光伏材料
- 格式:pdf
- 大小:18.00 KB
- 文档页数:10
光伏行业材料
太阳能光伏行业主要使用的材料包括:
1. 硅:硅是光伏电池最常见和主要的材料,用于制造光伏电池的光电转换层。
硅可以
分为单晶硅、多晶硅和非晶硅,其中单晶硅的效率最高。
2. 电池背板:电池背板是光伏电池组件的支撑结构,通常使用铝或不锈钢材料。
3. 玻璃:光伏电池组件的表面覆盖一层玻璃,以保护电池,并提供结构支撑。
玻璃通
常采用防反射涂层,以提高光的透过率。
4. 导电材料:光伏电池需要导电材料来传输电流,常用的导电材料包括银浆、铜线等。
5. 封装材料:用于封装和保护光伏电池组件的材料,通常使用背板、硅胶、EVA(乙
烯醋酸乙烯共聚物)等材料。
6. 透光背板:透光背板是一种带有生物胶黏剂的透明材料,用于保护电池和减少重量。
7. 背板:光伏电池组件的背部覆盖一层背板,通常使用聚合物材料。
8. 封装胶:用于光伏电池组件的封装及密封,以保护电池不受外界环境影响的胶粘剂
材料。
9. 针对固态燃料电池而言,材料主要为阳极材料、阴极材料和电解质材料。
例如,钙
钛矿材料作为新型太阳能电池材料受到研究者的关注。
光伏新材料光伏新材料(Photovoltaic new material)光伏新材料是指通过使用全新的材料技术开发的用于太阳能电池的材料。
目前,太阳能电池的主要材料是硅,但是硅材料存在成本高、生产过程复杂等问题。
因此,人们一直在寻找新的材料来替代硅材料,以提高太阳能电池的效率和降低成本。
近年来,一些新的光伏材料被引入到太阳能电池的研发中,取得了一定的突破。
其中最有潜力的光伏新材料包括:钙钛矿材料、有机光伏材料和钙钛矿-硅协同材料等。
钙钛矿材料是近年来光伏领域最受关注的新材料之一。
具有优良的光电转换效率,可以高效地吸收太阳能,并将其转化为电能。
钙钛矿材料的成本相对较低,制备过程也相对简单,因此备受研究人员的重视。
然而,目前钙钛矿材料的稳定性和耐用性仍然存在一定的挑战,需要继续进行研究和改进。
有机光伏材料是另一种有潜力的光伏新材料。
有机光伏材料是由有机化合物构成的,具有较低的成本和灵活性,可以通过印刷等简单的制备方法得到。
有机光伏材料的转换效率较低,但是可以在室温下工作,适用于柔性太阳能电池等特殊应用。
钙钛矿-硅协同材料是结合了钙钛矿材料和硅材料的优势的一种新材料。
通过将钙钛矿材料和硅材料层叠在一起,可以提高太阳能电池的转换效率,并减少硅材料的使用量。
这种协同材料有望成为未来太阳能电池的重要组成部分。
光伏新材料的研发不仅可以提高太阳能电池的效率和降低成本,还可以推动太阳能产业的发展。
随着能源危机的加剧和环保意识的增强,人们对可再生能源的需求越来越高,太阳能作为最为广泛的可再生能源之一,将起到越来越重要的作用。
因此,光伏新材料的研发对于推动太阳能产业的发展具有重要意义。
总之,光伏新材料的研发为太阳能电池的进一步发展提供了新的方向和机遇。
未来,通过不断的研究和创新,相信光伏新材料将会获得更大的突破,为可持续能源的开发和利用做出更大的贡献。
光伏材料的制备和表征技术光伏发电作为一种新兴的清洁能源,已经引起了越来越多的关注。
光伏电池是将光能转化为电能的装置,其核心材料就是光伏材料。
为了提高光伏电池的效率和降低成本,其材料的制备和表征技术也越来越受到研究者们的关注。
一、光伏材料制备技术1、溶液法制备溶液法是目前最为常用的制备光伏材料的方法之一,可分为溶液反应法和胶体溶液法。
溶液反应法指的是将两种溶解物质在适当溶剂中反应生成光伏材料,即所谓"溶液-液相法"。
胶体溶液法则是将前体物质与胶体溶液混合,在光反应或热处理后转变为光伏材料。
这两种方法都可以控制光伏材料的物理性质和化学性质,且制备成本低。
2、气相法制备气相法指的是将气态前体物质在一定温度下进行化学反应,生成光伏材料,即所谓"气-固相法"。
这种方法不需要有机溶剂,不易污染环境,能够制备高纯度,高质量的光伏材料。
但是这种方法要求高温高压的反应条件,设备成本高,较难控制反应过程。
3、磁控溅射法制备磁控溅射法是目前常用的一种物理气相沉积法,其原理是将靶材在惰性气体的反应气氛下加热电离,随后收集反应生成的沉积物制备光伏材料。
这种方法有利于制备大面积的光伏材料,可获得成分均匀、结构致密、界面质量好的光伏材料。
4、溅射共沉积法制备溅射共沉积法是将靶材的多种元素共溅射到具有一定结构的衬底上,使其相互交错、层叠,从而形成复合材料。
这种方法可以制备各种复合光伏材料,如多层薄膜、纳米线等,且成本低,对比度高,生长速度快。
二、光伏材料表征技术1、X射线衍射X射线衍射是一种利用衍射现象来研究材料结构的技术,可用于分析材料的晶体结构、晶格常数、晶体排列等。
通过这种技术,可以了解光伏材料的表面结构、晶体形貌等一些基本信息,是光伏材料研究中最为常用的一种分析手段。
2、拉曼光谱拉曼光谱是一种通过分析物质分子产生的振动和旋转引起的光谱,可以测量材料的化学成份、结晶程度、结构信息等。
光伏材料制备技术
光伏材料制备技术是指制备太阳能电池所需的材料的技术。
太阳能电
池的主要材料包括硅、铜铟镓硒(CIGS)、钙钛矿等。
以下是几种常见的
光伏材料制备技术:1.硅材料制备技术:硅材料是太阳能电池的主要材料
之一。
硅材料的制备技术主要有单晶生长法、多晶生长法、气相沉积法、
溶胶-凝胶法等。
2.CIGS材料制备技术:CIGS材料是一种新型的太阳能电
池材料,其制备技术主要有物理气相沉积法、化学气相沉积法、溶液法等。
3.钙钛矿材料制备技术:钙钛矿材料是一种新型的太阳能电池材料,其制
备技术主要有溶液法、气相沉积法、热处理法等。
4.其他材料制备技术:
除了上述几种材料外,太阳能电池还可以使用其他材料,如有机太阳能电
池使用有机半导体材料,其制备技术主要有溶液法、真空蒸发法等。
总之,光伏材料制备技术是太阳能电池制造的关键技术之一,其发展将直接影响
太阳能电池的效率和成本。
光伏硅料原材料
光伏硅料是制造太阳能电池的关键原材料,主要由以下几种原材料组成:
1. 多晶硅:多晶硅是最常用的光伏硅料原材料。
它是从高纯度硅矿石经过冶炼和晶体生长工艺制备而成。
多晶硅具有优良的光电特性和导电性能,适合用于制造太阳能电池。
2. 单晶硅:单晶硅也是一种常用的光伏硅料原材料。
与多晶硅相比,它具有更高的纯度和结晶度。
单晶硅是通过先将硅矿石熔化,然后通过拉晶法或浇注法制备成单晶片。
单晶硅制备的太阳能电池具有更高的效率,但成本也较高。
3. 太阳能级硅原料:除了多晶硅和单晶硅,还有一种特殊的太阳能级硅原料被广泛应用于光伏硅料的制造。
这种硅原料通常是从多晶硅或其他硅废料中提取,并经过特殊工艺处理,以满足太阳能电池对纯度和性能的要求。
综上所述,光伏硅料的原材料主要包括多晶硅、单晶硅和太阳能级硅原料。
这些原材料经过精细加工和制备工艺,可以用于制造高效、可靠的太阳能电池。
太阳能发电的光伏组件材料与性能研究一、引言太阳能发电是近年来备受关注的清洁能源领域。
光伏组件是太阳能电力系统中最基本的组成部分,其性能直接影响着太阳能发电的效率和稳定性。
本文将探讨光伏组件材料与性能的研究。
二、光伏组件材料(一)晶体硅晶体硅是目前用于光伏组件的主要材料之一。
其制备方法包括Czochralski方法、浮区法等。
晶体硅光伏组件的优点是稳定性好、寿命长。
不过,它也存在着制备成本高、厚度大、加工难度大等缺点,影响了其广泛应用。
(二)非晶硅非晶硅是晶体硅的变形,硅原子的排列十分松散。
与晶体硅相比,非晶硅制备成本低、生产效率高,但其光电转化效率和稳定性不如晶体硅。
(三)多晶硅多晶硅是由多个晶粒组成的硅材料。
与单晶硅相比,多晶硅制备成本较低,可用于大规模工业生产。
但由于晶粒之间存在较多晶界和缺陷,多晶硅光伏组件的效率不如晶体硅。
(四)有机物有机物光伏材料是在有机合成材料的基础上研究开发出的新型太阳能电池材料。
其材料制备成本低,材料性能易于调控,但光电转化效率和稳定性较低。
三、光伏组件性能(一)光电转换效率光电转换效率是衡量光伏组件性能的主要指标。
其定义为组件所接收的光能转化成电能的比例。
目前晶体硅光伏组件的光电转换效率已达到20%以上,而其他材料的光伏组件转换效率较低。
(二)温度系数和光衰减系数光伏组件在高温环境下光电转换效率下降,此时温度系数就成为了重要的考量因素。
光衰减系数则是描述组件在长时间使用后光电转化效率的下降情况。
(三)耐久性光伏组件的可靠性和耐久性对于其长期使用和维护至关重要。
因此,材料的化学稳定性、机械强度和抗紫外线性能也是考虑的因素之一。
四、研究现状当前,国内外光伏组件材料与性能的研究主要集中在以下几个方面:(一)提升光电转换效率包括通过材料的结构运用、表面粗化、电池结构优化等多种手段来提高光电转换效率。
(二)降低制造成本通过改进生产工艺,降低材料使用成本和制造成本,提升光伏组件市场竞争力。
光伏材料性能评价方法总结光伏材料是利用太阳能将光能转化为电能的一种关键技术,是清洁能源发展的重要组成部分。
光伏材料的性能评价是评估其转换效率和稳定性的关键一环。
本文将介绍光伏材料性能评价的几种常见方法,并总结其优缺点。
光伏材料的性能评价主要包括光电转换效率、稳定性、光吸收和电荷传输等方面。
以下是几种常见的光伏材料性能评价方法:1. 外部量子效率(External Quantum Efficiency, EQE):EQE是评估光伏材料对入射光的吸收程度和电流转化效率的关键参数。
通过测量光伏材料在不同波长下的光电流响应,可以得到EQE谱线。
优点是能够准确测量不同波长下的光电转换效率,缺点是需要精密的实验设备和严格的操作。
2. 内部量子效率(Internal Quantum Efficiency, IQE):IQE是光伏材料中发生光电转化的效率。
主要通过比较样品内部光电流和外部光电流来计算。
IQE对于评估光伏材料的光吸收和电荷分离能力具有重要意义。
优点是可以评估光伏材料内部的电荷分离和传输效率,缺点是需要复杂的计算方法和精确的测量技术。
3. 稳态/瞬态光电流谱法:通过测量光伏材料在连续或短脉冲激光下的光电流谱线,可以评估其瞬态响应和光生载流子的行为。
这种方法可以评估光伏材料的电荷分离和输运效率,并且可以对光伏材料的动态性能进行研究。
优点是可以研究光伏材料的电荷传输过程和动态响应,缺点是相对复杂且需要相对昂贵的设备。
4. 光电流-电压特性曲线(Photocurrent-Voltage, I-V curve):通过在不同光照强度下测量光伏材料的电流和电压值,可以得到I-V曲线。
这种方法可以评估光伏材料的光敏度、光伏输出功率和理论最大转换效率。
通过计算I-V曲线上的关键参数,如开路电压、短路电流和填充因子,可以评估光伏材料的性能。
优点是简单易行,并且可以准确评估光伏材料的效率,缺点是只能评估材料的稳态性能。
FundamentalsofPhotovoltaic MaterialsNational Solar Power Reasearch Institute, Inc.12/21/98IntroductionPhotovoltaics (PV) comprises the technology to convert sunlight directly into electricity. The term “photo” means light and “voltaic,” electricity. A photovoltaic (PV) cell, also known as “solar cell,”is a semiconductor device that generates electricity when light falls on it . Although photovoltaic effect was observed in 1839 by the French scientist Edmund Becquerel, it was not fully comprehensible until the development of quantum theory of light and solid state physics in early to middle 1900s. Since its first commercial use in powering orbital satellites of the US space programs in the 1950s, PV has made significant progress with total U.S. photovoltaic module and cell shipments reaching $131 million dollars in 1996.While most PV cells in use today are silicon-based, cells made of other semiconductor materials are expected to surpass silicon PV cells in performance and cost and become viable competitors in the PV marketplace.This paper surveys the major types of PV cell materials including silicon- and non-silicon-based materials, providing an overview of the advantages and limitations of each type of materials.Photovoltaics and Photovoltaic CellsWhen sunlight strikes a PV cell, the photons of the absorbed sunlight dislodge the electrons from the atoms of the cell. The free electrons then move through the cell, creating and filling in holes in the cell. It is this movement of electrons and holes that generates electricity. The physical process in which a PV cell converts sunlight into electricity is known as the photovoltaic effect.One single PV cell produces up to 2 watts of power, too small even for powering pocket calculators or wristwatches. To increase power output, many PV cells are connected together to form modules, which are further assembled into larger units called arrays. This modular nature ofPV enables designers to build PV systems with various power output for different types of applications.A complete PV system consists not only of PV modules, but also the “balance of system” or BOS -- the support structures, wiring, storage, conversion devices, etc. i.e. everything else in a PV system except the PV modules. Two major types of PV systems are available in the marketplace today: flat plate and concentrators.As the most prevalent type of PV systems, flat plate systems build the PV modules on a rigid and flat surface to capture sunlight. Concentrator systems use lenses to concentrate sunlight on the PV cells and increase the cell power output. Comparing the two systems, flat plate systems are typically less complicated but employ a larger number of cells while the concentrator systems use smaller areas of cells but require more sophisticated and expensive tracking systems. Unable to focus diffuse sunlight, concentrator systems do not work under cloudy conditions.Types of PV cell materialsPV cells are made of semiconductor materials. The major types of materials are crystalline and thin films, which vary from each other in terms of light absorption efficiency, energy conversion efficiency, manufacturing technology and cost of production. The rest of the paper discusses the characteristics, advantages and limitations of these two major types of cell materials.1.Crystalline Materials1.1Single-crystal siliconSingle-crystal silicon cells are the most common in the PV industry. The maintechnique for producing single-crystal silicon is the Czochralski (CZ) method.High-purity polycrystalline is melted in a quartz crucible. A single-crystal siliconseed is dipped into this molten mass of polycrystalline. As the seed is pulledslowly from the melt, a single-crystal ingot is formed. The ingots are then sawedinto thin wafers about 200-400 micrometers thick (1 micrometer = 1/1,000,000meter). The thin wafers are then polished, doped, coated, interconnected andassembled into modules and arrays.A single-crystal silicon has a uniform molecular structure. Compared to non-crystalline materials, its high uniformity results in higher energy conversionefficiency -- the ratio of electric power produced by the cell to the amount ofavailable sunlight power i.e. power-out divided by power-in. The higher a PVcell’s conversion efficiency, the more electricity it generates for a given area ofexposure to the sunlight. The conversion efficiency for single-silicon commercialmodules ranges between 15-20%. Not only are they energy efficient, single-siliconmodules are highly reliable for outdoor power applications.The average price for single-crystal modules is $3.97 per peak watt in 1996.1(Renewable Energy Annual 1997). About half of the manufacturing cost comesfrom wafering, a time-consuming and costly batch process in which ingots are cutinto thin wafers with a thickness no less than 200 micrometers thick. If the wafersare too thin, the entire wafer will break in wafering and subsequent processing.Due to this thickness requirement, a PV cell requires a significant amount of rawsilicon and half of this expensive material is lost as sawdust in wafering.1.2Polycrystalline siliconConsisting of small grains of single-crystal silicon, polycrystalline PV cells are lessenergy efficient than single-crystalline silicon PV cells. The grain boundaries inpolycrystalline silicon hinder the flow of electrons and reduce the power output of 1 Department of Energy, Renewable Energy Annual 1997, Vol 1, Chapter 2, Table 28.the cell. The energy conversion efficiency for a commercial module made ofpolycrystalline silicon ranges between 10 to 14%.A common approach to produce polycrystalline silicon PV cells is to slice thinwafers from blocks of cast polycrystalline silicon. Another more advancedapproach is the “ribbon growth” method in which silicon is grown directly as thinribbons or sheets with the approach thickness for making PV cells. Since nosawing is needed, the manufacturing cost is lower. The most commerciallydeveloped ribbon growth approach is EFG (edge-defined film-fed growth).Compared to single-crystalline silicon, polycrystalline silicon material is strongerand can be cut into one-third the thickness of single-crystal material. It also hasslightly lower wafer cost and less strict growth requirements. However, theirlower manufacturing cost is offset by the lower cell efficiency. The average pricefor a polycrystalline module made from cast and ribbon is $3.92 per peak watt in19962, slightly lower than that of a single-crystal module.1.3Gallium Arsenide (GaAs)A compound semiconductor made of two elements: gallium (Ga) and arsenic (As),GaAs has a crystal structure similar to that of silicon. An advantage of GaAs is thatit has high level of light absorptivity. To absorb the same amount of sunlight,GaAs requires only a layer of few micrometers thick while crystalline siliconrequires a wafer of about 200-300 micrometers thick.3 Also, GaAs has a muchhigher energy conversion efficiency than crystal silicon, reaching about 25 to 30%.2 Department of Energy, Renewable Energy Annual 1997, Vol 1, Chapter 2, Table 28.3 The concept of light absorptivity is different from that of energy conversion efficiency. Light absorptivity measures how much usable solar energy is absorbed by a given area of material. The greater number of different wavelengths of the solar spectrum a material can absorb, the higher the light absorptivity. For the sunlight that is absorbed byIts high resistance to heat makes it an ideal choice for concentrator systems in whichcell temperatures are high. GaAs is also popular in space applications where strongresistance radiation damage and high cell efficiency are required.The biggest drawback of GaAs PV cells is the high cost of the single-crystalsubstrate that GaAs is grown on. Therefore it is most often used in concentratorsystems where only a small area of GaAs cells is needed.2.Thin Film MaterialsIn a thin-film PV cell, a thin semiconductor layer of PV materials is deposited on low-cost supporting layer such as glass, metal or plastic foil. Since thin-film materials have higherlight absorptivity than crystalline materials, the deposited layer of PV materials is extremely thin, from a few micrometers to even less than a micrometer (a single amorphous cell canbe as thin as 0.3 micrometers). Thinner layers of material yield significant cost saving.Also, the deposition techniques in which PV materials are sprayed directly onto glass ormetal substrate are cheaper. So the manufacturing process is faster, using up less energyand mass production is made easier than the ingot-growth approach of crystalline silicon.However, thin film PV cells suffer from poor cell conversion efficiency due to non-single-crystal structure, requiring larger array areas and increasing area-related costs such asmountings.Constituting about 4% of total PV module shipments of US4, the PV industry sees greatpotentials of thin-film technology to achieve low-cost PV electricity.Materials used for thin film PV modules are as follows:the material, how much of the sunlight can be successfully converted into electricity is measured by the concept of energy conversion efficiency.4 Department of Energy, Renewable Energy Annual 1997, Vol 1, Chapter 2, Table 27.2.1Amorphous Silicon (a-Si)Used mostly in consumer electronic products which require lower power outputand cost of production, amorphous silicon has been the dominant thin-film PVmaterial since it was first discovered in 1974.Amorphous silicon is a non-crystalline form of silicon i.e. its silicon atoms aredisordered in structure. A significant advantage of a-Si is its high lightabsorptivity, about 40 times higher than that of single-crystal silicon. Thereforeonly a thin layer of a-Si is sufficient for making PV cells (about 1 micrometer thickas compared to 200 or more micrometers thick for crystalline silicon cells). Also, a-Si can be deposited on various low-cost substrates, including steel, glass andplastic, and the manufacturing process requires lower temperatures and thus lessenergy. So the total material costs and manufacturing costs are lower per unit areaas compared to those of crystalline silicon cells.Despite the promising economic advantages, a-Si still has two major roadblocks toovercome. One is the low cell energy conversion efficiency, ranging between 5-9%, and the other is the outdoor reliability problem in which the efficiency degradeswithin a few months of exposure to sunlight, losing about 10 to 15%.The average price for a a-Si module cost about $7 per watt in 1995.52.2Cadmium Telluride (CdTe)As a polycrystalline semiconductor compound made of cadmium and tellurium,CdTe has a high light absorptivity level -- only about a micrometer thick can absorb90% of the solar spectrum. Another advantage is that it is relatively easy and cheap 5 Department of Energy, Renewable Energy Annual 1997, Vol 1, Chapter 2, Table 28.to manufacture by processes such as high-rate evaporation, spraying or screenprinting. The conversion efficiency for a CdTe commercial module is about 7%,similar to that of a-Si.The instability of cell and module performance is one of the major drawbacks ofusing CdTe for PV cells. Another disadvantage is that cadmium is a toxicsubstance. Although very little cadmium is used in CdTe modules, extraprecautions have to be taken in manufacturing process.2.3Copper Indium Diselenide (CuInSe, or CIS)2A polycrystalline semiconductor compound of copper, indium and selnium, CIShas been one of the major research areas in the thin film industry. The reason for it to receive so much attention is that CIS has the highest “research” energyconversion efficiency of 17.7% in 1996 is not only the best among all the existingthin film materials, but also came close to the 18% research efficiency of thepolycrystalline silicon PV cells. (A prototype CIS power module has a conversion efficiency of 10%.) Being able to deliver such high energy conversion efficiencywithout suffering from the outdoor degradation problem, CIS has demonstrated that thin film PV cells are a viable and competitive choice for the solar industry in thefuture.CIS is also one of the most light-absorbent semiconductors -- 0.5 micrometers canabsorb 90% of the solar spectrum.CIS is an efficient but complex material. Its complexity makes it difficult tomanufacture. Also, safety issues might be another concern in the manufacturingprocess as it involves hydrogen selenide, an extremely toxic gas. So far, CIS is notcommercially available yet although Siemens Solar has plans to commercialize CISthin-film PV modules.ConclusionCrystalline silicon has been the workhorse of the PV cells for the past two decades. However, recent progress in the thin-films technology has led many industry experts to believe that thin-films PV cells will eventually dominate the marketplace one day and realize the goals of PV -- a low price and reliable source of energy supply.ReferencesBerger, John J. Charging Ahead: The Business of Renewable Energy and What It Means for America. New York: Henry Holt and Company. 1997.Boyle, Godfrey, ed. Renewable Energy: Power for a Sustainable Future. UK: Oxford University Press. 1996.Goetzberger, Adolf., Knobloch, Joachim., and Voss, Bernhard. Crystalline Silicon Solar Cells.England: John Wiley & Sons, 1998.Howes, Ruth., and Fainberg, Anthony. The Energy Sourcebook: A Guide to Technology, Resources, and Policy. American Institute of Physics, New York. 1991. Johansson, Thomas B., Kelly, Henry., Reddy, Amulya K.N. andWilliams, Robert H. eds. Renewable Energy: Sources for Fuels and Electricity. Washing DC: Island Press, 1993.Nansen, Ralph. Sun Power: The Global Solution for the Coming Energy Crisis. Ocean Press, Washington, 1995.Partain, Larry D, ed. Solar Cells and Their Applications. New York: John Wiley & Sons, 1995.Zweibel, Ken. Harnessing Solar Power: The Photovoltaics Challenge. New York: Plenum Press, 1990.Department of Energy. Renewable Energy Annual 1997. Vol I. Washington, DC: 1997. Zweibel, Ken. “Thin Films: Past, Present, Future.” Progress in Photovoltaics 3, no. 5 (Sept/Oct 1995, revised April 1997).。