2020秋八年级数学上册第11章平面直角坐标系11.1平面内点的坐标第2课时坐标平面内的图形教学课件沪科版
- 格式:ppt
- 大小:1.07 MB
- 文档页数:18
第十一章平面直角坐标系11.1平面内点的坐标第1课时平面直角坐标系◇教学目标◇【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念;2.理解坐标平面内的点与有序实数对的一一对应关系;3.能在方格纸中建立平面直角坐标系来描述点的位置.【过程与方法】1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识.【情感、态度与价值观】让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.◇教学重难点◇【教学重点】理解平面直角坐标系的有关知识;在给定的平面直角坐标系中,会根据点的位置写出它的坐标.【教学难点】坐标轴上的数字与坐标系中的坐标之间的关系.◇教学过程◇一、情境导入假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(如图),回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?二、合作探究1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.在了解有关平面直角坐标系的知识后,再返回刚才讨论的问题.结论:如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,则“碑林”的位置是(3,1),“大成殿”的位置是(-2,-2).问题:在(3)的条件下,你能把其他景点的位置表示出来吗?结论:能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,-5),科技大学的位置是(-5,-7).2.例题讲解典例写出图中多边形ABCDEF各顶点的坐标.此图中各顶点的坐标是否永远不变?你能举个例子吗?[解析]多边形ABCDEF各顶点的坐标分别为A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).不是.当坐标轴的位置发生变动时,各点的坐标相应地变化.若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,如图,则六个顶点的坐标分别为A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).再思考这个结论是否是永恒的.结论:不是.还能再改变坐标轴的位置,得出不同的坐标.继续进行坐标轴的变换,总结一下共有多少种不同的变换方式.3.想一想在上例中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段测定位置有什么特点?(3)坐标轴上点的坐标有什么特点?【归纳总结】(1)坐标轴上的点的坐标中至少有一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.(2)x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限.(3)各个象限内的点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).变式训练如图,确定点A,B,C,D,E,F,G的坐标.[解析]点A(-1,-1),点B(0,-3),点C(2,-5),点D(4,-1),点E(3,2),点F(-2,3),点G(2,-2).三、板书设计平面直角坐标系1.平面直角坐标系:横轴、纵轴、横坐标、纵坐标、原点.2.象限的划分.◇教学反思◇学生在实际生活中经常遇到物体位置的问题,可能想不到这些问题与数学的联系,老师在这节课上应引导学生建立平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力,增强学生学习数学的兴趣.。
八年级上册数学教案八年级上册数学教案(9篇)作为一名为他人授业解惑的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。
那么大家知道正规的教案是怎么写的吗?下面是细致的小编帮大家收集整理的9篇八年级上册数学教案的相关范文,欢迎参考阅读,希望能够帮助到大家。
八年级上册数学教案篇一第11章平面直角坐标系11.1平面上点的坐标第1课时平面上点的坐标(一)教学目标【知识与技能】1.知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。
2.理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。
已知点的坐标,能在平面直角坐标系中描出点。
3.能在方格纸中建立适当的平面直角坐标系来描述点的位置。
【过程与方法】1.结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。
2.学会用有序实数对和平面直角坐标系中的点来描述物体的位置。
【情感、态度与价值观】通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。
重点难点【重点】认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。
【难点】理解坐标系中的坐标与坐标轴上的数字之间的关系。
教学过程一、创设情境、导入新知师:如果让你描述自己在班级中的位置,你会怎么说?生甲:我在第3排第5个座位。
生乙:我在第4行第7列。
师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。
二、合作探究,获取新知师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?生:3排5号。
师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。
校区授课类型年级辅导科目课时数学科教师学生姓名八年级数学课题平面直角坐标系授课日期教学目标1、能在直角坐标系中用坐标的方法研究图形的平移变换,掌握图形在平移过程中各点的变化规律,理解图形在平面直角坐标系上的平移实质是点坐标的对应变换。
2、运用点的坐标的变化规律来进行简单的平移作图。
教学内容一、重难点讲解(一)不同象限内点的坐标特征点M(x,y)所处的位置坐标特征象限内的点点M在第一象限M(+,+)点M在第二象限M(-,+)点M在第三象限M(-,-)点M在第四象限M(+,-)(二)特殊位置的点的特征A.(﹣2013,2)B.(﹣2013,﹣2)C.(﹣2014,﹣2)D.(﹣2014,2)4、如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2021的坐标为()A.(﹣505,﹣505)B.(﹣505,506)C.(506,506)D.(505,﹣505)5、定义:若点M、N分别是两条线段a和b上任意一点,则线段MN长度的最小值叫做线段a与线段b的“理想距离”.已知O(0,0),A(1,1),B(3,k),C(3,k+2)是平面直角坐标系中的4个点.根据上述概念,若线段BC与线段OA的理想距离为2,则k的取值范围是.6、(1)已知点P(2x+3,4x﹣7)的横坐标减纵坐标的差为6,求这个点到x轴、y轴的距离;(2)已知点A(2x﹣3,6﹣x)到两坐标轴的距离相等,且在第二象限,求点A的坐标;(3)已知线段AB平行于y轴,点A的坐标为(﹣2,3),且AB=4,求点B的坐标.7、已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点P到x轴、y轴的距离相等;(4)点Q的坐标为(1,5),直线PQ∥y轴.8、如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将OA2B2变换成△OA3B3;已知变换过程中各点坐标分别为A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将△OA3B3变换成△OA4B4,则A4的坐标为,B4的坐标为.(2)按以上规律将△OAB进行n次变换得到△OA n B n,则A n的坐标为,B n的坐标为;(3)△OA n B n的面积为.三、参考答案1.【解答】解:法1:由题意可得、、、,解这四组不等式可知无解,因而点A的横坐标是负数,纵坐标是负数,不能同时成立,即点A一定不在第三象限.法2:点A横纵坐标满足x+y=1,即点A(n,1﹣n)在直线y=1﹣x上,而y=1﹣x过一、二、四象限,故A(n,1﹣n)一定不在第三象限.故选:C.2、【解答】解:已知等式整理得:(x+y)2=x2+y2+2xy=x2+y2+2,即xy=1,∴xy>0,即x与y同号,则点M(x,y)在第一象限或第三象限,故选:D.3、【解答】解:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2﹣1,﹣2),即(1,﹣2),第2次变换后的点M的对应点的坐标为:(2﹣2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),∴连续经过2015次变换后,正方形ABCD的对角线交点M的坐标变为(﹣2013,﹣2).故选:B.4、【解答】解:∵2021÷4=505•••1,∴点P2021的在第三象限的角平分线上,∵点P5(﹣1,﹣1),∴点P2021的在第三象限的角平分线上,且横纵坐标的绝对值=(2021﹣1)÷4,∴点P2021(﹣505,﹣505).故选:A.5、【解答】解:由题意可得,,解得,﹣1≤k≤1,故答案为:﹣1≤k≤1.6、【解答】解:(1)根据题意得,(2x+3)﹣(4x﹣7)=6,解得,x=2,∴P(7,1),∴这个点到x轴的距离是1,到y轴的距离是7;(2)∵A(2x﹣3,6﹣x)在第二象限,∴2x﹣3<0,6﹣x>0,根据题意得,﹣(2x﹣3)=6﹣x,解得,x=﹣3,∴A(﹣9,9);(3)∵线段AB平行于y轴,点A的坐标为(﹣2,3),∴点B点的横坐标是﹣2,又∵AB=4,∴当B点在A点上方时,B点的纵坐标是3+4=7,当B点在A点下方时,B点的纵坐标是3﹣4=﹣1,∴B点坐标是(﹣2,7)或(﹣2,﹣1).7、【解答】解:(1)∵点P(a﹣2,2a+8)在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2)∵点P(a﹣2,2a+8)在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4);(4)∵点Q的坐标为(1,5),直线PQ∥y轴,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14).8、【解答】解:(1)∵A1(2,3)、A2(4,3)、A3(8,3).∴A4的横坐标为:24=16,纵坐标为:3.故点A4的坐标为:(16,3).又∵B1(4,0)、B2(8,0)、B3(16,0).∴B4的横坐标为:25=32,纵坐标为:0.故点B4的坐标为:(32,0).故答案为:(16,3),(32,0).(2)由A1(2,3)、A2(4,3)、A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故A n的坐标为:(2n,3).由B1(4,0)、B2(8,0)、B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故B n的坐标为:(2n+1,0);故答案为:(2n,3),(2n+1,0);(3)∵A n的坐标为:(2n,3),B n的坐标为:(2n+1,0),∴△OA n B n的面积为×2n+1×3=3×2n.。
第2课时坐标平面内的图形◇教学目标◇【知识与技能】1.能正确地画出平面直角坐标系;2.在给定的平面直角坐标系中,会根据坐标描出点的位置.【过程与方法】1.经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作交流能力;2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识.【情感、态度与价值观】将现实的题材呈现给学生,揭示平面直角坐标系与现实世界的联系.◇教学重难点◇【教学重点】能够根据点的坐标确定平面内点的位置.【教学难点】体会点的坐标与点到坐标轴的距离之间的关系.◇教学过程◇一、情境导入由点找坐标是已知点在平面直角坐标系中的位置,根据这点在方格纸上对应的x轴、y 轴上的数字写出它的坐标,反过来,已知坐标,在平面直角坐标系中找点,你能找到吗?二、合作探究典例在图中的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);(2)(-9,3),(-9,0),(-3,0),(-3,3);(3)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9);(4)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);(5)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5).观察所得的图形,你觉得它像什么?[解析]如图所示,这个图形像一栋“房子”,旁边还有一棵“大树”.变式训练1在图中的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.观察所得的图形,看一看像什么?(1)(2,0),(4,0),(6,2),(6,6),(5,8),(4,6),(2,6),(1,8),(0,6),(0,2),(2,0);(2)(1,3),(2,2),(4,2),(5,3);(3)(1,4),(2,4),(2,5),(1,5),(1,4);(4)(4,4),(5,4),(5,5),(4,5),(4,4);(5)(3,3).[解析]如图所示,看起来像“猫脸”.变式训练2在图中的平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来,观察所得的图形,看一看像什么?(1)(0,0),(1,3),(2,0),(3,3),(4,0);(2)(0,3),(1,0),(2,3),(3,0),(4,3).[解析]如图所示,观察所得的图形,分别像字母“M”和“W”,合起来看像“活动门”.【归纳总结】在平面直角坐标系中,通过找点、连线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容.三、板书设计坐标平面内的图形坐标平面内的图形◇教学反思◇引导学生去学习找点的位置和它们的坐标之间的关系,形成数形结合的思想,用数字特征去描述它们之间的关系.。