重庆南开中学2009—2010学年度初2010级九年级(上)期末考试数学
- 格式:doc
- 大小:514.50 KB
- 文档页数:8
九年级上册重庆数学期末试卷检测题(Word 版 含答案)一、选择题1.二次函数y =x 2﹣6x 图象的顶点坐标为( ) A .(3,0)B .(﹣3,﹣9)C .(3,﹣9)D .(0,﹣6)2.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为( )A .3cmB .5cmC .6cmD .8cm3.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:34.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限5.在平面直角坐标系中,将抛物线y =2(x ﹣1)2+1先向左平移2个单位,再向上平移3个单位,则平移后抛物线的表达式是( ) A .y =2(x+1)2+4 B .y =2(x ﹣1)2+4 C .y =2(x+2)2+4 D .y =2(x ﹣3)2+46.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°7.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172cm ,方差为k 2cm ,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172cm ,此时全班同学身高的方差为'k 2cm ,那么'k 与k 的大小关系是( )A .'k k >B .'k k <C .'k k =D .无法判断8.抛物线2(1)2y x =-+的顶点坐标是( ) A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)9.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下: 姓名 读 听 写 小莹928090若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86B .87C .88D .8910.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( ) A .y =(x +3)2+2B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+311.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>12.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .27二、填空题13.小亮测得一圆锥模型的底面直径为10cm ,母线长为7cm ,那么它的侧面展开图的面积是_____cm 2.14.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)15.如图,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC=6,AB=10,OD ⊥BC 于点D ,则OD 的长为______.16.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm .17.如图,直线l 1∥l 2∥l 3,A 、B 、C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =3,且12m n =,则m +n 的最大值为___________.18.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.19.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .20.长度等于62的弦所对的圆心角是90°,则该圆半径为_____. 21.如图,在ABC 中,62BC =+,45C ∠=︒,2AB AC =,则AC 的长为________.22.在平面直角坐标系中,抛物线2yx 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.23.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.24.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.三、解答题25.某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.(1)求该市对市区绿化工程投入资金的年平均增长率;(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元? 26.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点F 是AD 上一点,连接AF 交CD 的延长线于点E .(1)求证:△AFC ∽△ACE ;(2)若AC=5,DC=6,当点F为AD的中点时,求AF的值.27.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况.(2)求点A落在第三象限的概率.28.定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,则四边形ABCD的面积为;(2)如图②,在对角互余四边形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四边形ABCD的面积;(3)如图③,在△ABC中,BC=2AB,∠ABC=60°,以AC为边在△ABC异侧作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面积.29.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连结EF、EO,若DE=23,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.30.计算:(12 8233-(2()1 031 27+3.14+2π-⎛⎫- ⎪⎝⎭31.解方程(1)(x+1)2﹣25=0(2)x2﹣4x﹣2=032.如图示,AB是O的直径,点F是半圆上的一动点(F不与A,B重合),弦AD 平分BAF ∠,过点D 作DE AF ⊥交射线AF 于点AF .(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】将二次函数解析式变形为顶点式,进而可得出二次函数的顶点坐标. 【详解】解:∵y =x 2﹣6x =x 2﹣6x +9﹣9=(x ﹣3)2﹣9, ∴二次函数y =x 2﹣6x 图象的顶点坐标为(3,﹣9). 故选:C . 【点睛】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质.2.B解析:B 【解析】 【分析】先过点O 作OD ⊥AB 于点D ,连接OA ,由垂径定理可知AD =12AB ,设OA =r ,则OD =r ﹣2,在Rt △AOD 中,利用勾股定理即可求出r 的值. 【详解】解:如图所示:过点O 作OD ⊥AB 于点D ,连接OA , ∵OD ⊥AB ,∴AD =12AB =4cm , 设OA =r ,则OD =r ﹣2,在Rt △AOD 中,OA 2=OD 2+AD 2,即r 2=(r ﹣2)2+42, 解得r =5cm .∴该输水管的半径为5cm ; 故选:B .【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用.3.D解析:D 【解析】 【分析】根据两角对应相等证明△CAD ∽△CBA ,由对应边成比例得出线段之间的倍数关系即可求解. 【详解】解:∵∠CAD=∠B ,∠C=∠C, ∴△CAD ∽△CBA,∴12CD CA CA CB, ∴CA=2CD,CB=2CA, ∴CB=4CD, ∴BD=3CD,∴13CD BD. 故选:D. 【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键.4.D解析:D 【解析】 【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限. 【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点, ∴2a 210x x +-=时无实数根; 即,24440b ac a =-=+<, 解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a-=->; 纵坐标为:()414104a a aa⨯----=<; 故抛物线的顶点在第四象限. 故答案为:D. 【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.5.A解析:A 【解析】 【分析】只需确定原抛物线解析式的顶点坐标平移后的对应点坐标即可. 【详解】解:原抛物线y =2(x ﹣1)2+1的顶点为(1,1),先向左平移2个单位,再向上平移3个单位,新顶点为(﹣1,4).即所得抛物线的顶点坐标是(﹣1,4). 所以,平移后抛物线的表达式是y =2(x+1)2+4, 故选:A . 【点睛】本题主要考查了二次函数图像的平移,抛物线的解析式为顶点式时,求出顶点平移后的对应点坐标,可得平移后抛物线的解析式,熟练掌握二次函数图像的平移规律是解题的关键.6.D解析:D 【解析】 【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A ,根据圆周角定理计算即可. 【详解】∵BC 是⊙O 的切线, ∴∠ABC=90°, ∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°, 故选D .本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7.B解析:B 【解析】 【分析】设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm ,然后根据方差公式比较大小即可. 【详解】解:设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1, 根据平均数的定义可知:算上小明后,平均身高仍为172cm 根据方差公式:()()()22212111721721721n k x x x n -⎡⎤=-+-++-⎣⎦-()()()()2222'1211172172172172172n x x k x n -⎡⎤=-+-++-+-⎣⎦()()()2221211172172172n x x x n -⎡⎤=-+-++-⎣⎦∵111n n <- ∴()()()()()()222222121121111721721721721721721n n x x x x x x n n --⎡⎤⎡⎤-+-++-<-+-++-⎣⎦⎣⎦-即'k k < 故选B . 【点睛】 此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.8.D解析:D 【解析】 【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ), ∴抛物线2(1)2y x =-+的顶点坐标是(1,2). 故选D .9.C解析:C【分析】利用加权平均数按照比例进一步计算出个人总分即可. 【详解】 根据题意得:92580390288532⨯+⨯+⨯=++(分),∴小莹的个人总分为88分; 故选:C . 【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.10.A解析:A 【解析】 【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案. 【详解】解:将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,得到:y =x 2+2, 再沿x 轴向左平移3个单位长度得到:y =(x+3)2+2. 故选:A . 【点睛】解决本题的关键是得到平移函数解析式的一般规律:上下平移,直接在函数解析式的后面上加,下减平移的单位;左右平移,比例系数不变,在自变量后左加右减平移的单位.11.A解析:A 【解析】 【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小. 【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A . 【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.12.D解析:D 【解析】【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠【详解】切线性质得到90BAO ∠=903654AOB ∴∠=-=OD OA =OAD ODA ∠=∠∴AOB OAD ODA ∠=∠+∠27ADC ADO ∴∠=∠=故选D【点睛】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键二、填空题13.35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr 即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.解析:35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=12lr 即可求解. 【详解】底面周长是:10π, 则侧面展开图的面积是:12×10π×7=35πcm 2. 故答案是:35π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 14.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 15.4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt △OBD 中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD ,然后根据勾股定理求得即可.【详解】解:∵OD ⊥BC ,∴BD=CD=12BC=3, ∵OB=12AB=5, ∴在Rt △OBD 中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.16.【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R ,根据弧长公式得,∴R解析:【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R ,根据弧长公式得, 90=25180R∴R=20, 225515 .故答案为:【点睛】 本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.17.【解析】【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】解:过作于,延长交于,过作于,过解析:274【解析】【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,得到3DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,29y x =-+,由12m n =,得到2n m =,于是得到()3m n m +=最大,然后根据二次函数的性质即可得到结论.【详解】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,3BD =,3DM y ∴=-,3DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒, 90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC ∴∆∆∽, ∴AE BE BF CF=,即x m n y =, xy mn ∴=,ADN CDM ∠=∠,CMD AND ∴∆∆∽,∴AN DN CM DM=,即3132m x n y -==-, 29y x ∴=-+,12m n =, 2n m ∴=,()3m n m ∴+=最大,∴当m 最大时,()3m n m +=最大,22(29)292mn xy x x x x m ==-+=-+=,∴当92(29)4x =-=⨯-时,28128mn m ==最大, 94m ∴=最大, m n ∴+的最大值为927344⨯=. 故答案为:274. 【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m的函数解析式是解题的关键.18.2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.19.5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案. 【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.解析:5【解析】【分析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴BE AB CD AC=,即:1.2 1.61.612.4 CD=+,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键. 20.6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB=6,∠AOB=90°,且OA=OB,在中,根据勾股定理得,即∴,故答案为:6.【点睛】解析:6【解析】【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =62,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB === ∴236OA =,0OA >6OA ∴=故答案为:6.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键.21.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长.【详解】过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则.【点睛】本题考查勾股定解析:2【解析】【分析】过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.【详解】过A 作AD BC ⊥于D 点,设2AC x =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得223BD AB AD x =-=,因为62BC =+,所以362BC x x =+=+,则2x =.则2AC =.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解.22.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.23.【解析】【分析】根据,则函数图象在直线的上方,所以找出函数图象在直线的上方的取值范围即可.【详解】根据二次函数的图象可知:对称轴为,已知一个点为,根据抛物线的对称性,则点关于对称性对称解析:20x -<<【解析】【分析】根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.【详解】根据二次函数的图象可知:对称轴为1x =-,已知一个点为()03,, 根据抛物线的对称性,则点()03,关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<.故答案为:20x -<<.【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点()03,的对称点是解题的关键. 24.1250cm2【解析】【分析】 设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是cm ,cm ,再列出二次函数,求其最小值即可.【详解】如图:设将铁丝分成xcm 和(200﹣解析:1250cm 2【解析】【分析】设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4x cm ,2004x -cm ,再列出二次函数,求其最小值即可. 【详解】如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:y =(4x )2+(2004x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.【点睛】本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.三、解答题25.(1)20%;(2)8640万元.【解析】【分析】(1)设平均增长率为x,根据题意可得2018年投入的资金是5000(1+x)万元,2019年投入的资金是5000(1+x) (1+x)万元,由2019年投入的资金是7200万元即可列出方程.,求解即可.(2)相当于数字7200增长了20%,列式计算.【详解】解:(1)设两年间每年投入资金的平均增长率为x ,根据题意得,5000(1+x)2=7200解得,x 1=0.2=20%,x 2= -2.2(不符合题意,舍去)答:该市对市区绿化工程投入资金的年平均增长率为20%;(2)根据题意得,7200(1+20%)=8640万元.答:在2020年预计需投入8640万元.【点睛】本题考查一元二次方程的实际应用,增长率问题,根据a(1+x)2=b(a、b、x、n分别表示增长前量、增长后量、增长率和增长次数)列方程是解答增长率问题的关键.26.(1)见解析;(2【解析】【分析】(1)根据条件得出AD=AC,推出∠AFC=∠ACD,结合公共角得出三角形相似;(2)根据已知条件证明△ACF≌△DEF,得出AC=DE,利用勾股定理计算出AE的长度,再根据(1)中△AFC∽△ACE,得出AFAC=ACAE,从而计算出AF的长度.【详解】(1)∵CD⊥AB,AB是⊙O的直径∴AD=AC∴∠AFC=∠ACD.∵在△ACF和△AEC中,∠AFC=∠ACD,∠CAF=∠EAC∴△AFC ∽△ACE(2)∵四边形ACDF内接于⊙O∴∠AFD+∠ACD=180°∵∠AFD+∠DFE=180°∴∠DFE=∠ACD∵∠AFC=∠ACD∴∠AFC=∠DFE.∵△AFC∽△ACE∴∠ACF=∠DEF.∵F为AC的中点∴AF=DF.∵在△ACF和△DEF中,∠ACF=∠DEF,∠AFC=∠DFE,AF=DF ∴△ACF≌△DEF.∴AC=DE=5.∵CD⊥AB,AB是⊙O的直径∴CH=DH=3.∴EH=8在Rt△AHC中,AH2=AC2-CH2=16,在Rt△AHE中,AE2=AH2+EH2=80,∴AE=∵△AFC∽△ACE∴AFAC=ACAE,即5AF,∴AF【点睛】本题属于圆与相似三角形的综合,涉及了圆内接四边形的性质,勾股定理,等弧所对的圆周角相等,相似三角形的判定定理等,解题的关键是灵活运用所学知识,正确寻找全等三角形.27.(1)(﹣7,﹣2),(﹣1,﹣2),(3,﹣2),(﹣7,1),(﹣1,1),(3,1),(﹣7,6),(﹣1,6),(3,6);(2)2 9 .【解析】【分析】列表法或树状图法,平面直角坐标系中各象限点的特征,概率.(1)直接利用表格或树状图列举即可解答.(2)利用(1)中的表格,根据第三象限点(-,-)的特征求出点A落在第三象限共有两种情况,再除以点A的所有情况即可.【详解】解:(1)列表如下:(2)∵点A落在第三象限共有(﹣7,﹣2),(﹣1,﹣2)两种情况,∴点A落在第三象限的概率是29.28.(1)2)36;(3.【解析】【分析】(1)由AC⊥BC,AC⊥AD,得出∠ACB=∠CAD=90°,利用含30°直角三角形三边的特殊关系以及勾股定理,就可以解决问题;(2)将△BAD绕点B顺时针旋转到△BCE,则△BCE≌△BAD,连接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.这样可以求∠DCE=90°,则可以得到DE的长,进而把四边形ABCD 的面积转化为△BCD 和△BCE 的面积之和,△BDE 和△CDE 的面积容易算出来,则四边形ABCD 面积可求; (3)取BC 的中点E ,连接AE ,作CF ⊥AD 于F ,DG ⊥BC 于G ,则BE=CE=12BC ,证出△ABE 是等边三角形,得出∠BAE=∠AEB=60°,AE=BE=CE ,得出∠EAC=∠ECA= =30°,证出∠BAC=∠BAE+∠EAC=90°,得出AC=3AB ,设AB=x ,则AC=3x ,由直角三角形的性质得出CF=3,从而DF=33,设CG=a ,AF=y ,证明△ACF ∽△CDG ,得出=AF AC CG CD ,求出y=3ax ,由勾股定理得出y 2=(3x)2-32=3x 2-9,b 2=62-a 2=102-(2x+a)2,(2x+a)2+b 2=132,整理得出a=216x x -,进而得y=()23163=6x ax -,得出[()23166x -]2=3x 2-9,解得x 2=34-622,得出y 2=(6627-)2,解得y=66-33,得出AD=AF+DF=66,由三角形面积即可得出答案.【详解】解:(1)∵AC ⊥BC ,AC ⊥AD ,∴∠ACB =∠CAD =90°,∵对角互余四边形ABCD 中,∠B =60°,∴∠D =30°,在Rt △ABC 中,∠ACB =90°,∠B =60°,BC =1,∴∠BAC =30°,∴AB =2BC =2,AC =3BC =3,在Rt △ACD 中,∠CAD =90°,∠D =30°,∴AD =3AC =3,CD =2AC =23,∵S △ABC =12•AC•BC =12×3×1=3, S △ACD ═12•AC•AD =12×3×3=33, ∴S 四边形ABCD =S △ABC +S △ACD =23,故答案为:23;(2)将△BAD 绕点B 顺时针旋转到△BCE ,如图②所示:则△BCE ≌△BAD ,连接DE ,作BH ⊥DE 于H ,作CG ⊥DE 于G ,作CF ⊥BH 于F .∴∠CFH =∠FHG =∠HGC =90°,∴四边形CFHG 是矩形,∴FH =CG ,CF =HG ,∵△BCE ≌△BAD ,∴BE =BD =13,∠CBE =∠ABD ,∠CEB =∠ADB ,CE =AD =8,∵∠ABC+∠ADC =90°,∴∠DBC+∠CBE+∠BDC+∠CEB =90°,∴∠CDE+∠CED =90°,∴∠DCE =90°,在△BDE 中,根据勾股定理可得:DE =22CD CE +=2268+=10,∵BD =BE ,BH ⊥DE ,∴EH =DH =5,∴BH =22BE EH -=22135-=12,∴S △BED =12•BH•DE =12×12×10=60, S △CED =12•CD•CE =12×6×8=24, ∵△BCE ≌△BAD ,∴S 四边形ABCD =S △BCD +S △BCE =S △BED ﹣S △CED =60﹣24=36;(3)取BC 的中点E ,连接AE ,作CF ⊥AD 于F ,DG ⊥BC 于G ,如图③所示:则BE =CE =12BC , ∵BC =2AB ,∴AB =BE ,∵∠ABC =60°,∴△ABE 是等边三角形,∴∠BAE =∠AEB =60°,AE =BE =CE ,∴∠EAC =∠ECA =12∠AEB =30°, ∴∠BAC =∠BAE+∠EAC =90°,∴AC 3,设AB =x ,则AC 3,∵∠ADC =30°,∴CF =12CD =3,DF = 设CG =a ,AF =y , 在四边形ABCD 中,∠ABC+∠BCD+∠ADC+∠BAC+∠DAC =360°,∴∠DAC+∠BCD =180°,∵∠BCD+∠DCG =180°,∴∠DAC =∠DCG ,∵∠AFC =∠CGD =90°,∴△ACF ∽△CDG ,∴AF CG =AC CD ,即y a ,∴y在Rt △ACF 中,Rt △CDG 和Rt △BDG 中,由勾股定理得:y 2=2﹣32=3x 2﹣9,b 2=62﹣a 2=102﹣(2x+a)2,(2x+a)2+b 2=132,整理得:x 2+ax ﹣16=0,∴a =216x x-,∴y =6=6×216x x -=)2166x -,∴[)2166x -]2=3x 2﹣9, 整理得:x 4﹣68x 2+364=0,解得:x 2=34﹣,或x 2=∴x2=34﹣∴y2=3(34﹣﹣9=93﹣=93﹣2,∴y∴AF∴AD =AF+DF ,∴△ACD 的面积=12AD×CF =12 【点睛】此题是四边形综合题,主要考查了新定义的理解和应用,相似三角形的判定和性质,勾股定理,等边三角形的判定与性质,旋转的性质,全等三角形的性质,含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.29.(1) 2 ;(2)π-2.【解析】 【分析】(1)因为AB ⊥DE ,求得CE 的长,因为DE 平分AO ,求得CO 的长,根据勾股定理求得⊙O 的半径(2)连结OF ,根据S 阴影=S 扇形– S △EOF 求得【详解】解:(1)∵直径AB ⊥DE∴132CE DE == ∵DE 平分AO ∴1122CO AO OE == 又∵90OCE ︒∠=∴30CEO ︒∠=在Rt △COE 中,2OE =∴⊙O 的半径为2(2)连结OF在Rt △DCP 中,∵45DPC ︒∠=∴904545D ︒︒︒∠=-=∴290EOF D ︒∠=∠=∵2902360OWF S ππ=⨯⨯=扇形 ∴S 阴影=2π-【点睛】 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了扇形的面积公式、圆周角定理和含30度的直角三角形三边的关系.30.(12;(2)6【解析】【分析】(1)将原式三项化简,合并同类二次根式后即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项利用零指数公式化简,第三项利用负指数公式化简,合并后即可得到结果;【详解】解:(1)原式=,(2)原式=3+1+2=6【点睛】此题考查了实数的混合运算,涉及的知识有:算术平方根和立方根,绝对值的性质,0指数和负整指数幂,熟练掌握公式及法则是解本题的关键.31.(1)x 1=4,x 2=﹣6;(2)x 1=,x 2=2【解析】【分析】(1)利用直接开平方法解出方程;(2)先求出一元二次方程的判别式,再解出方程.【详解】解:(1)(x +1)2﹣25=0,(x +1)2=25,x +1=±5,x =±5﹣1,x 1=4,x 2=﹣6;(2)x 2﹣4x ﹣2=0,∵a =1,b =﹣4,c =﹣2,∴△=b 2﹣4ac =(﹣4)2﹣4×1×(﹣2)=24>0,∴x =,即x 1=,x 2=2.【点睛】本题考查了一元二次方程的解法,熟练掌握求根公式是解题关键.32.(1)详见解析;(2)4;(3)252【解析】【分析】(1)首先连接OD ,通过半径和角平分线的性质进行等角转换,得出OD AE ∥,进而得出OD DE ⊥,即可得证;(2)首先连接BD ,得出AED ADB ∆∆∽,进而得出2A D A A E B =⋅,再根据勾股定理得出DE ;(3)首先连接DF ,过点D 作DG AB ⊥,得出AED AGD ∆∆≌,再得EDF GDB ∆∆≌,进而得出2AB AF EF =+,然后构建二次函数,即可得出其最大值.【详解】(1)证明:连接OD∵OD OA =∴12∠=∠∵AD 平分BAE ∠∴13∠=∠∴32∠=∠∴OD AE ∥∵DE AF ⊥∴OD DE ⊥又∵OD 是O 的半径 ∴DE 与O 相切(2)解:连接BD∵AB 为直径∴∠ADB=90°∵13∠=∠∴AED ADB ∆∆∽∴2A D A A E B =⋅∴280AD =∴Rt ADE ∆中2228084DE AD AE =-=-=(3)连接DF ,过点D 作DG AB ⊥于G∵13∠=∠,DE ⊥AE ,AD=AD∴AED AGD ∆∆≌∴AE AG =,DE=DG∴EDF GDB ∆∆≌∴EF BG =∴2AB AF EF =+即:210x y +=∴152y x =-+ ∴2152AF EF x x ⋅=-+ 根据二次函数知识可知:当5x =时,()max 252AF EF ⋅=【点睛】此题主要考查直线与圆的位置关系、相似三角形的判定与性质以及全等三角形的判定与性质与二次函数的综合应用,熟练掌握,即可解题.。
某某南开中学2010年初中毕业暨高中招生模拟考试数学试卷(全卷共五个大题,满分150分,考试时间120分钟) 题号 一 二 三 四 五 总分 总分人满分 40 24 24 40 22 150 得分参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a--,对称轴公式为2bx a=-一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。
1、5的倒数是( )A 、5-B 、5C 、15D 、15-2、计算3216(2)x x ÷-的结果是( ) A 、8B 、8x C 、8x -D 、58x -3、函数2y x =+的自变量x 的取值X 围是( ) A 、2x ≠-B 、2x >-C 、0x ≥D 、2x ≥-4、如图,直线AB 、CD 相交于点O ,OE AB ⊥于O ,55COE ∠=,则BOD ∠的度数是( ) A 、30B 、35C 、40D 、455、业务员小王今年1至5月的手机话费(单位:元)是:60,68,78,66,80,则这组数据的中位数是( ) A 、78B 、67C 、66D 、686、在平面内,O 的半径为6cm ,4PO cm =,6QO cm =,则点P 、点Q 于O 的位置关系是( )A 、点P 在O 内,点Q 在O 上B 、点P 在O 内,点Q 在O 外C 、点P 在O 外,点Q 在O 内D 、点P 在O 上,点Q 在O 内 7、下面几何体的左视图是( )8、下图中的第一个图形为某某南开中学校徽的一部分,由此规律,则第n 个图形中直角三角形的个数是( )A 、44n +B 、8nC 、84n -D 、88n +9、世博会期间,某厂经授权生产的纪念品深受人们欢迎,5月初,在该产品原有库存量为m(m 为常数,0m >)的情况下,日均销量与产量持平,到5月下需需求量增加,在生产能力不变的情况下,日均销量超过产量n(n 为常数,0n >),直至该产品脱销,下图能大致表示今年5月份库存量y 与实践t 之间函数关系的是( )10、如图,在正方形ABCD 中,对角线AC 、BD 交于点O ,BE 平分∠DBC ,交DC 于点E ,延长BC 到点F ,使CF=CE ,连接DF ,交BE 的延长线于点G ,AC 交BG 于点H ,连接OG ,下列结论:①OG ∥AD ;②△CHE 为等腰三角形;③BH=GH ; ④tan ∠F=2;⑤S △BCE :S △BDE =1:2其中正确的结论有( )A 、①②⑤B 、①②③C 、②③④D 、②④⑤二、填空题(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填写在题后的横线上。
初班 姓 名 考号 顺序号密 封 线 内 不 能 答 题重庆一中初2010级09—10学年度上期期末考试数 学 试 题 2010.01考生注意:本试题共26小题,满分150分,考试时间120分钟一.选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了 代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请将正确答案的代号填在下面对应表格中.1.4-的倒数是( )A . 4B . 4-C .14 D .14- 2. 计算23)a a ⋅(-的正确结果是( ) A . 7a - B . 7a C . 6a - D . 6a3.函数2x+5y =的自变量x 的取值范围是( ) A . 5x 0x ≠-≠且 B .0x ≠ C .5x ≠- D .x 5x 0≠-≠或4.如图,直线l 截两平行直线a 、b ,则下列式子不一定成立的是(A .∠5=∠2B . ∠2=∠4C .∠3=∠5D . ∠1=∠55. 已知点A (4,12)m m --在第四象限,则m 的取值范围是( ) A . 12m >B . 4m <C . 142m << D . 4m >6. 已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距O 1O 2=2cm ,则⊙O 1与⊙O 2的位置关系为( )A . 外离B . 外切C . 内切D . 相交7.由几个相同的小正方体堆成一个几何体,它的俯视图如图所示,小正方形内的数字表示该位置上小正方体的个数,则这个几何体的左视图是( )a b7题图A .B .C .D .8.某公司销售部有营销人员27人,销售部为了制定某种商品的销售定额,统计了这27人某月的销售量如下表:则该公司营销人员该月销售量的中位数是( ).A . 500件B . 400件C . 350件D . 300件 9. 如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到达点E .运动过程中PEF ∆的面积(s )随时间(t )变化的图象大致是( )10.如图,在等边△ABC 中,M 、N 分别是边AB ,AC 的中点,D 为MN 的中点,CD ,BD 的延长线分别交于AB ,AC 于 点E ,点F ,下列结论正确的是( )①MN 的长是BC 的12;②EMD ∆的面积是ABC ∆面积的116; ③EM 和FN 的长度相等;④图中全等的三角形有4对; ⑤连接EF ,则四边形EBCF 一定是等腰梯形;A . ①②⑤B . ①③④C . ①②④D . ①③⑤11.据2009年《重庆年鉴》记载,2009年全市财政收入1905000000元,用科学计数法表示为____________元。
重庆市南开中学2015年九年级数学上学期期末考试试题参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 4422,,对称轴为直线a b x 2-= 一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答卷上对应的方框涂黑。
1.9的相反数是(▲)。
A .9-B .9C .9±D .91 2.计算()32·x x -所得的结果是(▲)。
A .5x -B . 5xC . 6x -D .6x3.若分式13-a 有意义,则a 的取值范围是(▲)。
A .任意实数B .1-≠aC .1≠aD .0≠a4.下列调查中,适合用普查方式的是(▲)。
A .了解重庆火锅的麻辣程度B .了解湖南电视台《我是歌手》在全国的收视率C .了解长江中鱼的种类分布D .了解初三·18班学生某次语文测验的成绩5.下列根式中与2是同类二次根式的是(▲)。
A .3B .5C .8D .126.如图,在O 中,︒=∠50ABC ,则AOC ∠等于(▲)。
A .︒50B .︒80C .︒90D .︒1007.如图,DE AB ∥,︒=∠20ABC ,︒=∠80BCD ,则CDE ∠的度数为(▲)。
A .︒20B .︒60C .︒80D .︒1008.如图,在ABC ∆中,点F D E 、、分别是边CA BC AB 、、的中点,6=AB ,4=AC ,则四边形AEDF 的周长是(▲)。
A .10B .20C .30D .409.若直线k x y +=2与x 轴的交点为()02,-,则关于x 的不等式02<k x +的解集是(▲)。
A .2-≥xB .2-≤xC .2-<xD .2->x10.课间操时,小超从三教楼(即目前初三年级所在的教学楼)正门前的空地出发,前往篮球场指定位置参加跳绳训练。
2009—2010学年第一学期期末数学测试卷班级某某座位成绩一、选择题(本题共 10 小题,每小题 4 分,满分 40 分)每一个小题都给出代号为 A 、 B 、 C 、 D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号.每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)均不得分. 1.方程(1)0x x -=的解是( )A.0x =B.1x =C.0x =或1x =-D.0x =或1x =2如图,⊙O 的半径为5,弦AB 的长为8,点M 在线段ABOM 的取值X 围是()A .35OM ≤≤B .35OM <≤C .45OM ≤≤D .45OM <≤3、a 、b 为实数,在数轴上的位置如图所示,则2a b a +-的值是() A .-b B .b C .b -2a D .2a -b4.三角形的两边长分别为3和6,第三边的长是方程x 2-6x +8=0的一个根,则这个三角形的周长( ) A .9 B .11 C .13 D .11或135.计算2)62()35)(35(+-+-的结果为( )A .-7B .327--C .347--D .346--6.在庆祝元旦晚会上有一个闯关活动:将5X 分别画有等腰梯形、圆、平行四边形、等腰三角形、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一X ,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是( ) A.15B.25C.35D.457.下列根式:②;;其中最简二次根式是 ( ) aA .①③④⑥B .③④⑥C .③④⑤⑥D .②③⑥8.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于120°,则r 与R 之间的关系是() A .R =2rB .R =3rC .R =3rD .R =4r9.如图,将点1(61)A ,向左平移4个单位到达点2A 的位置,再向上平移3个单位到达点3A 的位置,123A A A △绕点2A 按逆时针方向旋转90,则旋转后3A 的坐标为() A .(21)-,B .(11),C .(11)-,D .(51),10.在一幅长60cm ,宽40cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是22816cm ,设金色纸边的宽为cm x ,那么x 满足的方程是( ) A.(602)(402)2816x x ++=B.(60)(40)2816x x ++= C.(602)(40)2816x x ++=D.(60)(402)2816x x ++= 二、填空题(本题共 4 小题,每小题 5 分,满分 20 分) 11.从8121842,,,2是同类二次根式的概率是.12.一元二次方程22(1)3340m x x m m +++--=的一个根是0,则m =13.如图,AB C ,,是⊙O 上三点,30ACB ∠=,则BAO ∠的度数是. (第8题)14.如图所示,花园边墙上有一宽为1m的矩形门ABCD,量得门框对角线AC 的长为2m.现准备打掉部分墙体,使其变为以AC为直径的圆形门, 问要打掉墙体的面积是_________ m2π≈≈)(精确到2, 3.14,3 1.73三.(本题共 2 小题,每小题8 分,满分16 分)15.如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交于D。
重庆市南开中学九年级上册期末精选试卷检测题一、初三数学一元二次方程易错题压轴题(难)1.Rt△ABC中,∠ACB=90°,AC=BC=6,动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动,到达点C停止运动.设运动时间为t秒(1)如图1,过点P作PD⊥AC,交AB于D,若△PBC与△PAD的面积和是△ABC的面积的79,求t的值;(2)点Q在射线PC上,且PQ=2AP,以线段PQ为边向上作正方形PQNM.在运动过程中,若设正方形PQNM与△ABC重叠部分的面积为8,求t的值.【答案】(1)t1=2,t2=4;(2)t 47758.【解析】【分析】(1)先求出△ABC的面积,然后根据题意可得AP=t,CP=6﹣t,然后再△PBC与△PAD的面积和是△ABC的面积的79,列出方程、解方程即可解答;(2)根据不同时间段分三种情况进行解答即可.【详解】(1)∵Rt△ABC中,∠ACB=90°,AC=BC=6,∴S△ABC=12×6×6=18,∵AP=t,CP=6﹣t,∴△PBC与△PAD的面积和=12t2+12×6×(6﹣t),∵△PBC与△PAD的面积和是△ABC的面积的79,∴12t2+12×6×(6﹣t)=18×79,解之,得t1=2,t2=4;(2)∵AP=t,PQ=2AP,∴PQ=2t,①如图1,当0≤t≤2时,S=(2t)2﹣12t2=72t2=8,解得:t1=477,t2=﹣477(不合题意,舍去),②如图2,当2≤t≤3时,S=12×6×6﹣12t2﹣12(6﹣2t)2=12t﹣25t2=8,解得:t1=4(不合题意,舍去),t2=45(不合题意,舍去),③如图3,当3≤t≤6时,S=126×6﹣12t2=8,解得:t1=25,t2=﹣25(不合题意,舍去),综上,t的值为477或25时,重叠面积为8.【点睛】本题考查了三角形和矩形上的动点问题,根据题意列出方程和分情况讨论是解答本题的关键.2.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?【答案】(1)这两年藏书的年均增长率是20%;(2)到2018年底中外古典名著的册数占藏书总量的10%.【解析】【分析】(1)根据题意可以列出相应的一元二次方程,从而可以得到这两年藏书的年均增长率;(2)根据题意可以求出这两年新增加的中外古典名著,从而可以求得到2018年底中外古典名著的册数占藏书总量的百分之几.【详解】解:(1)设这两年藏书的年均增长率是x,()2517.2x +=,解得,10.2x =,2 2.2x =-(舍去),答:这两年藏书的年均增长率是20%;(2)在这两年新增加的图书中,中外古典名著有()7.2520%0.44-⨯=(万册), 到2018年底中外古典名著的册数占藏书总量的百分比是:5 5.6%0.44100%10%7.2⨯+⨯=, 答:到2018年底中外古典名著的册数占藏书总量的10%.【点睛】本题考查一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答,这是一道典型的增长率问题.3.有n 个方程:x 2+2x ﹣8=0;x 2+2×2x ﹣8×22=0;…x 2+2nx ﹣8n 2=0.小静同学解第一个方程x 2+2x ﹣8=0的步骤为:“①x 2+2x=8;②x 2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x 1=4,x 2=﹣2.” (1)小静的解法是从步骤 开始出现错误的.(2)用配方法解第n 个方程x 2+2nx ﹣8n 2=0.(用含有n 的式子表示方程的根)【答案】(1)⑤;(2)x 1=2n ,x 2=﹣4n .【解析】【分析】(1)根据移项要变号,可判断;(2)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半,使左边是一个完全平方式,然后用直接开平方法求解.【详解】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为⑤;(2)x 2+2nx ﹣8n 2=0,x 2+2nx=8n 2,x 2+2nx+n 2=8n 2+n 2,(x+n )2=9n 2,x+n=±3n ,x 1=2n ,x 2=﹣4n .4.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A ,B 两种型号的空气净化器,两种净化器的销售相关信息见下表: A 型销售数量(台)B 型销售数量(台) 总利润(元) 5 10 2 000(1)每台A型空气净化器和B型空气净化器的销售利润分别是多少?(2)该公司计划一次购进两种型号的空气净化器共100台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该公司销售完这100台空气净化器后的总利润最大,请你设计相应的进货方案;(3)已知A型空气净化器的净化能力为300 m3/小时,B型空气净化器的净化能力为200 m3/小时.某长方体室内活动场地的总面积为200 m2,室内墙高3 m.该场地负责人计划购买5台空气净化器每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,至少要购买A型空气净化器多少台?【答案】(1)每台A型空气净化器的利润为200元,每台B型空气净化器的利润为100元;(2)为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台;(3)至少要购买A型空气净化器2台.【解析】解:(1)设每台A型空气净化器的利润为x元,每台B型空气净化器的利润为y元,根据题意得:5102000,200, {{ 1052500.100. x y xx y y+==+==解得答:每台A型空气净化器的利润为200元,每台B型空气净化器的利润为100元. (2)设购买A型空气净化器m台,则购买B型空气净化器(100﹣m)台,∵B型空气净化器的进货量不少于A型空气净化器的2倍,∴100-m≥2m,解得:m≤100. 3设销售完这100台空气净化器后的总利润为W元.根据题意,得W=200m+100(100﹣m)=100m+10000.∵要使W最大,m需最大,∴当m=33时,总利润最大,最大利润为W:100×33+10000=13300(元).此时100﹣m=67.答:为使该公司销售完这100台空气净化器后的总利润最大,应购进A型空气净化器33台,购进B型空气净化器67台.(3)设应购买A型空气净化器a台,则购买B型空气净化器(5﹣a)台,根据题意得:12[300a+200(5-a)]≥200×3.解得:a≥2.∴至少要购买A型空气净化器2台.5.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.①当PA⊥NA,且PA=NA时,求此时点P的坐标;②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P2﹣1,2);②P(﹣32,154)【解析】试题分析:(1)将B、C的坐标代入已知的抛物线的解析式,由对称轴为1x=-即可得到抛物线的解析式;(2)①首先求得抛物线与x轴的交点坐标,然后根据已知条件得到PD=OA,从而得到方程求得x的值即可求得点P的坐标;②ΔOBCΔAPDABCP C=PDOS S S S++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c=++与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为1x=-,∴{312a b ccba++==-=-,解得:1{23abc=-=-=,∴二次函数的解析式为223y x x=--+=2(1)4x-++,∴顶点坐标为(﹣1,4);(2)令2230y x x=--+=,解得3x=-或1x=,∴点A(﹣3,0),B(1,0),作PD⊥x轴于点D,∵点P在223y x x=--+上,∴设点P(x,223x x--+),①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD,即2232y x x=--+=,解得21(舍去)或x=21-,∴点P(21-,2);②设P(x,y),则223y x x=--+,∵ΔOBCΔAPDABCP C=PDOS S S S++四边形梯形=12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x⨯⨯⨯+++-=333222x y-+=2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P (32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.二、初三数学 二次函数易错题压轴题(难)6.已知函数2266()22()x ax a x a y x ax a x a ⎧-+>=⎨-++≤⎩(a 为常数,此函数的图象为G ) (1)当a =1时,①直接写出图象G 对应的函数表达式②当y=-1时,求图象G 上对应的点的坐标(2)当x >a 时,图象G 与坐标轴有两个交点,求a 的取值范围 (3)当图象G 上有三个点到x 轴的距离为1时,直接写出a 的取值范围【答案】(1)①2266(1)22(1)x x x y x x x ⎧-+>=⎨-++≤⎩,②(1,1),(32,1),(32,1)--+--;(2)0a <或2635a <<;(3)314125a --<,1153a <<,1123a <<-【解析】【分析】(1)①将1a =代入函数解析式中即可求出结论;②分1x >和1x ≤两种情况,将y=-1分别代入求出x 的值即可;(2)根据a 和0的大小关系分类讨论,然后根据二次函数的性质逐一求解即可;(3)先求出266y x ax a =-+的对称轴为直线6321a x a -=-=⨯,顶点坐标为()23,96a a a -+,222y x ax a =-++的对称轴为直线()221a x a =-=⨯-,顶点坐标为()2,2a a a +,然后根据a 和0的大小关系分类讨论,然后根据二次函数的性质逐一求解即可.【详解】(1)①1a =时,2266(1)22(1)x x x y x x x ⎧-+>=⎨-++≤⎩②当1x >时,2661x x -+=-2670x x -+=1233x x ==当1x ≤时,2221x x -++=-2230x x --=121,3x x =-=(舍)∴坐标为(1,1),(31),(31)----(2)当0a <时266()y x ax a x a =-+>与y 轴交点坐标(0,6)a ,266y x ax a =-+对称轴为直线6321a x a -=-=⨯,过点(1,1) ∴x >a >3a ,此时图像G 与坐标轴有两个交点(与x 轴一个交点,与y 轴一个交点) 当0a ≥时,266()y x ax a x a =-+>的图像与y 轴无交点顶点坐标为()23,96a a a -+当x a =时,256y a a =-+>0①,且2960a a -+<②时,此时图像G 与x 轴有两个交点 将①的两边同时除以a ,解得65a <; 将②的两边同时除以a ,解得23a >∴2635a << 即当2635a <<时,图像G 与坐标轴有两个交点, 综上,0a <或2635a << (3)266y x ax a =-+的对称轴为直线6321a x a -=-=⨯,顶点坐标为()23,96a a a -+222y x ax a =-++的对称轴为直线()221a x a =-=⨯-,顶点坐标为()2,2a a a + ①当a <0时, ()222y x ax a x a =-++≤中,当x=a 时,y 的最大值为22a a +由()210a +≥可得221a a +≥-,即此图象必有一个点到x 轴的距离为1而()266y x ax a x a =-+>必过(1,1),即此图象必有一个点到x 轴的距离为1,此时x >3a ,y >225666a a a a a a ⋅+=-+-当2221561a a a a ⎧+<⎨-+<-⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a =-+>与x 轴有两个交点解得:315a --<; 当2221561a a a a ⎧+>⎨-+>-⎩时,()222y x ax a x a =-++≤与x 轴有两个交点,()266y x ax a x a =-+>与x 轴有一个交点解得:315a +-+<<,与前提条件a <0不符,故舍去; ②当a ≥0时, ()222y x ax a x a =-++≤中,当x=a 时,y 的最大值为22a a +,必过点(-1,-1),即此图象必有一个点到x 轴的距离为1而()266y x ax a x a =-+>,此时当x=3a 时,y 的最小值为296a a -+,由()2310a --≤可得2961a a -+≤,即此图象必有一个点到x 轴的距离为1当222221561961961a a a a a a a a ⎧+<⎪-+>⎪⎨-+>-⎪⎪-+≠⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a =-+>与x 轴有两个交点解得:115a <<-+且13a ≠; 当222221561961961a a a a a a a a ⎧+<⎪-+<⎪⎨-+<-⎪⎪-+≠⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a=-+>与x轴有两个交点此不等式无解,故舍去;当222221561961961a aa aa aa a⎧+>⎪-+<⎪⎨-+>-⎪⎪-+≠⎩时,()222y x ax a x a=-++≤与x轴有两个交点,()266y x ax a x a=-+>与x轴有一个交点此不等式无解,故舍去;综上:315a--<或1153a<<或113a<<-【点睛】此题考查的是二次函数的性质和分段函数的应用,此题难度较大,掌握二次函数的性质和分类讨论的数学思想是解决此题的关键.7.在平面直角坐标系中,点(),p tq与(),q tp()0t≠称为一对泛对称点.(1)若点()1,2,()3,a是一对泛对称点,求a的值;(2)若P,Q是第一象限的一对泛对称点,过点P作PA x⊥轴于点A,过点Q作QB y⊥轴于点B,线段PA,QB交于点C,连接AB,PQ,判断直线AB与PQ的位置关系,并说明理由;(3)抛物线2y ax bx c=++()0a<交y轴于点D,过点D作x轴的平行线交此抛物线于点M(不与点D重合),过点M的直线y ax m=+与此抛物线交于另一点N.对于任意满足条件的实数b,是否都存在M,N是一对泛对称点的情形?若是,请说明理由,并对所有的泛对称点(),M MM x y,(),N NN x y探究当My>Ny时Mx的取值范围;若不是,请说明理由.【答案】(1)23;(2)AB∥PQ,见解析;(3)对于任意满足条件的实数b,都存在M,N是一对泛对称点的情形,此时对于所有的泛对称点M(x M,y M),N(x N,y N),当y M>y N时,x M的取值范围是x M<1且x M≠0【解析】【分析】(1)利用泛对称点得定义求出t的值,即可求出a.(2)设P,Q两点的坐标分别为P(p,tq),Q(q,tp),根据题干条件得到A(p,0),B (0,tp),C(p,tp)的坐标,利用二元一次方程组证出k1=k2,所以AB∥PQ.(3)由二次函数与x轴交点的特征,得到D点的坐标;然后利用二次函数与一元二次方程的关系,使用求根公式即可得到答案.【详解】(1)解:因为点(1,2),(3,a)是一对泛对称点,设3t=2解得t=23所以a=t×1=23(2)解:设P,Q两点的坐标分别为P(p,tq),Q(q,tp),其中0<p<q,t>0.因为PA⊥x轴于点A,QB⊥y轴于点B,线段PA,QB交于点C,所以点A,B,C的坐标分别为:A(p,0),B(0,tp),C(p,tp)设直线AB,PQ的解析式分别为:y=k1x+b1,y=k2x+b2,其中k1k2≠0.分别将点A(p,0),B(0,tp)代入y=k1x+b1,得111pk b tpb tp+=⎧⎨=⎩. 解得11k tb tp=-⎧⎨=⎩分别将点P(p,tq),Q(q,tp)代入y=k2x+b2,得2222pk b tpqk b tp+=⎧⎨+=⎩. 解得22k tb tp tp=-⎧⎨=+⎩所以k1=k2.所以AB∥PQ(3)解:因为抛物线y=ax2+bx+c(a<0)交y轴于点D,所以点D的坐标为(0,c).因为DM∥x轴,所以点M的坐标为(x M,c),又因为点M在抛物线y=ax2+bx+c(a<0)上.可得ax M 2+bx M+c=c,即x M(ax M+b)=0.解得x M=0或x M=-ba.因为点M不与点D重合,即x M≠0,也即b≠0,所以点M的坐标为(-ba,c)因为直线y=ax+m经过点M,将点M(-ba,c)代入直线y=ax+m可得,a·(-ba)+m=c.化简得m=b+c所以直线解析式为:y=ax+b+c.因为抛物线y=ax2+bx+c与直线y=ax+b+c交于另一点N,由ax2+bx+c=ax+b+c,可得ax2+(b-a)x-b=0.因为△=(b-a)2+4ab=(a+b)2,解得x1=-ba,x2=1.即x M=-ba,x N=1,且-ba≠1,也即a+b≠0.所以点N的坐标为(1,a+b+c)要使M(-ba,c)与N(1,a+b+c)是一对泛对称点,则需c=t ×1且a+b+c=t ×(-ba ).也即a+b+c=(-ba )·c也即(a+b)·a=-(a+b)·c.因为a+b≠0,所以当a=-c时,M,N是一对泛对称点.因此对于任意满足条件的实数b,都存在M,N是一对泛对称点的情形.此时点M的坐标为(-ba,-a),点N的坐标为(1,b).所以M,N两点都在函数y=bx(b≠0)的图象上.因为a<0,所以当b>0时,点M,N都在第一象限,此时 y随x的增大而减小,所以当y M>y N时,0<x M<1;当b<0时,点M在第二象限,点N在第四象限,满足y M>y N,此时x M<0.综上,对于任意满足条件的实数b,都存在M,N是一对泛对称点的情形,此时对于所有的泛对称点M(x M,y M),N(x N,y N),当y M>y N时,x M的取值范围是x M<1且x M≠0.【点睛】本题主要考察了新定义问题,读懂题意是是做题的关键;主要考察了二元一次方程组,二次函数、一元二次方程知识点的综合,把握题干信息,熟练运用知识点是解题的核心.8.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.9.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.【答案】(1)A(-1,0) ,B(2,3)(2)△ABP最大面积s=1927322288⨯=; P(12,﹣34)(3)存在;25【解析】【分析】(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1,然后解方程组211y xy x⎧=⎨=+⎩﹣即可;(2)设P(x,x2﹣1).过点P作PF∥y轴,交直线AB于点F,则F(x,x+1),所以利用S△ABP=S△PFA+S△PFB,,用含x的代数式表示为S△ABP=﹣x2+x+2,配方或用公式确定顶点坐标即可.(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,用k分别表示点E的坐标,点F的坐标,以及点C的坐标,然后在Rt△EOF中,由勾股定理表示出EF的长,假设存在唯一一点Q,使得∠OQC=90°,则以OC为直径的圆与直线AB相切于点Q,设点N为OC中点,连接NQ,根据条件证明△EQN∽△EOF,然后根据性质对应边成比例,可得关于k的方程,解方程即可.【详解】解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.联立两个解析式,得:x2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A (﹣1,0),B (2,3).(2)设P (x ,x 2﹣1).如答图2所示,过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1).∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.S △ABP =S △PFA +S △PFB =PF (xF ﹣xA )+PF (xB ﹣xF )=PF (xB ﹣xA )=PF∴S △ABP=(﹣x 2+x+2)=﹣(x ﹣12)2+278 当x=12时,yP=x 2﹣1=﹣34. ∴△ABP 面积最大值为,此时点P 坐标为(12,﹣34). (3)设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,则E (﹣1k ,0),F (0,1),OE=1k,OF=1. 在Rt △EOF 中,由勾股定理得:EF=22111=k k +⎛⎫+ ⎪⎝⎭.令y=x 2+(k ﹣1)x ﹣k=0,即(x+k )(x ﹣1)=0,解得:x=﹣k 或x=1.∴C (﹣k ,0),OC=k .假设存在唯一一点Q ,使得∠OQC=90°,如答图3所示,则以OC 为直径的圆与直线AB 相切于点Q ,根据圆周角定理,此时∠OQC=90°. 设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=2k .∴EN=OE﹣ON=1k﹣2k.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴NQ ENOF EF=,即:1221kkkk-=,解得:k=±25,∵k>0,∴k=25.∴存在唯一一点Q,使得∠OQC=90°,此时k=25.考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.10.在平面直角坐标系xOy中(如图),已知二次函数2y ax bx c=++(其中a、b、c 是常数,且a≠0)的图像经过点A(0,-3)、B(1,0)、C(3,0),联结AB、AC.(1)求这个二次函数的解析式;(2)点D是线段AC上的一点,联结BD,如果:3:2ABD BCDS S∆∆=,求tan∠DBC的值;(3)如果点E在该二次函数图像的对称轴上,当AC平分∠BAE时,求点E的坐标.【答案】(1)243y x x=-+-;(2)32;(3)E(2,73-)【解析】【分析】(1)直接利用待定系数法,把A、B、C三点代入解析式,即可得到答案;(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,利用面积的比得到32ADDC=,然后求出DH和BH,即可得到答案;(3)延长AE至x轴,与x轴交于点F,先证明△OAB∽△OFA,求出点F的坐标,然后求出直线AF的方程,即可求出点E的坐标.【详解】解:(1)将A(0,-3)、B(1,0)、C(3,0)代入20y ax bx c a=++≠()得,03,0934,300a ba bc=+-⎧⎪=+-⎨⎪-=++⎩解得143abc=-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是:243y x x=-+-.(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,则11:():():3:222ABD BCDS S AD h DC h AD DC∆∆=⋅⋅==,又∵DH//y轴,∴25CH DC DHOC AC OA===.∵OA=OC=3,则∠ACO=45°,∴△CDH为等腰直角三角形,∴26355CH DH==⨯=.∴64255BH BC CH=-=-=.∴tan∠DBC=32DHBH=.(3)延长AE至x轴,与x轴交于点F,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC-∠BAC=45°-∠BAC,∠OFA=∠OCA-∠FAC=45°-∠FAC,∵∠BAC=∠FAC,∴∠OAB=∠OFA.∴△OAB∽△OFA,∴13 OB OAOA OF==.∴OF=9,即F(9,0);设直线AF的解析式为y=kx+b(k≠0),可得093k bb=+⎧⎨-=⎩,解得133kb⎧=⎪⎨⎪=-⎩,∴直线AF的解析式为:133y x=-,将x=2代入直线AF的解析式得:73y=-,∴E(2,73 -).【点睛】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.三、初三数学旋转易错题压轴题(难)11.在△ABC中,∠C=90°,AC=BC=6.(1)如图1,若将线段AB绕点B逆时针旋转90°得到线段BD,连接AD,则△ABD的面积为.(2)如图2,点P为CA延长线上一个动点,连接BP,以P为直角顶点,BP为直角边作等腰直角△BPQ,连接AQ,求证:AB⊥AQ;(3)如图3,点E,F为线段BC上两点,且∠CAF=∠EAF=∠BAE,点M是线段AF上一个动点,点N是线段AC上一个动点,是否存在点M,N,使CM+NM的值最小,若存在,求出最小值:若不存在,说明理由.【答案】(1)36;(2)详见解析;(3)存在,最小值为3.【解析】【分析】(1)根据旋转的性质得到△ABD是等腰直角三角形,求得AD=2BC=12,根据三角形的面积公式即可得到结论;(2)如图2,过Q作QH⊥CA交CA的延长线于H,根据等腰直角三角形的性质,得到PQ =PB,∠BPQ=90°,根据全等三角形的性质得到PH=BC,QH=CP,求得CP=AH,得到∠HAQ=45°,于是得到∠BAQ=180°﹣45°﹣45°=90°,即可得到结论;(3)根据已知条件得到∠CAF=∠EAF=∠BAE=15°,求得∠EAC=30°,如图3,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,则此时,CM+NM的值最小,且最小值=DN,求得AD=AC=6,根据直角三角形的性质即可得到结论.【详解】解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BD,∴△ABD是等腰直角三角形,∵∠ACB=90°,∴BC⊥AD,∴AD=2BC=12,∴△ABD的面积=12AD•BC=1212×6=36,故答案为:36;(2)如图,过Q作QH⊥CA交CA的延长线于H,∴∠H=∠C=90°,∵△BPQ是等腰直角三角形,∴PQ=PB,∠BPQ=90°,∴∠HPQ+∠BPC=∠QPH+∠PQH=90°,∴∠PQH=∠BPC,∴△PQH≌△BPC(AAS),∴PH=BC,QH=CP,∵AC=BC,∴PH=AC,∴CP=AH,∴QH=AH,∴∠HAQ=45°,∵∠BAC=45°,∴∠BAQ=180°﹣45°﹣45°=90°,∴AB⊥AQ;(3)如图,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,∵∠CAF=∠EAF=∠BAE,∠BAC=45°,∴∠CAF=∠EAF=∠BAE=15°,∴∠EAC=30°,则此时,CM+NM的值最小,且最小值=DN,∵点C和点D关于AF对称,∴AD=AC=6,∵∠AND=90°,∴DN=12AD=126=3,∴CM+NM最小值为3.【点睛】本题是几何变换综合题,考查了全等三角形的判定与性质,旋转的性质,等腰直角三角形的性质,含30°角的直角三角形的性质,正确的作出作辅助线构造全等三角形是解题的关键.12.我们定义:如图1,在△ABC看,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;②如图3,当∠BAC=90°,BC=8时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.【答案】(1)①12;②4;(2)AD=12BC,证明见解析;(3)存在,证明见解析,39.【解析】【分析】(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=12AB′即可解决问题;②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题;(2)结论:AD=12BC.如图1中,延长AD到M,使得AD=DM,连接E′M,C′M,首先证明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M,即可解决问题;(3)存在.如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.想办法证明PA=PD,PB=PC,再证明∠APD+∠BPC=180°,即可;【详解】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AB=AB′=AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=12AB′=12BC,故答案为12.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC≌△B′AC′,∴BC=B′C′,∵B′D=DC′,∴AD=12B′C′=12BC=4,故答案为4.(2)结论:AD=12 BC.理由:如图1中,延长AD到M,使得AD=DM,连接E′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC≌△AB′M,∴BC=AM,∴AD=1BC.2(3)存在.理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.∵∠ADC=150°,∴∠MDC=30°,在Rt△DCM中,∵3,∠DCM=90°,∠MDC=30°,∴CM=2,DM=4,∠M=60°,在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,∴EM=1BM=7,2∴DE=EM﹣DM=3,∵AD=6,∴AE=DE,∵BE⊥AD,∴PA=PD,PB=PC,在Rt△CDF中,∵3CF=6,∴tan∠3∴∠CDF=60°=∠CPF,易证△FCP≌△CFD,∴CD=PF,∵CD∥PF,∴四边形CDPF是矩形,∴∠CDP=90°,∴∠ADP=∠ADC﹣∠CDP=60°,∴△ADP是等边三角形,∴∠ADP=60°,∵∠BPF=∠CPF=60°,∴∠BPC=120°,∴∠APD+∠BPC=180°,∴△PDC是△PAB的“旋补三角形”,在Rt△PDN中,∵∠PDN=90°,PD=AD=6,DN=3,∴PN=2222++=39.DN PD=(3)6【点睛】本题考查四边形综合题.13.如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明见解析;(2)△PDQ是等腰直角三角形;理由见解析(3)成立;理由见解析.【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,由BE=DF,得出CE=CF,△CEF是等腰直角三角形,即可得出结论;(2)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明∠DPQ=90°,即可得出结论;(3)由直角三角形斜边上的中线的性质得出PD=AF,PQ=AF,得出PD=PQ,再证明点A、F、Q、P四点共圆,由圆周角定理得出∠DPQ=2∠DAQ=90°,即可得出结论.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠ADF=90°,∠BCA=∠DCA=45°,∵BE=DF,∴CE=CF,∴AC垂直平分EF;(2)解:△PDQ是等腰直角三角形;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∴∠DAP=∠ADP,∵AC垂直平分EF,∴∠AQF=90°,∴PQ=AF=PA,∴∠PAQ=∠AQP,PD=PQ,∵∠DPF=∠PAD+∠ADP,∠QPF=∠PAQ+∠AQP,∴∠DPQ=2∠PAD+2∠PAQ=2(∠PAD+∠PAQ)=2×45°=90°,∴△PDQ是等腰直角三角形;(3)成立;理由如下:∵点P是AF的中点,∠ADF=90°,∴PD=AF=PA,∵BE=DF,BC=CD,∠FCQ=∠ACD=45°,∠ECQ=∠ACB=45°,∴CE=CF,∠FCQ=∠ECQ,∴CQ⊥EF,∠AQF=90°,∴PQ=AF=AP=PF,∴PD=PQ=AP=PF,∴点A、F、Q、P四点共圆,∴∠DPQ=2∠DAQ=90°,∴△PDQ是等腰直角三角形.考点:四边形综合题.14.(1)问题发现如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.填空:线段AD,BE之间的关系为 .(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.(3)解决问题如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.22.【解析】【分析】(1)根据等腰三角形性质证△ACD ≌△BCE (SAS ),得AD=BE ,∠EBC=∠CAD ,延长BE 交AD 于点F ,由垂直定义得AD ⊥BE .(2)根据等腰三角形性质证△ACD ≌△BCE (SAS ),AD=BE ,∠CAD=∠CBE ,由垂直定义得∠OHB=90°,AD ⊥BE ;(3)作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,PC=BE ,当P 、E 、B 共线时,BE 最小,最小值=PB-PE ;当P 、E 、B 共线时,BE 最大,最大值=PB+PE ,故5-32≤BE≤5+32.【详解】(1)结论:AD=BE ,AD ⊥BE .理由:如图1中,∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ACD=90°,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩=== ∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠EBC=∠CAD延长BE 交AD 于点F ,∵BC ⊥AD ,∴∠EBC+∠CEB=90°,∵∠CEB=AEF ,∴∠EAD+∠AEF=90°,∴∠AFE=90°,即AD ⊥BE .∴AD=BE ,AD ⊥BE .故答案为AD=BE ,AD ⊥BE .(2)结论:AD=BE ,AD ⊥BE .理由:如图2中,设AD 交BE 于H ,AD 交BC 于O .∵△ACB 与△DCE 均为等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∴ACD=∠BCE ,在Rt △ACD 和Rt △BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS ),∴AD=BE ,∠CAD=∠CBE ,∵∠CAO+∠AOC=90°,∠AOC=∠BOH ,∴∠BOH+∠OBH=90°,∴∠OHB=90°,∴AD ⊥BE ,∴AD=BE ,AD ⊥BE .(3)如图3中,作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,∴PC=BE ,图3-1中,当P 、E 、B 共线时,BE 最小,最小值2,图3-2中,当P 、E 、B 共线时,BE 最大,最大值2,∴22,即22【点睛】本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.15.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB= ,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,102;(2)(33,9);(3)123545(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,。
重庆南开中学08-09学年度上期初2010级半期考试数 学 试 卷题号 一 二 三 四 总分 得分一、选择题(每题4分,共40分)1.观察下面图案,在A ,B ,C ,D 四幅图案中,能通过图案(1)平移得到的是( )2.已知11x y =⎧⎨=-⎩是方程23x ay -=的一个解,那么a 的值是( )A. 1B. 3C. -3D. -13.已知直角梯形的一腰长10cm ,这条腰和底所成的角是30,则另一腰长是( ) A. 10cm B. 9cm C. 5cm D. 6cm4. 一个三位数m,十位上数字比个位上的数字大2,百位上的数字是十位上的数字的2倍,设个位上的数字为x , 十位上的数字为y ,百位上的数字为z ,则下列所列方程错误的是( )A. 2y x -=B. 20y z -=C. 10100x y z m ++=D. 2x y -= 5.过等腰三角形底边上任意一点分别作两腰的平行线,那么所得的平行四边形的周长等于这个等腰三角形的( )A. 腰长B.腰长的2倍C.周长D.周长的一半 6.用一根绳子绕一棵大树,若绕大树3周绳子还多4米,若绕大树4周绳子又少了3米,则这根绳子的长度为( ).A. 6米B.7米C.24米D. 25米7.如图,在梯形ABCD 中,//,AD BC B ∠∠与C 互余,5,13,60,AD BC C ==∠=则该梯形的面积是( )A. 182B. 183C. 36D. 3628.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个椭球体的重量等于( )个正方体的重量。
A. 2 B. 3 C. 4 D. 59.将矩形纸片ABCD 按如图所示的方式折叠,得到菱形.AECF 若3AB =,则BC 的长为( ) A. 1 B. 2 C. 2D.310. 如图,大正方形中有2个小正方形,如果它们的面积分别是1S 、2S ,那么1S 、2S 的大小关系是( ) A. 1S >2S B. 1S =2S C. 1S <2SD. 1S 、2S 的大小关系不确定 二、填空题(每题3分,共30分)11.BD 是菱形ABCD 的一条对角线,若65ABD ∠=,则C ∠=________. 12.五边形的外角和与内角和的比为_______. 13.若方程211231m n m xy ++-+=是关于x 、y 的二元一次方程,则m n +=________.14.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形,既是轴对称图形又是中心对称图形的概率为_________.15.如图所示,已知等边三角形ABC 的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的多边形的周长(外框长)是_________.16.某校200名学生参加数学能力测试,他们的平均分为60分,其中及格学生的平均分为75分,不及格学生的平均分为50分,则不及格学生有_____人.17.矩形ABCD 中,两条对角线相交于点O ,2,120AB AOD =∠=,则矩形的面积为_________.18.某家家具厂生产的一种方桌由一个桌面和四条桌腿组成,用12m 木料可制作方桌的桌面50个或制作桌腿300条。
上学期期末考试九 年 级 数 学 试 卷(本卷共五个大题,满分150分,考试时间 120分钟)案,其中只有一个是正确的,请将正确答案的代号填在题后对应的表格中. 1.下列四个数中的无理数是( )A.3.14B.3-C.4-D.722 2.下列计算正确的是( ) A.4624=÷ B.623=⨯ C.4334=- D.532=+3.方程032=-x x 解是 ( )A. 0或3B. 3C.0D.0或3- 4. 抛物线22(3)4y x =-+-的顶点坐标是( )A.(-3, -4)B.(-3, 4)C.(3, -4)D.(-4, 3)5.下列图形中,是轴对称图形但不是中心对称图形的是( )6.如图,AB 是圆O 的直径,点D 在AB 的延长线上,射线DC 切圆O 于点C ,若25A =o∠.则D ∠等于 ( )A .60°B .50°C .40°D .45° 7.用配方法解方程01422=+-x x ,则方程可变为( ) A.()2122=-x B.31)1(22=-x C.()1122=-x D.()2112=-x 8.已知两圆的半径1r ,2r 分别是方程01072=+-x x 的两根,两圆的圆心距为7,则两圆的位置关系是( )题号 一 二 三 四 五 总分 总分人 得分学校_________________ 班级_________________ 姓名________________ 考号____________________________ ..................................装............................订.........................线.................. ×××××××××××××××××××××××密封线内不能答题××××××××××××××××××××××××__________________________________________________________________________________________________________________A. 相交B.内切C.外切D.外离9.彩虹暖手器原价每个100元,随着天气变冷,买的人增多,商场经过连续两次加价a %后售价是每个121元,以下列方程正确的是 ( )A. ()121%11002=-a B. ()121%11002=+aC. ()121%211002=-a D.()121110022=-a10.为提倡低碳生活,小凯坚持骑车上学,有一天,小凯开始以正常速度匀速行驶,但行至中途时,自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,他比修车前加快了速度继续匀速行驶,下列行驶路程s 关于时间t 的函数图象中,符合小凯行驶情况的大致图象是( )11.如图是由正三角形、正方形及正六边形组成的图案. 按此规律,第16个图案中,正三角形的个数为( )A .82B .72C .83D .7312. 已知函数c bx ax y ++=2的图象如图所示,给出以下结论:①2b >ac 4;②abc >0;③02=-b a ;④3ca ->;⑤cb a ++39<0,其中结论正确有( )A. 2个B. 3个C. 4个D.5个题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(每小题4分,共24分)请将答案填在题后的横线上. 13.要使2x -在实数范围内有意义,x 应满足的条件是 . 14.已知圆锥的底面半径为3,母线长为5 ,则圆锥的高是 . 15.若1x =是方程220x ax ++=的一个根,则其另一个根为 .16.如图,一个圆心角为90°的扇形,半径OA=3,那么图中阴影部分的面积为 .(结果保留π)17.现有5张正面分别标有数字2-,1-,0,l ,2的同种卡片,将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的方程22(1)(3)0x a x a a --+-=有实根,且以x 为自变量的函数a ax x y 422+-=的顶点落在第一象限的概率是________. 18.如图,矩形ABCO 的边OC OA ,分别落在x 、y 轴上,点B 的坐标为B (320,5),D 是BC 边上一点.将COD ∆沿直线OD 翻折,使C 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,则该函数的解析式是 . 19.计算:()().16323121020142⨯-+---+⎪⎭⎫ ⎝⎛--π20.如图,方格中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC ∆的顶点均在格点上,点C 的坐标为(41)-,.①把ABC ∆向左平移6个单位得到对应的111A B C ∆,画出111A B C ∆,并写出1C 的坐标;②将111C B A ∆绕点O 顺时针旋转90°得到对应的222C B A ∆.写出点2C 的坐标.四、解答题(每小题10分,共40分)每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:1211222+-+÷⎪⎪⎭⎫ ⎝⎛---+x x x x x x x x ,其中x 为方程0822=--x x 的根.22.某商场将进货价为150元的中学生冬季运动服以200元售出时,平均每周能售出80件,调查表明:这种中学生冬季运动服的售价每上涨1元,其销售量就减少1件.(1)为了使平均每周有4200元的销售利润,这种运动服的售价应定为多少元?(2)4200元是否为最大利润?若是,请说出理由;若不是,求出最大利润,并指出此时运动服的售价为多少元?23.有传言说“明年中考体育将增加男生1000米女生800米为考查选项”,但市教委明确说,明年我市暂不实行.某中学初三数学兴趣小组随机抽查了若干名学生对“中考体育增加男生1000米女生800米”的态度:A. 反对;B.基本赞成;C.赞成;D. 无所谓,并将调查结果绘制成频数折线统计图1和不完整的扇形统计图2.请根据图中信息,解答下列问题:(1) 此次抽样调查中,共调查了多少名学生;(2) 求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3) 根据抽样调查结果,请你估计该校3000名学生中有多少名学生持反对态度;(4) 此次调查活动中,初三(1)班和(2)班各有2名学生对“中考体育增加男生1000米女生800米”持赞成态度,现从中选2名学生参加区冬运会,试用列表法或画树状图法求所选出的2人来自不同班级的概率.图1 图2DC=,24.如图,H是边长为4的正方形ABCD边AB上一点,N在DH上,且DN DHAG=.MN⊥交BC于点M,G点在BA延长线上,CM(1)求证:CDH ADH HDG ∠+∠=∠21; (2)若2=MN ,求DH 的长.五、解答题(每小题12分,共24分)每小题必须给出必要的演算过程或推理步骤. 25.如图,抛物线c bx x y ++-=22过A (2,0)、C (0,4)两点. (1)分别求该抛物线和直线AC 的解析式;(2)横坐标为m 的点P 是直线AC 上方的抛物线上一动点,△APC 的面积为S . ①求S 与m 的函数关系式;②S 是否有最大值?若存在,求出最大值,若不存在,请说明理由.(3)点M 是直线AC 上一动点,ME 垂直x 轴于E ,在y 轴(原点除外)上是否存在点F ,使MEF ∆为等腰直角三角形? 若存在,求出对应的点M F ,的坐标;若不存在,说明理由.26.如图1,菱形OABC 的边OA 在x 轴正半轴上,已知10=OA ,点)8,6(C ,动点P 从O点出发,以1个单位/秒的速度沿线段OA 运动,OA PQ ⊥交折线段CB OC -于Q ,以PQ 为边向右作正方形PQMN ,当P 到达A 点时,运动结束.设点P 的运动时间为t 秒(t >0). (1)点B 的坐标为 ,t = 时,点N 与A 重合;(2)整个运动过程中,设正方形PQMN 与菱形OABC 重合部分面积为S ,试写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)如图2,在运动过程中,直线OB 将PQMN 分成两部分,问:是否存在t ,使得被分成的两部分中有一部分的面积是菱形面积的51.若存在,求对应的t 值;若不存在,说明理由.九年级数学答案一.选择题:1-5BBAAB,6-10CDCBC11-12AB 二.填空题:13.x ≥2 14. 4 15.2 16.2949-π 17.5218.x y 12=三.解答题19.解:原式=4+1-(2-3)+1×4…………………5分 =7+3…………………7分 20.C 1(-2,-1)C 2(-1,2)……………………2分画对三角形111C B A ……………………2分 画对三角形222C B A ……………………3分21.解:原式=[]121)1)(1(1222+-+÷--+--+x x xx x x x x x x =121)1(2222+-+÷---+x x xx x x x x=()1)1(112+-⨯-+x x x x x ……………………5分 =xx 1-……………………6分 0822=--x x解得:x 1=-2, x 2=4……………………8分当x=-2时,原式=x x 1-=23212=--- 当x=4时,原式=x x 1-=43414=-所以原式的值是23或43……………………8分 22.解(1)设这种中学生运动服的售价定为x 元,根据题意得: (x-150)[])200(80--x =4200……………………5分 解得:x 1=220,x 2=210答:这种中学生冬季运动服的售价定为220元或210元,平均每周有4200元的销售利润。
重庆南岸区2009─2010学年度上期期末考试九年级 数学试题(考试时间:120分钟 满分:150分)题号 一 二 三 四 五 总分 总分人 得分一、选择题:(本大题10个小题,每小题4分,共40分) 每个小题都给出了代号为 A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入题后的括号中.1.方程()()043=-+x x 的根是( )A .31-=x ,42=xB .31=x ,42=xC .3-=xD .4=x 2.如图,该几何体的俯视图是( )A .B .C .D . 3.二次函数()4322-+=x y 的对称轴是( )A .3=x B. 3-=x C. 4=x D. 4-=x 4.把方程234x x += 配方得( )A .1)2(2=-x B. 7)2(2=-xC. 1)2(2=+x D. 2)2(2=+x5.若方程0102=-+mx x 有一个根是2,则常数m 的值为( )A. 2-B. 1C. 3-D. 3 6.如图,太阳在房子的后方,那么你站在房子的正前方看到的影子为( )得分 评卷人13题图DCBA7.某口袋里现有6个红球和若干个绿球(两种球除颜色外,其余完全相同),某同学随机的从该口袋里摸出一球,记下颜色后放回,共试验50次,其中有25个红球,估计绿球个数为( )A. 6B. 12C. 13D. 25 8.如图,在△ABC 中,∠A=30°, tanB=23,AC=23, 则AB=( )A .2B .3C .4D .59.若三角形两边中垂线的交点在三角形的一边上,则这个三角形为( )A .钝角三角形B . 直角三角形C .锐角三角形D .等腰三角形 10.二次函数c bx ax y ++=2的图象如图所示,则abc ,24b ac -,b a +2,c b a +- 这四个式子中,值为负数的有( )A .4个B .3个C .2个D .1二、填空题:(本大题6个小题,每小题4分,共24分)请将 正确答案直接填写在题中的横线上.11.计算:=︒45tan .12.在英语句子“Wish you success!”(祝你成功!)中任选一个字母,这个字母为“c ”的概率是_________.13.如图,△ABC 中,点D 是BC 上的一点,∠C=25º,得分 评卷人AB=AD=DC ,则∠B=_________.14.在某时刻的阳光照耀下,高为4米的旗杆在水平地面上的影长为5米,附近一个建筑物的影长为20米,则该建筑物的高为_________.15.某学校操场为长方形水泥地,面积约600平方米,长比宽多5米,若设该操场的长为x米,则可得一元二次方程: .16.在直角梯形ABCD 中,AD ∥BC ,︒=∠90ABC , BC AB =,E 为AB 边上一点,︒=∠15BCE , 且AD AE =.连接DE 交对角线AC 于H ,连接BH .下列结论:①ACD ∆≌ACE ∆;②CDE ∆为等边三角形;③2=BEEH;④CH AH S S EHC EBC =ΛΛ, 其中结论正确的是 .三、解答题:(本大题4个小题,每小题6分,共24分)下列 各题解答时必须给 出必要的演算过程或推理步骤.17.计算:()()20091121395--⎪⎭⎫ ⎝⎛+++---π.18.解方程:0422=-+x x .19.用尺规作角的平分线.(要求:写出已知,求作,保留作图痕迹)得分 评卷人20.如图,点E 、F 在BC 上,BE=FC ,AB=DC ,∠B=∠C .求证:∠A=∠D .四、解答题:(本大题4个小题,每小题10分,共40分) 下列各题解答时必须给出必要的演算过程或推理步骤.21.如图,Rt △ABO 的顶点A 是反比例函数x ky =与一次函数)1(++-=k x y 的图象在第四象限的交点,AB ⊥x 轴于B ,且ABO S ∆=25.(1)求这个反比例函数和一次函数的解析式;(2)求这个一次函数的图象与坐标轴围成的三角形的面积.得分 评卷人22.有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,第二次从余下..的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b .(1)写出k 为负数的概率;(2)求一次函数y kx b =+的图象经过一、二、 四象限的概率.(用树状图或列表法求解)23.如图,线段AB DC 、分别表示甲、乙两建筑物的高,AB BC DC BC ⊥,⊥,从B点测得D 点的仰角α为60°,从A 点测得D 点的仰角β为30°,已知甲建筑物高36AB =米.(1)求乙建筑物的高DC ;(2)求甲、乙两建筑物之间的距离BC (结果精确到0.01米). 2 1.4143 1.732,)24.已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A 点除外),过P点作EF∥AB,分别交AC、BC于E、F点,作PM∥AC,交AB于M点,连结ME.(1)求证:四边形AEPM为菱形;(2)当P点在AD上何处时,菱形AEPM的面积为四边形EFBM面积的一半?五、解答题:(本大题2个小题,每小题11分,共22分) 下列各题解答时必须给出必要的演算过程或推理步骤.25.种植能手小李的试验田可种植A 种作物或B 种作物(A 、B 两种作物不能同时种植),原有的种植情况如下表.通过参加农业科技培训,小李提高了种植技术.现准备在原有的基础上增种作物,以提高总产量,但根据科学种植的经验,每增种1棵A 种或B 种作物,都会导致单棵作物平均产量减少0.2kg ,而且每种作物的增种量都不能超过原有数量的80%.设A 种植物增种m 棵,总产量为y A kg ;B 种植物增种n 棵,总产量为y B kg .(1)求y A 与m 之间的函数关系式及y B 与n 之间的函数关系式;(2)求提高种植技术后小李增种何种作物可获得最大总产量?最大总产量是多少?26.如图,在等腰梯形ABCD 中,AD BC ∥,E 是AB的中点,过点E 作EF ∥BC交CD 于点F .46AB BC ==,,60B =︒∠.点P 为线段EF 上的一个动点,过26题图1ABCD E FMNP 26题图2P NM F E D CBA26题备用图1F E D CBA 26题备用图2F E D CBA P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.(1)当点N 在线段AD 上时(如图1),PMN △的形状是否发生改变?若不变,求PMN △的周长;若改变,请说明理由;(2)当点N 在线段DC 上时(如图2),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.。
重庆南开中学2009--2010学年度初2010级5月月考数学试题(全卷共五个大题 满分:150分 考试时间:120分钟)温馨提示:抛物线2(0)y ax bx c a =++≠的顶点坐标公式为24(,)24b ac b aa--一、选择题:(本大题10个小题,每小题4分,共40分)每个小题都给出了代号为A 、B 、C 、 D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入题后的括号中. 1.2的倒数是( ) A .2 B .2- C .12- D .122.计算32x x 3⋅的结果是( )A .xB .3xC .53xD .63x 3.函数32y x =-的自变量x 的取值范围是( ) A .2x > B .2x ≠ C .2x ≥ D .2x ≠-4.如图,在△ABC 中,AB=AC ,70ABC ∠= 。
,顶点B 在直线DE 上,且DE ∥AC ,则C B E ∠等于( )A .40B .50C .70D .805.已知O 的半径为3,圆心O 到直线l 的距离为5,则直线l 与O 的位置关系是( ) A .相离 B .相交 C .相切 D .无法确定6.最近,全民倡导“低碳生活”理念,号召大家通过节能减排,减少二氧化碳排放,节约标那么完成这5件小事所节约标准用煤量的中位数是( ) A .0.18万吨 B .0.09万吨 C .0.28万吨D .0.14万吨 7.如图所示的几何体的俯视图是( )8.观察下列图形,则第n 个图形中直角三角形的个数是( )A .2nB .12n -C .44n -D .4n9.如图,一艘旅游船从码头A 驶向景点C ,途经景点B 、D .它先从码头A 沿以D 为圆心的弧AB 行驶到景点B ,且然后从B 沿直径BC 行驶到⊙D 上的景点C .假如旅游船在整个行驶过程中保持匀速,则下面各图中能反映旅游船与景点D 的距离随时间变化的图像大致是( )10.如图,分别以Rt △ABC 的斜边AB 、直角边AC 为边向外作等边△ABD 和△ACE ,F 为AB 的中点,连接DF 、EF 、DE ,EF 与AC 交于点O ,DE 与AB 交于点G ,连接OG ,若30BAC ∠=。
重庆南开中学2009—2010学年度初2010级九年级(上)期末考试
数 学 试 卷
题 号 一 二 三 四 五 总 分 满 分 40 24 24 40 22 150 得 分
(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、
B 、
C 、
D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中. 1.2的倒数是( ) A .
12
B .2-
C .12
-
D .2
2.下列运算正确的是( ) A .2()2a b a b --=-- B .2()2a b a b --=-+ C .2()22a b a b --=-+
D .2()22a b a b --=--
3.使4x +有意义的x 的取值范围是( )
A .4x >-
B .4x <-
C .4x ≠-
D .4x ≥-
4.某甲型H1N1流感确诊病人在医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需了解 这位病人7天体温的( )
A .众数
B .频数
C .平均数
D .方差 5.如图,已知直线//,115,25,AB CD C A ∠=∠=点
E 、
F C 、在一条直线上,则E ∠=( ) A .70° B .80° C .90° D .100°
6.按左图中第一、二两行图形的平移、轴对称及旋转等变换规律,填入第三行“?”处的图形应是 ( )
7.一个长方体的左视图、俯视图及相关数据如图所示, 则其主视图的面积为( )
A .6
B .8
C .12
D .24
E A
F C B D
(5题图) A B
C
D
3
2
左视图
俯视图
4
8.如图,量角器外沿上有A B C 、、三点,A 处、 B 处对应的量角器刻度分别是30°、70°,则 ACB ∠的度数为( ) A .50° B .40° C .30° D .20° 9.如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从点A 出发沿着A B C →→→ D E →方向匀速运动,最后到达点.E 运动过程中PEF ∆的面积S 随时间t 变化的图象大致是 ( )
10.如图,在ABC ∆中,60,A ∠=,ABC ACB ∠∠的平分
线分别交AC AB 、于点,,D E CE BD 、相交于点,F 连 接.DE 下列结论: ①1cos ;2BFE ∠=
②;AB BC = ③1
;2
DE BC = ④点F 到ABC ∆三边的距离相等;⑤.BE CD BC +=
其中正确的结论是( )
A .②③④
B .②④⑤
C .①④⑤
D .①③④
二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将正确答案直接填在题后
的横线上.
11.两个相似三角形周长的比为2:3,则其对应的面积比为______________.
12.长度单位1纳米9
10-=米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病
毒直径是____________米. 13.分式方程
2512x x
=-的解为_________________. 14.一位小朋友在不打滑的平面轨道上滚动一个半径为
5cm 的圆环,当滚到与坡面BC 开始相切时停止.
其中40,AB cm =BC 与水平面的夹角为60°.其
圆心所经过的路线长是_______cm (结果保留根号).
15.小明准备了五张形状、大小完全相同的不透明卡片,上面分别写有整数-5、-4、-3、-2、-1,
将这五张卡片写有整数的一面向下放在桌面上. 从中任意抽取一张,以卡片上的数作为关于x
的不等式30ax +>(其中0a ≠)中的系数,a 则使该不等式有正整数解的概率是____________. s t O s
t O
s
t
O
s
t O
A B C
D
A
B C
P
(9题图)
A
B
C
D
E
F
(10题图)
C
A
B
60° 40cm (14题图)
o
计2010年1月份后半月的销售收入比上月同期增长25%,并且预计1月份全月的销售收入比上月增长22.2%,则上月全月的销售收入为___________亿元.
三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或
推理步骤.
17.计算:()3
2
111()( 3.14)2
π---+⨯-
18.解方程:2
250x x +-=
19.作图:请你在下图中作出一个以线段AB 为斜边的等腰.Rt ABC ∆ (要求:用尺规作图,并写出
已知、求作,保留作图痕迹,不写作法和结论) 已知:
求作:
20.某校初三年级音乐期末测试已结束,为了解全年级情况,以该年级(1)班学生的测试成绩为样本, 按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:
A B C
(说明:A 级:90分~100分(均含最小值、最大值,后同);B 级:75分~89分;C 级:60分~74分;D 级:60分以下)
(1)请把条形统计图补充完整;
(2)扇形统计图中D 级所在的扇形的圆心角度数是_______________; (3)样本中测试成绩的中位数落在__________级;
(4)若该年级有1100名学生,请你用此样本估计音乐期末测试中A 级和B 级的学生人数约为____________人.
四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程
或推理步骤.
21.先化简,再求值:222221(),11a a a a a a a -+-÷-+- 其中a 是方程2
702
x x --=的解.
22.如图,已知一次函数12y kx =+的图象与y 轴交于点,C 与反比例函数2m
y x
=
的图象相交于点,A 点A 的横坐标为1. 过A 作AD y ⊥轴于点,D 且tan 1.ACD ∠=
(1)求这两个函数的解析式及两图象的另一交点B 的坐标;
(2)观察图象,直接写出使函数值12y y ≥的自变量x 的取值范围.
23.图1是一个可以自由转动的转盘,被分成了面积相等的三个扇形,分别标有数-1,-2,-3,甲转动一次转盘,转盘停止后指针指向的扇形内的数记为A(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形为止). 图2是背面完全一样、牌面数字分别是2,3,4,5的四张扑克牌,把四张扑克牌背面朝上,洗匀后放在桌面上,乙随机抽出一张牌的牌面数字记为.B 计算A B
+的值.
(1)用树状图或列表法求0
A B
+=的概率;
(2)甲乙两人玩游戏,规定:当A B
+是正数时,甲胜;否则,乙胜. 你认为这个游戏规则对甲乙双方公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.
24.如图所示,在直角梯形ABCD中,90,//,,
BCD AD BC CD BC
∠==E是CD上一点,.
BE AC
⊥
(1)求证:AD EC
= A
B C
D
E
(2)当点E在CD上什么位置时,AB BE
成立?并说明理由.
五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须
给出必要的演算过程或推理步骤.
25.为了参加市教委举行的“争创绿色学校,美化校园环境”的活动,某区教委决定委托园林公司对所辖甲、乙两所学校进行校园绿化工作. 已知甲校有如图1所示的矩形内阴影部分空地需铺设草坪,乙校有如图2所示的平行四边形内阴影部分空地需铺设草坪(图1,图2中数据单位均为“米”). 在A B
、两地分别有同种草皮4500米2和2500米2出售,且售价一样. 若园林公司向A B
、两地购买草皮,其路程和运费单价表如下:
(注:运费单价表示每平方米草皮运送1千米所需要的人民币)
(1)分别求出图1、图2的阴影部分面积;
(2)若甲校从A地购买x米2的草皮(x取整数),因路程关系,甲校从A地购买的草皮数不超过
甲校从B地购买的草皮数,乙校从B地购买的草皮数大于甲校从B地购买的草皮数的1
,
5
那么
甲校乙校从A B 、两地购买草皮的方案有多少种?
(3)在(2)的条件下,请你设计出总运费最低的草皮运送方案,并说明理由.
26.如图,已知直线1
12
y x =-
+分别交y 轴、x 轴于,A B 两点,以线段AB 为边向上作正方形,ABCD 过点,,A D C 的抛物线21y ax bx =++与直线的另一交点为点.E
(1)点C 的坐标为______________;点D 的坐标为_______________.并求出抛物线的解析式. (2)
AB 下滑,直至顶点D 落在x 轴上时停止. 设正方形落在x 轴下方部分的面积为,S 求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围;
(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上,C E 两点间的抛物线弧所扫过的面积.
图
1 图
2。