高斯消元法解线性方程组
- 格式:docx
- 大小:30.93 KB
- 文档页数:7
高斯消元法简化线性方程组线性方程组是数学中常见的问题,其解决方法多种多样。
其中,高斯消元法是一种常用且有效的方法,可以用于简化线性方程组的求解过程。
本文将介绍什么是高斯消元法,以及如何应用它来解决线性方程组。
一、高斯消元法的原理高斯消元法是一种通过行变换将线性方程组转化为更简单形式的方法。
假设有一个线性方程组,包括n个未知数和n个方程:a11x1 + a12x2 + ... + a1nxn = b1a21x1 + a22x2 + ... + a2nxn = b2...an1x1 + an2x2 + ... + annxn = bn通过一系列的行变换,可以将线性方程组转化为上三角矩阵或者简化行阶梯形矩阵的形式。
二、高斯消元法的步骤1. 首先,将方程组表示为增广矩阵的形式,即将系数矩阵和常数向量合并在一起。
得到增广矩阵[A|B],其中A为系数矩阵,B为常数向量。
2. 选取一个主元素,一般选择第一列的第一个非零元素。
在每一行中,通过行变换将主元素所在列的其他元素消为零。
这一步骤称为“消元”。
3. 重复上述步骤,将主元素向下和向右移动,直到矩阵转化为上三角形或简化行阶梯形。
4. 如果出现主元素为零的情况,则需要通过交换行来选取一个非零元素作为主元素,以确保程序正确运行。
5. 进行回代求解,从最后一行开始,依次将已知数值代入方程组中,求解出未知数的值。
三、应用实例下面以一个具体的实例来说明高斯消元法的应用:假设有以下线性方程组:x + 2y - z = 52x - y + 3z = 93x + y - 2z = 1首先,将方程组表示为增广矩阵形式:[1 2 -1 | 5][2 -1 3 | 9][3 1 -2 | 1]选取第一列的第一个非零元素1作为主元素,进行消元操作:[1 2 -1 | 5][0 -5 5 | -1][0 -5 1 | -14]选取第二列的第一个非零元素-5作为主元素,继续进行消元操作:[1 2 -1 | 5][0 1 -1 | 1/5][0 0 -4 | -13/5]此时,矩阵已经转化为上三角形的形式。
高斯消元法解线性方程组线性方程组是数学中常见的问题,其中包含多个线性方程,求解线性方程组即为找到满足所有方程的解。
高斯消元法是一种常用的方法,可以有效地解决线性方程组。
本文将介绍高斯消元法的原理和步骤,并通过一个具体的例子来演示其应用。
一、高斯消元法原理高斯消元法是通过一系列的行变换来将线性方程组转化为上三角形式,进而求解方程组。
具体步骤如下:1. 将线性方程组写成增广矩阵形式,其中每一行表示一个方程,最后一列为常数项。
2. 选择一个主元,通常选择第一列的第一个非零元素作为主元。
3. 将主元所在行的所有元素除以主元,使主元变为1。
4. 将主元所在列的其他行元素通过适当的倍数加到相应行,使得主元所在列的其他元素都变为0。
5. 重复步骤2-4,直到将矩阵转化为上三角形式。
6. 从最后一行开始,通过回代法求解每个未知数的值。
二、高斯消元法步骤示例为了更好地理解高斯消元法的步骤,下面以一个具体的线性方程组为例进行演示。
假设有如下线性方程组:2x + y - z = 1-3x - y + 2z = -2-2x + y + 2z = 3首先,将线性方程组写成增广矩阵形式:[ 2 1 -1 | 1 ][-3 -1 2 | -2 ][-2 1 2 | 3 ]选择第一列的第一个非零元素2作为主元,将主元所在行的所有元素除以主元,使主元变为1,得到:[ 1 0 -0.5 | 0.5 ][-3 -1 2 | -2 ][-2 1 2 | 3 ]然后,将主元所在列的其他行元素通过适当的倍数加到相应行,使得主元所在列的其他元素都变为0,得到:[ 1 0 -0.5 | 0.5 ][ 0 -1 1.5 | -0.5 ][ 0 1 3 | 4 ]接下来,选择第二列的第二个非零元素-1作为主元,将主元所在行的所有元素除以主元,使主元变为1,得到:[ 1 0 -0.5 | 0.5 ][ 0 1 -1.5 | 0.5 ][ 0 1 3 | 4 ]再次进行行变换,将主元所在列的其他行元素通过适当的倍数加到相应行,使得主元所在列的其他元素都变为0,得到:[ 1 0 -0.5 | 0.5 ][ 0 1 -1.5 | 0.5 ][ 0 0 4.5 | 3 ]将矩阵转化为上三角形式后,从最后一行开始,通过回代法求解每个未知数的值。
用高斯消元法解线性方程组高斯消元法是一种常用的解线性方程组的方法。
它通过一系列的行变换将线性方程组转化为一个简化的行阶梯形式,从而可以方便地求解方程组。
基本步骤使用高斯消元法解线性方程组的基本步骤如下:1. 构造增广矩阵:将线性方程组的系数矩阵和常数向量按照方程的顺序组合成一个增广矩阵。
2. 初等行变换:通过初等行变换操作,将增广矩阵转化为行阶梯形或行最简形。
3. 回代求解:从最后一行开始,反向代入得到方程组的解。
详细步骤以下是用高斯消元法解线性方程组的详细步骤:1. 将线性方程组的系数矩阵和常数向量按照方程的顺序组合成一个增广矩阵,如下所示:[a11 a12 ... a1n | b1][a21 a22 ... a2n | b2][... ... ... ... | ...][an1 an2 ... ann | bn]2. 选择第一个非零元素所在的列,记为第 k 列。
3. 通过初等行变换操作,将第 k 列除了第 k 行之外的所有元素变为零。
首先,将第 k 行的第 k 个元素系数标准化为 1,即将第 k 行的所有元素除以第 k 个元素的值。
然后,对第 i 行(i ≠ k)进行以下操作:将第 i 行的第 k 个元素的系数变为零,即将第 i 行减去第 k 行的 k 个元素乘以第 i 行的第 k 个元素的系数。
4. 重复步骤 2 和步骤 3,直至所有列都处理完毕。
5. 如果最后一行的所有元素都为零,则该线性方程组无解。
6. 如果最后一行的最后一个非零元素所在的列号为 m,则 m+1 到 n 列的所有元素均为自由变量。
7. 从最后一行开始,反向代入求解自由变量。
示例假设有以下线性方程组:2x + 3y - z = 13x + 2y + z = 2x + 3y + 2z = 3将该方程组转化为增广矩阵的形式:[2 3 -1 | 1][3 2 1 | 2][1 3 2 | 3]通过高斯消元法的步骤,可以得到以下的行阶梯形式:[1 3/2 1/2 | 3/2][0 7/2 -3/2 | -3/2][0 0 17/7 | 17/14]根据行阶梯形式,可以得到方程组的解为:x = 1/2y = -1/2z = 2/7总结高斯消元法是一种简单而有效的方法,用于解线性方程组。
线性方程组的几种求解方法1.高斯消元法高斯消元法是求解线性方程组的一种常用方法。
该方法的基本思想是通过对方程组进行一系列简化操作,使得方程组的解易于求得。
首先将方程组表示为增广矩阵,然后通过一系列的行变换将增广矩阵化为行简化阶梯形,最后通过回代求解出方程组的解。
2.列主元高斯消元法列主元高斯消元法是在高斯消元法的基础上进行改进的方法。
在该方法中,每次选取主元时不再仅仅选择当前列的第一个非零元素,而是从当前列中选取绝对值最大的元素作为主元。
通过选取列主元,可以避免数值稳定性问题,提高计算精度。
3.LU分解法LU分解法是一种将线性方程组的系数矩阵分解为一个下三角矩阵L 和一个上三角矩阵U的方法。
首先进行列主元高斯消元法得到行阶梯形矩阵,然后对行阶梯形矩阵进行进一步的操作,得到L和U。
最后通过回代求解出方程组的解。
4.追赶法(三角分解法)追赶法也称为三角分解法,适用于系数矩阵是对角占优的三对角矩阵的线性方程组。
追赶法是一种直接求解法,将系数矩阵分解为一个下三角矩阵L和一个上三角矩阵U,然后通过简单的代数运算即可求得方程组的解。
5.雅可比迭代法雅可比迭代法是一种迭代法,适用于对称正定矩阵的线性方程组。
该方法的基本思想是通过不断迭代求解出方程组的解。
首先将方程组表示为x=Bx+f的形式,然后通过迭代计算不断逼近x的解。
6.高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进方法。
该方法在每一次迭代时,使用已经更新的解来计算新的解。
相比于雅可比迭代法,高斯-赛德尔迭代法的收敛速度更快。
7.松弛因子迭代法松弛因子迭代法是一种对高斯-赛德尔迭代法的改进方法。
该方法在每一次迭代时,通过引入松弛因子来调节新解与旧解之间的关系。
可以通过选择合适的松弛因子来加快迭代速度。
以上是一些常用的线性方程组求解方法,不同的方法适用于不同类型的线性方程组。
在实际应用中,根据问题的特点和要求选择合适的求解方法可以提高计算的效率和精度。
数学公式知识:高斯消元法解线性方程组高斯消元法是一种常用于解决线性方程组的方法,其基本思想是通过一系列的行变换,将原始的线性方程组转化为一个三角形形式的线性方程组,从而求解出方程组的解析解或数值解。
本文将介绍高斯消元法的过程、原理以及应用。
一、高斯消元法的基本过程高斯消元法的基本过程可以分为以下几步:1.构造增广矩阵:将原始的线性方程组写成增广矩阵的形式,即将系数矩阵和常数向量合并在一起。
2.基本行变换:通过一系列基本行变换(例如交换两行、将某一行乘以一个非零常数、将某一行加上另一行的若干倍),将增广矩阵转化为上三角矩阵。
3.回带求解:通过向上回带的方式,求解出上三角矩阵对应的线性方程组的解。
二、高斯消元法的原理在执行高斯消元法的过程中,关键是在第一步构造增广矩阵时,如何选取主元。
主元通常被选为系数矩阵中对应行的主对角线元素,其基本原理是以该元素为基础,通过一系列行变换,将其他元素全部消为0,从而得到一个上三角矩阵。
但是,在实际应用中,可能会出现主元为0或非常小的情况,导致计算误差或求解失败。
因此,在程序实现时,通常需要先通过部分选主元(例如选取绝对值最大的元素作为主元),再进行行变换,从而提高计算精度。
此外,在执行高斯消元法的过程中,需要注意一些细节问题,例如主元为0或非常小的情况、矩阵奇异性等,以避免出现计算错误或无解的情况。
三、高斯消元法的应用高斯消元法广泛应用于各种科研和工程问题中,例如线性控制、图像识别、计算机视觉等领域。
其主要应用场景包括:1.求解线性方程组:高斯消元法可以直接求解线性方程组的解析解或数值解,为工程和科研计算提供了重要的基础工具。
2.矩阵求逆:通过将方程组的系数矩阵变为单位矩阵,可以使用高斯消元法求解矩阵的逆,从而可以直接计算出矩阵的行列式、特征值等重要参数。
3.最小二乘法:在拟合曲线或曲面时,通常会将问题转化为线性方程组的形式,然后采用高斯消元法求解最小二乘问题的解。
高斯消元法在解线性方程组中的应用高斯消元法是一种非常实用的算法,能够对线性方程组进行求解。
因此,它在数学、物理、化学、工程学等领域都得到了广泛
的应用。
高斯消元法是将线性方程组的系数矩阵转化为所要求的矩阵,
使用一些简单的变换来达到简化方程组的目的。
具体来说,首先
可以通过交换两个方程或多个方程来使系数矩阵的主对角线上的
元素变为非零元。
然后,通过将系数矩阵的某一行乘以一个非零
常数或将某一行加上或减去另一行来使主对角线以下的元素为0。
最终,得到一个上三角矩阵,可以通过回代求解得到方程组的解。
高斯消元法的优缺点:
优点:高斯消元法计算简单,求解速度较快,可在一定范围内
获得较高的精度。
缺点:高斯消元法在某些情况下可能会产生有限或无限多的解,这可能是由于线性方程组中的约束条件不充分或矛盾导致的。
此外,随着线性方程组大小的增加,高斯消元法求解的复杂性会显
著增加。
在大型的稀疏线性方程组中,高斯消元法往往不是最好的选择。
高斯消元法的应用场景:
高斯消元法可以用于求解各种问题,如求解矩阵方程、求解线性方程组变型、线性回归、最小二乘法等。
这些问题的求解都可以转化为求解线性方程组的问题,因此高斯消元法是解决这些问题的关键算法。
总之,高斯消元法是一种重要的数学工具,在各个领域都能够得到广泛的应用。
无论是通过纸笔计算还是计算机程序实现,高斯消元法都应该是每个使用线性代数的科学家和工程师的基本工具之一。
高斯消元法求解线性方程组线性方程组是数学中重要的概念,它描述了一组线性方程的集合。
解决线性方程组的问题在科学和工程领域中具有广泛的应用。
高斯消元法是一种常用的方法,用于求解线性方程组。
本文将介绍高斯消元法的原理和步骤,并通过实例演示其应用。
一、高斯消元法的原理高斯消元法是一种基于矩阵变换的方法,用于将线性方程组转化为简化的行阶梯形式。
其基本思想是通过一系列的行变换,将方程组中的系数矩阵化为上三角矩阵,从而简化求解过程。
具体而言,高斯消元法的步骤如下:1. 将线性方程组的系数矩阵和常数向量写成增广矩阵的形式。
2. 选取一个主元素,通常选择第一列的第一个非零元素作为主元素。
3. 通过行变换,将主元素下方的所有元素化为零。
4. 选取下一个主元素,并重复步骤3,直到将矩阵化为上三角形式。
5. 通过回代法,求解得到线性方程组的解。
二、高斯消元法的步骤为了更好地理解高斯消元法的步骤,我们以一个具体的线性方程组为例进行演示。
假设我们有以下线性方程组:```2x + 3y - z = 14x - y + z = -2x + 2y + 3z = 3```首先,我们将其写成增广矩阵的形式:```[2, 3, -1 | 1][4, -1, 1 | -2][1, 2, 3 | 3]```接下来,我们选取第一列的第一个非零元素2作为主元素,并通过行变换将主元素下方的元素化为零。
具体步骤如下:1. 将第二行乘以2,然后与第一行相减,得到新的第二行:`[0, -7, 3 | -4]`2. 将第三行乘以0.5,然后与第一行相减,得到新的第三行:`[0, 0.5, 2.5 | 1.5]`此时,得到的矩阵为:```[2, 3, -1 | 1][0, -7, 3 | -4][0, 0.5, 2.5 | 1.5]```接下来,我们选取第二列的第二个非零元素-7作为主元素,并通过行变换将主元素下方的元素化为零。
具体步骤如下:1. 将第三行乘以14,然后与第二行相加,得到新的第三行:`[0, 0, 35 | 7]`此时,得到的矩阵为:```[2, 3, -1 | 1][0, -7, 3 | -4][0, 0, 35 | 7]```最后,我们通过回代法求解得到线性方程组的解。
求解线性方程组线性方程组是数学中的一类重要方程组,它可用于描述许多实际问题。
解线性方程组的目标是找到满足所有方程条件的未知数的值。
本文将介绍解线性方程组的基本方法和步骤。
方法一:高斯消元法高斯消元法是解线性方程组最常用的方法之一。
它的基本思想是通过一系列行变换将线性方程组化简为阶梯形或行最简形。
以下是高斯消元法的步骤:1. 将线性方程组表示为增广矩阵的形式,其中未知数的系数构成方程组的系数矩阵A,常数构成列向量B。
2. 利用行变换,将增广矩阵化简为阶梯形矩阵。
行变换包括互换两行、某一行乘以非零常数、某一行乘以非零常数后加到另一行上。
3. 根据化简后的阶梯形矩阵,可以直接读出方程组的解。
如果存在零行,即无解;如果存在形如0 = c(c为非零常数)的方程,即无解;其他情况下,解的个数等于未知数的个数减去方程数的个数。
方法二:矩阵求逆法矩阵求逆法也是一种求解线性方程组的方法。
它的基本思想是通过求解系数矩阵的逆矩阵,进而得到方程组的解。
以下是矩阵求逆法的步骤:1. 将线性方程组表示为矩阵方程的形式:AX = B,其中A为系数矩阵,X为未知数的列向量,B为常数的列向量。
2. 检查系数矩阵A是否可逆。
若可逆,则方程组有唯一解;若不可逆,则方程组可能没有解或有无穷多个解。
3. 若A可逆,计算系数矩阵的逆矩阵A^(-1)。
4. 解方程组的解为X = A^(-1) * B。
需要注意的是,矩阵求逆法只适用于方程组的系数矩阵可逆的情况。
方法三:克拉默法则克拉默法则是一种基于行列式的求解线性方程组的方法。
它的基本思想是根据克拉默法则公式,求解未知数的值。
以下是克拉默法则的步骤:1. 将线性方程组表示为矩阵方程的形式:AX = B,其中A为系数矩阵,X为未知数的列向量,B为常数的列向量。
2. 计算系数矩阵A的行列式值D,即|A|。
3. 对每个未知数,将系数矩阵的列向量替换为方程组常数向量,得到新的矩阵A_i。
4. 计算新的矩阵A_i的行列式值D_i。
解线性方程组的方法线性方程组是数学中常见的一类方程组,它由一组线性方程组成,常用形式为:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ = b₂⋮aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ = bₙ其中,a₁₁, a₁₂, …, a₁ₙ, a₂₁, a₂₂, …, aₙₙ为已知系数,b₁,b₂, …, bₙ为已知常数,x₁, x₂, …, xₙ为未知数。
解线性方程组的方法有多种,下面将详细介绍其中的几种常用方法。
1. 列主元高斯消元法列主元高斯消元法是一种经典的解线性方程组的方法。
它的基本思想是通过消元将线性方程组转化为三角形式,然后逐步回代求解未知数。
具体步骤如下:(1)将系数矩阵按列选择主元,即选取每一列中绝对值最大的元素作为主元;(2)对系数矩阵进行初等行变换,使主元所在列下方的元素全部变为零;(3)重复上述步骤,直到将系数矩阵化为上三角矩阵;(4)从最后一行开始,逐步回代求解未知数。
2. Cramer法则Cramer法则是一种基于行列式的解线性方程组的方法。
它利用克拉默法则,通过求解线性方程组的系数矩阵的行列式和各个未知数对应的代数余子式的乘积,进而得到方程组的解。
具体步骤如下:(1)计算线性方程组的系数矩阵的行列式,若行列式为零,则方程组无解,否则进行下一步;(2)分别将每个未知数对应的列替换为常数向量,并计算替换后的系数矩阵的行列式;(3)将第二步计算得到的行列式除以第一步计算得到的行列式,得到各个未知数的解。
需要注意的是,Cramer法则只适用于系数矩阵为非奇异矩阵的情况。
3. 矩阵求逆法矩阵求逆法是一种利用矩阵求逆运算解线性方程组的方法。
它将线性方程组转化为矩阵形式,通过求解系数矩阵的逆矩阵,然后与常数向量相乘得到未知数向量。
具体步骤如下:(1)将线性方程组的系数矩阵记为A,常数向量记为b,未知数向量记为x;(2)判断A是否可逆,若A可逆,则进行下一步,否则方程组无解;(3)求解系数矩阵的逆矩阵A⁻¹;(4)计算未知数向量x = A⁻¹b。
高斯消元法线性方程组的解法高斯消元法是一种常用于解决线性方程组的方法,能够有效地求解方程组的解。
它利用矩阵的初等行变换将方程组转化为简化的阶梯型矩阵,进而求得方程组的解。
本文将介绍高斯消元法的原理和步骤,并通过一个具体的例子来演示如何使用高斯消元法求解线性方程组。
一、高斯消元法的原理高斯消元法基于以下原理:通过矩阵的初等行变换,可以将线性方程组转化为行简化阶梯型矩阵,从而得到方程组的解。
其基本思想是通过逐行消元,将矩阵的主对角线以下的元素全部变为0,最终得到行简化阶梯型矩阵。
二、高斯消元法的步骤1. 将线性方程组的系数矩阵和常数矩阵合并为增广矩阵;2. 选择一个元素作为主元,并将该列的其他元素消为0;3. 逐行进行行交换,使主元非零;4. 重复上述步骤,直到将增广矩阵转化为行简化阶梯型矩阵。
三、高斯消元法的具体操作为了更好地理解高斯消元法,我们将通过一个具体的例子来演示其求解过程。
考虑以下线性方程组:```2x + 3y - z = 13x - 2y + 5z = -2x + y - z = 0```首先将系数矩阵和常数矩阵合并为增广矩阵:```[2 3 -1 | 1][3 -2 5 | -2][1 1 -1 | 0]```选择第一行的第一个元素2作为主元,通过初等行变换将主元所在列的其他元素消为0:```[2 3 -1 | 1][0 -13 7 | -5][0 -1 1 | -1]```接下来选择第二行的第二个元素-13作为主元,通过初等行变换继续消元:```[2 3 -1 | 1][0 1 -7/13 | 5/13][0 0 -6/13 | -8/13]```最后一次消元选择第三行的第三个元素-6/13作为主元:```[2 3 -1 | 1][0 1 -7/13 | 5/13][0 0 1 | 4/3]```现在我们得到了行简化阶梯型矩阵,接下来可以使用回代法求解方程组。
从最后一行开始,依次代入上一行的解,最终求得方程组的解为:```x = 5/6y = 3/2z = 4/3```四、总结高斯消元法是一种常用的线性方程组解法,通过矩阵的初等行变换将方程组转化为行简化阶梯型矩阵,进而求得方程组的解。
高斯消元法解线性方程组在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。
那么这样的线性方程组是否有解呢如果有解,解是否唯一若解不唯一,解的结构如何呢这就是下面要讨论的问题。
一、线性方程组设含有n个未知量、有m个方程式组成的方程组a ii X i a i2X2 a in X nb ia2i X i a22 X2 a2n X n b2()a mi X i a m2X2 a mn X nb m其中系数a j ,常数b j都是已知数,x i是未知量(也称为未知数)。
当右端常数项b1, b2,…,b m 不全为0时,称方程组()为非齐次线性方程组;当bj=b2=…=b m= 0时,即a ii X i a i2X2 a in X n 0a2i X i a22 X2 a2n X n 0()a mi X i a m2 X2 a mn X n称为齐次线性方程组。
由n个数k i,k2,…,k n组成的一个有序数组(k i,k2,…,k n),如果将它们依次代入方程组()中的x i,X2,…,X n后,()中的每个方程都变成恒等式,则称这个有序数组(k i,k2,…,k n)为方程组()的一个解。
显然由X i=0, X2=0,…,X n=0 组成的有序数组(0,0,…, 0 )是齐次线性方程组()的一个解,称之为齐次线性方程组()的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。
(利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。
因此,我们先给出线性方程组的矩阵表示形式。
)非齐次线性方程组()的矩阵表示形式为:AX = B其中a ii a i2 a inX i b ia2i a22 a2n,X = X2,B = b2A =a mi a m2 a mn X nb n称A为方程组()的系数矩阵,X为未知矩阵,B为常数矩阵。
将系数矩阵A和常数矩阵B放在一起构成的矩阵bia11 a12 a1 na21 a22 a2n b2[A B]=a mi a m2 a mnb m称为方程组()的增广矩阵。
齐次线性方程组()的矩阵表示形式为:AX = O二、高斯消元法(下面介绍利用矩阵求解方程组的方法,那么矩阵初等行变换会不会改变方程组的解呢我们先看一个定理。
)定理若用初等行变换将增广矩阵[A B]化为[C D],则AX = B与CX = D 是同解方程组。
证由定理可知,存在初等矩阵P i,P2,…,P k,使P k …P2 P i(A B) = (C D)记P k…P2 P = P,则P可逆,即P 1存在。
设X1为方程组A X = B的解,即A X1= B在上式两边左乘P,得P A X1= PB即C X1= D说明X1也是方程组C X = D的解。
反之,设X2为方程组C X = D的解,即C X2= D在上式两边左乘P 1,得P1C X2= P 1D即A X2= B说明X2也是方程组AX = B的解。
因此,方程组A X = B与C X = D的解相同,即它们是同解方程组。
(证毕)(由定理可知,求方程组()的解,可以利用初等行变换将其增广矩阵[A B]化简。
又有第二章定理可知,通过初等行变换可以将[A B]化成阶梯形矩阵。
因此,我们得到了求解线性方程组()的一般方法:)用初等行变换将方程组()的增广矩阵[A B]化成阶梯形矩阵,再写出该阶梯形矩阵所对应的方程组,逐步回代,求出方程组的解。
因为它们为同解方程组,所以也就得到了原方程组()的解。
这种方法被称为高斯消元法,(下面举例说明用消元法求一般线性方程组解的方法和步骤。
)其中X 4可以任意取值。
由于未知量X 4的取值是任意实数,故方程组()的解有无穷多个。
由此可知, 表示式()表示了方程组()的所有解。
表示式()中等号右端的未知量 X 4称为自由未知量,用自由未知量表示其它未知量的表示式()称为方程组()的一般 解,当表示式()中的未知量X 4取定一个值(如X 4=1),得到方程组()的一个 1 1解(如X 12,X 2 -,X 3 0,X 4 1 ),称之为方程组()的特解。
注意,自由未知量的选取不是唯一的,如例1也可以将X 3取作自由未知量。
如果将表示式()中的自由未知量 X 4取一任意常数k ,即令X 4= k ,那么方程例1解线性方程组解先写出增广矩阵1512 1 1③②1[A B ]= 3x 1 x 2 2x 3 x 41X 1 5x 2 3x 3 2x 4 03X 12X 1X 2 2X 2X 34X 4 2 X 3X 41 [A B], 再用初等行变换将其逐步化成阶梯形矩阵,即2 1 1 ②①(1) 1 1 2 1 13 2 0 ③①(3) ④①20 4 1 1 1 1 4 20 4 77 5 11 1433121 1 1 12 1 1 11 1 1④③(-)0 4 1 1 1上述四个增广矩阵所表示的四个线性方程组是同解方程组, 阵表示的线性方程组为最后一个增广矩X 1 X 22X 3 X 4 14X 2 X 3 X 4 16X 36X 4 61将最后一个方程乘6,再将X 4项移至等号的右端, 得X 3X 4 1将其代入第二个方程,解得X 2 12再将X 2 , X 3代入第一个方程组, 解得X 1X 4 12因此,方程组()的解为X 1 X 4 12X 2 1 2X 3X 4 1()0 0 6 6 6其中k 为任意常数。
称表示式()为方程组()的全部解(用消元法解线性方程组的过程中,当增广矩阵经过初等行变换化成阶梯形 矩阵后,要写出相应的方程组,然后再用回代的方法求出解。
如果用矩阵将回代 的过程表示出来,我们可以发现,这个过程实际上就是对阶梯形矩阵进一步简化,使其最终化成一个特殊的矩阵,从这个特殊矩阵中,就可以直接解出或“读出”方程组的解。
例如,)对例1中的阶梯形矩阵进步化简, 1 12 1 1③-1 1 0 1 111 16 00 0 2 4②③4 0 0 6 660 0 1 1 1 0 00 0 00 0 0 0 011 0 0 11 2②一4①②(1)0 1 0 0 1 20 0 1 1 10 0 0 0上述矩阵对应的方程组为x 1 x 4 1 2X 2 1 2 X 3 X 41 将此方程组中含X 4的项移到等号的右端,就得到原方程组()的一般解,x 1 X 4 1 2X 2 12 X 3 X 41其中X 4可以任意取值。
X 1 2x 2 3x 3 4 2x 1 3x 2 5x 3 7 4x 1 3x 2 9x 3 9 2x 1 5x 2 8X 3 8例2解线性方程组组()的一般解为x 1 k 1 2X2 12,其中k 为任意常数X 3 k 1 x 4 k用矩阵形式表示为X 1 k 1 2 112 X 212 0 =k 12 X3 k l\ 1 1 1X 4k1 0()()解利用初等行变换,将方程组的增广矩阵 A B 化成阶梯阵,再求解。
即12 3 4 1 2 3423 5 7 0 1 11A B =43 9 9 0 5 3725 8 8 0 1 201 2 34 1 2 3 40 1 11 0 1 1 10 0 22 0 0110 0 11 0 0001 2 0 7 1 00 30 1 0 2 0 10 20 0 1 1 0 01 10 0 0 0 0 00 0一般解为X1 3X2 2X3 11x1 X2 X3例3 解线性方程组x1 2X2 4X3 232x1 5X2 X3解利用初等行变换,将方程组的增广矩阵AB 化成阶梯阵,再求解。
即1 1 1 1 11 11AB =1 2 42 03 332 5 13 03 311 1 1 10 3 3 30 0 0 2阶梯形矩阵的第三行“ 0, 0, 0, -2 所表示的方程为:0X1 0X2 0X3 2 ,由该方程可知,无论x1 ,x2 ,X3取何值, 都不能满足这个方程。
因此,原方程组无解。
三、线性方程组的解的判定前面介绍了用高斯消元法解线性方程组的方法,通过例题可知,线性方程组的解的情况有三种:无穷多解、唯一解和无解。
从求解过程可以看出,方程组()是否有解,关键在于增广矩阵[A B]化成阶梯非零行的行数与系数矩阵A化成阶梯形矩阵后非零行的行数是否相等。
因此,线性方程组是否有解,就可以用其系数矩阵和增广矩阵的秩来描述了。
证设系数矩阵A的秩为r,即r(A)= r。
利用初等行变换将增广矩阵[A B] 化成阶梯阵:c11 0* * * Gs* C2sG nC2nd1d2 0 c2k初等行变换[ A B] 0 0 0 0G s c rn d r = [C D]0 0 0 0 0 0 d r 10 0 0 0 0 0 0故AX= B 与CX= D是同解方程组,因此AX =B有解dr 1 = 0r(C D) =r(C)=r即r(A B)=r(A) = r。
(证毕)推论1线性方程组有唯一解的充分必要条件是r(A) = r(A B)= n 。
推论2线性方程组有无穷多解的充分必要条件是r(A) = r(A B) n 。
(将上述结论应用到齐次线性方程组()上,则总有r(A)二r(A B)。
因此齐次线性方程组一定有解。
并且有)例4 判别下列方程组是否有解若有解,是有唯■解还是有无穷多解x1 2x23x3 11 X1 2X23X3 11x1x2X3 7 X1 X2 2X3 7(1) (2)2x1 3x2X3 6 2X13X2X3 63x1x22X3 4 3X1X22X3 5x1 2x23X311x1x2X3 7⑶2x1 3x2X3 63x1x22X3 5解⑴用初等行变换将增广矩阵化成阶梯阵,即1 2 3 11 1 2 3 111 1 1 7 0 12 4[A B ]=2 3 1 6 0 7 7 283 1 24 0 7 7 291 2 3 110 12 40 0 7 00 0 0 1因为r(A B) = 4 , r(A)=3,两者不等,所以方程组无解。
(2) 用初等行变换将增广矩阵化成阶梯阵,即1 2 3 11 12 3 111 12 7 01 1 4[A B ]= …2 3 1 6 00 0 03 1 2 5 00 0 0因为r(A B)=r(A) =2 n(= 3) ,所以方程组有无穷多解。
(3) 用初等行变换将增广矩阵化成阶梯形矩阵,即1 2 3 11 12 3 111 1 1 7 012 4[A B ]= …2 3 1 6 00 7 03 1 2 5 00 0 0因为r(A B)=r(A) = 3 = n,所以方程组有唯- 解。
例5 判别下列齐次方程组是否有非零解(机动)x13x2 7x3 8x4 02x1 5x2 4x3 4x4 03x1 7x2 2x3 3x4 0x14x2 12x3 16x4 0解用初等行变换将系数矩阵化成阶梯形矩阵,即1 3 7 8 1 3 7 8A = 2 5 4 4 0 1 18 203 7 2 3 0 2 23 27 14 12 16 0 15 8 1 3 7 8 1 3 7 80 1 18 20 0 1 18 200 0 13 13 0 0 13 130 0 13 12 0 0 0 1因为r(A)= 4 = n, 所以齐次方程组只有零解。