层次分析法计算权重在matlab中的实现
- 格式:doc
- 大小:28.50 KB
- 文档页数:3
(完整版)层次分析法计算权重在matlab中的实现信息系统分析与设计作业层次分析法确定绩效评价权重在matlab中的实现小组成员:孙高茹、王靖、李春梅、郭荣1 程序简要概述编写程序一步实现评价指标特征值lam、特征向量w以及一致性比率CR的求解。
具体的操作步骤是:首先构造评价指标,用专家评定法对指标两两打分,构建比较矩阵,继而运用编写程序实现层次分析法在MATLAB中的应用。
通过编写MATLAB程序一步实现问题求解,可以简化权重计算方法与步骤,减少工作量,从而提高人力资源管理中绩效考核的科学化电算化。
2 程序在matlab中实现的具体步骤function [w,lam,CR] = ccfx(A)%A为成对比较矩阵,返回值w为近似特征向量% lam为近似最大特征值λmax,CR为一致性比率n=length(A(:,1));a=sum(A);B=A %用B代替A做计算for j=1:n %将A的列向量归一化B(:,j)=B(:,j)./a(j);ends=B(:,1);for j=2:ns=s+B(:,j);endc=sum(s);%计算近似最大特征值λmaxw=s./c;d=A*wlam=1/n*sum((d./w));CI=(lam-n)/(n-1);%一致性指标RI=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45,1.49,1.51];%RI为随机一致性指标CR=CI/RI(n);%求一致性比率if CR>0.1disp('没有通过一致性检验');else disp('通过一致性检验');endend3 案例应用我们拟构建公司员工绩效评价分析权重,完整操作步骤如下:3.1构建的评价指标体系我们将影响员工绩效评定的指标因素分为:打卡、业绩、创新、态度与品德。
3.2专家打分,构建两两比较矩阵A =1.0000 0.5000 3.0000 4.00002.0000 1.0000 5.00003.00000.3333 0.2000 1.0000 2.00000.2500 0.3333 0.5000 1.00003.3在MATLAB中运用编写好的程序实现直接在MATLAB命令窗口中输入[w,lam,CR]=ccfx(A)继而直接得出d =1.30352.00000.51450.3926w =0.31020.46910.12420.0966lam =4.1687CR =0.0625,通过一致性检验3.4解读程序结果根据程序求解中得出的特征向量,可以得出打卡、业绩、创新以及态度品德在员工绩效评价中所占的权重分别为:0.3102、0.4691、0.1242、0.0966。
matlab a计权算法
MATLAB中的A计权算法指的是AHP(层次分析法)计算权重的
算法。
AHP是一种多准则决策分析方法,用于确定各准则对于特定
目标的相对重要性。
下面我会从多个角度来解释AHP算法在MATLAB
中的应用。
首先,AHP算法在MATLAB中的实现可以通过使用MathWorks提
供的AHP工具箱或者自行编写代码来完成。
AHP工具箱提供了一些
内置的函数和工具,可以帮助用户进行层次分析法的权重计算和一
致性检验。
用户可以通过调用这些函数来实现AHP算法的各个步骤,包括建立层次结构、构造判断矩阵、计算特征向量和一致性指标等。
其次,AHP算法的实现需要用户输入层次结构和判断矩阵。
在MATLAB中,用户可以通过定义层次结构和输入判断矩阵来进行AHP
算法的计算。
通过调用相应的函数,MATLAB可以帮助用户对判断矩
阵进行特征值分解,计算特征向量,进而得到每个准则的权重。
此外,AHP算法在MATLAB中的应用还可以包括对一致性检验的
实现。
AHP算法要求判断矩阵满足一致性,MATLAB提供了相应的函
数来对判断矩阵进行一致性检验,帮助用户评估判断矩阵的一致性
水平,从而确保AHP算法的可靠性和准确性。
总的来说,MATLAB提供了丰富的工具和函数来支持AHP算法的实现和应用。
用户可以通过调用这些函数来进行层次分析法的权重计算和一致性检验,从而应用AHP算法解决实际的决策问题。
希望这些信息能够帮助你更好地理解MATLAB中AHP算法的应用。
function [w,CR]=mycom(A,m,RI)[x,lumda]=eig(A);r=abs(sum(lumda));n=find(r==max(r));max_lumda_A=lumda(n,n);max_x_A=x(:,n);w=A/sum(A);CR=(max_lumda_A-m)/(m-1)/RI;end本matlab程序用于层次分析法中计算判断矩阵给出的权值已经进行一致性检验。
其中A为判断矩阵,不同的标度和评定A将不同。
m为A的维数RI为判断矩阵的平均随机一致性指标:根据m的不同值不同。
当CR<0.1时符合一致性检验,判断矩阵构造合理。
下面是层次分析法的简介,以及判断矩阵构造方法。
一.层次分析法的含义层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。
它是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
二.层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
(1)层次分析法的原理层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
这里所谓“优先权重”是一种相对的量度,它表明各备择方案在某一特点的评价准则或子目标,标下优越程度的相对量度,以及各子目标对上一层目标而言重要程度的相对量度。
层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
matlab计算AHP层次分析法第一篇:matlab计算AHP层次分析法用matlab解决层次分析法AHP1、求矩阵最大特征值及特征向量用matlab求:输入:A=[1 1/2 2 1/4;2 1 1 1/3;1/2 1 1 1/3;4 3 3 1][x,y]=eig(A)得出:特征向量x=[0.2688 0.3334 0.2373 0.8720]最大特征值λmax=4.19642、一致性检验CI=(λmax-n)/(n-1)=(4.1964-4)/(4-1)=0.0655 CR=CI/RI=0.0655/0.9=0.0727(注:维数为4时,RI=0.9)CR=0.0727<0.1,矩阵一致性通过检验3、对最大特征值进行归一化处理,即可得到各指标权重(归一化:分项/分项之和)W=[0.157 0.195 0.139 0.510]第二篇:AHP层次分析法层次分析法层次分析法(The analytic hierarchy process,简称AHP),也称层级分析法什么是层次分析法层次分析法(The analytic hierarchy process)简称AHP,在20世纪70年代中期由美国运筹学家托马斯·塞蒂(T.L.Saaty)正式提出。
它是一种定性和定量相结合的、系统化、层次化的分析方法。
由于它在处理复杂的决策问题上的实用性和有效性,很快在世界范围得到重视。
它的应用已遍及经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医疗和环境等领域。
层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一样的。
不妨用假期旅游为例:假如有3个旅游胜地A、B、C供你选择,你会根据诸如景色、费用和居住、饮食、旅途条件等一些准则去反复比较这3个候选地点.首先,你会确定这些准则在你的心目中各占多大比重,如果你经济宽绰、醉心旅游,自然分别看重景色条件,而平素俭朴或手头拮据的人则会优先考虑费用,中老年旅游者还会对居住、饮食等条件寄以较大关注。
使用Matlab程序实现层次分析法(AHP)的简捷算法作者:于晶来源:《科技风》2016年第16期摘要:层次分析法简便易懂,可操作性和实用性强,但是构造判断矩阵往往不容易,计算判断矩阵的特征值特别繁琐且易出错,得到的一致性检验不易调整,这些都给使用层次分析法带来困难,以往使用办公软件电子表格(Excel)的方法计算单层次排序和总层次排序,这种方法使得计算和一致性检验变得容易,文本使用Matlab程序使得计算变得更容易,也使得层次分析法在多个领域得到推广和应用。
关键词:层次分析法;Excel;matlab1 层次分析法(AHP法)的原理和解决思路层次分析法是对定性问题进行定量分析的一种简便、灵活而又实用的多准则决策方法。
它的原理是模拟人的决策过程,具有思路清晰、方法简便、适用面广、系统性强等特点。
是解决多目标、多准则、多层次复杂问题决策或者大型工程风险分析的有力工具。
层次分析法解决问题的思路就是用下一次因素的相对排序求得上一次因素的相对排序。
按照因素之间的相互影响和隶属关系将各层次因素聚类组合,形成一个递进有序的层次结构模型。
2 层次分析法的应用难点2.1合适的判断矩阵构造不易模型确定后,按照模型层次结构和模型的各因素的相对重要性,综合专家群体咨询意见,采用标度法[ 1 ],从数字1/9一9中选取恰当值,构造各层的判断矩阵,并使之尽量符合一致性检验,这一步成为问题的关键。
但实际上系统越复杂,判定矩阵的阶数就会越高,计算就会越困难。
2.2计算量大,步骤繁琐层次分析法首先要求的就是判断矩阵的最大特征值?姿max,及其正规化的特征向量w,向量w的分量wi是相应因素的单层次权值,这部分计算理论上基于线性代数知识,不用计算机也可以将其计算出来。
但实际上,当矩阵的阶数高于4阶时,人工计算就变得相当困难且易出错,如使用计算机计算,就容易得多,常用的方法有Basic语言,电子表格Excel等方法。
但计算量都有待改进。
层次分析法建模层次分析法(AHP-Analytic Hierachy process)---- 多目标决策方法70 年代由美国运筹学家T·L·Satty提出的,是一种定性与定量分析相结合的多目标决策分析方法论.吸收利用行为科学的特点,是将决策者的经验判断给予量化,对目标(因素)结构复杂而且缺乏必要的数据情况下,採用此方法较为实用,是一种系统科学中,常用的一种系统分析方法,因而成为系统分析的数学工具之一。
传统的常用的研究自然科学和社会科学的方法有:机理分析方法:利用经典的数学工具分析观察的因果关系;统计分析方法:利用大量观测数据寻求统计规律,用随机数学方法描述(自然现象、社会现象)现象的规律。
基本内容:(1)多目标决策问题举例AHP建模方法(2)AHP建模方法基本步骤(3)AHP建模方法基本算法(3)AHP建模方法理论算法应用的若干问题。
参考书:1、姜启源,数学模型(第二版,第9章;第三版,第8章),高等教育出版社2、程理民等, 运筹学模型与方法教程,(第10章),清华大学出版社3、《运筹学》编写组,运筹学(修订版),第11章,第7节,清华大学出版社一、问题举例:A.大学毕业生就业选择问题获得大学毕业学位的毕业生,“双向选择”时,用人单位与毕业生都有各自的选择标准和要求。
就毕业生来说选择单位的标准和要求是多方面的,例如:①能发挥自己的才干为国家作出较好贡献(即工作岗位适合发挥专长);②工作收入较好(待遇好);③生活环境好(大城市、气候等工作条件等);④单位名声好(声誉—Reputation);⑤工作环境好(人际关系和谐等)⑥发展晋升(promote,promotion)机会多(如新单位或单位发展有后劲)等。
问题:现在有多个用人单位可供他选择,因此,他面临多种选择和决策,问题是他将如何作出决策和选择?——或者说他将用什么方法将可供选择的工作单位排序?工作选择贡献收入发展声誉工作环境生活环境B.假期旅游地点选择暑假有3个旅游胜地可供选择.例如:1P :苏州杭州,2P 北戴河,3P 桂林,到底到哪个地方去旅游最好?要作出决策和选择。
层次分析法及Matlab程序一、层次分析法简介层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于决策分析的工具,由美国数学家托马斯·L·萨蒂(Thomas L. Saaty)在1970年代创立。
AHP通过将决策问题划分为多个层次和多个因素,将主要因素和次要因素划分归纳,以定量化的方法分析各因素间优先级的关系,从而对决策方案进行综合评价。
AHP的基本原理是通过构造判断矩阵、计算判断矩阵的特征向量、确定权重,最终得到决策方案的优先级,从而找到最终的最优决策方案。
其主要优点是可定量化、简单易行,适用于大部分决策问题。
二、层次分析法的步骤AHP的具体步骤如下:1.确定决策目标;2.确定影响决策的因素,并将它们分成若干类别,即形成层次结构;3.为每个因素构建判断矩阵,评估每个因素的重要程度(用1~9的数字表示);4.将各判断矩阵进行一致性检验,并计算其权重;5.对计算得到的权重进行优先级排序,选出最优决策方案。
三、Matlab程序实现AHP计算在Matlab中,可以通过编写程序实现AHP的计算。
以下是一份简单的Matlab 程序,用于计算AHP的权重:% 输入判断矩阵A = [1 4 5;1/4 1 2;1/5 1/2 1];% 计算特征向量[V, D] = eig(A);[m, idx] = max(max(D));w = V(:,idx)';w = w/sum(w);% 一致性检验RI = [0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49];CR = (max(D) - 3)/2/RI(length(A));CI = sum(CR)/length(A);if CI < 0.1disp('一致性较好,权重为:');disp(w);elsedisp('一致性差,需重新评估判断矩阵!');end该程序用于计算一个3x3的判断矩阵的权重,并输出一致性检验的结果。
用层次分析法计算权重一、本文概述层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量分析相结合的多准则决策方法,由美国运筹学家T.L.Saaty教授于20世纪70年代提出。
该方法通过构建一个层次结构模型,将复杂问题分解为多个组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型。
通过两两比较的方式确定层次中诸因素的相对重要性,然后综合决策者的判断,确定决策方案相对重要性的总的排序。
层次分析法在权重计算中具有广泛的应用,包括项目管理、资源分配、风险评估、产品选择等各个领域。
本文将详细介绍层次分析法的原理、步骤及其在权重计算中的应用,帮助读者更好地理解和应用这一方法。
二、层次分析法基本原理层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的决策分析方法,由美国运筹学家T.L.Saaty在20世纪70年代初期提出。
这种方法将复杂的问题分解为各个组成因素,并将这些因素按照支配关系分组形成递阶层次结构。
通过两两比较的方式确定层次中诸因素的相对重要性,然后综合决策者的判断,确定决策方案相对重要性的总的排序。
层次分析法适用于存在多目标、多准则、多方案的系统评价、决策、预测等问题,尤其适用于那些难以完全用定量方法解决的复杂问题。
分解原理:将复杂的问题分解为若干个相对简单的子问题,这些子问题称为元素或因素。
每个元素都对应一个具体的评价准则或决策目标。
比较原理:通过两两比较的方式确定元素之间的相对重要性。
比较的结果以数值形式表示,通常使用1-9标度法,其中1表示两个元素同等重要,9表示一个元素比另一个元素极端重要,中间值表示不同等级的重要性。
合成原理:根据元素之间的相对重要性,通过合成运算得到元素的整体重要性排序。
合成运算通常采用加权求和的方法,权重由元素之间的相对重要性决定。
基于Matlab的层次分析法与运用摘要:本文通过使用Matlab软件进行编程,在满足同一层次中各指标对所有的下级指标均产生影响的假定条件下,实现了层次分析法的分析运算。
本程序允许用户自由设定指标层次结构内的层次数以及各层次内的指标数,通过程序的循环,用户只需输入判断矩阵的部分数据,程序可依据层次分析法的计算流程进行计算并作出判断。
本程序可以方便地处理层次分析法下较大的运算量,解决层次分析法的效率问题,提高计算机辅助决策的时效性。
关键词:Matlab层次分析法判断矩阵决策在当前信息化、全球化的大背景下,传统的手工计算已不能满足人们高效率、高准确度的决策需求。
因此计算机辅助决策当仁不让地成为了管理决策的新工具、新方法。
基于此,本文在充分发挥计算机强大运算功能的基础上,选用美国MathWork公司的集成数学建模环境MatlabR2022a作为开发平台,使用M语言进行编程,对计算机辅助决策在层次分析法中的运用进行讨论。
试图通过程序实现层次分析法在计算机系统上的运用,为管理决策探索出新的道路职称论文。
1层次分析法的计算流程根据层次分析法的相关理论,层次分析法的基本思想是将复杂的决策问题进行分解,得到若干个下层指标,再对下层指标进行分解,得到若干个再下层指标,如此建立层次结构模型,然后根据结构模型构造判断矩阵,进行单排序,最后,求出各指标对应的权重系数,进行层次总排序。
1.1构造层次结构模型在进行层次分析法的分析时,最主要的步骤是建立指标的层次结构模型,根据结构模型构造判断矩阵,只有判断矩阵通过了一致性检验后,方可进行分析和计算。
其中,结构模型可以设计成三个层次,最高层为目标层,是决策的目的和要解决的问题,中间层为决策需考虑的因素,是决策的准则,最低层则是决策时的备选方案。
一般来讲,准则层中各个指标的下级指标数没有限制,但在本文中设计的程序尚且只能在各指标具有相同数量的下级指标的假定下,完成层次分析法的分析,故本文后文选取的案例也满足这一假定。
ahp 最小二乘法模型 matlabAHP最小二乘法模型在MATLAB中的应用引言:随着科技的不断进步,人们对于决策问题的需求也越来越高。
AHP (层次分析法)和最小二乘法是两种常见的决策分析方法。
本文将介绍如何在MATLAB中使用AHP和最小二乘法模型进行决策分析和预测。
AHP(层次分析法):AHP是一种用于确定决策问题中权重的方法,通过对问题进行层次划分和比较,计算出各个因素的权重,从而进行决策。
在MATLAB中,我们可以使用AHP包来进行AHP模型的建立和求解。
首先,我们需要构建AHP模型的层次结构,将决策问题分为不同的层次和因素。
然后,使用AHP方法对层次结构中的因素进行两两比较,得到各个因素的权重。
最后,根据权重进行决策。
最小二乘法模型:最小二乘法是一种用于拟合数据和预测的方法,通过最小化数据与拟合曲线之间的误差,得到最佳拟合曲线。
在MATLAB中,我们可以使用最小二乘法进行拟合和预测。
首先,我们需要收集相关数据,并将其表示为矩阵形式。
然后,使用最小二乘法求解线性方程组,得到拟合曲线的参数。
最后,使用拟合曲线进行数据预测。
AHP与最小二乘法的结合:AHP和最小二乘法可以结合使用,以提高决策分析和预测的准确性。
在MATLAB中,我们可以先使用AHP方法对决策问题的因素进行权重计算,然后将这些权重作为最小二乘法模型的输入,得到更准确的拟合曲线和预测结果。
结论:AHP最小二乘法模型在MATLAB中的应用可以帮助我们进行决策分析和预测。
通过合理地使用这两种方法,我们可以得到准确的权重和预测结果,为决策提供科学依据。
MATLAB作为一种强大的数学计算工具,能够快速、准确地实现AHP和最小二乘法模型,为我们的决策分析和预测工作提供支持。
为了更好地利用AHP和最小二乘法模型,我们可以进一步学习和掌握MATLAB的相关知识和技巧,不断提升自己的决策分析和预测能力。
同时,我们也需要关注新的决策分析和预测方法的发展,以不断适应和满足不同领域的需求。
一、实验背景在本次实验中,我们学习了层次分析法(AHP)的基本原理和方法,并通过具体实例的实践,加深了对该方法的理解。
层次分析法是一种定性与定量相结合、系统化、层次化的决策分析方法,广泛应用于各个领域。
通过本次实验,我们不仅掌握了层次分析法的原理和方法,而且提高了解决实际问题的能力。
二、实验目的本次实验的主要目的是:1. 掌握层次分析法的原理和方法;2. 熟悉层次分析法在实际问题中的应用;3. 培养团队协作和沟通能力;4. 提高解决实际问题的能力。
三、实验过程1. 实验准备在实验前,我们首先了解了层次分析法的原理和方法,包括层次分析法的步骤、一致性检验、权重计算等。
同时,我们还学习了如何使用MATLAB进行层次分析。
2. 实验实施本次实验以“奖学金评选”为例,运用层次分析法对奖学金评选的各个因素进行权重分配。
具体步骤如下:(1)确定层次结构。
根据实际情况,将层次结构分为目标层、准则层和方案层。
(2)构造判断矩阵。
根据专家意见,对准则层和方案层的因素进行两两比较,构造判断矩阵。
(3)计算权重。
利用MATLAB计算判断矩阵的最大特征值和对应的特征向量,得到各因素的权重。
(4)一致性检验。
对判断矩阵进行一致性检验,确保权重的可靠性。
(5)层次总排序。
根据各因素的权重,对方案层进行层次总排序,得到各方案的综合得分。
3. 实验总结通过本次实验,我们成功地运用层次分析法对奖学金评选的各个因素进行了权重分配,为奖学金评选提供了科学依据。
同时,我们也总结出以下经验:(1)层次分析法在实际问题中的应用非常广泛,可以帮助我们解决多目标、多因素的问题。
(2)层次分析法的关键在于构建合理的层次结构和判断矩阵,确保权重的合理性。
(3)层次分析法需要一定的数学基础,如矩阵运算、特征值等。
(4)在实验过程中,团队成员要密切配合,共同完成实验任务。
四、心得体会1. 提高了解决实际问题的能力。
通过本次实验,我们学会了如何运用层次分析法解决实际问题,提高了我们的实际操作能力。
旅游业发展水平评价问题摘要为了研究比较两个旅游城市Q、Y的旅游业发展水平,建立层次分析法]3[数学模型,对两个旅游城市Q、Y的旅游业发展水平进行了评价.首先,通过对题目中的图1、表1进行了分析与讨论,根据层次分析法,建立了目标层A、准则层B和子准则层C、方案层D四个层次,通过同一层目标之间的重要性的两两比较,得出判断矩阵,利用]1[MATLAB编程对每个判断矩阵进行求解.其次,用MATLAB软件算出决策组合向量,再比较决策组合向量的大小,由“决策组合向量最大”为目标,得出城市Y的决策组合向量为0.4325,城市Q组合向量为0.5675.最后,通过城市Q旅游业发展水平与旅游城市Y旅游业发展水平的决策组合向量比较,得出城市Q的旅游业发展水平较高.关键词层次分析法MATLAB旅游业发展水平决策组合向量1.问题重述本文要求分析QY,两个旅游城市旅游业发展水平,并且给出了两个城市各方面因素的对比,如城市规模与密度,经济条件,交通条件,生态环境条件,宣传与监督,旅游规格,空气质量,城市规模,人口密度,人均GDP,人均住房面积,第三产业增加值占GDP比重,税收GDP,外贸依存度,市内外交通,人均拥有绿地面积,污水集中处理率,环境噪音,国内外旅游人数,理赔金额,立案数量,A级景点数量,旅行社数量,星级饭店数量.建立数学模型进行求解.2.问题分析本文要求分析QY,两个城市的分析Y,两个旅游城市旅游业发展水平,在对Q中,发现需要考虑因素较多,第一、城市规模与密度,包括城市规模与人口密度.第二、经济条件,包括外贸依存度,人均GDP,人均住房面积,第三产业增加值占GDP比重,税收GDP.第三、交通条件,包括市内外交通.第四,生态环境条件包括空气质量,人均绿地面积,污水处理能力,环境噪音.第五、宣传与监督,包括国内外旅游人数,游客投诉立案件数.第六、旅游规格,包括A级景点个数,旅行社个数,星级饭店个数,这就涉及到层次分析法来估算各个指标的权重,评出最优方案.具体内容如下:(1)本文选择了对QY,两个旅游城市旅游业发展水平有影响的19个指标作为评价要素,指标规定如下:城市规模:城市的人口数量.人口密度:单位面积土地上居住的人口数.是反映某一地区范围内人口疏密程度的指标.人口影响城市规模.人口密度越大城市规模也就越大.人均GDP:即人均国内生产总值.人均城建资金:即用于城市建设的资金总投入.第三产业增加值:增加值率指在一定时期内单位产值的增加值.即第三产业增加值越高越能带动城市经济的发展.税收GDP:税收是国家为实现其职能,凭借政治权力,按照法律规定,通过税收工具强制地、无偿地征收参与国民收入和社会产品的分配和再分配取得财政收入的一种形式.外贸依存度:即城市对于外贸交易的依赖程度.市内交通:即城市市区交通情况.市外交通:即城市郊区交通情况.市内交通与市外交通对于城市交通条件具有同等的重要性.空气质量:即城市总体空气质量情况.空气质量越好对于城市生态环境就越好.人均绿地面积:即反应城市绿化面积以及人口密度的比值关系.污水处理能力:城市污水处理水平.环境噪音:城市环境噪音情况.国内外旅客人数:国内外来旅客一年总人数.人数越多说明宣传与监督就越好.理赔金额:即立案后需要赔付的资金数.立案件数:即在旅游时发生违法事件后公安部立案的件数.A 级景点数量:即A 级景点的个数.A 级景点越多,越能带动旅行社数量以及星级饭店数量,则旅游规格越大.旅行社数量:即旅行社的个数.星级饭店数量:即星级饭店在旅游景点的个数.(2)用层次分析法建立模型,根据判断矩阵,利用MATLAB 软件,算出每个判断矩阵的特征向量W 、最大特征根c 、一次性指标CI ,再结合随机一次性指标,得出每个指标的特征向量.(3)用(2)得出的数据,运用MATLAB 软件算出两个城市的决策组合向量,做比较.3.模型假设1.假设两个城市Q 、Y 的人口流动不大.2.假设两个城市Q 、Y 的各项指标短期内不会发生太大的改变.4.符号说明A : 表示目标层;j B : 表示准则层第j 个指标的名称)6,,2,1( =j ;i C : 表示子准则层第i 个指标的名称()19,,2,1 =i ; q D : 表示方案层第q 个指标的名称()2,1=q ;1w : 表示准则层对目标层的特征向量组成的矩阵; 2w : 表示子准则层对准则层的特征向量组成的矩阵; 3w : 表示方案层对子准则层的特征向量组成的矩阵;CI : 表示一次性指标;CR : 表示随机一次性指标; Z : 表示决策组合向量.5.模型建立与求解5.1 根据层次分析法分析以及题目中的图1可以建立如下表5-1的层次分析结构,并构造两两比较判断矩阵在递阶层次结构中,设上一层元素B 为准则层,所支配的下一层元素为1C ……19C ,要确定元素1C ……n C 对于准则层B 相对的重要性即权重,可分为两种情况:(1)如果1C 2C ……n C 对B 的重要性可定量,其权重可直接确定; (2)如果问题复杂,1C 2C ……n C 对B 的重要性无法直接定量,而是一些定性的,确定权重用两两比较方法.(3)其方法是,对于准则层C ,元素i C 和j C 哪一个更重要,重要多少,按1-9比例标度对重要性程度赋值.表5-2中列出了1-9标度的含义.对于准则B ,n 个元素之间相对重要性的比较得到一个两两比较判断矩阵P =()mxn ij P ,表示其中ij P 表示i P 和j P 对B 的影响之比,显然ij P >0,ij P =ijP 1,ij P =1,由ij P 的特点,P 称为正互反矩阵.通过两两判断矩阵用方根法求出他们的最大特征根和特征向量,求法如下: 1. 判断矩阵每一行元素的乘积,其中ij n1j 1p m =∏=,i =1,2…,n .2. 计算i m 的n 次方根_i w ,_i w =n i m .3. 对向量Tn w w w ⎪⎭⎫ ⎝⎛=__1,...,归一化,即∑==n j ji w 1__i w w ,则Tn w w w ⎪⎭⎫⎝⎛=__1,.为所求的特征向量.4. 计算判断矩阵的最大特征跟max λ,()∑==n1max i iinw pw λ,式中()i pw 表示pw 的第i 个元素.5. 定义⎪⎭⎫ ⎝⎛--=1max n n CI CI λ为矩阵A 的一致性指标,为了确定A 的不一致性程度的容许范围,需要找出衡量A 的一致性指标CI 的标准.引入随机一致性指标RI .平均随机一致性指标RI 是这样得到的;对于固定的n ,随机构造正互反矩阵A ,其中ij a 是从1,2,……9,91......31,21中随机抽取的,这样的A 是最不一致的,取充分大的样子(500个样本)得到A 的最大特征跟的平均值max λ,定义⎪⎭⎫ ⎝⎛--=1max n n RI λ,对于不同的n 得出随机一致性指标RI 的数值如下表5-3表中n =1,2时RI =0,是因为1,2阶的正互反矩阵总是一致阵.令RICICR =,称CR 为一致性比率,当CR <0.1时,本文认为判断矩阵具有满意的一致性,否则就需要调整判断矩阵,使之具有满意的一致性.最后通过计算得出下表5-4(其中n B 表示准则层的特征向量中的第n 个数值,in C 表示指标层的特征向量第n 个准则对第j 个指标的数值)层次总排序一致性检验的方法j n1CI c CI j j ∑==j n 1c RI RI j j ∑==RICI CR =若1.0CR时,所以认为判断矩阵具有满意的一致性,否则就需要调整判断.矩阵,使之具有满意的一致性.5.2根据层次分析法求出各个指标的权重依据题目中的表1分析,对本题做出其中一种假设:(1)经济条件和交通条件重要性相当,生态环境条件最重要,旅游规格、宣传与监督、城市规模与密度依次次之.(2)在城市规模与密度中,城市人口比人口密度重要一点.(3)在经济条件中,第三产业增加值GDP第一重要,其次是人均GDP,税收GDP、外贸依存度、人均城建资金依次次之.(4)在交通条件中,市内交通和市外交通的重要性相当.(5)在生态环境条件中,空气质量第一重要,其次是人均绿地面积,污水处理能力、环境噪音依次次之.(6)在宣传与监督中,国内外旅游人数第一重要,理赔金额、游客投诉立案件数重要性相当.(7)在旅游规格中,A级景点个数第一重要,星级饭店个数、旅行社个数依次次之.(8)对于城市规模,城市Q比城市Y的重要性小一些;对于人口密度,城市Y比城市Q的重要性明显重要;对于人均GDP,城市Q比城市Y的重要性稍重要;对于人均城建资金,城市Q比城市Y的重要性稍微重要;对于第三产业增加值GDP,城市Q比城市Y的重要性小一些;对于税收GDP,城市Q比城市Y的重要性稍小一点;对于外贸依存度,城市Q比城市Y的重要性稍重要;对于市内交通,城市Y比城市Q的重要性稍重要一点;对于市外交通,城市Y比城市Q的重要性比稍重要小一点;归于空气质量,城市Q比城市Y的重要性相当;对于人均绿地面积,城市Y比城市Q的重要性稍重要;对于污水处理能力,城市Y比城市Q的重要性稍重要一些;对于环境噪音,城市Q比城市Y的重要性相当;对于国内外旅游人数,城市Q比城市Y的重要性稍重要;对于理赔金额,城市Q比城市Y的重要性稍重要一些;对于游客投诉立案件数,城市Q比城市Y的重要性稍重要;对于A级景点个数,城市Y比城市Q的重要性稍重要小一些;对于旅行社个数,城市Y比城市Q的重要性稍重要小一些;对于星级饭店个数,城市Q比城市Y的重要性相当.根据上述分析,按1-9比例标度对准则层对目标层、子准层对准则层、目标层对子准则层的重要程度进行赋值,构造准则层对目标层的判断矩阵、子准则层对准则层的判断矩阵、方案层对子准则层的判断矩阵.准则层()6,,2,1 =j B j 对目标层A 的判断矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=12312121321141313123412252321114232111431215141411A 利用MATLAB 软件(附录1)求得 最大特征值0719.6m ax =λ特征向量⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=1219.00753.03422.02057.02057.00492.01w一致性检验比率1.00116.0<=CR所以矩阵满足一致性检验.子准则层21,C C 对准则层1B 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=131311B利用MATLAB 软件(附录2)求得 最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=2500.07500.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 子准则层76543,,,,C C C C C 对准则层2B 的判断矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=121412312131321431522131511413221412B 利用MATLAB 软件(附录3)求得 最大特征值0681.5m ax =λ特征向量⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0973.01599.04185.00618.02625.0w一致性检验比率1.00152.0<=CR所以矩阵满足一致性检验.子准则层98,C C 对准则层3B 的判断矩阵⎥⎦⎤⎢⎣⎡=11113B 利用MATLAB 软件(附录4)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=5000.05000.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 子准则层13121110,,,C C C C 对准则层4B 的判断矩阵⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=1121311121312212133214B 利用MATLAB 软件(附录5)求得最大特征值0104.4m ax =λ特征向量⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1409.01409.02628.04554.0w 一致性检验比率1.00038.0<=CR所以矩阵满足一致性检验.子准则层161514,,C C C 对准则层5B 的判断矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1221211212215B 利用MATLAB 软件(附录6)求得最大特征值0536.3m ax =λ特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3108.01958.04934.0w 一致性检验比率1.00462.0<=CR所以矩阵满足一致性检验.子准则层191817,,C C C 对准则层6B 的判断矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1221211312316B 利用MATLAB 软件(附录7)求得最大特征值0092.3m ax =λ特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2970.01634.05396.0w 一致性检验比率1.00079.0<=CR所以矩阵满足一致性检验.方案层对子准则层的判断矩阵 方案层21,D D 对子准则层1C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=122111C利用MATLAB 软件(附录8)求得 最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=6667.03333.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层2C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=155112C利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎢⎣=1667.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层3C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=133113C利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=2500.07500.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层4C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=144114C利用MATLAB 软件(附录8)求得 最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=8000.02000.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层5C 的判断矩阵:⎥⎥⎦⎤⎢⎢⎣⎡=122115C利用MATLAB 软件(附录8)求得 最大特征值2max =λ特征向量为⎥⎦⎢⎣=3333.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层6C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=133116C利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=2500.07500.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层7C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=141417C 利用MATLAB 软件(附录8)求得 最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=8000.02000.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层8C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=155118C利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎢⎣=8333.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层9C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=122119C利用MATLAB 软件(附录8)求得 最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=6667.03333.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层10C 的判断矩阵⎥⎦⎤⎢⎣⎡=111110C 利用MATLAB 软件(附录8)求得 最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=5000.05000.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层11C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=1313111C利用MATLAB 软件(附录8)求得 最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=7500.02500.0w因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层12C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=1414112C 利用MATLAB 软件(附录8)求得 最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=2000.08000.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层13C 的判断矩阵⎥⎦⎤⎢⎣⎡=111113C 利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=5000.05000.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层14C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=1331114C利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=2500.07500.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验.2115⎥⎥⎦⎤⎢⎢⎣⎡=1441115C 利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=8000.02000.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层16C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=1331116C利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=2500.07500.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层17C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=1331117C利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=6667.03333.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验.2118⎥⎥⎦⎤⎢⎢⎣⎡=1221118C 利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=6667.03333.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子19C 的判断矩阵: ⎥⎦⎤⎢⎣⎡=111119C 利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=5000.05000.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 通过准则层()6,,2,1 =j B j 对目标层A 的判断矩阵、子准则层()19,,2,1 =i C i 对准则层()6,,2,1 =j B j 的判断矩阵得出特征向量,建立层次总表5-5层次总排序一致性检验如下:0073.061==∑=j j j CI B CI65274.0j 61j j ==∑=RI B RI0111.065274.00073.0===RI CI CR 由于1.00111.0<=CR ,所以认为层次总排序的结果具有满意的一致性,因此不需要重新调整判断矩阵的元素取值.5.3 利用MATLAB 进行决策组合向量的运算(附录9)⋅⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⋅⋅=Tw w w Z 2970.0001634.0000005396.00000003108.0000001958.0000004934.00000001409.0000001409.0000002628.0000004554.00000005000.0000005000.00000000973.0000001599.0000004185.0000000618.0000002625.00000002500.0000007500.0132⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡5000.05000.06667.03333.06667.03333.02500.07500.08000.02000.02500.07500.05000.05000.02000.08000.07500.02500.05000.05000.06667.03333.01667.08333.08000.02000.02500.07500.06667.03333.02000.08000.02500.07500.08333.01667.03333.06667.0⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅1219.00753.03422.02057.02057.00492.0 Z ⎥⎦⎤⎢⎣⎡=5675.04325.0 比较Z 值大小可知,12Z Z >,表明城市Q 的旅游发展也水平最高,城市Y 的旅游业发展水平次之,所以城市Q 的旅游发展也水平高.6模型的评价优点:(1) 本文选择了计算比较简单的层次分析法,经过计算得到了相应的综合发展旅游业的估计值,为城市旅游业的发展提供了依据.(2) 使用了MATLAB 软件,减少了计算工作量,大大降低了运算的困难.缺点:判断的结果具有一定的主观性,不能比较切实的结合当地的具体情况,做出科学的决策方案.7参考文献[1] 姜启源等,数学建模(第四版)北京:高等教育出版社.2011年[2] 马莉,数学实验与建模,北京:清华大学出版2010年[3] 王莲芬,层次分析法引论,北京:中国人民大学出版社,1990年附录:附录1x=[1 1/4 1/4 1/5 1/2 1/3;4 1 1 1/2 3 2;4 1 1 1/2 3 2;5 2 2 1 4 3;2 1/3 1/3 1/4 1 1/2;3 1/2 1/2 1/3 2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-6)/5 %一致性指标CR=CI/1.24 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =6.0719W =0.04920.20570.20570.34220.07530.1219B =0.04670.21410.21410.29180.08810.1452CI =0.0144CR =0.0116C =0.2146附录2:>> x=[1 3;1/3 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.75000.2500B =0.75000.2500CI =CR =NaNC =0.6250附录3:x=[1 4 1/2 2 3;1/4 1 1/5 1/3 1/2;2 5 1 3 4;1/2 3 1/3 1 2;1/3 2 1/4 1/2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-5)/4 %一致性指标CR=CI/1.12 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =5.0681W =0.26250.06180.41850.15990.0973B =0.27340.05940.36640.18730.1135CI =0.0170CR =0.0152C =0.2698附录4:x=[1 1;1 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.50000.5000B =0.50000.5000CI =CR =NaNC =0.5000附录5:x=[1 2 3 3;1/2 1 2 2;1/3 1/2 1 1;1/3 1/2 1 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-4)/3 %一致性指标CR=CI/0.90 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =4.0104W =0.45540.26280.14090.1409B =0.43950.27870.14090.1409CI =0.0035CR =0.0038C =0.3131附录6:x=[1 2 2;1/2 1 1/2;1/2 2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-3)/2 %一致性指标CR=CI/0.58 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =3.0536W =0.49340.19580.3108B =0.46060.18790.3515CI =0.0268CR =0.0462C =0.3733附录7:x=[1 3 2;1/3 1 1/2;1/2 2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-3)/2 %一致性指标CR=CI/0.58 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =3.0092W =0.53960.16340.2970B =0.51990.16200.3181CI =0.0046CR =0.0079C =0.4015附录8:% 目标层Q,Y对子准则层C1的赋值>> x=[1 2;1/2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.33330.6667B =0.33330.6667CI =CR =NaNC =0.5556End% 目标层Q,Y对子准则层C2的赋值x=[1 5;1/5 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.83330.1667B =0.83330.1667CI =CR =NaNC =0.7222End% 目标层Q,Y对子准则层C3的赋值x=[1 1/3;3 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.75000.2500B =0.75000.2500CI =CR =NaNC =0.6250End% 目标层Q,Y对子准则层C4的赋值x=[1 4;1/4 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.80000.2000B =0.80000.2000CI =CR =NaNC =0.6800End% 目标层Q,Y对子准则层C5的赋值x=[1 2;1/2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.66670.3333B =0.66670.3333CI =CR =NaNC =0.5556End% 目标层Q,Y对子准则层C6的赋值x=[1 1/3;3 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.75000.2500B =0.75000.2500CI =CR =NaNC =0.6250End% 目标层Q,Y对子准则层C7的赋值x=[1 4;1/4 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.20000.8000B =0.20000.8000CI =CR =NaNC =0.6800End% 目标层Q,Y对子准则层C8的赋值x=[1 5;1/5 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.16670.8333B =0.16670.8333CI =CR =NaNC =0.7222End% 目标层Q,Y对子准则层C9的赋值x=[1 2;1/2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.33330.6667B =0.33330.6667CI =CR =NaNC =0.5556End% 目标层Q,Y对子准则层C10的赋值x=[1 1;1 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.50000.5000B =0.50000.5000CI =NaNC =0.5000% 目标层Q,Y对子准则层C11的赋值x=[1 1/3;3 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.25000.7500B =0.25000.7500CI =CR =NaNC =0.6250End% 目标层Q,Y对子准则层C12的赋值x=[1 4;1/4 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =W =0.80000.2000B =0.80000.2000CI =CR =NaNC =0.6800End% 目标层Q,Y对子准则层C13的赋值x=[1 1;1 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.50000.5000B =0.50000.5000CI =CR =NaNC =0.5000% 目标层Q,Y对子准则层C14的赋值x=[1 1/3;3 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.75000.2500B =0.75000.2500CI =CR =NaNC =0.6250End% 目标层Q,Y对子准则层C15的赋值x=[1 4;1/4 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.20000.8000B =0.20000.8000CI =CR =NaNC =0.6800End% 目标层Q,Y对子准则层C16的赋值x=[1 1/3;3 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.75000.2500B =0.75000.2500CI =CR =NaNC =0.6250End% 目标层Q,Y对子准则层C17的赋值x=[1 2;1/2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.33330.6667B =0.33330.6667CI =CR =NaNC =0.5556End% 目标层Q,Y对子准则层C18的赋值x=[1 2;1/2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.33330.6667B =0.33330.6667CI =CR =NaNC =0.5556End% 目标层Q,Y对子准则层C19的赋值x=[1 1;1 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.50000.5000B =0.50000.5000CI =CR =NaNC =0.5000附录9:% 最终组合权向量:x=[0.75 0 0 0 0 0;0.25 0 0 0 0 0;0 0.2625 0 0 0 0;0 0.0618 0 0 0 0;0 0.4185 0 0 0 0;0 0.1599 0 0 0 0;0 0.0973 0 0 0 0;0 0 0.5 0 0 0;0 0 0.5 0 0 0;0 0 0 0.4554 0 0;0 0 0 0.2628 0 0;0 0 0 0.1409 0 0;0 0 0 0.1409 0 0;0 0 0 0 0.4934 0;0 0 0 0 0.1958 0;0 0 0 0 0.3108 0;0 0 0 0 0 0.5396;0 0 0 0 0 0.1634;0 0 0 0 0 0.2970]x =0.7500 0 0 0 0 00.2500 0 0 0 0 00 0.2625 0 0 0 00 0.0618 0 0 0 00 0.4185 0 0 0 00 0.1599 0 0 0 00 0.0973 0 0 0 00 0 0.5000 0 0 00 0 0.5000 0 0 00 0 0 0.4554 0 00 0 0 0.2628 0 00 0 0 0.1409 0 00 0 0 0.1409 0 00 0 0 0 0.4934 00 0 0 0 0.1958 00 0 0 0 0.3108 00 0 0 0 0 0.53960 0 0 0 0 0.16340 0 0 0 0 0.2970y=[0.0492;0.2057;0.2057;0.3422;0.0753;0.1219]y =0.04920.20570.20570.34220.07530.1219z=x*y运算结果:z =0.03690.01230.05400.01270.08610.03290.02000.10290.10290.15580.08990.04820.04820.03720.01470.02340.06580.01990.0362a=[0.3333 0.8333 0.75 0.2 0.3333 0.75 0.2 0.1667 0.3333 0.5 0.25 0.8 0.5 0.75 0.2 0.75 0.3333 0.3333 0.5;0.6667 0.1667 0.25 0.8 0.6667 0.250.8 0.8333 0.6667 0.5 0.75 0.2 0.5 0.25 0.8 0.25 0.6667 0.6667 0.5]a =Columns 1 through 70.3333 0.8333 0.7500 0.2000 0.3333 0.7500 0.20000.6667 0.1667 0.2500 0.8000 0.6667 0.2500 0.8000Columns 8 through 140.1667 0.3333 0.5000 0.2500 0.8000 0.5000 0.75000.8333 0.6667 0.5000 0.7500 0.2000 0.5000 0.2500Columns 15 through 190.2000 0.7500 0.3333 0.3333 0.50000.8000 0.2500 0.6667 0.6667 0.5000c=a*z运算结果:c =0.43250.5675。
第八章 层次分析法层次分析法(Analytic Hierarchy Process ,简称AHP )是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。
它是美国运筹学家T. L. Saaty 教授于70年代初期提出的一种简便、灵活而又实用的多准则决策方法。
§1 层次分析法的基本原理与步骤人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。
层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。
运用层次分析法建模,大体上可按下面四个步骤进行:(i )建立递阶层次结构模型;(ii )构造出各层次中的所有判断矩阵;(iii )层次单排序及一致性检验;(iv )层次总排序及一致性检验。
下面分别说明这四个步骤的实现过程。
1.1 递阶层次结构的建立与特点应用AHP 分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。
在这个模型下,复杂问题被分解为元素的组成部分。
这些元素又按其属性及关系形成若干层次。
上一层次的元素作为准则对下一层次有关元素起支配作用。
这些层次可以分为三类:(i )最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。
(ii )中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。
(iii )最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。
每一层次中各元素所支配的元素一般不要超过9个。
这是因为支配的元素过多会给两两比较判断带来困难。
下面结合一个实例来说明递阶层次结构的建立。
例1 假期旅游有1P 、2P 、3P 3个旅游胜地供你选择,试确定一个最佳地点。
信息系统分析与设计作业
层次分析法确定绩效评价权重在matlab中的实现
小组成员:孙高茹、王靖、李春梅、郭荣1 程序简要概述
编写程序一步实现评价指标特征值lam、特征向量w以及一致性比率CR的求解。
具体的操作步骤是:首先构造评价指标,用专家评定法对指标两两打分,构建比较矩阵,继而运用编写程序实现层次分析法在MATLAB中的应用。
通过编写MATLAB程序一步实现问题求解,可以简化权重计算方法与步骤,减少工作量,从而提高人力资源管理中绩效考核的科学化电算化。
2 程序在matlab中实现的具体步骤
function [w,lam,CR] = ccfx(A)
%A为成对比较矩阵,返回值w为近似特征向量
% lam为近似最大特征值λmax,CR为一致性比率
n=length(A(:,1));
a=sum(A);
B=A %用B代替A做计算
for j=1:n %将A的列向量归一化
B(:,j)=B(:,j)./a(j);
end
s=B(:,1);
for j=2:n
s=s+B(:,j);
end
c=sum(s);%计算近似最大特征值λmax
w=s./c;
d=A*w
lam=1/n*sum((d./w));
CI=(lam-n)/(n-1);%一致性指标
RI=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45,1.49,1.51];%RI为随机一致
性指标
CR=CI/RI(n);%求一致性比率
if CR>0.1
disp('没有通过一致性检验');
else disp('通过一致性检验');
end
end
3 案例应用
我们拟构建公司员工绩效评价分析权重,完整操作步骤如下:
3.1构建的评价指标体系
我们将影响员工绩效评定的指标因素分为:打卡、业绩、创新、态度与品德。
3.2专家打分,构建两两比较矩阵
A =
1.0000 0.5000 3.0000 4.0000
2.0000 1.0000 5.0000
3.0000
0.3333 0.2000 1.0000 2.0000
0.2500 0.3333 0.5000 1.0000
3.3在MATLAB中运用编写好的程序实现
直接在MATLAB命令窗口中输入
[w,lam,CR]=ccfx(A)
继而直接得出
d =
1.3035
2.0000
0.5145
0.3926
w =
0.3102
0.4691
0.1242
0.0966
lam =4.1687
CR =0.0625,通过一致性检验
3.4解读程序结果
根据程序求解中得出的特征向量,可以得出打卡、业绩、创新以及态度品德在员工绩效评价中所占的权重分别为:0.3102、0.4691、0.1242、0.0966。
4程序评价
优点:运用层次分析法确定绩效评价指标可以简化权重计算方法与步骤,减少工作量,从而提高人力资源管理中绩效考核的科学化电算化;可以实现excel、spss等数据文件的导入,将各个指标的数据导入文件,进而计算出其绩效。
缺点:程序本身没有自带的数据库,只能借助excel等整理好的数据文件将指标导入进而实现运算,在数据录入整理方面存在缺陷。