π<<π+π∈π+π<<π-π[Key] D(4)复数)i 31()i 22(4-+等于i 31)D (i 31)C (i 31)B (i 31)A (---+-+[Key] B5)如果直线l 、m 与平面α、β、γ满足:l =β∩γ,l//α,m ⊂α和m ⊥γ那么必有 (A)α⊥γ且l ⊥m (B)α⊥γ且m ∥β (C)m ∥β且l ⊥m (D)α∥β且α⊥γ [Key] A (6)当2x 2π≤≤π-,函数xcos 3x sin )x (f +=的(A)最大值是1,最小值是-1(B)最大值是1,最小值是-(1/2) (C)最大值是2,最小值是-2 (D)最大值是2,最小值是-1[Key] D(7)椭圆⎩⎨⎧ϕ+-=ϕ+=sin 51y cos 33x 的两个焦点坐标是(B) (A)(-3,5),(-3,-3) (B)(3,3,),(3,-5) (C)(1,1,),(-7,1) (D)(7,-1,),(-1,-1) (8)若2a 0π<<,则)]a (arccos[sin )]a 2(arcsin[cos +π++π等于a 22)D (a 22)C (2)B (2)A (-π--ππ-π[Key] A(9)将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a,则三棱锥D -ABC 的体积为3333a 122)D (a 123)C (12a )B (6a )A ([Key] D(10)等比数列{a n }的首项a 1=-1,前n 项的和为S n ,若3231S S 510=,则n n S lim ∞→等于2)D (2)C (32)B (32)A (-- [Key]B (11)椭圆的极坐标方程为θ-=ρcos 23,则它在短轴上的两个顶点的极坐标是)23arctg 2,7)(23arctg ,7)(B ()35,2)(3,2)(B ()23,3)(2,3)(B (),1)(0,3)(A (-ππππππ [Key] C(12)等差数列{a n 的前m 项和为30,前2m 项和为100,则它的前3m 项和为 (A)130 (B)170 (C)210 (D)260 [Key] C(13)设双曲线)b a 0(1b y a x 2222<<=+的半焦距为c ,直线l 过两点(a,0)(0,b)。
1996年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共65分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一.选择题:本大题共15小题,第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) 已知全集I =N ,集合A ={x │x =2n ,n ∈N },B ={x │x =4n ,n ∈N },则 ( )(A) B A I =(B)B A I =(C) B A I =(D) B A I =(2) 当a >1时,在同一坐标系中,函数y =a -x与y =log a x 的图像( )(3) 若sin 2x >cos 2x ,则x 的取值范围是 ( )(A) ⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,412432ππππ(B) ⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,452412ππππ(C) ⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,4141ππππ(D) ⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ(4) 复数54)31()22(i i -+等于 ( )(A) i 31+ (B) i 31+- (C) i 31- (D) i 31--(5) 如果直线l 、m 与平面α、β、γ满足:l l ,γβ =∥m m 和αα⊂,,⊥γ,那么必有( )(A)α⊥γ且l ⊥m (B)α⊥γ且m ∥β (C)m ∥β且l ⊥m(D)α∥β且α⊥γ(6) 当x x x f x cos 3sin )(,22+=≤≤-函数时ππ的( )(A) 最大值是1,最小值是-1 (B) 最大值是1,最小值是-21(C) 最大值是2,最小值是-2 (D) 最大值是2,最小值是-1(7) 椭圆⎩⎨⎧+-=+=ϕϕsin 51,cos 33y x 的两个焦点坐标是( )(A) (-3,5),(-3,-3) (B) (3,3),(3,-5) (C) (1,1),(-7,1)(D) (7,-1),(-1,-1))](arccos[sin )]2(arcsin[cos ,20)8(απαππα+++<<则若等于( ) (A)2π(B) -2π(C)2π-2α (D) -2π-2α(9) 将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D -ABC 的体积为( )(A)63a(B)123a(C)3123a(D)3122a(10) 等比数列{}n a 的首项a 1=-1,前n 项和为S n ,若3231510=S S 则n n S ∞→lim 等于( )(A) 32 (B) -32(C) 2 (D) -2(11) 椭圆的极坐标方程为θρcos 23-=,则它在短轴上的两个顶点的极坐标是( )(A) (3,0),(1,π) (B) (3,2π),(3,23π)(C) (2,3π),(2,35π)(D) (7,23arctg),(7,23arctg -2π)(12) 等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )(A) 130 (B) 170 (C) 210 (D) 260(13) 设双曲线)0(12222b a by ax <<=-的半焦距为c ,直线l 过),0)(0,(b a 两点,已知原点到直线l 的距离为c 43,则双曲线的离心率为 ( )(A) 2(B) 3 (C) 2 (D)332 (14) 母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于 ( )(A)π322 (B)π332 (C) π2 (D)π362(15) 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5) 等于( )(A) 0.5(B) -0.5(C) 1.5(D) -1.5第Ⅱ卷(非选择题共85分)二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(16)已知圆07622=--+x y x 与抛物线)0(22>=p px y 的准线相切,则P= (17)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个(用数字作答)(18)40tg 20tg 340tg 20tg ++的值是(19)如图,正方形ABCD 所在平面与正方形ABEF 所在平面成60°的二面角,则异面直线AD 与BF 所成角的余弦值是三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤.(20)解不等式1)11(log >-x a .(21)已知△ABC 的三个内角A ,B ,C 满足:BCAB C A cos 2cos 1cos 1,2-=+=+,求2cos C A -的值.22.如图,在正三棱柱ABC -A 1B 1C 1中,E ∈BB 1,截面A 1EC ⊥侧面AC 1.(Ⅰ)求证:BE =EB 1;(Ⅱ)若AA 1=A 1B 1;求平面A 1EC 与平面A 1B 1C 1所成二面角(锐角)的度数.注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ).(右下图)(Ⅰ)证明:在截面A 1EC 内,过E 作EG ⊥A 1C ,G 是垂足. ① ∵∴EG ⊥侧面AC 1;取AC 的中点F ,连结BF ,FG ,由AB =BC 得BF ⊥AC ,② ∵∴BF ⊥侧面AC 1;得BF ∥EG ,BF 、EG 确定一个平面,交侧面AC 1于FG . ③ ∵∴BE ∥FG ,四边形BEGF 是平行四边形,BE =FG , ④ ∵ ∴FG ∥AA 1,△AA 1C ∽△FGC , ⑤ ∵ ∴112121BB AA FG ==,即11,21EB BE BB BE ==故23.某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=耕地面积总产量,人均粮食占有量=总人口数总产量)24.已知l 1、l 2是过点)0,2(-P 的两条互相垂直的直线,且l 1、l 2与双曲线122=-x y 各有两个交点,分别为A 1、B 1和A 2、B 2.(Ⅰ)求l 1的斜率k 1的取值范围;(Ⅱ)若12211,5l B A B A 求=、l 2的方程25.已知a 、b 、c 是实数,函数f (x )=ax 2+bx +c ,g (x )=ax +b ,当-1≤x ≤1时,│f (x )│≤1.(Ⅰ)证明:│c │≤1;(Ⅱ)证明:当-1≤x ≤1时,│g (x )│≤2;(Ⅲ)设a >0,当-1≤x ≤1时,g (x )的最大值为2,求f (x ).1996年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:一.本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四.只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.第(1)-(10)题每小题4分,第(11)-(15)题每小题5分.满分65分.(1)C (2)A (3)D(4)B(5)A(6)D(7)B(8)A(9)D(10)B (11)C (12)C (13)A (14)D (15)B二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(16)2 (17)32 (18)3 (19)42三.解答题(20)本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.满分11分.解:(Ⅰ)当a >1时,原不等式等价于不等式组: ⎪⎪⎩⎪⎪⎨⎧>->-.11,011a x x ——2分由此得xa 11>-.因为1-a <0,所以x <0, ∴.011<<-x a——5分(Ⅱ)当0<a <1时,原不等式等价于不等式组: ⎪⎪⎩⎪⎪⎨⎧<->-.11,011a xx由①得,x >1或x<0, 由②得,,110ax -<<∴ax -<<111——10分综上,当1>a 时,不等式的解集为⎭⎬⎫⎩⎨⎧<<-011x a x;当10<<a 时,不等式的解集为⎭⎬⎫⎩⎨⎧-<<a x x 111 ——11分(21)本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.满分12分.解法一:由题设条件知B =60°,A +C =120°. ——2分∵,2260cos 2-=-∴22cos 1cos 1-=+CA将上式化为C A C A cos cos 22cos cos -=+ 利用和差化积及积化和差公式,上式可化为)]cos()[cos(22cos2cos2C A C A C A C A -++-=-+ ——6分将21)cos(,2160cos 2cos -=+==+C A C A代入上式得)cos(222)2cos(C A C A --=- 将1)2(cos 2)cos(2--=-C A C A 代入上式并整理得 023)2cos(2)2(cos 242=--+-C A C A ——9分,0)32cos 22)(22cos2(=+---CA C A∵,032cos 22≠+-C A ∴.022cos2=--CA从而得.222cos=-C A ——12分解法二:由题设条件知B =60°,A +C =120°. 设αα2,2=--=C A C A 则,可得α+=60A ,α-=60C——3分所以)60cos(1)60cos(1cos 1cos 1αα-++=+CAααααsin 23cos 211sin 23cos 211++-=ααα22sin 43cos 41cos -=43cos cos 2-=αα ——7分依题设条件有Bcos 243cos cos 2-=-αα,∵21cos =B∴2243cos cos 2-=-αα整理得,023cos 2cos 242=-+αα——9分,0)3cos 22)(2cos 2(=+-αα∵03cos 22≠+α, ∴02cos 2=-α.从而得222cos =-C A . ——12分(22)本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.满分12分.(Ⅰ) ①∵面A 1EC ⊥侧面AC 1,——2分 ②∵面ABC ⊥侧面AC 1, ——3分 ③∵BE ∥侧面AC 1, ——4分 ④∵BE ∥AA 1,——5分⑤∵AF =FC ,——6分(Ⅱ)解:分别延长CE 、C 1B 1交于点D ,连结A 1D . ∵1EB ∥11112121,CC BB EB CC ==,∴,21111111B A C B DC DB ===∵∠B 1A 1C 1=∠B 1 C 1A 1=60°, ∠DA 1B 1=∠A 1DB 1=21(180°-∠D B 1A 1)=30°,∴∠DA 1C 1=∠DA 1B 1+∠B 1A 1C 1=90°,即1DA ⊥11C A——9分∵CC 1⊥面A 1C 1B 1,即A 1C 1是A 1C 在平面A 1C 1D 上的射影,根据三垂线定理得DA 1⊥A 1C , 所以∠CA 1C 1是所求二面角的平面角. ——11分∵CC 1=AA 1=A 1B 1=A 1C 1,∠A 1C 1C =90°, ∴∠CA 1C 1=45°,即所求二面角为45°——12分 (23)本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.解:设耕地平均每年至多只能减少x 公顷,又设该地区现有人口为P 人,粮食单产为M 吨/公顷.依题意得不等式%)101(10%)11()1010(%)221(4104+⨯⨯≥+⨯-⨯+⨯PM P x M ——5分化简得]22.1)01.01(1.11[10103+⨯-⨯≤x ——7分∵]22.1)01.01(1.11[10103+⨯-⨯)]01.001.01(22.11.11[1022101103+⨯+⨯+⨯-⨯=C C ]1045.122.11.11[103⨯-⨯≈1.4≈ —— 9分∴x ≤4(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷.——10分(24)本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.解:(I )依题设,l 1、l 2的斜率都存在,因为l 1过点P )0,2(-且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=1)0)(2(2211x y k x k y ① ——1分有两个不同的解.在方程组①中消去y ,整理得01222)1(2121221=-++-k x k x k ②若0121=-k ,则方程组①只有一个解,即l 1与双曲线只有一个交点,与题设矛盾,故0121≠-k ,即11≠k ,方程②的判别式为).13(4)12)(1(4)22(2121212211-=---=∆k k k k设2l 的斜率为2k ,因为2l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=.1),0)(2(2222x y k x k y ③ 有两个不同的解.在方程组③中消去y ,整理得01222)1(2222222=-++-k x k x k ④同理有)13(4,0122222-=∆≠-k k 又因为l 1⊥l 2,所以有k 1·k 2=-1.——4分于是,l 1、l 2与双曲线各有两个交点,等价于 ⎪⎪⎩⎪⎪⎨⎧≠-=⋅>->-.1,1,013,0131212221k k k k k 解得⎪⎩⎪⎨⎧≠<<.1,33311k k ——6分∴)3,1()1,33()33,1()1,3(1 ----∈k ——7分(Ⅱ)设),(),,(221111y x B y x A 由方程②知112,122212121212121--=⋅--=+k k x x k k x x∴│A 1B 1│2=(x 1-x 2)2+(y 1-y 2)222121))(1(x x k -+= 2212121)1()13)(1(4--+=kk k ⑤——9分同理,由方程④可求得222B A ,整理得2212121222)1()3)(1(4k k k B A --+=⑥由22115B A B A =,得2222115B A B A =将⑤、⑥代入上式得22121212212121)1()3)(1(45)1()13)(1(4k k k k k k --+⨯=--+解得21±=k取21=k 时,)2(22:),2(2:21+-=+=x y l x y l ;取21-=k 时,)2(22:),2(2:21+=+-=x y l x y l . ——12分(25)本小题主要考查函数的性质、含有绝对值的不等式的性质,以及综合运用数学知识分析问题与解决问题的能力.满分12分.(Ⅰ)证明:由条件当-1≤x ≤1时,│f (x )│≤1,取x =0得 │c │=│f (0)│≤1, 即│c │≤1. ——2分(Ⅱ)证法一:当a >0时,g (x )=ax +b 在[-1,1]上是增函数, ∴g (-1)≤g (x )≤g (1),∵│f (x )│≤1 (-1≤x ≤1),│c │≤1, ∴g (1)=a +b =f (1)-c ≤│f (1)│+│c │≤2,g (-1)=-a +b =-f (-1)+c ≥-(│f (-1)│+│c │)≥-2, 由此得│g (x )│≤2;——5分当a <0时,g (x )=ax +b 在[-1,1]上是减函数, ∴g (-1)≥g (x )≥g (1),∵│f (x )│≤1 (-1≤x ≤1),│c │≤1,∴g (-1)=-a +b =-f (-1)+c ≤│f (-1)│+│c │≤2, g (1)=a +b =f (1)-c ≥-(│f (1)│+│c │)≥-2, 由此得│g (x )│≤2;——7分当a =0时,g (x )=b ,f (x )=bx +c . ∵-1≤x ≤1,∴│g (x )│=│f (1)-c │≤│f (1)│+│c │≤2. 综上得│g (x )│≤2. ——8分证法二: 由4)1()1(22--+=x x x ,可得b ax x g +=)( )2121(])21()21[(22--++--+=x x b x x a])21()21([])21()21([22c x b x a c x b x a +-+--++++=),21()21(--+=x f x f ——6分当-1≤x ≤1时,有,0211,1210≤-≤-≤+≤x x根据含绝对值的不等式的性质,得2)21()21()21()21(≤-++≤--+x f x f x f x f即│g (x )│≤2.——8分(Ⅲ)因为a >0,g (x )在[-1,1]上是增函数,当x =1时取得最大值2, 即g (1)=a +b =f (1)-f (0)=2. ① ∵-1≤f (0)=f (1)-2≤1-2=-1, ∴c =f (0)=-1.——10分因为当-1≤x ≤1时,f (x )≥-1,即f (x )≥f (0),根据二次函数的性质,直线x =0为f (x )的图像的对称轴,由此得0,02==-b ab 即由① 得a =2. 所以 f (x )=2x 2-1. ——12分。
1996年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共65分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一.选择题:本大题共15小题,第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知全集I N =,集合{}{}2,,4,A x x n n N B x x n n N ==∈==∈||,则 A .B A I = B .B A I = C .B A I = D .B A I = 【答案】C 【解析】由于B A ,所以A B I =.2.当1a >时,在同一坐标系中,函数xy a -=与log a y x =的图像【答案】A【解析】当1a >时,函数xy a -=是减函数,且过点(0,1);而函数log a y x =为增函数,且过点(1,0).3.若22sin cos x x >,则x 的取值范围是 A .⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,412432ππππ B .⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,452412ππππ C .⎭⎬⎫⎩⎨⎧∈+<<-Z k k x k x ,4141ππππ D .⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ 【答案】D【解析】2221sin cos sin sin 22x x x x >⇒>⇒>或sin 2x <-,解得24k x ππ+< 32()4k k Z ππ<+∈或322()44k x k k Z ππππ-<<-∈,即(21)(21)4k x k πππ-+<<- 3()4k Z π+∈,所以x 的取值范围是⎭⎬⎫⎩⎨⎧∈+<<+Z k k x k x ,4341ππππ.4.复数54)31()22(i i -+等于A .i 31+B .i 31+-C .i 31-D .i 31--【答案】B44425(2)12()i ω===-+-.5.如果直线,l m 与平面,,αβγ满足:,//,l l m βγαα=⊂和m γ⊥,那么必有A .αγ⊥且l m ⊥B .αγ⊥且//m βC .//m β且l m ⊥D .//αβ且αγ⊥ 【答案】A 【解析】略.6.当22x ππ-≤≤时,函数()sin f x x x =+的A .最大值是1,最小值是1-B .最大值是1,最小值是12-C .最大值是2,最小值是2-D .最大值是2,最小值是1- 【答案】D【解析】因为()sin 2sin()3f x x x x π==+,由已知5636x πππ-≤+≤.故当 32x ππ+=,即6x π=时,()f x 有最大值是2;当36x ππ+=-,即2x π=-时,()f x 有最小值是1-.7.椭圆⎩⎨⎧+-=+=ϕϕsin 51,cos 33y x 的两个焦点坐标是A .(3,5),(3,3)---B .(3,3),(3,5)-C .(1,1),(7,1)-D .(7,1),(1,1)--- 【答案】B【解析】消去参数可得直角坐标方程22(1)(3)1259y x +-+=,故焦点坐标是(3,3),(3,5)-.8.若02πα<<,则arcsin[cos()]arccos[sin()]2παπα+++等于A .2πB .2π-C .22πα-D .22πα--【答案】A【解析】解法一:由于已知sin 0,cos()02παα>+<,原式arcsin(sin )arccos(sin )arccos(sin )αααπααπ=-+-=-+-=-+arccos[cos()]()222πππααπα--=-+--=.解法二:当1x ≤时arcsin arccos 2x x π+=,而1sin 0α-<-<,∴原式arcsin(sin )arccos(sin )2παα=-+-=.9.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD a =,则三棱锥D ABC -的体积为A .63aB .123a C .3123a D .3122a 【答案】D【解析】取AC 的中点O ,连接,BO DO ,如图所示.,ABC ADC ∆∆均为等腰直角三角形,222AC aBO DO ===, ∴2BOD π∠=,则DO ⊥面ABC ,DO 就是三棱锥D ABC -的高,所以23112232212D ABC a V a a -=⋅⋅=.10.等比数列{}n a 的首项11a =-,前n 项和为n S ,若3231510=S S 则n n S ∞→lim 等于 A .32 B .23- C .2 D .2- 【答案】B【解析】显然1q ≠,由3231510=S S 得10151(1)31(1)32a q a q -=-,则105323110q q --=,解得 5132q =-,得12q =-,所以12lim 13n n a S q →∞==--.11.椭圆的极坐标方程为θρcos 23-=,则它在短轴上的两个顶点的极坐标是A .(3,0),(1,)πB .3(3,),(3,)22ππC .5(2,),(2,)33ππD .(2arctg π- 【答案】C【解析】将极坐标方程为θρcos 23-=化为直角坐标方程22(1)143x y -+=,在短轴上的两个顶点的直角坐标是,所以极坐标是5(2,),(2,)33ππ.12.等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为 A .130 B .170 C .210 D .260 【答案】C【解析】由已知得230,100m m S S ==,则232,,m m m m m S S S S S --成等差数列,所以323()210m m m S S S =-=.13.设双曲线)0(12222b a by a x <<=-的半焦距为c ,直线l 过(,0),(0,)a b 两点.已知原点到直线l 的距离为c 43,则双曲线的离心率为 A .2 B .3 C .2 D .332 【答案】A【解析】直线l 的方程为0bx ay ab +-=,原点到直线l 4c =,则22222316a b c a b =+,即22222()316a c a c c -=,解得2e =或3e =0a b <<,所以e ==>e =14.母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于A .π322 B .π332 C .π2 D .π362 【答案】Dα=而(0,)2πα∈,∴tan α=,而它是唯一的极值点.∴ 当tan α=时,V 取得最大值,此时cos α=22cos 3r l ππα==⋅=,应选D . 【点评】上述几个选择题是当年高考中难度最大,得分率最低的选择题,但用导数求解,可以大大降低试题的难度.15.设()f x 是(,)-∞+∞上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f 等于 A .0.5 B .0.5- C .1.5 D . 1.5- 【答案】B【解析】(7.5)(5.52)(5.5)[(3.5)](3.5)(1.5)[(0.5)]f f f f f f f =+=-=--==-=---(0.5)0.5f =-=-.第Ⅱ卷(非选择题共85分)二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.16.已知圆07622=--+x y x 与抛物线)0(22>=p px y 的准线相切,则p = . 【答案】2【解析】圆的标准方程为22(3)16x y -+=,圆心和半径分别为(3,0),4,所以4312p=-=,则2p =.17.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有 个.(用数字作答) 【答案】32【解析】从7个点中取3个点有37C 种取法,3个点共线的有3种,三角形共有37332C -=个.18.tg20tg403tg20tg40++的值是 . 【答案】3【解析】∵tg20tg40tg(2040)31tg20tg40++==-,∴tg20tg403(1-tg20tg40)+=,tg20tg403tg20tg403++=.60的二面19.如图,正方形ABCD 所在平面与正方形ABEF 所在平面成角,则异面直线AD 与BF 所成角的余弦值是 . 【答案】42 【解析】由于//AD BC ,所以CBF ∠即为异面直线AD 与BF 所成角,设正方形边长为a ,在CBF ∆中,222,,BF a BC a FC FD CD ===+=2222cos602AD FA AD FA CD a +-⋅︒+=,2222cos 24BF BC FC CBF BF BC +-∠==⋅.三.解答题:本大题共6小题;共69分.解答应写出文字说明、证明过程或演算步骤.20.(本小题满分11分)解不等式1)11(log >-xa . 【解】本小题考查对数函数性质,对数不等式的解法,分类讨论的方法和运算能力.满分11分.(Ⅰ)当1>a 时,原不等式等价于不等式组:⎪⎪⎩⎪⎪⎨⎧>->-.11,011a xx——2分由此得xa 11>-. 因为10a -<,所以0x <,∴101x a<<-. ——5分 (Ⅱ)当01a <<时,原不等式等价于不等式组:110,11.xa x⎧->⎪⎪⎨⎪-<⎪⎩——7分由①得,1x >或0x <, 由②得,101x a <<-,∴ax -<<111. ——10分 综上,当1>a 时,不等式的解集为⎭⎬⎫⎩⎨⎧<<-011x a x;当10<<a 时,不等式的解集为⎭⎬⎫⎩⎨⎧-<<a x x 111. ——11分21.(本小题满分12分)已知ABC ∆的三个内角,,A B C 满足:BC A B C A cos 2cos 1cos 1,2-=+=+,求 2cosCA -的值. 【解】本小题考查三角函数基础知识,利用三角公式进行恒等变形和运算的能力.满分12分. 解法一:由题设条件知60,120B AC =+=. ——2分∵2cos 60=-22cos 1cos 1-=+CA .将上式化为C A C A cos cos 22cos cos -=+. 利用和差化积及积化和差公式,上式可化为)]cos()[cos(22cos 2cos 2C A C A CA C A -++-=-+. ——6分 将21)cos(,2160cos 2cos -=+==+C A C A代入上式得cos)22A C A C -=--.将1)2(cos 2)cos(2--=-CA C A 代入上式并整理得 023)2cos(2)2(cos 242=--+-CA C A ——9分(2cos 3)022A C A C --+=,∵302A C -+≠,∴2cos 02A C-=.从而得cos22A C -=. ——12分 解法二:由题设条件知60,120B AC =+=.设2A Cα-=,则2A C α-=,可得60,60A C αα=+=-, ——3分 所以)60cos(1)60cos(1cos 1cos 1αα-++=+ C A ααααsin 23cos 211sin 23cos 211++-=ααα22sin 43cos 41cos -=43cos cos 2-=αα. ——7分 依题设条件有Bcos 243cos cos 2-=-αα, ∵21cos =B ,∴2243cos cos 2-=-αα.整理得22cos 0,αα+-= ——9分(2cos 3)0αα+=,∵03cos 22≠+α,∴02cos 2=-α.从而得222cos =-C A . ——12分22.(本小题满分12分)如图1,在正三棱柱111ABC A B C -中,1E BB ∈,截面1A EC ⊥侧面1AC . (Ⅰ)求证:1BE EB =;(Ⅱ)若111AA A B =;求平面1A EC 与平面111A B C 所成二面角(锐角)的度数. 注意:在下面横线上填写适当内容,使之成为(Ⅰ)的完整证明,并解答(Ⅱ). (Ⅰ)证明:(如图2)在截面1A EC 内,过E 作1EG AC ⊥,G 是垂足.① ∵ ,∴EG ⊥侧面1AC ;取AC 的中点F ,连结,BF FG ,由AB BC = 得BF AC ⊥.② ∵ ,∴BF ⊥侧面1AC ;得//,,BF EG BF EG 确定一个平面,交侧面1AC 于FG . ③ ∵ ,∴//BE FG ,四边形BEGF 是平行四边形,BE FG =. ④ ∵ ,∴11//,FG AA AAC FGC ∆∆,⑤ ∵ ,∴112121BB AA FG ==,即112BE BB =,故1BE EB =. (Ⅱ)解:【解】本小题考查空间线面关系,正三棱柱的性质,逻辑思维能力,空间想象能力及运算能力.满分12分.(Ⅰ)①面1A EC ⊥侧面1AC , ——2分②面ABC ⊥侧面1AC , ——3分 ③//BE 侧面1AC , ——4分 ④1//BE AA , ——5分⑤//AF FC , ——6分 (Ⅱ)分别延长11,CE C B 交于点D ,连结1A D .∵1111111//,22EB CC EB BB CC ==,∴,21111111B A C B DC DB === ∵11111160B AC C B A ∠=∠=︒,1111111(180)302DA B A DB DB A ∠=∠=︒-∠=︒,∴111111190DAC DA B B AC ∠=∠+∠=︒, 即111DA AC ⊥. ——9分∵1CC ⊥面111AC B ,即11A C 是1A C 在平面11AC D 上的射影, 根据三垂线定理得11DA A C ⊥,所以11CAC ∠是所求二面角的平面角. ——11分 ∵11111111,90CC AA A B AC AC C ===∠=︒,∴1145CA C ∠=,即所求二面角为45. ——12分23.(本小题满分10分)某地现有耕地10000公顷,规划10年后粮食单产比现在增加22%,人均粮食占有量比现在提高10%.如果人口年增长率为1%,那么耕地平均每年至多只能减少多少公顷(精确到1公顷)?(粮食单产=耕地面积总产量,人均粮食占有量=总人口数总产量)【解】本小题主要考查运用数学知识和方法解决实际问题的能力,指数函数和二项式定理的应用,近似计算的方法和能力.满分10分.设耕地平均每年至多只能减少x 公顷,又设该地区现有人口为P 人,粮食单产为M 吨/公顷.依题意得不等式%)101(10%)11()1010(%)221(4104+⨯⨯≥+⨯-⨯+⨯P M P x M .——5分 化简得]22.1)01.01(1.11[10103+⨯-⨯≤x . ——7分∵103312210101.1(10.01) 1.110[1]10[1(10.010.01)]1.22 1.22C C ⨯+⨯-=⨯-⨯+⨯+⨯+3 1.110[1 1.1045] 4.11.22≈⨯-⨯≈. —— 9分 ∴4x ≤(公顷).答:按规划该地区耕地平均每年至多只能减少4公顷. ——10分24.(本小题满分12分)已知12,l l 是过点)0,2(-P 的两条互相垂直的直线,且12,l l 与双曲线122=-x y 各有两个交点,分别为11,A B 和22,A B .(Ⅰ)求1l 的斜率1k 的取值范围;(Ⅱ)若1122A B B =,求12,l l 的方程.【解】本小题主要考查直线与双曲线的性质,解析几何的基本思想,以及综合运用知识的能力.满分12分.(I )依题设,12,l l 的斜率都存在,因为1l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=1)0)(2(2211x y k x k y ① ——1分 有两个不同的解.在方程组①中消去y ,整理得01222)1(2121221=-++-k x k x k . ②若0121=-k ,则方程组①只有一个解,即1l 与双曲线只有一个交点,与题设矛盾,故0121≠-k ,即11≠k ,方程②的判别式为2222211111)4(1)(21)4(31)k k k ∆=---=-.设2l 的斜率为2k ,因为2l 过点)0,2(-P 且与双曲线有两个交点,故方程组⎪⎩⎪⎨⎧=-≠+=.1),0)(2(2222x y k x k y ③ 有两个不同的解.在方程组③中消去y ,整理得01222)1(2222222=-++-k x k x k . ④同理有)13(4,0122222-=∆≠-k k .又因为12l l ⊥,所以有121l l ⋅=-. ——4分于是,12,l l 与双曲线各有两个交点,等价于⎪⎪⎩⎪⎪⎨⎧≠-=⋅>->-.1,1,013,0131212221k k k k k解得⎪⎩⎪⎨⎧≠<<.1,33311k k——6分∴)3,1()1,33()33,1()1,3(1 ----∈k . ——7分 (Ⅱ)设),(),,(221111y x B y x A .由方程②知112,122212121212121--=⋅--=+k k x x k k x x . ∴22222111212112()()(1)()A B x x y y k x x =-+-=+-22112214(1)(31)(1)k k k +-=-. ⑤ ——9分 同理,由方程④可求得222B A ,整理得2212121222)1()3)(1(4k k k B A --+= ⑥ 由22115B A B A =,得2211225A B A B =将⑤、⑥代入上式得22121212212121)1()3)(1(45)1()13)(1(4k k k k k k --+⨯=--+,解得21±=k 取21=k 时,)2(22:),2(2:21+-=+=x y l x y l ; 取21-=k 时,)2(22:),2(2:21+=+-=x y l x y l . ——12分25.(本小题满分12分)已知,,a b c 是实数,函数2(),()f x ax bx c g x ax b =++=+,当11x -≤≤时,()1f x ≤. (Ⅰ)证明:1c ≤;(Ⅱ)证明:当11x -≤≤时,()2g x ≤;(Ⅲ)设0a >,当11x -≤≤时,()g x 的最大值为2,求()f x .【解】本小题主要考查函数的性质、含有绝对值的不等式的性质,以及综合运用数学知识分析问题与解决问题的能力.满分12分.(Ⅰ)证明:由条件当11x -≤≤时,()1f x ≤,取0x =得(0)1c f =≤,即1c ≤.——2分(Ⅱ)证法一:当0a >时,()g x ax b =+在[1,1]-上是增函数,∴(1)(0)(1)g g g -≤≤,∵()1(11),1f x x c ≤-≤≤≤,∴(1)(1)(1)2g a b f c f c =+=-≤+≤,(1)(1)((1))2g a b f c f c -=-+=--+≥--+≥-,由此得()2g x ≤. ——5分 当0a <时,()g x ax b =+在[1,1]-上是减函数,∴(1)(0)(1)g g g -≥≥, ∵()1(11),1f x x c ≤-≤≤≤,∴(1)(1)(1)2g a b f c f c -=-+=--+≤-+≤,(1)(1)((1))2g a b f c f c =+=-≥-+≥-,由此得()2g x ≤; ——7分当0a =时,(),()g x b f x bx c ==+.∵11x -≤≤,∴()(1)(1)2g x f c f c =-≤+≤.综上得()2g x ≤. ——8分证法二:由4)1()1(22--+=x x x ,可得221111()[()()]()2222x x x x g x ax b a b +-+-=+=-+-])21()21([])21()21([22c x b x a c x b x a +-+--++++= 11()()22x x f f +-=-, ——6分当11x -≤≤时,有,0211,1210≤-≤-≤+≤x x根据含绝对值的不等式的性质,得2)21()21()21()21(≤-++≤--+x f x f x f x f ,即()2g x ≤. ——8分 (Ⅲ)因为0a >,()g x 在[1,1]-上是增函数,当1x =时取得最大值2,即(1)(1)(0)2g a b f f =+=-=. ①∵1(0)(1)2121f f -≤=-≤-=-,∴(0)1c f ==-. ——10分 因为当11x -≤≤时,()1f x ≥-,即()(0)f x f ≥,根据二次函数的性质,直线0x =为()f x 的图像的对称轴,由此得02ba-=,即0b =. 由①得2a =.所以 2()21f x x =-. ——12分。
1995年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分.第Ⅰ卷(选择题共65分)一、选择题(本大题共15小题,第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知I 为全集,集合M ,N ⊂I ,若M ∩N =N ,则 ( )(A) N M ⊇ (B) N M ⊆(C) N M ⊆(D) N M ⊇2.函数y =11+-x 的图像是 ( ) 3.函数y =4sin(3x +4π)+3cos(3x +4π)的最小正周期是( )(A) 6π (B) 2π(C) 32π (D)3π 4.正方体的全面积是a 2,它的顶点都在球面上,这个球的表面积是( )(A)32a π (B)22a π(C) 2πa 2 (D) 3πa 25.若图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) (A) k 1<k 2<k 3 (B) k 3< k 1< k 2 (C) k 3< k 2< k 1(D) k 1< k 3< k 26.在(1-x 3)(1+x )10的展开式中,x 5的系数是 ( ) (A) -297(B) -252(C) 297(D) 2077.使arcsin x >arccos x 成立的x 的取值范围是( )(A) ⎥⎦⎤ ⎝⎛220, (B) ⎥⎦⎤⎝⎛122, (C)⎪⎪⎭⎫⎢⎣⎡-221,(D) [)01,-8.双曲线3x 2-y 2=3的渐近线方程是 ( )(A) y =±3x(B) y =±31x (C) y =±3x(D) y =±33x 9.已知θ是第三象限角,且sin 4θ+cos 4θ=95,那么sin2θ等于 ( )(A)322 (B) 322-(C)32 (D) 32-10.已知直线l ⊥平面α,直线m ⊂平面β,有下面四个命题:①α∥β⇒l ⊥m ②α⊥β⇒l ∥m ③l ∥m ⇒α⊥β ④l ⊥m ⇒α∥β 其中正确的两个命题是 ( )(A) ①与②(B) ③与④(C) ②与④(D) ①与③11.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是 ( ) (A) (0,1)(B) (1,2)(C) (0,2)(D) [)∞+,212.等差数列{a n },{b n }的前n 项和分别为S n 与T n ,若132+=n n T S n n ,则nn n b a ∞→lim 等于( )(A) 1(B) 36(C)32 (D)94 13.用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共( ) (A) 24个(B) 30个(C) 40个(D) 60个14.在极坐标系中,椭圆的二焦点分别在极点和点(2c ,0),离心率为e ,则它的极坐标方程是( )(A) ()θρcos 11e e c --= (B) ()θρcos 112e e c --=(C) ()θρcos 11e e c --= (D) ()()θρcos 112e e e c --=15.如图,A 1B 1C 1-ABC 是直三棱柱,∠BCA =90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成的角的余弦值是( )(A)1030 (B)21 (C)1530 (D)1015第Ⅱ卷(非选择题,共85分)二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)16.不等式x x 283312-->⎪⎭⎫ ⎝⎛的解集是__________17.已知圆台上、下底面圆周都在球面上,且下底面过球心,母线与底面所成的角为3π,则圆台的体积与球体积之比为_____________18.函数y =sin(x -6π)cos x 的最小值是____________ 19.直线l 过抛物线y 2=a (x +1)(a >0)的焦点,并且与x 轴垂直,若l 被抛物线截得的线段长为4,则a =20.四个不同的小球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法共有 __________种(用数字作答)三、解答题(本大题共6小题,共65分.解答应写出文字说明、证明过程或推演步骤)21.(本小题满分7分)在复平面上,一个正方形的四个顶点按照逆时针方向依次为Z 1,Z 2,Z 3,O (其中O 是原点),已知Z 2对应复数i Z 312+=.求Z 1和Z 3对应的复数.22.(本小题满分10分)求sin 220°+cos 250°+sin20°cos50°的值.23.(本小题满分12分)如图,圆柱的轴截面ABCD 是正方形,点E 在底面的圆周上,AF ⊥DE ,F 是垂足.(1)求证:AF ⊥DB ;(2)如果圆柱与三棱锥D -ABE 的体积的比等于3π,求直线DE 与平面ABCD 所成的角.24.(本小题满分12分)某地为促进淡水鱼养殖业的发展,将价格控制在适当范围内,决定对淡水鱼养殖提供政府补贴.设淡水鱼的市场价格为x 元/千克,政府补贴为t 元/千克.根据市场调查,当8≤x ≤14时,淡水鱼的市场日供应量P 千克与市场日需求量Q 千克近似地满足关系:P =1000(x +t -8)( x ≥8,t ≥0),Q =500()2840--x (8≤x ≤14).当P =Q 时市场价格称为市场平衡价格.(1)将市场平衡价格表示为政府补贴的函数,并求出函数的定义域; (2)为使市场平衡价格不高于每千克10元,政府补贴至少为每千克多少元? 25.(本小题满分12分)设{a n }是由正数组成的等比数列,S n 是其前n 项和. (1)证明12lg 2lg lg ++<+n n n S S S ;(2)是否存在常数c >0,使得()()()c S c S c S n n n -=-+-++12lg 2lg lg 成立?并证明你的结论.26.(本小题满分12分) 已知椭圆1162422=+y x ,直线1812:=+yx l .P 是l 上点,射线OP 交椭圆于点R ,又点Q 在OP 上且满足|OQ |·|OP |=|OR |,当点P 在l 上移动时,求点Q 的轨迹方程,并说明轨迹是什么曲线.1995年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答一、选择题(本题考查基本知识和基本运算)1.C 2.B 3.C 4.B 5.D 6.D 7.B8.C9 . A10.D11.B12.C13.A14.D15.A二、填空题(本题考查基本知识和基本运算)16.{x |-2<x <4} 17.3237 18. 43- 19.4 20.144 三、解答题21.本小题主要考查复数基本概念和几何意义,以及运算能力. 解:设Z 1,Z 3对应的复数分别为z 1,z 3,依题设得=()⎪⎪⎭⎫⎝⎛++i i 2222312122.本小题主要考查三角恒等式和运算能力. 解: 原式()()︒︒+︒++︒-=50cos 20sin 100cos 12140cos 12123.本小题主要考查空间线面关系、圆柱性质、空间想象能力和逻辑推理能力. (1)证明:根据圆柱性质,DA ⊥平面ABE . ∵EB ⊂平面ABE , ∴DA ⊥EB .∵AB 是圆柱底面的直径,点E 在圆周上, ∴AE ⊥EB ,又AE ∩AD =A , 故得EB ⊥平面DAE . ∵AF ⊂平面DAE , ∴EB ⊥AF .又AF ⊥DE ,且EB ∩DE =E , 故得AF ⊥平面DEB . ∵DB ⊂平面DEB , ∴AF ⊥DB .(2)解:过点E 作EH ⊥AB ,H 是垂足,连结DH .根据圆柱性质,平面ABCD ⊥平面ABE ,AB 是交线.且EH 平面ABE ,所以EH ⊥平面ABCD .又DH平面ABCD ,所以DH 是ED 在平面ABCD 上的射影,从而∠EDH 是DE 与平面ABCD 所成的角.设圆柱的底面半径为R ,则DA =AB =2R ,于是 V 圆柱=2πR 3,由V 圆柱:V D -ABE =3π,得EH =R ,可知H 是圆柱底面的圆心,AH =R ,DH=R AH DA 522=+ ∴∠EDH =arcctgEHDH=arcctg 5, 24.本小题主要考查运用所学数学知识和方法解决实际问题的能力,以及函数的概念、方程和不等式的解法等基础知识和方法.解:(1)依题设有1000(x +t -8)=500()2840--x ,化简得 5x 2+(8t -80)x +(4t 2-64t +280)=0. 当判别式△=800-16t 2≥0时, 可得 x =8-t 54±25052t -. 由△≥0,t ≥0,8≤x ≤14,得不等式组:① ⎪⎩⎪⎨⎧≤-+-≤≤≤14505254885002t t t ② ⎪⎩⎪⎨⎧≤---≤≤≤14505254885002t t t 解不等式组①,得0≤t ≤10,不等式组②无解.故所求的函数关系式为 函数的定义域为[0,10]. (2)为使x ≤10,应有82505254t t -+-≤10 化简得 t 2+4t -5≥0.解得t ≥1或t ≤-5,由t ≥0知t ≥1.从而政府补贴至少为每千克1元.25.本小题主要考查等比数列、对数、不等式等基础知识,考查推理能力以及分析问题和解决问题的能力.(1)证明:设{a n }的公比为q ,由题设a 1>0,q >0. (i)当q =1时,S n =na 1,从而S n ·S n +2-21+n S =na 1·(n +2)a 1-(n +1)221a =-21a <0(ⅱ)当q ≠1时,()qq a S nn --=111,从而S n ·S n +2-21+n S =021<-nq a .由(i)和(ii)得S n ·S n +2-21+n S .根据对数函数的单调性,知 lg(S n ·S n +2)<lg 21+n S , 即12lg 2lg lg ++<+n n n S S S .(2)解:不存在. 证明一:要使()()()c S c S c S n n n -=-+-++12lg 2lg lg .成立,则有⎩⎨⎧>--=--++.0,)())((212c S c S c S c S n n n n 分两种情况讨论: (i)当q =1时,(S n —c )( S n +2—c ) =( S n +1—c )2 =(na 1-c )[(n +2)a 1-c ]-[(n +1)a 1-c ]2 =21a - <0.可知,不满足条件①,即不存在常数c >0,使结论成立. (ii)当q ≠1时,若条件①成立,因为 (S n —c )( S n +2—c )-( S n +1—c )2=()()()211211111111⎥⎦⎤⎢⎣⎡----⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡---++c q q a c q q a c q q a n n n =-a 1q n [a 1-c (1-q )],且a 1q n ≠0,故只能有a 1-c (1-q )=0,即qa c -=11此时,因为c >0,a 1>0,所以0<q <1.但0<q <1时,01111<--=--qq a q a S nn ,不满足条件②,即不存在常数c >0,使结论① ② ③ ④成立.综合(i)、(ii),同时满足条件①、②的常数c >0不存在,即不存在常数c >0,使()()()c S c S c S n n n -=-+-++12lg 2lg lg .证法二:用反证法,假设存在常数c >0,使()()()c S c S c S n n n -=-+-++12lg 2lg lg ,则有⎪⎪⎩⎪⎪⎨⎧-=-->->->-++++.)())((,0,0021221c S c S c S c S c S c S n n nn n n , 由④得S n S n +2-21+n S =c (S n + S n +2-2 S n +1). ⑤ 根据平均值不等式及①、②、③、④知S n + S n +2-2 S n +1=(S n —c )+( S n +2—c )-2(S n +1—c ) ≥2()()c S c S n n --+2-2( S n +1—c )=0.因为c >0,故⑤式右端非负,而由(1)知,⑤式左端小于零,矛盾.故不存在常数c >0,使()()2lg lg 2c S c S n n -+-+=lg( S n +1—c )26.本小题主要考查直线、椭圆的方程和性质,曲线与方程的关系,轨迹的概念和求法,利用方程判定曲线的性质等解析几何的基本思想和综合运用知识的能力.解法一:由题设知点Q 不在原点.设P 、R 、Q 的坐标分别为(x P ,y P ),(x R ,y R ),(x ,y ),其中x ,y 不同时为零.当点P 不在y 轴上时,由于点R 在椭圆上及点O 、Q 、R 共线,得方程组解得⎪⎪⎩⎪⎪⎨⎧+=+=2222222232483248y x y y y x x x R R 由于点P 在直线l 上及点O 、Q 、P 共线,得方程组解得⎪⎪⎩⎪⎪⎨⎧+=+=y x y y y x x x p p 32243224当点P 在y 轴上时,经验证①-④式也成立. 由题设|OQ |·|OP |=|OR |2,得 将①-④代入上式,化简整理得因x 与x p 同号或y 与yp 同号,以及③、④知2x +3y >0,故点Q 的轨迹方程为()()135125122=-+-y x (其中x ,y 不同时为零).所以点Q 的轨迹是以(1,1)为中心,长、短半轴分别为210和315且长轴与x 轴平行的椭圆、去掉坐标原点.解法二:由题设知点Q 不在原点.设P ,R ,Q 的坐标分别为(x p ,y p ),(x R ,y R ),(x ,y ),其中x ,y 不同时为零.设OP 与x 轴正方向的夹角为α,则有 x p =|OP |cos α,y p =|OP |sin α; x R =|OR |cos α,y R =|OR |sin α; x =|OQ |cos α,y =|OQ |sin α; 由上式及题设|OQ |·|OP |=|OR |2,得⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧====,,,,2222y OQOP y x OQ OP x y OQ OP y x OQ OP x R R P P由点P 在直线l 上,点R 在椭圆上,得方程组1812=+PP y x , ⑤ 1162422=+RR y x , ⑥ 将①,②,③,④代入⑤,⑥,整理得点Q 的轨迹方程为()()135125122=-+-y x (其中x ,y 不同时为零).所以点Q 的轨迹是以(1,1)为中心,长、短半轴分别为210和315且长轴与x 轴平行的椭圆、去掉坐标原点.。
1994年高校招生全国数学统一考试(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第I卷(选择题共65分)一、选择题(本大题共15小题;第1—10题每小题4分,第11—15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A.{0}B.{0,1}C.{0,1,4}D.{0,1,2,3,4}2.如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)3.极坐标方程ρ=cos(π/4-θ)所表示的曲线是A.双曲线B.椭圆C.抛物线D.圆4.设θ是第二象限的角,则必有A.tg(θ/2)>ctg(θ/2)B.tg(θ/2)<ctg(θ/2)C.sin(θ/2)>cos(θ/2)D.sin(θ/2)<cos(θ/2)5.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成A.511个B.512个C.1023个D.1024个6.在下列函数中,以π/2为周期的函数是A.y=sin2x+cos4xB.y=sin2xcos4xC.y=sin2x+cos2xD.y=sin2xcos2x7.已知正六棱台的上,下底面边长分别为2和4,高为2,则其体积为A.32B.28C.24D.208.设F1和F2为双曲线x2/4-y2=1的两个焦点,点P在双曲线上且满足∠F1PF2=90°,则△F1PF2的面积是A.1B./2C.2D.9.如果复数Z满足│Z+i│+│Z-i│=2,那么│Z+i+1│最小值是A.1B.C.2D.10.有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法共有A.1260种B.2025种C.2520种D.5040种11.对于直线m、n和平面α、β,α⊥β的一个充分条件是12.设函数f(x)=1-(-1≤x≤0),则函数y=f-1(x)的图象是13.已知过球面上A、B、C三点的截面和球心的距离等于球半径的一半,且AB=BC=CA=2,则球面面积是A.16π/9B.8π/3C.4πD.64π/914.函数y=arccos(sinx)(-π/3<x<2π/3)的值域是A.(π/6,5π/6)B.[0,5π/6)C.(π/3,2π/3)D.(π/6,2π/3)15.定义在(-∞,+∞)上的任意函数f(x)都可以表示成一个奇函数g(x)和一个偶函数h(x)之和.如果f(x)=lg(10x+1),x∈(-∞,+∞),那么第Ⅱ卷(非选择题共85分)二、填空题 (本大题共5小题,共6个空格;每空格4分,共24分.把答案填在题中横线上)(16) 在(3-x )7的展开式中,x 5的系数是 (用数字作答)(17) 抛物线y 2=8-4x 的准线方程是 ,圆心在该抛物线的顶点且与其准线相切的圆的方程是(18) 已知sin θ +cos θ =51,θ∈(0,π),则ctg θ的值是_____________ (19) 设圆锥底面圆周上两点A 、B 间的距离为2,圆锥顶点到直线AB 的距离为3,AB 和圆锥的轴的距离为1,则该圆锥的体积为_________(20) 在测量某物理量的过程中,因仪器和观察的误差,使得n 次测量分别得到a 1,a 2,…a n ,共n 个数据,我们规定所测量物理量的“最佳近似值” a 是这样一个量:与其他近似值比较,a 与各数据的差的平方和最小.依此规定,从a 1,a 2,…,a n 推出的a =三、解答题(本大题共5小题,共61分;解答应写出文字说明、证明过程或推演步骤)(21) (本小题满分11分) 已知z =1+i .(1)设ω=z 2+3z -4,求ω的三角形式;(2)如果i z z baz z -=+-++1122,求实数a ,b 的值. (22) (本小题满分12分) 已知函数f (x )=tg x ,x ∈(0,2π).若x 1,x 2∈(0,2π),且x 1≠x 2,证明21[f (x 1)+f (x 2)]>f (221x x +)(23) (本小题满分12分)如图,已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1;(2)假设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角α的度数.(24) (本小题满分12分)已知直线l 过坐标原点,抛物线C 顶点在原点,焦点在x 轴正半轴上.若点)0,1(-A 和点B (0,8)关于l 的对称点都在C 上,求直线l 和抛物线C 的方程.(25) (本小题满分14分)设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的自然数n ,a n 与2的等差中项等于S n 与2的等比中项.(1)写出数列{a n }的前3项;(2)求数列{a n }的通项公式(写出推证过程); (3)令()N ∈⎪⎪⎭⎫ ⎝⎛+=++n a a a a b n n nn n 1121,求().lim 21n b b b n n -+++∞→1994年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答一、选择题(本题考查基本知识和基本运算)1.C 2.D 3.D 4.A 5.B 6.D 7.B 8.A 9.A 10.C 11.C 12.B 13.D 14.B 15.C二、填空题(本题考查基本知识和基本运算)16.-189 17.x =3,(x -2)2+y 2=1 18.43- 19. π322 20.()n a a a n+++ 211三、解答题21.本小题考查共轭复数、复数的三角形式等基础知识及运算能力.解:(1)由z =1+i ,有ω=z 2+3z -4=(1+i )2+3()i +1-4=2i +3(1-i )-4=-1-i ,ω的三角形式是⎪⎭⎫ ⎝⎛+ππ45sin 45cos 2i .(2)由z =1+i ,有 ()()()()1111112222++-+++++=+-++i i b i a i z z b az z =()()ii a b a 2+++ ()()i b a a +-+=2由题设条件知(a +2)-(a +b )i =1-i .根据复数相等的定义,得⎩⎨⎧-=+-=+1)(12b a a 解得⎩⎨⎧=-=.2,1b a 22.本小题考查三角函数基础知识、三角函数性质及推理能力.证明:tg x 1+tg x 2=2211cos sin cos sin x x x x + 212121cos cos sin cos cos sin x x x x x x += ()2121cos cos sin x x x x += ()()()212121cos cos sin 2x x x x x x -+++=∵x 1,x 2∈(0,2π),x 1≠x 2, ∴2sin(x 1+x 2)>0,cos x 1cos x 2>0,且0<cos (x 1-x 2)<1,从而有0<cos (x 1+x 2)+cos (x 1-x 2)<1+cos (x 1+x 2),由此得tg x 1+tg x 2>()()2121cos 1sin 2x x x x +++=,∴21( tg x 1+tg x 2)>tg 221x x +, 即21[f (x 1)+f (x 2)]>f (221x x +) 23.本小题考查空间线面关系、正棱柱的性质、空间想象能力和逻辑推理能力.(1)证明:∵A 1B 1C 1-ABC 是正三棱柱,∴四边形B 1BCC 1是矩形.连结B 1C 交BC 1于E ,则B 1E =EC .连结DE .在△AB 1C 中,∵AD =DC ,∴DE ∥AB 1.又AB 1⊄平面DBC 1,DE ⊂平面DBC 1,∴AB 1∥平面DBC 1.(2)解:作DF ⊥BC ,垂足为F ,则DF ⊥面B 1BCC 1,连结EF ,则EF 是ED 在平面B 1BCC 1上的射影.∵AB 1⊥BC 1,由(1)知AB 1∥DE ,∴DE ⊥BC 1,则BC 1⊥EF ,∴∠DEF 是二面角α的平面角. 设AC =1,则DC =21.∵△ABC 是正三角形,∴在Rt △DCF 中, DF =DC ·sin C =43,CF =DC ·cos C =41.取BC 中点G .∵EB =EC ,∴EG ⊥BC . 在Rt △BEF 中,EF 2=BF ·GF ,又BF =BC -FC =43,GF =41, ∴EF 2=43·41,即EF =43.∴tg ∠DEF =14343==EF DF .∴∠DEF =45°. 故二面角α为45°.24.本小题考查直线与抛物线的基本概念和性质,解析几何的基本思想方法以及综合运用知识解决问题的能力.解法一:依题设抛物线C 的方程可写为y 2=2px (p >0),且x 轴和y 轴不是所求直线,又l 过原点,因而可设l 的方程为y =kx (k ≠0). ①设A '、B '分别是A 、B 关于l 的对称点,因而A 'A ⊥l ,直线A 'A 的方程为()11+-=x ky ② 由①、②联立解得AA '与l 的交点M 的坐标为⎪⎭⎫ ⎝⎛+-+-11122k k k ,. 又M 为AA '的中点,从而点A '的坐标为x A '=111112222+-=+⎪⎭⎫ ⎝⎛+-k k k , y A '=1201222+-=+⎪⎭⎫ ⎝⎛+-k k k k . ③ 同理得点B '的坐标为x B '=1162+k k , y B '= ()11822+-k k . ④ 又A '、B '均在抛物线y 2=2px (p >0)上,由③得112122222+-⋅=⎪⎭⎫ ⎝⎛+-k k p k k ,由此知k ≠±1, 即 1242-=k k p ⑤ 同理由④得()11621182222+⋅=⎪⎪⎭⎫ ⎝⎛+-k k p k k . 即 ()()kk k p 112222+-=. 从而 1242-k k =()()kk k 112222+-, 整理得 k 2-k -1=0.解得.25125121-=+=k k , 但当251-=k 时,由③知055<-='A x , 这与A '在抛物线y 2=2px (p >0)上矛盾,故舍去2512-=k . 设251+=k ,则直线l 的方程为x y 251+=. 将251+=k 代入⑤,求得552=p . 所以直线方程为x y 251+=. 抛物线方程为 x y 5542=. 解法二:设点A 、B 关于l 的对称点分别为A '(x 1、y 1)、B '(x 2,y 2),则|OA '|=|OA |=1,|OB '|=|OB |=8.设由x 轴正向到OB '的转角为α,则x 2=8cos α,y 2=8s in α. ①因为A '、B '为A 、B 关于直线l 的对称点,而∠BOA 为直角,故∠B 'OA '为直角,因此 x 1=cos ⎪⎭⎫ ⎝⎛-2πα=sin α,y 1=sin ⎪⎭⎫ ⎝⎛-2πα=-cos α, ② 由题意知x 1>0,x 2>0,故α为第一象限角.因为A '、B '都在抛物线y 2=2px 上,将①、②代入得cos 2α=2p ·sin α,64sin 2α=2p ·8cos α.∴8sin 3α=cos 3α,∴2sin α=cos α,解得 52cos 51sin ==αα,.将52cos 51sin ==αα,代入cos 2α=2p sin α得552sin 2cos 2==ααp , ∴抛物线C 的方程为x y 5542=. 因为直线l 平分∠B 'OB ,故l 的斜率⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=42221πααπαtg tg k 251sin 1cos 2cos 12sin +=-=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=ααπαπα ∴直线l 的方程为x y 215+=. 25.本小题考查等差数列、等比数列、数列极限等基础知识考查逻辑推理能力和分析问题与解决问题的能力.解:(1)由题意,当n =1时有11222S a =+,S 1=a 1, ∴11222a a =+, 解得a 1=2. 当n =2时有22222S a =+,S 2=a 1+ a 2,a 1=2代入,整理得 (a 2-2)2=16.由a 2>0,解得 a 2=6.当n =3时有33222S a =+,S 3=a 1+ a 2+ a 3,将a 1=2,a 2=6代入,整理得 (a 3-2)2=64.由a 3>0,解得 a 3=10.故该数列的前3项为2,6,10.(2)解法一:由(1)猜想数列{a n }有通项公式a n =4n -2. 下面用数学归纳法证明数列{ a n }的通项公式是a n =4n -2 (n ∈N ).①当n =1时,因为4×1-2=2,又在(1)中已求出a 1=2,所以上述结论成立. ②假设n =k 时结论成立,即有a k =4k -2.由题意,有k k S a 222=+, 将a k =4k -2代入上式,得2k = k S 2,解得S k =2k 2. 由题意,有11222++=+k k S a ,S k +1=S k +a k +1, 将S k =2k 2代入,得2122⎪⎭⎫ ⎝⎛++k a =2(a k +1+2k 2),整理得21+k a -4 a k +1+4-16 k 2=0. 由a k +1>0,解得a k +1=2+4k .所以a k +1=2+4k =4(k +1)-2. 这就是说,当n =k +1时,上述结论成立.根据①、②,上述结论对所有的自然数n 成立. 解法二:由题意,有()N n S a n n ∈=+222,整理得S n =81(a n +2)2, 由此得 S n +1 =81(a n +1+2)2, ∴a n +1= S n +1-S n =81[(a n +1+2)2-(a n +2)2], 整理得(a n +1+ a n )( a n +1-a n -4)=0,由题意知 a n +1+a n ≠0,∴a n +1-a n =4.即数列{ a n }为等差数列,其中a 1=2,公差d =4.∴a n =a 1+(n -1)d =2+4(n -1), 即通项公式为a n =4n -2.(3)解:令c n =b n -1,则⎪⎪⎭⎫ ⎝⎛-+=++22111n n n n n a a a a c ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛--+=112121121221n n n n121121+--=n n , b 1+b 2+…+b n -n =c 1+c 2+…+c n =⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1211215131311n n 1211+-=n . ∴()11211lim lim 21=⎪⎭⎫ ⎝⎛+-=-+++∞→∞→n n b b b n n n。
1999高考数学试题及答案1999年普通高等学校招生全国统一考试数学(理工农医类)一、选择题(每小题5分,共60分)1. 已知集合A={x|x=2n,n∈Z},B={x|x=2n+1,n∈Z},则A∩B=()A. {x|x=2n,n∈Z}B. {x|x=2n+1,n∈Z}C. ∅D. R答案:C2. 已知函数f(x)=x^2+2x+3,g(x)=x^2+3x+3,则f[g(x)]等于()A. x^2+5x+9B. x^2+5x+12C. x^2+7x+12D. x^2+7x+15答案:C3. 已知向量a=(1,2),b=(2,3),则|a+b|等于()A. 3B. 3√2C. √10D. 5答案:C4. 已知函数f(x)=x^3-3x,x∈R,则f(x)的单调递增区间为()A. (-∞,-1)∪(1,+∞)B. (-∞,1)∪(1,+∞)C. (-∞,-1)∪(1,+∞)答案:A5. 已知双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的一条渐近线为y=(√2/2)x,则双曲线的离心率为()A. √2B. √3C. 2D. 3答案:B6. 已知函数f(x)=x^3+1,x∈R,则f(1)+f(-1)+f(0)的值为()A. 1B. 3C. -1D. -37. 已知等差数列{an}的前n项和为Sn,若a1+a5=10,a2+a4=6,则S5的值为()A. 20B. 15C. 10D. 5答案:B8. 已知函数f(x)=x^2-4x+m,x∈R,若对于任意x∈[2,3],f(x)>0恒成立,则实数m的取值范围为()A. m>-2B. m>-1C. m>0D. m>1答案:D9. 已知抛物线C:y^2=4x的焦点为F,点P在抛物线上,若|PF|=2,则点P的坐标为()A. (1,2)B. (1,-2)C. (2,4)D. (2,-4)答案:A10. 已知函数f(x)=x^3+ax^2+bx+1,若f'(x)=3x^2+2ax+b,且f'(1)=0,f'(-1)=0,则a+b的值为()A. -4B. -2C. 0D. 2答案:C11. 已知等比数列{an}的前n项和为Sn,若a1=1,a4=16,则S3的值为()A. 7B. 8C. 15D. 31答案:A12. 已知直线l:y=kx+1与圆C:x^2+y^2=4相交于A,B两点,若|AB|=2√2,则k的值为()A. 1B. -1C. 0D. ±1答案:D二、填空题(每小题4分,共24分)13. 已知函数f(x)=x^2-4x+3,x∈R,若f(x)=0的根为x1,x2,则|x1-x2|=______。
1995年普通高等学校招生全国统一考试
数学
(理工农医类)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分.
第Ⅰ卷(选择题共65分)
一、选择题(本大题共15小题:第1-10题每小题4分,第11-15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知I为全集,集合M,,若M∩N=N,则
()
4.正方体的全面积是a2,它的顶点都在球面上,这个球的表面积是
5.若图中()的直线l1,l2,l3的斜率分别为k1,k2,k3,则
A.k1<k2<k3
B.k3<k1<k2
C.k3<k2<k1
D.k1<k3<k2
6.在(1-x3)(1+x)10的展开式中,x5的系数是
A.-297
B.-252
C.297
D.207
7.使arcsinx>arccosx成立的x的取值范围是
8.双曲线3x2-y2=3的渐近线方程是
10.已知直线l⊥平面α,直线m平面β,有下面四个命题:
其中正确的两个命题是
A.①与②
B.③与④
C.②与④
D.①与③
11.已知y=log a(2-ax)在[0,1]上是x的减函数,则a的取值范围是
A.(0,1)
B.(1,2)
C.(0,2)
D.[2,+∞)
12.等差数列{a n},{b n}的前n项和分别为S n与T n,
13.用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有
A.24
B.30
C.40
D.60
14.在极坐标系中,椭圆的二焦点分别在极点和点(2c,0),离心率为e,则它的极坐标方程是
15.如图(),A1B1C1-ABC是直三棱柱,∠BCA=90°,点D1,F1分别是A1B1,A1C1的中点,若BC=CA=CC1,则BD1与AF1所成的角的余弦值是
第Ⅱ卷(非选择题,共85分)
二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)
17. 已知圆台上、下底面圆周都在球面上,且下底面过球心,母线与底面所成的
19.直线l过抛物线y2=a(x+1)(a>0)的焦点,并且与x轴垂直,若l被抛物线截得的线段长为4,则a= .
20.四个不同的小球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法共有种(用数字作答).
三、解答题(本大题共6小题,共65分.解答应写出文字说明、证明过程或推演步骤)
21.(本小题满分7分)
在复平面上,一个正方形的四个顶点按照逆时针方向依次为
Z1,Z2,Z3,O
22.(本小题满分10分)
求sin220°+cos250°+sin20°cos50°的值.
23.(本小题满分12分)
如图(),圆柱的轴截面ABCD是正方形,点E在底面的圆周上,AF⊥
DE,F是垂足.
(1)求证:AF⊥DB;
(2)如果圆柱与三棱锥D-ABE的体积的比等于3π,求直线DE与平面ABCD所成的角.
24.(本小题满分12分)
某地为促进淡水鱼养殖业的发展,将价格控制在适当范围内,决定对淡水鱼养值提供政府补贴.设淡水鱼的市场价格为x元/千克,政府补贴为t元/千克.根据市场调查,当8≤x≤14时,淡水鱼的市场日供应量P千克与市场日需求量Q千克近似地满足关系:
当P=Q时市场价格称为市场平衡价格.
(1)将市场平衡价格表示为政府补贴的函数,并求出函数的定义域;
(2)为使市场平衡价格不高于每千克10元,政府补贴至少为每千克多少元?
25.(本小题满分12分)
设{a n}是由正数组成的等比数列,S n是其前n项和.
(2)是否存在常数c>0,使得
成立?并证明你的结论.
26.(本小题满分12分)
又点Q在OP上且满足│OQ│·│OP│=│OR│2.当点P在l上移动时,求点Q的轨迹方
程,并说明轨迹是什么曲线.()
(理工农医类)参考答案
一、选择题(本题考查基本知识和基本运算)
1.C
2.B
3.C
4.B
5.D
6.D
7.B
8.C
9.A 10.D
11.B 12.C 13.A 14.D 15.A
二、填空题(本题考查基本知识和基本运算)
三、解答题
21.本小题主要考查复数基本概念和几何意义,以及运算能力. 解:设Z1,Z3对应的复数分别为z1,z3,依题设得
22.本小题主要考查三角恒等式和运算能力.
解:
23.本小题主要考查空间线面关系、圆柱性质、空间想象能力和逻辑推理能力.
(1)()证明:根据圆柱性质,DA⊥平面ABE.
∴DA⊥EB.
∵AB是圆柱底面的直径,点E在圆周上,
∴AE⊥EB,又AE∩AD=A,
故得EB⊥平面DAE.
∴EB⊥AF.
又AF⊥DE,且EB∩DE=E,
故得AF⊥平面DEB.
∴AF⊥DB.
(2)()解:过点E作EH⊥AB,H是垂足,连结DH.根据圆柱性质,平面ABCD⊥平面ABE,AB是交线.且EH平面ABE,所以EH⊥平面ABCD.
又DH平面ABCD,所以DH是ED在平面ABCD上的射影,从而∠EDH是DE 与平面ABCD所成的角.
设圆柱的底面半径为R,则DA=AB=2R,于是
V圆柱=2πR3,
由V圆柱:V D-ABE=3π,得EH=R,可知H是圆柱底面的圆心,
AH=R,
24.本小题主要考查运用所学数学知识和方法解决实际问题的能力,以及函数的概念、方程和不等式的解法等基础知识和方法.
解:(1)依题设有
化简得 5x2+(8t-80)x+(4t2-64t+280)=0.
当判别式△=800-16t2≥0时,
由△≥0,t≥0,8≤x≤14,得不等式组:
解不等式组①,得,不等式组②无解.故所求的函数关系式为
(2)为使x≤10,应有
化简得 t2+4t-5≥0.
解得t≥1或t≤-5,由t≥0知t≥1.从而政府补贴至少为每千克1元.
25.本小题主要考查等比数列、对数、不等式等基础知识,考查推理能力以及分析问题和解决问题的能力.
(1)证明:设{a n}的公比为q,由题设a1>0,q>0.
(i)当q=1时,S n=na1,从而
由(i)和(ii)得S n·S n+2<S2n+1.根据对数函数的单调性,知
(2)解:不存在.
证明一:要使
成立,则有
分两种情况讨论:
(i)当q=1时,
(S n-c)(S n+2-c)-(S n+1-c)2
=(na1-c)[(n+2)a1-c]-[(n+1)a1-c]2
=-a12<0.
可知,不满足条件①,即不存在常数c>0,使结论成立.
(ii)当q≠1时,若条件①成立,因为
(S n-c)(S n+2-c)-(S n+1-c)2
=-a1q n[a1-c(1-q)],
此时,因为c>0,a1>0,所以0<q<1.
综合(i)、(ii),同时满足条件①、②的常数c>0不存在,即不存在常数c>0,使
证法二:用反证法,假设存在常数c>0,使
则有
由④得
S n S n+2-S2n+1=c(S n+S n+2-2S n+1).⑤
根据平均值不等式及①、②、③、④知
S n+S n+2-2S n+1
=(S n-c)+(S n+2-c)-2(S n+1-c)
因为c>0,故⑤式右端非负,而由(1)知,⑤式左端小于零,矛盾.故不存在常数c>0,使
26.本小题主要考查直线、椭圆的方程和性质,曲线与方程的关系,轨迹的概念和求法,利用方程判定曲线的性质等解析几何的基本思想和综合运用知识的能
力.()
解法一:由题设知点Q不在原点.设P、R、Q的坐标分别为(x P,y P),
(x R,y R),(x,y),其中x,y不同时为零.
当点P不在y轴上时,由于点R在椭圆上及点O、Q、R共线,得方程组
解得
由于点P在直线l上及点O、Q、P共线,得方程组
解得
当点P在y轴上时,经验证①-④式也成立.
由题设│OQ│·│OP│=│OR│2,得
将①-④代入上式,化简整理得
因x与x p同号或y与y p同号,以及③、④知2x+3y>0,故点Q的轨迹方程为
与x轴平行的椭圆、去掉坐标原点.
解法二:由题设知点Q不在原点.设P,R,Q的坐标分别为(x p,y p),(x R,y R),(x,y),其中x,y不同时为零.
设OP与x轴正方向的夹角为α,则有
x p=│OP│cosα,y p=│OP│sinα;
x R=│OR│cosα,y R=│OR│sinα;
x=│OQ│cosα,y=│OQ│sinα;
由点P在直线l上,点R在椭圆上,得方程组
将①,②,③,④代入⑤,⑥,整理得点Q的轨迹方程为
与x轴平行的椭圆、去掉坐标原点.
新东方优能教育。