高中数学 必修1 指数函数及幂函数 总复习
- 格式:doc
- 大小:452.00 KB
- 文档页数:4
指数对数幂函数知识点总结9篇第1篇示例:指数对数幂函数是高中数学中非常重要的内容之一,它在实际生活中有着广泛的应用。
指数对数幂函数是一种特殊的函数形式,通过指数、对数、以及幂运算的组合,可以描述各种复杂的变化关系。
在本文中,我们将对指数对数幂函数的相关知识点进行总结,帮助大家更好地理解和掌握这一重要内容。
一、指数函数指数函数是以自然常数e为底的幂函数,一般形式为f(x) = a^x,其中a为底数,x为指数。
指数函数的特点是底数a是一个固定的正数,指数x可以是任意实数。
指数函数的图像通常表现为一条逐渐增长或逐渐减小的曲线,其增长趋势取决于底数a的大小。
指数函数的性质有:1. 当底数a大于1时,函数呈现增长趋势;当底数a小于1且大于0时,函数呈现下降趋势。
2. 指数函数在x轴上的水平渐近线为y=0,在y轴上的垂直渐近线为x=0。
3. 在0<a<1时,指数函数是单调递减的;在a>1时,指数函数是单调递增的。
4. 指数函数的导数为f'(x)=a^x * ln(a),导数的值等于函数在该点的斜率。
1. 对数函数的图像是一条左开右闭的单调增函数。
2. ln(x)函数在x=1处的值为0,log(x)函数在x=1处的值也为0。
4. 对数函数的反函数是指数函数,即对数函数与指数函数是互为反函数的关系。
三、幂函数幂函数是指形如f(x) = x^n的函数,其中n为一个实数。
幂函数可以是单项式函数、分式函数以及多项式函数的基础函数形式。
幂函数的性质有:1. 当n为偶数时,幂函数呈现奇次函数的特点,曲线两侧对称于y 轴;当n为奇数时,幂函数呈现偶次函数的特点。
四、指数对数幂函数的综合应用指数对数幂函数在自然科学、工程技术、经济管理等领域有着广泛的应用。
在生态学中,人口增长规律可以用指数函数来描述;在物理学中,无阻射下的自由落体运动可以用幂函数来描述;在金融领域中,复利计算和收益增长也可以用指数函数和对数函数来分析。
第四章幂函数、指数函数和对数函数4.1 实数指数幂和幂函数4.1.1 有理数指数幂教材要点要点一 根式1.a 的n 次方根定义若一个(实)数x 的n 次方(n∈N ,且n ≥2)等于a ,即________.则称x 是a 的n 次方根.2.a 的n 次方根的表示n 的奇偶性a 的n 次方根的表示符号a 的取值范围n 为奇数________a ∈R n 为偶数________________3.根式:式子__________叫作根式,n 叫作__________,a 叫作__________.状元随笔 (1)在n 次方根的概念中,关键是数a 的n 次方根x 满足x n =a ,因此求一个数a的n次方根,就是求一个数的n次方等于a.(2)n次方根实际上就是平方根与立方根的推广.(3)n次方根的概念表明,乘方与开方是互逆运算.要点二 根式的性质根式的性质是化简根式的重要依据(1)________没有偶次方根.(2)0的任何次方根都是0,记作=________.(3)()n=________(n∈N*,且n>1).(4)=a(n为大于1的奇数).(5)=|a|=(n为大于1的偶数). 与()n的区别(1)是实数a n的n次方根,是一个恒有意义的式子,不受n的奇偶限制,但这个式子的值受n的奇偶限制.其算法是对a先乘方,再开方(都是n次),结果不一定等于a.当n 为奇数时,=a;当n为偶数时,=|a|=(2)()n是实数a的n次方根的n次幂,其中实数a的取值由n的奇偶决定.其算法是对a先开方,再乘方(都是n次),结果恒等于a.要点三 分数指数幂分数指数幂正分数指数幂规定:a=(a>0,m,n∈N*,且n>1)负分数指数幂规定:a-==(a>0,m,n∈N*,且n>1)性质0的正分数指数幂等于__________,0的负分数指数幂__________ 分数指数幂是根式的一种表示形式,即a=,分数指数不能随意约分,如(-3)约分后为(-3)=,而在实数范围内是无意义的.要点四 有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q)(2)(a r)s=a rs(a>0,r,s∈Q)(3)(ab)r=a r b r(a>0,b>0,r∈Q)基础自测1.思考辨析(正确的画“√”,错误的画“×”)(1)实数a的奇次方根只有一个.( )(2)当n∈N*时,()n=-2.( )(3)()n中实数a的取值范围是任意实数.( )(4)分数指数幂与根式可以相互转化,如=a.( ) 2.下列各式正确的是( )A.=-3B.=aC.()3=-2D.=23.将根式化为分数指数幂是( )A.a- B.a C.-a D.-a4.的值是________.题型1 根式的化简与求值例1 (1)化简+的结果是( )A.1B.2a-1C.1或2a-1D.0(2)计算下列各式①+()5;②+()6;③+.方法归纳根式化简或求值的策略(1)解决根式的化简或求值问题,首先要分清根式为奇次根式还是偶次根式,然后运用根式的性质进行化简或求值.(2)开偶次方时,先用绝对值表示开方的结果,再去掉绝对值符号化简,化简时要结合条件或分类讨论.跟踪训练1 (1)下列各式正确的是( )A.=a B.a0=1C.=-4D.=-5(2)计算下列各式:①=________.②--=________. 根式与分数指数幂的互化例2 (1)将分数指数幂a-(a>0)化为根式为________.(2)化简:(a2·)÷(·)=________.(用分数指数幂表示)(3)将下列根式与分数指数幂进行互化.①a3·.②(a>0,b>0).方法归纳根式与分数指数幂互化的方法及思路(1)方法:根指数←――→分数指数的分母,被开方数(式)的指数←――→分数指数的分子.(2)思路:在具体计算中,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.特别提醒:如果根式中含有多重根号,要由里向外用分数指数幂写出.跟踪训练2 下列根式与分数指数幂的互化正确的是( )A.-=(-x) (x>0) B.=y(y<0)C.x−34=(x>0) D.x−13=-(x≠0)题型3 指数幂的化简与求值例3 (1)化简:①ab·(-3ab)÷;②(mn-)8;③(-)÷.(2)求值:①+2-2×-0.010.5;②0.064--+[(-2)3]-+16-0.75+|-0.01|.方法归纳利用指数幂的运算性质化简求值的方法(1)进行指数幂的运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.(2)在明确根指数的奇偶(或具体次数)时,若能明确被开方数的符号,则可以对根式进行化简运算.(3)对于含有字母的化简求值的结果,一般用分数指数幂的形式表示.跟踪训练3 (1)计算:(-1.8)0+·-+;(2)化简:(a-2b-3)·(-4a-1b)÷(12a-4b-2c). 忽视根式中的变量条件致误例4 式子a经过计算可得( )A.B.C.-D.-解析:因为成立,所以a<0,所以a=a==-.故选D.答案:D易错警示易错原因纠错心得忽视a<0这一条件,易错选A.把一个完全平方式从二次根号内开方出来之后,要先加上绝对值号,再根据条件或分类讨论去掉绝对值符号得出最终结果.课堂十分钟1.将化为分数指数幂,其形式是( ) A.2B.-2C.2−12D.-2−122.已知m<,则化简的结果为( ) A.B.-C.D.-3.若2<a<3,化简+的结果是( )A.5-2a B.2a-5C.1D.-14.计算=________.5.计算:0.0001-+27--+-1.5.第四章 幂函数、指数函数和对数函数4.1 实数指数幂和幂函数4.1.1 有理数指数幂新知初探·课前预习要点一1.x n=a2. ± [0,+∞)3. 根指数 被开方数要点二(1)负数 (2)0 (3)a (5)a -a要点三0 无意义[基础自测]1.答案:(1)√ (2)× (3)× (4)×2.解析:由于=3,=|a|,=-2,故选项A、B、D错误,故选C.答案:C3.解析:=a-.答案:A4.解析:=eq¿¿(¿)(¿¿4¿¿1(¿(625,81)))14====.答案:题型探究·课堂解透例1 解析:(1)原式=a+|1-a|=故选C.(2)①原式=(-2)+(-2)=-4.②原式=|-2|+2=4.③原式=+=+=+1+-1=2答案:(1)C (2)见解析跟踪训练1 解析:(1)由于=则选项A,C排除,D正确,B需要加条件a≠0.(2)①==π-3.②--=--=--=.答案:(1)D (2)①π-3 ②例2 解析:(1)a-==.(2)(a2·)÷(·)=(a2·a)÷(a·a)=a÷a=a-=a.(3)①a3·=a3·a=a3+=a.②==√a−4∙b2∙a13∙b23=√a−113∙b83=a-·b43答案:(1). (2)a (3)见解析跟踪训练2 解析:-=-x (x>0);=(y2)=-y(y<0);x-=(x-3)=(x>0);x-=eq¿¿(¿)(¿¿4¿¿1(¿(1,x)))13=(x≠0).答案:C例3 解析:(1)①原式=×a+-b+-=-9a.②==m2n-3=.③(-)÷=÷a12=a÷a-a÷a=a--a-=a-a=-a.(2)①原式=1+×-eq¿¿(¿)(¿¿4¿¿1(¿(1,100)))12=1+-=;②原式=0.4-1-1+(-2)-4+2-3+0.1=-1+++=.跟踪训练3 解析:(1)原式=1+·eq¿¿(¿)(¿¿4¿¿1(¿(27,8)))23-10+932=1+·-10+27=29-10=19.(2)原式=-4a-2-1b-3+1÷(12a-4b-2c)=-a-3-(-4)b-2-(-2)c-1=-. [课堂十分钟]1.解析:√√=(−2√2)13 =(−2×212)13=(−232)13= -212答案:B2.解析:∵m<23,∴3m-2<0,排除A,B,又(3m-2)2>0,所以4√(3m−2)2为正,所以选C.答案:C3.解析:由于2<a<3,所以2-a<0,3-a>0,所以原式=a-2+3-a=1.答案:C4.解析:(278)23=[(32)3]23=(32)2=94.答案:9 45.解析:原式=-+-2×+2×=0.1-1+32--1+-3=10+9-+27=.11。
指数函数、对数函数、幂函数单元复习与巩固一、知识框图二、知识要点梳理知识点一:指数及指数幂的运算1.根式的概念的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数指数函数名称定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向象的影响看图象,逐渐减小.知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:.2.几个重要的对数恒等式,,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.知识点六:幂函数1.幂函数概念 形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限 无图象.幂函数是偶函数时,图象分布在第一、二象限(图象 关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象 限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:具体函数具体讨论(5)图象特征:幂函数当时,在第一象限,图像与32,x y x y ==的图像大致趋势一样,当10<<α时,在第一象限,图像与21x y =的图像大致趋势一样,当0<α时,在第一象限,图像与1-=xy 的图像大致趋势一样一元二次方程、一元二次不等式与二次函数的关系设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x < 有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02>≥++a c bx ax{}21x x x x x ≥≤或RR 的解集)0(02><++a c bx ax {}21x x x x <<∅ ∅ 的解集)0(02>≤++a c bx ax{}21x x xx ≤≤⎭⎬⎫⎩⎨⎧-=a b x x 2∅。
高中数学第一部分必备知识点第二部分学习难点必修1知识点重难点高考考点第一章:集合与函数1.1.1、集合1.1.2、集合间的基本关系1.1.3、集合间的基本运算1.2.1、函数的概念1.2.2、函数的表示法1.3.1、单调性与最大(小)值1.3.2、奇偶性重点:1、集合的交、并、补等运算。
2、函数定义域的求法3、函数性质难点:函数的性质1、集合的交、并、补等运算。
2、集合间的基本关系3、函数的概念、三要素及表示方法4、分段函数5、奇偶性、单调性和周期性第二章:基本初等函数(Ⅰ)2.1.1、指数与指数幂的运算2.1.2、指数函数及其性质2.2.1、对数与对数运算2..2.2、对数函数及其性质2.3、幂函数重点:1、指数函数的图像与性质2、对数函数的图像与性质3、特殊的幂函数的图像与性质4、指数、对数的运算难点:1、指数函数与对数函数相结合2、指数对数与不等式、导数、三角函数等结合1、指数函数的图像与性质2、对数函数的图像与性质3、特殊的幂函数的图像与性质4、指数、对数的运算5、数值大小的比较6、习惯与不等式、导数、三角函数等结合,难度较大第三章:函数的应用3.1.1、方程的根与函数的零点3.1.2、用二分法求方程的近似解3.2.1、几类不同增长的函数模型3.2.2、函数模型的应用举例重点:1、零点的概念2、二分法求方程近似解的方法难点:1、函数模型2、函数零点与导数,含有字母的参数相结合1、零点的概念2、二分法必修2知识点重难点高考考点第一章:空间几何体1、空间几何体的结构2、空间几何体的三视图和直观图3、空间几何体的表面积与体积重点:1、认识柱、锥、台、球及其简单组合体的结构特征2、几何体的三视图和直观图3、会利用公式求一些简单几何体的表面积和体积难点:空间想象能力1、几何体的三视图和直观图2、空间几何体的表面积与体积第二章:点、直线、平面之间的位置关系(重点)1、空间点、直线、平面之间的位置关系2、直线、平面平行的判定及其性质3、直线、平面垂直的判定及其性质重点:1、线面平行、面面平行的有关性质和判定定理2、证明线面垂直3、点到平面的距离难点:1、线面垂直2、点到平面的距离1、以选择填空的形式考查线与面、面与面的平行关系,考查线面位置的关系2、以解答的形式考查线与面、面与面的位置3、证明线面垂直4、点到平面的距离第三章:直线与方程1、直线的倾斜角与斜率2、直线方程3、直线的交点坐标与距离公式重点:1、初步建立代数方法解决几何问题的观念2、正确将几何条件与代数表示进行转化3、掌握直线方程并会用于定理地研究点与直线、直线与直线的位置关系。
指数对数幂函数知识点总结8篇第1篇示例:指数对数幂函数是高等数学中重要、常用的一类函数。
它们是解决数学问题和建立数学模型中不可或缺的工具。
在学习指数对数幂函数的知识时,需要掌握函数的定义、性质、图像、导数等方面的内容。
本文将对指数对数幂函数进行系统总结,以便读者更好地理解和掌握这一知识点。
一、指数函数指数函数是形如y = a^x(其中a>0且a≠1)的函数,其中a称为底数,x称为指数。
指数函数的图像通常是一个以底为a的指数曲线,其特点是随着x的增大,y值迅速增大。
指数函数的性质有:1.当底数a>1时,函数y = a^x是递增函数;当0 0时,函数y = a^x是减函数。
2.指数函数的定义域是所有实数,值域是所有大于0的实数。
3.指数函数的图像通常是通过点(0,1) 并且随着x的增大发生指数增长。
4.指数函数满足f(x) * f(y) = f(x+y)。
5.指数函数的反函数是对数函数,即y = loga(x)。
3.对数函数的图像是一个S形曲线,随着x的增大,y值逐渐增大。
5.对数函数的导数为1/x*ln(a)。
三、幂函数幂函数是形如y = x^a(其中a为常数)的函数,其特点是x的次方为a。
幂函数的性质有:3.幂函数的特殊情况之一是y = x^2,即二次函数,其图像是一个开口向上的抛物线。
第2篇示例:指数对数幂函数是数学中常见的一类函数,主要包括指数函数、对数函数和幂函数。
在数学中,这些函数在图像、性质和应用等方面都有着重要的作用。
本文将从定义、性质和应用三个方面对指数对数幂函数进行总结。
一、指数函数指数函数的一般形式为f(x) = a^x,其中a为底数且a>0且a≠1,x为指数。
指数函数的定义域为实数集R,值域为正实数集R+。
指数函数的图像呈指数增长或指数衰减的特点,当底数a>1时为指数增长;当底数0<a<1时为指数衰减。
指数函数的特点包括:单调性、奇偶性、零点、渐近线等。
第二章函数与导数第8课时指数函数、对数函数及幂函数(2)(对应学生用书(文)、(理)22~23页)考情分析考点新知高考对指数函数的考查近三年有所升温,重点是指数函数的图象和性质,以及指数函数的实际应用问题,在复习时要特别重视对指数函数性质的理解与应用.①了解指数函数模型的实际背景.②理解指数函数的概念,并理解指数函数的单调性与函数图象通过的特殊点.③知道指数函数是一类重要的函数模型。
1。
(必修1P110复习9改编)函数y=a x-3+3恒过定点________.答案:(3,4)解析:当x=3时,f(3)=a3-3+3=4,∴f(x)必过定点(3,4).2. (必修1P110复习3改编)函数y=8-16x的定义域是________.答案:错误!解析:由8-16x≥0,所以24x≤23,即4x≤3,定义域是错误!.3。
(必修1P67练习3)函数f(x)=(a2-1)x是R上的减函数,则a的取值范围是________________.答案:(-错误!,-1)∪(1,错误!)解析:由0<a2-1<1,得1<a2<2,所以1<|a|<2,即-错误!<a <-1或1<a <错误!。
4. (必修1P 71习题13改编)已知函数f (x )=a +错误!是奇函数,则常数a =________。
答案:-12解析:由f (-x)+f(x)=0,得a =-12.5。
(原创)函数y =1+错误!|x -1|的值域为__________。
答案:(1,2]解析:设y′=错误!u ,u =|x -1|。
由于u ≥0且y′=错误!u 是减函数, 故0〈错误!|x -1|≤1,则1<y≤2。
1. 指数函数定义一般地,函数y =a x (a>0,a ≠1)叫做指数函数,函数的定义域是R .2。
指数函数的图象与性质a>1 0<a 〈1图象定义域 R 值域(0,+∞)[备课札记]题型1 指数型函数的定义域、值域例1 已知x∈[-3,2],求f(x )=错误!-错误!+1的最小值与最大值.解:f(x)=14x -错误!+1=4-x -2-x +1=2-2x -2-x +1=错误!2+错误!.∵ x ∈[-3,2], ∴ 错误!≤2-x ≤8.则当2-x =错误!,即x =1时,f (x )有最小值34;当2-x =8,即x =-3时,f(x )有最大值57。
高一上必修二第四章《指数函数、对数函数与幂函数》知识点梳理§4.4 幂函数学习目标 1.了解幂函数的概念.2.掌握y =x α(α=-1,12,1,2,3)的图像与性质.3.理解和掌握幂函数在第一象限的分类特征,能运用数形结合的方法处理幂函数的有关问题.知识点一 幂函数的概念一般地,函数y =x α称为幂函数,其中x 是自变量,α是常数.提醒 幂函数中底数是自变量,而指数函数中指数为自变量.知识点二 幂函数的图像和性质1.幂函数的图像在同一平面直角坐标系中,幂函数y =x ,y =x 2,y =x 3,y =,y =x -1的图像如图.2.五个幂函数的性质y =xy =x 2y =x 3y =y =x -1定义域R R R [0,+∞){x |x ≠0}值域R [0,+∞)R [0,+∞){y |y ≠0}奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性在R 上是增函数在[0,+∞)上是增函数,在(-∞,0]上是减函数在R 上是增函数在[0,+∞)上是增函数在(0,+∞)上是减函数,在(-∞,0)上是减函数12x 12x公共点(1,1)1.y =-1x 是幂函数.( × )2.当x ∈(0,1)时,x 2>x 3.( √ )3.y =与y =定义域相同.( × )4.若y =x α在(0,+∞)上为增函数,则α>0.( √ )一、幂函数的概念例1 (1)(多选)下列函数为幂函数的是( )A .y =x 3 B .y =(12)xC .y =4x 2D .y =x答案 AD解析 B 项为指数函数,C 中的函数的系数不为1,AD 为幂函数.(2)已知y =(m 2+2m -2)+2n -3是幂函数,求m ,n 的值.解 由题意得Error!解得Error!或Error!所以m =-3或1,n =32.反思感悟 判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.跟踪训练1 已知f (x )=ax 2a +1-b +1是幂函数,则a +b 等于( )A .2 B .1 C.12 D .0答案 A解析 因为f (x )=ax 2a +1-b +1是幂函数,所以a =1,-b +1=0,即a =1,b =1,则a +b =2.32x 64x 22m x二、幂函数的图像例2 如图所示,图中的曲线是幂函数y =x n 在第一象限的图像,已知n 取±2,±12四个值,则对应于c 1,c 2,c 3,c 4的n 依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12答案 B解析 根据幂函数y =x n 的性质,故c 1的n =2,c 2的n =12,当n <0时,|n |越大,曲线越陡峭,所以曲线c 3的n =-12,曲线c 4的n =-2.反思感悟 解决幂函数图像问题应把握的两个原则(1)依据图像高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图像越靠近x 轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图像越远离x 轴(简记为指大图高).(2)依据图像确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图像(类似于y =x -1 或y =或y =x 3)来判断.跟踪训练2 函数f (x )=的大致图像是( )答案 A解析 因为-12<0,所以f (x )在(0,+∞)上单调递减,排除选项B ,C ;又f (x )的定义域为(0,+∞),故排除选项D.三、比较幂值的大小12x 12x例3 比较下列各组数中两个数的大小:(1)(25)0.5与(13)0.5;(2)(-23)-1与(-35)-1;(3)与.解 (1)∵幂函数y =x 0.5在(0,+∞)上是单调递增的,又25>13,∴(25)0.5>(13)0.5.(2)∵幂函数y =x -1在(-∞,0)上是单调递减的,又-23<-35,∴(-23)-1>(-35)-1.(3)∵函数y 1=(23)x为R 上的减函数,又34>23,∴>.又∵函数y 2=在(0,+∞)上是增函数,且34>23,∴>,∴>.反思感悟 比较幂值大小的方法跟踪训练3 比较下列各组值的大小:(1),;(2),,1.42.解 (1)∵y =为R 上的偶函数,∴=.又函数y =为[0,+∞)上的增函数,且0.31<0.35,3423⎛⎫⎪⎝⎭2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭3423⎛⎫ ⎪⎝⎭23x 2334⎛⎫⎪⎝⎭2323⎛⎫ ⎪⎝⎭2334⎛⎫ ⎪⎝⎭3423⎛⎫⎪⎝⎭()650.31-650.35121.2121.465x ()650.31-650.3165x∴<,即<.(2)∵y =在[0,+∞)上是增函数,且1.2<1.4,∴<.又∵y =1.4x 为增函数,且12<2,∴<1.42,∴<<1.42.幂函数性质的应用典例 已知幂函数y =x 3m -9 (m ∈N +)的图像关于y 轴对称且在(0,+∞)上单调递减,求满足的a 的取值范围.解 因为函数y =x 3m -9在(0,+∞)上单调递减,所以3m -9<0,解得m <3.又因为m ∈N +,所以m =1,2.因为函数的图像关于y 轴对称,所以3m -9为偶数,故m =1.则原不等式可化为.因为y =在(-∞,0),(0,+∞)上单调递减,所以a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a ,解得23<a <32或a <-1.故a 的取值范围是Error!.[素养提升] (1)幂函数y =x α中只有一个参数α,幂函数的所有性质都与α的取值有关,故可由α确定幂函数的定义域、值域、单调性、奇偶性,也可由这些性质去限制α的取值.(2)通过具体实例抽象出幂函数的概念和性质,并应用单调性求解,体现了数学中数学运算与直观想象的核心素养.650.31650.35()650.31-650.3512x 121.2121.4121.4121.2121.433(1)(32)m m a a --+<-1133(1)(32)a a --+<-13x-1.下列函数是幂函数的是( )A .y =5x B .y =x 5C .y =5x D .y =(x +1)3答案 B解析 函数y =5x 是指数函数,不是幂函数;函数y =5x 是正比例函数,不是幂函数;函数y =(x +1)3的底数不是自变量x ,不是幂函数;函数y =x 5是幂函数.2.幂函数y =x α(α∈R )的图像一定不经过( )A .第四象限 B .第三象限C .第二象限 D .第一象限答案 A解析 由幂函数的图像可知,其图像一定不经过第四象限.3.设α∈{-1,1,12,3},则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3答案 A解析 可知当α=-1,1,3时,y =x α为奇函数,又因为y =x α的定义域为R ,则α=1,3.4.已知幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),则k +α等于( )A.12 B .1 C.32 D .2答案 A解析 ∵幂函数f (x )=kx α(k ∈R ,α∈R )的图像过点(12,2),∴k =1,f(12)=(12)α=2,即α=-12,∴k +α=12.5.已知f (x )=,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f(1a )<f(1b)B .f (1a )<f(1b )<f (b )<f (a )C .f (a )<f (b )<f (1b )<f(1a )D .f (1a )<f (a )<f(1b )<f (b )12x答案 C解析 因为函数f (x )=在(0,+∞)上是增函数,又0<a <b <1<1b <1a ,故f (a )<f (b )<f(1b )<f(1a).1.知识清单:(1)幂函数的概念.(2)幂函数的图像.(3)幂函数的性质及其应用.2.方法归纳:数形结合.3.常见误区:幂函数与指数函数的区别;幂函数的奇偶性.1.幂函数f (x )=x α的图像经过点(2,4),则f (-12)等于( )A.12B.14 C .-14 D .2答案 B解析 幂函数f (x )=x α的图像经过点(2,4),则2α=4,解得α=2;∴f (x )=x 2,∴f (-12)=(-12)2=14.2.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A .y =x -2 B .y =x -1C .y =x 2 D .y =答案 A解析 所给选项都是幂函数,其中y =x -2和y =x 2是偶函数,y =x -1和y =不是偶函数,故排除选项B ,D ,又y =x 2在区间(0,+∞)上单调递增,不合题意,y =x -2在区间(0,+∞)上单调递减,符合题意.3.设a =,b =,c =,则a ,b ,c 的大小关系是( )12x 13x13x 2535⎛⎫ ⎪⎝⎭3525⎛⎫⎪⎝⎭2525⎛⎫⎪⎝⎭A .a >c >bB .a >b >cC .c >a >bD .b >c >a答案 A解析 ∵y =(x >0)为增函数,又35>25,∴a >c .∵y =(25)x (x ∈R )为减函数,又25<35,∴c >b .∴a >c >b .4.在同一坐标系内,函数y =x a (a ≠0)和y =ax -1a的图像可能是( )答案 C解析 选项A 中,幂函数的指数a <0,则y =ax -1a 应为减函数,A 错误;选项B 中,幂函数的指数a >1,则y =ax -1a 应为增函数,B 错误;选项D 中,幂函数的指数a <0,则-1a >0,直线y =ax -1a在y 轴上的截距为正,D 错误.5.若幂函数f (x )的图像过点(2,2),则函数g (x )=f (x )-3的零点是( )A.3 B .9 C .(3,0) D .(9,0)答案 B解析 ∵幂函数f (x )=x α的图像过点(2,2),∴f (2)=2α=2,解得α=12,∴f (x )=,∴函数g (x )=f (x )-3=-3,由-3=0,得x =9.∴函数g (x )=f (x )-3的零点是9.6.已知幂函数f (x )=x α的部分对应值如表:x11225x 12x 12x 12xf (x )122则f (x )的单调递增区间是________.答案 [0,+∞)解析 因为f(12)=22,所以(12)α=22,即α=12,所以f (x )=的单调递增区间是[0,+∞).7.已知幂函数f (x )=x α(α∈R )的图像经过点(8,4),则不等式f (6x +3)≤9的解集为________.答案 [-5,4]解析 由题意知8α=4,故α=log 84=23,由于f (x )==x 2为R 上的偶函数且在(0,+∞)上递增,故f (6x +3)≤9即为f (6x +3)≤f (27),所以|6x +3|≤27,解得-5≤x ≤4.8.设a =,b =,c =,则a ,b ,c 从小到大的顺序是________.答案 b <a <c解析 由a =,b =,可利用幂函数的性质,得a >b ,可由指数函数的单调性得c >a ,∴b <a <c .9.已知幂函数f (x )=x α的图像过点P (2,14),试画出f (x )的图像并指出该函数的定义域与单调区间.解 因为f (x )=x α的图像过点P (2,14),所以f (2)=14,即2α=14,得α=-2,即f (x )=x -2,f (x )的图像如图所示,定义域为(-∞,0)∪(0,+∞),单调递减区间为(0,+∞),单调递增区间为(-∞,0).10.已知幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R 上单调递增.(1)求f (x )的解析式;(2)求满足f (a +1)+f (3a -4)<0的a 的取值范围.解 (1)由幂函数f (x )=x 9-3m (m ∈N +)的图像关于原点对称,且在R上单调递增,可得9-3m >0,解得m <3,m ∈N +,可得m =1,2,12x 23x 2312⎛⎫⎪⎝⎭2315⎛⎫ ⎪⎝⎭1312⎛⎫⎪⎝⎭2312⎛⎫ ⎪⎝⎭2315⎛⎫⎪⎝⎭若m =1,则f (x )=x 6的图像不关于原点对称,舍去;若m =2,则f (x )=x 3的图像关于原点对称,且在R 上单调递增,成立.则f (x )=x 3.(2)由(1)可得f (x )是奇函数,且在R 上单调递增,由f (a +1)+f (3a -4)<0,可得f (a +1)<-f (3a -4)=f (4-3a ),即为a +1<4-3a ,解得a <34.11.若函数f (x )=(m +2)x a 是幂函数,且其图像过点(2,4),则函数g (x )= log a (x +m )的单调递增区间为( )A .(-2,+∞) B .(1,+∞)C .(-1,+∞) D .(2,+∞)答案 B解析 由题意得m +2=1,解得m =-1,则f (x )=x a ,将(2,4)代入函数的解析式得,2a =4,解得a =2,故g (x )=log a (x +m )=log 2(x -1),令x -1>0,解得x >1,故g (x )在(1,+∞)上单调递增.12.函数y =-1的图像关于x 轴对称的图像大致是( )答案 B解析 y =的图像位于第一象限且为增函数,所以函数图像是上升的,函数y =-1的图像可看作由y =的图像向下平移一个单位长度得到的(如选项A 中的图所示),将y =-1的图像关于x 轴对称后即为选项B.13.为了保证信息的安全传输,有一种密钥密码系统,其加密、解密原理为:发送方由明文到密文(加密),接收方由密文到明文(解密).现在加密密钥为y =x α(α为常数),如“4”通过加密后得到密文“2”.若接收方接到密文“3”,则解密后得到的明文是________.答案 9解析 由题意可知加密密钥y =x α(α为常数)是一个幂函数,所以要想求得解密后得到的明文,就必须先求出α的值.由题意,得2=4α,解得α=12,则y =.由=3,得x =9,即明文是9.14.已知幂函数f (x )=,若f (a +1)<f (10-2a ),则a 的取值范围是________.12x 12x 12x 12x 12x 12x 12x 12x答案 (3,5)解析 ∵f (x )==1x(x >0),易知f (x )在(0,+∞)上为减函数,又f (a +1)<f (10-2a ),∴Error!解得Error!∴3<a <5.15.幂函数y =x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y =x α,y =x β的图像三等分,即有BM =MN =NA ,那么,αβ等于________.答案 1解析 由条件,得M (13,23),N (23,13),可得13=(23)α,23=(13)β,即α=13,β=23.所以αβ=13·23=lg 13lg 23·lg 23lg 13=1.16.已知幂函数g (x )过点(2,12),且f (x )=x 2+ag (x ).(1)求g (x )的解析式;(2)讨论函数f (x )的奇偶性,并说明理由.解 (1)设幂函数的解析式g (x )=x α(α为常数).因为幂函数g (x )过点(2,12),所以2α=12,解得α=-1,所以g (x )=1x.(2)由(1)得f (x )=x 2+a x.①当a =0时,f (x )=x 2.12x 23log 13log 23log 13log由于f(-x)=(-x)2=x2=f(x),可知f(x)为偶函数.②当a≠0时,由于f(-x)=(-x)2+a-x=x2-ax≠x2+ax=f(x),且f(-x)=(-x)2+a-x=x2-ax≠-(x2+a x)=-f(x),所以f(x)是非奇非偶函数.综上,①当a=0时,f(x)为偶函数;②当a≠0时,f(x)为非奇非偶函数.。
指数与指数幂的运算【学习目标】1.理解有理指数幂的含义,掌握幂的运算.2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点.3.理解对数的概念及其运算性质.4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理. 5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质.6.知道指数函数与对数函数互为反函数(a>0,a≠1).【要点梳理】要点一、幂的概念及运算性质1.整数指数幂的概念及运算性质2.分数指数幂的概念及运算性质为避免讨论,我们约定a>0,n,mN*,且为既约分数,分数指数幂可如下定义:3.运算法则当a>0,b>0时有:(1);(2);(3);(4).要点诠释:(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如;(3)幂指数不能随便约分.如.要点二、根式的概念和运算法则1.n次方根的定义:若xn=y(n∈N*,n>1,y∈R),则x称为y的n次方根,即x=.n为奇数时, y的奇次方根有一个,是负数,记为;零的奇次方根为零,记为;n为偶数时,正数y的偶次方根有两个,记为;负数没有偶次方根;零的偶次方根为零,记为.2.两个等式(1)当且时,;(2)要点诠释:①计算根式的结果关键取决于根指数n的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成的形式,这样能避免出现错误.②指数幂的一般运算步骤有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数(如),先要化成假分数(如15/4),然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式:a2-b2=(a-b)(a+b),a3-b3=(a-b)(a2+ab+b2),a3+b3=(a+b)(a2-ab+b2),(a±b)2=a2±2ab+b2,(a±b)3=a3±3a2b+3ab2±b3,的运用,能够简化运算.指数函数及其性质【要点梳理】要点一、指数函数的概念:函数y=ax(a>0且a≠1)叫做指数函数,其中x是自变量,a为常数,函数定义域为R.要点诠释:(1)形式上的严格性:只有形如y=ax(a>0且a≠1)的函数才是指数函数.像,,等函数都不是指数函数.(2)为什么规定底数a大于零且不等于1:①如果,则对于一些函数,比如,当时,在实数范围内函数值不存在.②如果,则是个常量,就没研究的必要了。
最全的高中幂_指数_对数_三角函数知识点总结高中数学中的幂、指数、对数和三角函数是重要的数学概念和知识点。
这些知识点涉及到数学的基本运算、函数的性质和变化规律等内容。
下面是对这些知识点的详细总结:一、幂和指数1.幂函数:幂函数是以底数为自变量的函数,形如f(x)=a^x,其中a为常数,x为实数。
幂函数的图像为指数增长或指数衰减的曲线。
2.指数函数:指数函数是以指数为自变量的函数,形如f(x)=a^x,其中a为底数,x为实数。
指数函数的图像为单调递增或单调递减的曲线。
3.指数运算法则:-a^m*a^n=a^(m+n)-(a^m)^n=a^(m*n)-(a*b)^n=a^n*b^n-a^(-n)=1/a^n-a^0=1,其中a不等于0-a^1=a二、对数1. 对数函数:对数函数是指以对数为自变量的函数,形如f(x)=loga(x),其中a为底数,x为正实数。
对数函数的图像为单调递增的曲线。
2.对数运算法则:- loga(m * n) = loga(m) + loga(n)- loga(m / n) = loga(m) - loga(n)- loga(m^n) = n * loga(m)三、三角函数1.三角比:- 正弦函数 sin(x):在单位圆上,横坐标为x点对应的边长除以圆的半径。
- 余弦函数 cos(x):在单位圆上,纵坐标为x点对应的边长除以圆的半径。
- 正切函数 tan(x):在单位圆上,横坐标为x点对应的边长除以纵坐标对应的边长。
2.三角函数的基本性质:-三角函数的定义域为全体实数,值域为[-1,1]。
- 三角函数的周期性:sin(x + 2π) = sin(x), cos(x + 2π) = cos(x), tan(x + π) = tan(x)。
- 三角函数的奇偶性:sin(-x) = -sin(x), cos(-x) = cos(x),tan(-x) = -tan(x)。
- 三角函数的反函数:反正弦函数 arcsin(x),反余弦函数arccos(x),反正切函数 arctan(x)。
几类不同增长的函数模型【学习目标】1.借助信息技术,利用函数图象及数据表格,比较指数函数、对数函数以及幂函数的增长差异. 2.结合实例体会直线上升、指数爆炸、对数增大等几类不同的增长和函数模型的意义.3.通过本节内容的学习,培养用函数的观念、思想和方法去理解、解决实际问题的意识,感悟到现实世界中数学无处不在,世界是数学的物化形式,数学是世界的精髓.【要点梳理】要点一:几类函数模型的增长差异一般地,对于指数函数(1)xy a a =>和幂函数(0)y x αα=>,通过探索可以发现,在区间()0,+∞上,无论α比a 大多少,尽管在x 的一定范围内,x a 会小于x α,但由于x a 的增长快于x α的增长,因此总存在一个0x ,当0x x >时,就会有x a >x α.同样地,对于对数函数log a y x =增长得越来越慢,图象就像是渐渐地与x 轴平行一样,尽管在x 的一定范围内,log a x 可能会大于x α,但由于log a x 的增长慢于x α的增长,因此总存在一个0x ,当0x x >时,就会有log a x x α<.综上所述,在区间()0,+∞上,尽管函数(1)xy a a =>、(0)y x αα=>和log (1)a y x a =>都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,随着x 的增大,(1)xy a a =>的增长速度越来越快,会超过并远远大于(0)y x αα=>的增长速度,而log (1)a y x a =>的增长则会越来越慢,因此总会存在一个0x ,当0x x >时,就有log .xa x x a α<<三类函数模型增长规律的定性描述:1.直线上升反映了一次函数(一次项系数大于零)的增长趋势,其增长速度不变(恒为常数); 2.指数爆炸反映了指数函数(底数大于1)的增长趋势,其增长速度迅速(越来越快); 3.对数增长反映了对数函数(底数大于1)的增长趋势,其增长速度平缓(越来越慢).如图所示:要点诠释:当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快.要点二:利用函数的增长规律在实际问题中建立函数模型若实际问题的增长规律与一些常见函数的增长规律相吻合,则可在实际问题中建立相应的函数模型,确定其系数,便得到相应的函数模型,从而完成建模.常用的函数模型有以下几类:(1)线性增长模型:(0)y kx b k =+>;(2)线性减少模型:(0)y kx b k =+<.(2)二次函数模型:当研究的问题呈现先增长后减少的特点时,可以选用二次函数2(0)y ax bx c a =++<;当研究的问题呈现先减少后增长的特点时,可以选用二次函数2(0)y ax bx c a =++>.(3)指数函数模型()x f x ab c =+(a 、b 、c 为常数,a≠0,b >0,b≠1),当1b >时,为快速增长模型;当01b <<时,为平缓减少模型.(4)对数函数模型()log a f x m x n =+(m 、n 、a 为常数,a >0,a≠1);当1a >时,为平缓增长模型;当01a <<时,为快速减少模型.(5)反比例函数模型(0)ky k x=≠.当0k >时,函数在区间(),0-∞和()0,+∞上都是减函数;当0k <时,函数在(),0-∞和()0,+∞上都是增函数.(6)分段函数模型当自变量在几个区间上的函数关系式不相同时,问题应用分段函数来解决.【典型例题】类型一、研究函数的变化规律并比较其大小例1.(1)已知函数2()2xf x x =-,分别求()f x 在(-1,0)、[0,3)、[3,5)、[5,+∞)上的零点及总个数.(2)比较2x 与x 2的大小关系.(3)通过作图,比较2x 、x 2、log 2x 的大小关系. 【答案】(1)3 (2)略(3)略【解析】运用图象估计零点区间,借助计算器或计算机求出精确解,然后再分区间讨论、比较函数值的大小.应用二分法可求得(-1,0)中x≈-0.7666,[0,3)中x=2.000,[3,5)中x=4.000,[5,+∞)中无零点.∴共有3个零点,分别为x 1≈-0.7666,x 2=2.000,x 3=4.000. (2)在同一平面直角坐标系中画出y=2x ,y=x 2,y=log 2x 的图象,如图所示.当x ∈(-∞,-0.7666)时,2x <x 2;当x ∈(-0.7666,2.000)时,2x >x 2;当x=-0.7666时,2x =x 2; 当x ∈(2.000,4.000)时,2x <x 2;当x=2.000时,2x =x 2; 当x ∈(4.000,+∞)时,2x >x 2;当x=4.000 ,2x =x 2.(3)当x ∈(-∞,-0.7666)时,2x <x 2;log 2x 不存在;当x ∈(-0.7666,0)时,2x >x 2;log 2x 不存在;当x=-0.7666时,2x =x 2; 当x ∈(0,2.000)时,log 2x <x 2<2x ;当x ∈(2.000,4.000)时,log 2x <2x <x 2;当x=2.000时,log 2x <2x =x 2; 当x ∈(4.000,+∞)时,log 2x <x 2<2x ;当x=4.000时,log 2x <x 2=2x .【总结升华】由本例我们可以进一步领悟幂函数、指数函数、对数函数的增长规律,即在(0,+∞)上必存在一个x 0,使得当x >x 0时,log a x <x n <a x (a >1)恒成立.但在(0,x 0)上,该不等式不一定成立.举一反三:【变式1】(2017 北京高考)132223log 5-,,三个数中最大的数是 . 【答案】2log 5【解析】本题考查幂指对函数比较大小问题.1322212131log 5log 428-=<=>>>>,,2log 5最大.故答案为:2log 5.类型二、利用几类函数的变化规律建立函数模型例2.假设你有一批资金用于投资,现有三种投资方案供你选择,这三种方案的回报率如下: 方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元; 方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.【答案】投资1-6天,应选择方案一;投资7天,应选择方案一或方案二;投资8-10天,应选择方案二;投资11天(含11天)以上,则应选择方案三.【解析】设第x 天所得回报是y 元,则方案一可以用函数*40()y x N =∈进行描述;方案二可以用函数*10()y x x N =∈进行描述;方案三可以用函数1*0.42()x y x N -=⨯∈进行描述.三个模型中,第一个是常数函数,后两个都是递增函数模型.如图举一反三:【变式1】我国是电力资源较贫乏的国家之一,各地采用价格调控等手段来达到节约用电的目的,某(2)若该市某家庭某月的用电费为224元,该家庭当月的用电量是多少?【答案】(1)056(0200)06416(200300)096112(300)y .x,x y .x ,x y .x ,x =≤≤⎧⎪=-<≤⎨⎪=->⎩;(2)350【解析】(1)当2000≤≤x 时,x y 56.0=当300200≤<x 时,)200(64.0112-+=x y 当300>x 时,)300(96.0176-+=x y⎪⎩⎪⎨⎧>-=≤<-=≤≤=∴)300(,11296.0)300200(,1664.0)2000(,56.0x x y x x y x x y(2)由(1)知300>x由22411296.0=-x ,得x =350 ∴ 该家庭月用电量为350千瓦时例3.(2018 江苏新沂市模拟)设某企业每月生产电机x 台,根据企业月度报表知,每月总产值m (万元)与总支出n (万元)近似地满足下列关系:9124m x =-,217544n x x =-++,当m ―n ≥0时,称不亏损企业;当m -n <0时,称亏损企业,且n -m 为亏损额.(1)企业要成为不亏损企业,每月至少要生产多少台电机?(2)当月总产值为多少时,企业亏损最严重,最大亏损额为多少? 【思路点拨】(1)通过解不等式m -n ≥0,计算即得结论;(2)通过(1)可知当0<x <4时企业亏损,通过配方可知亏损额219(1)44n m x -=--+,进而计算可得结论.【答案】(1)至少要生产4台电机;(2)当x =1时,n -m 取最大值94【解析】(1)依题意,m -n ≥0,即2911752444x x x -≥-++, 整理和:2280x x --≥,解得:x ≥4或x ≤-2(舍),∴企业要成为不亏损企业,每月至少要生产4台电机; (2)由(1)可知当0<x <4时企业亏损,亏损额22179119(5)()(1)442444n m x x x x -=-++--=--+, ∴当x =1时,n -m 取最大值94,答:当月总产值为1台时,企业亏损最严重,最大亏损额为94万元.【总结升华】本题考查函数在生产生活中的实际应用,解题时要认真审题,注意分析题设条件中的数量关系,合理地进行等价转化,注意解题方法的积累.举一反三: 【变式1】如图所示,在直角坐标系的第一象限内,△AOB 是边长为2的等边三角形,设直线x = t (0≤t ≤2)截这个三角形可得位于此直线左方的图形(阴影部分)的面积为f (t ),则函数y = f (t )的图象大致是( )【答案】D【解析】函数22(01)2()(12)2t tS tt t≤≤⎪=⎨⎪+<≤⎪⎩故选D.例4.按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数关系式.如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少?【答案】复利函数式为y=a(1+r)x,5期后的本利和为1117.68元.【解析】按复利计算利息,也就是增长率问题.已知本金为a元.1期后的本利和为y1=a+a×r=a(1+r);2期后的本利和为y2=a(1+r)+a(1+r)r=a(1+r)2;3期后的本利和为y3=a(1+r)3;……x期后的本利和为y=a(1+r)x.将a=1000(元),r=2.25%,x=5代入上式得y=1000×(1+2.25%)5=1000×1.02255.由计算器算得y=1117.68(元).答:复利函数式为y=a(1+r)x,5期后的本利和为1117.68元.【总结升华】上述公式y=a(1+r)x是计算复利的本利和公式,应熟练掌握它,并灵活地运用它解决实际问题中的复利利息计算问题.所谓复利,就是到期后,本期的利息自动计入下一期的本金,类似地,到期后,本期的利息不计作下一期的本金就是单利,单利的计算公式为y=a(1+xr).其中a为本金,r为每一期的利率,x为期数.举一反三:【变式1】甲、乙两人同一天分别携带1万元到银行储蓄.甲存五年定期储蓄,年利率为2.88%;乙存一年期定期储蓄.年利率为2.25%,并且在每年到期时将本息续存一年期定期储蓄.按规定每次计算时,储户须交纳利息的20%作为利息税.若存满五年后两人同时从银行取出存款,则甲、乙所得本息之和的差为________元.【答案】219.01【变式2】某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答以下的问题:(1)写出该城市人口总数y(万人)与年份x(年)的函数关系式;(2)计算10年后该城市人口总数(精确到0.1万人);(3)计算大约多少年以后,该城市人口将达到120万人(精确到1年);(4)如果20年后该城市的人口总数不超过120万人,年自然增长率应该控制在多少?【答案】(1)y=100×(1+1.2)x;(2)15年;(3)0.9%.【解析】本题为人口增长率问题,可以通过计算每年的城市人口总数与年份的关系,从而得到一般规律.(1)1年后该城市人口总数为:y=100+100×1.2%=100×(1+1.2%);2年后该城市人口总数为: y=100×(1+1.2%)+100(1+1.2%)×1.2%=100×(1+1.2%)2; 3年后该城市人口总数为:y=100×(1+1.2%)3; ……x 年后该城市人口总数为:y=100×(1+1.2)x . (2)10年后,人口总数为:100×(1+1.2%)10≈112.7(万人). (3)设x 年后该城市人口将达到120万人, 即100×(1+1.2%)x=120,1.0121.102120log log 1.215()100x ==≈年. (4)设年增长率为x ,依题意,得100×(1+x)20≤120, 由此有(1+x)20≤1.2,由计算器计算得1+x≤1.009,∴x≤0.009=0.9%, 即年自然增长率应控制在0.9%以内.【总结升华】这是一类增长率问题,在实际问题中,有关人口增长、银行利息、细胞分裂等增长率问题常可以用指数函数模型表示,通常可以表示为y=N(1+p)x (其中N 为基础数,p 为增长率,x 为时间)的形式.【巩固练习】1.下列函数中,随x 的增大,增长速度最快的是( ) A .y=1,x ∈Z B .y=x C .y=2x D .y=e x2.某厂日产手套总成本y (元)与手套日产量x (副)的函数解析式为y=5x+4000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( )A .200副B .400副C .600副D .800副3.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格相比,变化情况是( )A .增加7.84%B .减少7.84%C .减少9.5%D .不增不减)A .2log v t =B .12log v t = C .212t v -= D .22v t =-5.如下图,△ABC 为等腰直角三角形,直线l 与AB 相交且l ⊥AB ,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则y=f (x)的图象大致为下图中四个选项中的( )6.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种贴水债券面值为1000元,但买入价为960元,一年到期本息和为1000元;C 种面值为1000元,半年到期本息和为1020元. 设这三种债券的年收益率分别为a , b, c ,则a , b, c 的大小关系是( )A 、a=c 且a <bB 、a <b <cC 、a <c <bD 、c <a <b7.1992年底世界人口达到54.8亿,若人口的年平均增长率为x ,2010年底世界人口数为y (亿),那么y 与x 的函数关系式为________.8.(2018 四川广元模拟)某城区按以下规定收取水费:若每月用水不超过20 m 3,则每立方米收费按2元收取;若超过20 m 3,则超过的部分按每立方米3元收取,如果某户居在某月所交水费的平均价为每立方米2.20元,则这户居民这月共用水________m 3.9.四人赛跑,假设其跑过的路程和时间的函数关系分别是21()f x x =,2()4f x x =,32()log f x x =,4()2x f x =如果他们一直跑下去,最终跑在最前面的人具有的函数关系是 .10.(2018 江苏新沂市期末)设某企业每月生产电机x 台,根据企业月度报表知,每月总产值m (万元)与总支出n (万元)近似地满足下列关系:9124m x =-,217544n x x =-++,当m ―n ≥0时,称不亏损企业;当m -n <0时,称亏损企业,且n -m 为亏损额.(1)企业要成为不亏损企业,每月至少要生产多少台电机?(2)当月总产值为多少时,企业亏损最严重,最大亏损额为多少?11.某商场经营一批进价是30元/件的商品,在市场试销中发现,此商品销售价x 元与日销售量y 件(Ⅰ)确定x 与y 的一个一次函数关系式()x f y =;(Ⅱ)若日销售利润为P 元,根据(Ⅰ)中关系写出P 关于x 的函数关系,并指出当销售单价为多少元时,才能获得最大的日销售利润?【答案与解析】 1.【答案】D【解析】 指数函数模型增长速度最快,并且e >2,因而y=e x 增长速度最快.所以选D . 2.分析:根据题意列出出厂价格和成本之间的不等关系式:5x +4000≤10x ,解出即可. 【答案】D【解析】由5x +4000≤10x ,解得x ≥800,即日产手套至少800副时才不亏本. 故选D .点评:主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.3.【答案】B 【解析】设该商品原价为a ,四年后价格为a(1+0.2)2(1―0.2)2=0.9216a .所以(1―0.9216)a=0.0784a=7.84%,即比原来减少了7.84%.4.【答案】C【解析】取t=1.99≈2,代入A ,得v=log 22=1≠1.5;代入B ,得12log 21 1.5v ==-≠;代入C ,得221 1.52v -==;代入D ,得v=2×2-2=2≠1.5.故选C .5.【答案】C【解析】 设AB=a ,则222211112222y a x x a =-=-+,其图象为抛物线的一段,开口向下,顶点在y 轴上方,故选C .6.【答案】C【解析】40a =元 ,设买B 种债券一年后本期和为x 元,960:10001000:x =,则1041.5x ≈,一年后收益为b =41.5元,同理求得 40.4c =元,故选C.7.【答案】y=54.8(1+x)18【解析】由增长率的基本公式y=a(1+x)n 可写出. 8.【答案】25【解析】设他这个月共用了x 立方米的水,则所交水费2,020()403(20),0x x f x x x ≤≤⎧=⎨+->⎩,∵某户居民在某月所交水费的平均价为每立方米2.20元,超过了2元, ∴x >20,则由20×2+(x -20)×3=2.2x 得40+3x -60=2.2x , 即0.8x =20,得x =25.故他这个月共用了25立方米的水. 故答案为:25.9.分析:根据题意,本题实际考查各类函数的增长模型,通过对四类函数分析,指数函数增长最快,选出选项.【答案】4()2xf x =【解析】根据题意,最终跑在最前面的人一为函数值最大的函数,通过分析各种类型函数的增长21()f x x =,2()4f x x =,32()log f x x =,4()2x f x =中,4()2x f x =增长最快,如图故答案为:4()2xf x =.点评:本题考查根据实际问题选择函数类型,通过对二次函数,一次函数,对数函数,指数函数的分析选出选项.10.【答案】(1)至少要生产4台电机;(2)当x =1时,n -m 取最大值94【解析】(1)依题意,m -n ≥0,即2911752444x x x -≥-++, 整理得:2280x x --≥,解得:x ≥4或x ≤-2(舍),∴企业要成为不亏损企业,每月至少要生产4台电机; (2)由(1)可知当0<x <4时企业亏损,亏损额22179119(5)()(1)442444n m x x x x -=-++--=--+, ∴当x =1时,n -m 取最大值94,答:当月总产值为1台时,企业亏损最严重,最大亏损额为94万元.11.【答案】当x =42时,P 最大=432, 【解析】(I )因为f (x )为一次函数,设y =ax +b ,解方程组45b 27,5012,a ab +=⎧⎨+=⎩ 得a =-3,b =162,故y =162-3x 为所求的函数关系式, 又∵y ≥0,∴0≤x ≤54. (II )依题意得:2(30)(30)(1623)3(42)432P x y x x x =-⋅=-⋅-=--+当x =42时,P 最大=432,即销售单价为42元/件时,获得最大日销售利润.。
高中数学必修一最全知识点汇总高中数学必修1知识点第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由元素组成的整体,其中的元素具有确定性、互异性和无序性。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。
集合与元素之间的关系可以表示为a∈M或a∉M。
集合的表示法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集(∅)。
1.1.2 集合间的基本关系集合间的基本关系包括子集、真子集和集合相等。
子集表示为A⊆B,真子集表示为A⊂B,集合相等表示为A=B。
已知集合A有n(n≥1)个元素,则它有2个子集,2^(n-1)个真子集,2^(n-1)个非空子集和2^n-2个非空真子集。
1.1.3 集合的基本运算集合的基本运算包括交集、并集和补集。
交集表示为A∩B,并集表示为A∪B,补集表示为A的补集。
补集的性质为A∪A的补集=全集,A∩A的补集=空集。
2.补充知识:含绝对值的不等式与一元二次不等式的解法含绝对值的不等式|x|0)的解集为{-aa(a>0)的解集为{xa}。
一元二次不等式的解法与一元二次方程类似,可以通过移项、配方法和求根公式等方式求解。
1.解一元二次不等式将$ax+b$看作一个整体,化成$|x|c(c>0)$,$|x|>a(a>0)$型不等式来求解。
2.解一元二次不等式的方法通过判别式$\Delta=b^2-4ac$,确定二次函数$y=ax^2+bx+c(a>0)$的图像,分类讨论$\Delta>\Delta'$,$\Delta=\Delta'$和$\Delta0)$的根$x_1,x_2$(其中$x_10$和$y<0$的解集。
3.函数及其表示3.1 函数的概念设$A$、$B$是两个非空的数集,如果按照某种对应法则$f$,对于集合$A$中任何一个数$x$,在集合$B$中都有唯一确定的数$f(x)$和它对应,那么这样的对应(包括集合$A$、$B$以及$A$到$B$的对应法则$f$)叫做集合$A$到$B$的一个函数,记作$f:A\to B$。
第二章 函数与导数第7课时 指数函数、对数函数及幂函数(1)第三章 (对应学生用书(文)、(理)20~21页),1. (必修1P 63习题2改编)用分数指数幂表示下列各式(a>0,b>0): (1) 3a 2=________;(2) a a a =________;(3) ⎝⎛⎭⎫3a 2·ab 3=________.答案:(1) a 23 (2) a 78 (3) a 76b 322. (必修1P 80习题6改编)计算:(lg5)2+lg2×lg50=________. 答案:1解析:原式=(lg5)2+lg2×(1+lg5)=lg5(lg2+lg5)+lg2=1.3. (必修1P 80习题12改编)已知lg6=a ,lg12=b ,则用a 、b 表示lg24=________. 答案:2b -a解析:lg24=lg 1446=2lg12-lg6=2b -a.4. (必修1P 63习题6改编)若a +a -1=3,则a 32-a -32=______.答案:±4解析:a 32-a -32=(a 12-a -12)(a +a -1+1).∵ (a 12-a -12)2=a +a -1-2=1,∴ (a 12-a -12)=±1,∴ 原式=(±1)×(3+1)=±4. 5. 已知实数a 、b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,下列五个关系式:① 0<b <a ;② a<b <0;③ 0<a <b ;④ b<a <0;⑤ a=b. 其中所有不可能成立的关系式为________.(填序号) 答案:③④解析:条件中的等式⇔2a =3b⇔a lg2=b lg3.若a ≠0,则lg2lg3b a =∈(0,1).(1)当a >0时,有a >b >0,即关系式①成立,而③不可能成立; (2)当a <0时,则b <0,b >a ,即关系式②成立,而④不可能成立; 若a =0,则b =0,故关系式⑤可能成立.1. 根式(1) 根式的概念① n a n=⎩⎪⎨⎪⎧a (n 为奇数),|a|=⎩⎪⎨⎪⎧a (a≥0),-a (a<0)(n 为偶数); ② (n a)n =a(注意a 必须使na 有意义). 2. 有理指数幂(1) 分数指数幂的表示① 正数的正分数指数幂是a mn ,m 、n∈N *,n>1); ② 正数的负分数指数幂是a -m n =1a m n=1(a>0,m 、n∈N *,n>1);③ 0的正分数指数幂是0,0的负分数指数幂无意义.(2) 有理指数幂的运算性质① a s a t =a s +t(a>0,t 、s∈Q );② (a s )t =a st(a>0,t 、s∈Q );③ (ab)t =a t b t(a>0,b >0,t∈Q ). 3. 对数的概念 (1) 对数的定义如果a b=N ,那么就称b 是以a 为底N 的对数,记作log a N =b ,其中a 叫做对数的底数,N 叫做真数.(2) 几种常见对数4. 对数的性质与运算法则 (1) 对数的性质① alog a N =N ;② log a a N=N(a>0且a≠1). (2) 对数的重要公式① 换底公式:log b N =log a N log a b (a 、b 均大于零且不等于1);② log a b =1log b a .(3)对数的运算法则如果a>0且a≠1,M>0,N>0,那么 ① log a (MN)=log a M +log a N ; ② log a MN =log a M -log a N ;③ log a M n=nlog a M (n∈R ); ④ log am M n=n m log a M.[备课札记]题型1 指数幂的运算例1 化简下列各式(其中各字母均为正数): (1) 1.5-13×⎝ ⎛⎭⎪⎫-760+80.25×42+(32×3)6-⎝ ⎛⎭⎪⎫2323; (2) (a 23·b -1)-12·a -12·b 136a ·b 5;(3) a 43-8a 13b 4b 23+23ab +a 23÷⎝ ⎛⎭⎪⎫1-23b a ×3a.解:(1) 原式=⎝ ⎛⎭⎪⎫2313+234×214+22×33-⎝ ⎛⎭⎪⎫2313=2+108=110.(2) 原式=a -13·b 12·a -12·b 13a 16·b 56=a -13-12-16·b 12+13-56=1a.(3) 原式=a 13(a -8b )(2b 13)2+2b 13a 13+(a 13)2×a 13a 13-2b 13×a 13=a 13(a -8b )a -8b×a 13×a 13=a.备选变式(教师专享) 化简下列各式:(1) 12523+⎝ ⎛⎭⎪⎫12-2+34313-⎝ ⎛⎭⎪⎫127-13;(2) 56a 13·b -2·(-3a -12b -1)÷(4a 23·b -3)12.解:(1)33;(2)-5ab 4ab 2.题型2 对数的运算例2 求下列各式的值.(1) log 535+2log 12 2-log 5150-log 514;(2) log 2125×log 318×log 519.解:(1) 原式=log 535×5014+2log 12212=log 553-1=2.(2) 原式=lg 125lg2×lg 18lg3×lg 19lg5=-2lg5lg2×-3lg2lg3×-2lg3lg5=-12.变式训练(1) 计算:lg 12-lg 58+lg12.5-log 89·log 278;(2) 已知log 189=a ,18b=5,用a 、b 表示log 3645.解:(1) 原式=lg ⎝ ⎛⎭⎪⎫1258×12.5-lg9lg8·lg8lg27=1-2lg33lg3=13. (2) 由题意,得b =log 185,故log 3645=log 1845log 1836=log 189+log 185log 18324-log 189=a +b2-a.题型3 指数与对数的混合运算例3 已知实数x 、y 、z 满足3x =4y =6z>1. (1) 求证:2x +1y =2z;(2) 试比较3x 、4y 、6z 的大小.(1) 证明:令k =3x =4y =6z>1,则x =log 3k ,y =log 4k ,z =log 6k ,于是1x =log k 3,1y =log k 4,1z =log k 6,从而2x +1y =2log k 3+log k 4=log k 32+log k 4=log k 36=2log k 6,等式成立.(2) 解:由于k >1,故x 、y 、z >0.3x 4y =3log 3k 4log 4k =3lgklg34lgk lg4=3lg44lg3=lg43lg34=lg64lg81<1; 4y 6z =2log 4k 3log 6k =2lgklg43lgk lg6=2lg63lg4=lg62lg43=lg36lg64<1, 故3x <4y <6z.备选变式(教师专享)若xlog 34=1,求23x-2-3x2x +2-x 的值.解:由xlog 34=1,知4x=3, ∴23x-2-3x2x +2-x =()2x -2-x ()22x +2-2x +12x+2-x=(22x -1)(22x +2-2x+1)22x+1=(3-1)⎝ ⎛⎭⎪⎫3+13+13+1=136.1. (2013·四川)计算:lg 5+lg 20=________. 答案:1解析:lg 5+lg 20=lg(5×20)=lg10=1.2. (2013·长春调研)已知函数f(x)=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x,x ≥4,f (x +1),则f(2+log 23)=________.答案:124解析:由3<2+log 23<4,得3+log 23>4,所以f(2+log 23)=f(3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=⎝ ⎛⎭⎪⎫12log 224=124. 3. (2013·新课标)已知a =log 36,b =log 510,c =log 714,则a 、b 、c 的大小关系为________.答案:a>b>c解析:a =log 36=1+log 32,b =1+log 52,c =1+log 72,由于log 32>log 52>log 72,所以a>b>c.4. (2013·温州二模)已知2a =3b =6c,若a +b c ∈(k ,k +1),则整数k 的值是________.答案:4解析:设2a =3b =6c=t ,则a =log 2t ,b =log 3t ,c =log 6t ,所以a +b c =log 2t log 6t +log 3t log 6t =log t 6log t 2+log t 6log t 3=log 26+log 36=2+log 23+log 32.因为2<log 23+log 32<3,所以4<a +bc <5,即整数k 的值是4.1. 设a =lge ,b =(lge)2,c =lg e ,则a 、b 、c 的大小关系是________.答案:a >c >b解析:本题考查对数函数的增减性,由1>lge>0,知a>b.又c =lge ,作商比较知c>b ,故a>c>b.2. 已知三数x +log 272,x +log 92,x +log 32成等比数列,则公比为________. 答案:3解析:∵ 三数x +log 272,x +log 92,x +log 32成等比数列,∴ (x +log 92)2=(x +log 272)(x +log 32),即⎝ ⎛⎭⎪⎫x +12log 322=⎝ ⎛⎭⎪⎫x +13log 32(x +log 32),解得x =-14log 32,∴ 公比q =x +log 32x +12log 32=3.3. 设a >1,若对任意的x∈[a,2a],都有y∈[a,a 2]满足方程log a x +log a y =3,则a 的取值范围是________.答案:a≥2解析:∵ a>1,x ∈[a ,2a], ∴ log a x ∈[1,1+log a 2].又由y∈[a,a 2],得 log a y∈[1,2], ∵ log a y =3-log a x ,∴ 3-log a x ∈[1,2], ∴ log a x ∈[1,2],∴ 1+log a 2≤2,log a 2≤1,即a≥2.4. 已知m 、n 为正整数,a >0且a≠1,且log a m +log a ⎝ ⎛⎭⎪⎫1+1m +log a ⎝ ⎛⎭⎪⎫1+1m +1+…+log a ⎝ ⎛⎭⎪⎫1+1m +n -1=log a m +log a n ,求m 、n 的值.解:左边=log a m +log a ⎝ ⎛⎭⎪⎫m +1m +log a ⎝ ⎛⎭⎪⎫m +2m +1+…+log a ⎝ ⎛⎭⎪⎫m +n m +n -1=log a ⎝ ⎛⎭⎪⎫m·m +1m ·m +2m +1·…·m +n m +n -1=log a (m +n),∴ 已知等式可化为log a (m +n)=log a m +log a n =log a mn. 比较真数得m +n =mn ,即(m -1)(n -1)=1.∵ m 、n 为正整数,∴ ⎩⎪⎨⎪⎧m -1=1,n -1=1,解得⎩⎪⎨⎪⎧m =2,n =2.1. 根式与分数指数幂的实质是相同的,通常利用分数指数幂的意义把根式的运算转化为幂的运算,从而可以简化计算过程.2. 对数运算法则是在化同底的情况下进行的,在对含有字母的对数式化简时必须保证恒等变形.3. 在解决指数、对数问题时,指数式与对数式的互化起着重要作用.请使用课时训练(B )第7课时(见活页).[备课札记]。
必修1 数学
——指数函数及幂函数
一、指数函数 1.整数指数幂
)0(10
≠=a a
; )0,(1≠∈=
-a N n a
a
n
n
; n
m
n
m
a
a
=
2、指数函数
【1】一般形式:()0,1x y a a a =>≠; 【2】定义域:(,)-∞+∞;值域:(0,)+∞;
【3】函数值变化情况:
当1a >时,1(0)1(0)1(0)x x a x x >>⎧⎪==⎨⎪<<⎩
; 当01a <<时,1(0)1(0)1(0)x
x a
x x <>⎧⎪
==⎨⎪><⎩
【4】单调性:当1a >时,x y a =是增函数;当01a <<时,x y a =是减函数
【类型题归纳】
【例题1】下列哪些是指数函数:(1)(4)x
y =-;(2)2
1
2
x y -=;(3)x
y a =;
(4)1(21)(,1)2
x
y a a a =->
≠;(5)23x
y =⋅.
【总结升华】判断一个函数是否为指数函数,要紧扣指数函数的定义:其一,底数大于0且不等于1;其二,幂指数是单一的自变量x ;其三,系数为1,且没有其他的项. 2、设137
x
=
,则( )
A 、21x -<<-
B 、32x -<<-
C 、10x -<<
D 、01x << 3、若函数()(0,1)x
f x a a a =>≠,则下列等式不正确的是( )
A 、()()()f x y f x f y +=
B 、 ()()()n n n f xy f x f y ⎡⎤=⎣⎦
C 、 ()()()
f x f x y f y -=
D 、 ()()n
f nx f x =
【总结】对于()()()f x y f x f y +=类型的抽象函数,x
y a =可以作为它的一个经典原型,用来解决实际
问题。
4、化简4
63
9436
9)(
)(
a a ⋅的结果为( )
A 、a 16
B 、a 8
C 、a 4
D 、a 2
【例题5】求下列函数的定义域、值域:
(1)1
421x x y +=++; (2)1(01
x
x
a y a a -=
>+,且1)a ≠.
【变式训练】求下列函数的定义域、值域:(1)||
2
()
3
x y -=; (2)2
120.5x x y +-=.
【例题6】比较下列各组数的大小. (1) 2.5
1.7,3
1.7;(2)0.10.20.8,1.25-;(3)0.3 3.11.7,0.9;(4) 4.1 3.64.5,3.7.
【例题7】讨论函数2
21
()()
3x x
f x -=的单调性,并求其值域.
【变式训练】求函数|12|
1
()
2x y +=的单调区间.
二、幂函数
(1)定义:一般地,函数a
y x =叫做幂函数,其中x 是自变量,α是常数. (2)注意:对于幂函数,我们只讨论11,2,3,,12
α=-时的情形.
(3)图象与性质:
2、幂函数的图象不过第四象限
3、幂函数y x α=的奇偶性的判断:令q p
α
=
(其中,p q 互质,,p q N ∈)
【1】若p 是奇数,则q p
y
x =的奇偶性取决于q 是奇数或偶数。
当q 是奇数时,则q
p y x =是奇函数;
当q 是偶数时,则q
p y x =是偶函数.
【2】若p 是偶数,则q 必是奇数,此时q
p y x =既不是奇函数,也不是偶函数. 4. 幂函数的增减性:当α<0时,幂函数在第一象限为减函数。
【类型题归纳】
1、在函数①1
23y x x =+;②3
(1)y x =-;③2
1y x
=
;④1y =;⑤1
22y x =;⑥y =是 .
2、幂函数1234:,:,:,:k m n p
C y x C y x C y x C y x ====的 图象如图所示,则,,,k m n p 的大小关系是
( )
A.k m n p >>>
B.n m k p >>>
C.m n p k >>>
D.k m p n >>>
3、写出下列函数的定义域、值域,判断(1)的奇偶性和单调性.
(1)1
2y x =; (2)35
y x
-
= (3)2
(2)
y x -=+
4、若113
3
(1)
(32)
a a --
+<-,则a 的取值范围是 .
5、函数2
-
=x y 在区间]2,2
1
[上的最大值是
( )
A .
4
1
B .1-
C .4
D .4- 6、函数3
x y =和31
x y =图象满足
( ) A .关于原点对称 B .关于x 轴对称 C .关于y 轴对称 D .关于直线x y =对称
7、已知幂函数f x x m Z x y y m
m ()()=∈--2
23
的图象与轴,轴都无交点,且关于轴对称,试确定f x ()
的解析式。
8、函数R x x x y ∈=|,|,满足
( )
A .是奇函数又是减函数
B .是偶函数又是增函数
C .是奇函数又是增函数
D .是偶函数又是减函数
13、比较下列各组中两个值大小
(1)6
6
11
110.60.7与 (2) 55
33(0.88)(0.89)--与
14、已知函数2
23
()()m
m f x x m Z -++=∈为偶函数,且(3)(5)f f <.
(1) 求m 的值,并确定()f x 的解析式;
(2) 若()log [()](1)a g x f x ax a =->在区间[2,3]上为增函数,求实数a 的取值范围.。