太阳能电池综述
- 格式:pdf
- 大小:4.42 MB
- 文档页数:11
异质结太阳能电池研究现状一、引言:进入21世纪,传统的化石能源正面临枯竭,人们越来越认识到寻求可再生能源的迫切性。
据《中国新能源与可再生能源发展规划1999白皮书统计,传统化石能源随着人们的不断开发已经趋于枯竭的边缘,各种能源都只能用很短的时间,石油:42年,天然气:67年,煤:200年。
而且,由于大量过度使用这些能源所造成的环境污染问题也日益严重,每年排放的二氧化碳达210万吨,并呈上升趋势,二氧化碳的过度排放是造成全球气候变暖的罪魁祸首;空气中大量二氧化碳、粉尘含量已严重影响人们的身体健康和人类赖以生存的自然环境。
正是因为这些问题的存在,人们需要一种储量丰富的洁净能源来代替石油等传统化石能源。
而太阳能作为一种可再生能源正符合这一要求。
太阳能每秒钟到达地面的能量高达80万千瓦,若把地球表面0.1%的太阳能转为电能,转变率5%,每年发电量就可达5.6×1012千瓦小时。
而我国太阳能资源非常丰富,理论储量达每年1700亿吨标准煤,太阳能资源开发利用的前景非常广阔。
在太阳能的有效利用中,太阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。
太阳能电池的研制和开发日益得到重视。
本文简要地综述了各种异质结太阳能电池的种类及其国内外的研究现状。
二、国外异质结太阳能电池1、TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池2005年5月份,Kohshin Takahashi等发表了TCO/TiO2/P3HT/Au三明治式结构的p-n异质结的太阳能电池,电池结构如图1。
图1 ITO/PEDOT:PSS/CuPc/PTCBI/Al结构太阳能电池简图图2 TCO/TiO2/P3HT/Au电池结构示意图同时采用了卟啉作为敏化剂吸收光子,产生的电子注入到TiO2的导带,有效地增加了短路电流。
测得的短路电流JSC=1.11mA/cm2,开路电压VOC=0.50V,填充因子FF=48%,能量转化效率PCE=0.26%。
富勒烯钙钛矿太阳能电池综述富勒烯与钙钛矿,这俩名字听起来挺高大上,其实它们正悄悄改变着咱们的太阳能电池界。
一、富勒烯:太阳能界的“超级明星”1.1 独特的结构,非凡的性能富勒烯,听起来像个外国名儿,其实它是一种由碳原子组成的神奇分子,结构就像个足球,由许多六边形和五边形拼接而成。
这种独特的结构让它拥有了非凡的性能,比如在光电转换方面,那可是杠杠的!它能像个小精灵一样,高效地捕捉阳光,把光能变成电能,让咱们的生活更加绿色、环保。
1.2 助力太阳能电池,效率飙升有了富勒烯的加入,太阳能电池的效率那可是嗖嗖往上涨。
它就像个“加速器”,让太阳能电池在同样的阳光下,能产生更多的电能。
这样一来,咱们就能用上更便宜、更环保的电啦!二、钙钛矿:太阳能电池的新宠儿2.1 新材料,新希望钙钛矿,这又是一个听起来挺陌生的名字,但它在太阳能电池界那可是炙手可热的新星。
它是一种由钙、钛和其他元素组成的化合物,结构稳定,性能优越。
用它来做的太阳能电池,效率那也是杠杠的!2.2 低成本,高效率钙钛矿太阳能电池最大的优点就是成本低、效率高。
相比传统的太阳能电池,它就像个“性价比之王”,能让咱们用上更便宜的太阳能电。
而且,它的生产过程还更环保,减少了对环境的污染,真是一举两得!2.3 潜力无限,未来可期钙钛矿太阳能电池的发展潜力那可是无穷的。
科学家们正不断地研究它,希望能让它变得更好、更强。
说不定哪天,它就能成为咱们生活中不可或缺的一部分,让咱们的生活更加美好!三、富勒烯与钙钛矿:携手共创太阳能电池新篇章3.1 强强联合,效果翻倍富勒烯和钙钛矿,这两个本来不相干的“明星”,现在却携手共创太阳能电池的新篇章。
它们强强联合,让太阳能电池的效率更上一层楼。
就像咱们常说的“1+1>2”,它们在一起,那效果可是杠杠的!3.2 推动科技进步,造福人类富勒烯和钙钛矿太阳能电池的发展,不仅推动了科技的进步,更造福了人类。
它们让咱们能用上更便宜、更环保的电,减少了对环境的污染,让咱们的生活更加绿色、健康。
太阳能电池技术综述太阳能电池是一种利用光能转化为电能的设备。
它是一种先进的新能源技术,其潜力越来越被人们所重视。
大量的研究表明,太阳能电池在环保、可再生和节能方面表现出了显著的优势。
太阳能电池主要由太阳能电池片和组件两部分组成。
太阳能电池片的结构类似于普通的半导体二极管,由两种材料组成,一种是n型半导体,另一种是p型半导体,它们构成了一个pn结,其中n型半导体中掺入了少量的受光激发的杂质,使其成为光生电池。
当光照射到太阳能电池片上时,电子和空穴被激发进入半导体,形成电流和电势差,产生直流电流。
太阳能电池的发展历史可追溯到19世纪。
最初的太阳能电池是1850年由法国科学家埃德蒙·贝克勒尔发明的,它是通过将两块金属片浸泡在电解质中,形成一个电化学单元,以产生电流的方法实现的。
1960年代,太阳能电池的发展进入了高峰期。
此时,太阳能电池被广泛应用于航空、航天、卫星通信等领域的能源供应。
现代太阳能电池基本上都是基于硅材料的。
目前,太阳能电池已经广泛应用于住宅、商业和工业领域。
国内外很多公司都继续研制太阳能电池,以实现更高的转换效率、更低的成本和更长的使用寿命。
以下是一些主要的太阳能电池技术:1.单晶硅太阳能电池单晶硅太阳能电池是由单晶硅片制成的,具有高效率和长寿命等优点。
其转换效率可以达到20%左右。
这种太阳能电池适用于家庭和商业太阳能发电。
2.多晶硅太阳能电池多晶硅太阳能电池是由多晶硅片制成的,相对于单晶硅太阳能电池具有较低的转换效率,但制造成本更低。
目前,大量的太阳能组件和光伏系统都采用这种技术。
3.薄膜太阳能电池薄膜太阳能电池是指由不同的材料制成的,比如铜铟镓硒和有机材料。
这种技术的转换效率非常低,通常为10%以下。
但它具有更低的制造成本和更好的柔性,可以应用于行动电源和户外光伏系统中。
4.有机太阳能电池有机太阳能电池是由一种特殊的有机材料制成的。
这种太阳能电池较薄而灵活,便于移动和安装。
钙钛矿太阳能电池引言21世纪以来,人口急剧增长,能源和环境问题日益明显。
目前,人们主要消耗的是不可再生能源,例如煤、天然气、石油等化石燃料。
而未来人类还需大量的能源,故人类正在积极开发新能源。
而太阳能具有清洁、无污染、分布广并且能量充分,是目前广大科研人员的研究重点。
而光伏为开发太阳能的主要对象,主要其具有安全、清洁、成本低廉等优点。
目前,市场上主要为第一代硅基太阳能电池,大约占了90%,其余的约10%被CdTe和GIGS为代表的第二代薄膜太阳能电池所占据。
然而,硅基太阳能电池在原材料和制造上,其成本都比较高,工艺较复杂。
因此,人们正在努力开发高效率、低成本的新型太阳能电池。
如钙钛矿太阳能电池[1]。
近年来,钙钛矿太阳能电池由于光电效率高,工艺简单等一些优异性能而受到人们的广泛关注。
现如今广大研究人员正在大力研究,开发钙钛矿太阳能电池,其光电转化效率正在不断突破、提高,有可能达到甚至超过单晶硅太阳电池(25.6%)的水平。
其中钙钛矿太阳能电池的光电转化效率被证实已达到了20. 1%[2],这项重大的成就于2013 年度,成功被Science 评选为十大科学突破之一[3]。
一钙钛矿太阳能电池的发展历程人们从十年以前就开始研究钙钛矿型结构化合物,刚开始由于其具有优异的光子传导性以及半导体特性,而被应用于薄膜晶体管和有机发光二极管中。
[4] 2009 年,Miyasaka 等[5]首先制得钙钛矿结构的太阳能电池,它主要是以CH3NH3PbBr3和CH3NH3PbI3为光敏化剂。
这成功地跨出了钙钛矿太阳能电池发展的第一步,也为钙钛矿太阳能电池发展奠定了重要的基础。
2011年,Park 等[6]以CH3NH3PbI3为光敏化剂,通过改善工艺及优化原料组分比,成功制备了光电转化效率为6. 54%的钙钛矿太阳能电池,其结构和性能得到了一定的提升。
2012年,Snaith 等[7]利用CH3NH3PbI2Cl作为光吸收剂,并且将结构中的TiO2层用Al2O3层进行替代,最终电池的效率增加到10.9%。
论文题目钙钛矿太阳电池综述学院:物理科学与技术学院姓名:李晓果学号:31646044摘要:基于钙钛矿材料(CH3NH3PbI)制备的太阳能电池的效率由2009年的3.8%增长到了目前的20.2%,因为其较高的光吸收系数,较低的成本以及易于制备等优势引起了广泛的关注。
钙钛矿材料不仅可以作为光吸收层,还可以作为电子传输层(ETM)和空穴传输层(HTM),由此可以制备不同结构的钙钛矿太阳电池:介孔结构、介观超结构、平面结构和有机结构等。
除此之外,钙钛矿材料的制备方法的多样性也使其更具吸引力,目前已有一步溶液法、两步连续沉积法、双源共蒸发法和溶液—气相沉积法。
本文主要介绍钙钛矿太阳电池的发展历程、工作原理、薄膜的制备方法以及各层的作用,最后对钙钛矿太阳电池面临的问题和发展前景进行介绍。
关键词:钙钛矿材料;太阳电池;光吸收层1.钙钛矿太阳电池的发展历程随着人类社会的不断发展与进步,由工业发展带来的能源和环境问题日益明显,化石燃料(石油、煤炭、天然气等)的有限储量及其燃烧带来的全球变暖问题使人们不得不去寻找和开发环保且可再生的新型能源。
太阳能来源丰富,取之不尽,用之不竭,而且太阳能绿色环保无污染,是未来有希望获得大规模应用的新能源之一,受到国际社会的广泛关注与研究。
将太阳能转换为电能的重要器件之一就是太阳电池。
2009年,日本人Kojim等首先将有机-无机杂化的钙钛矿材料应用到量子点敏化太阳电池中,制备出第一块钙钛矿太阳电池,并实现了 3.8%的效率。
但这种钙钛矿材料在液态电介质中很容易溶解,该电池仅仅存在了几分钟级宣告失败,随后,Park等人于2011年将CH3NH3PbI纳米晶粒改为2-3nm,效率达到了6.5%。
由于仍然采用液态电解质,仅仅经过10min,电池效率就衰减了80%。
为解决钙钛矿的稳定性问题,2012年Kim等人将一种固态空穴传输材料(spiro-OMeTAD)引入到钙钛矿太阳电池中,制备出第一块全固态钙钛矿太阳电池,电池效率达到了9.7%。
一、光伏电池的背景随着人类社会的不断发展,能源问题愈发凸显。
传统的化石能源逐渐枯竭,在燃煤、石油等能源资源的消耗下,环境污染日益严重,气候变化问题也成为国际社会的热点。
寻找清洁、可再生的能源成为了全球的共同课题。
在众多的可再生能源中,光伏能源因其无污染、取之不尽的特点受到了广泛关注。
二、光伏电池的发展历程1. 传统光伏电池的发展20世纪50年代,美国贝尔实验室的科学家斯皮诺扎(Daryl Chapin)、珀尔(Calvin Fuller)和柯文(Gerald Pearson)研制成功了世界上第一块太阳能电池。
1954年在纽约举办的全美电气研究会上,他们展示了一块效率达到6的太阳能电池。
早期的光伏电池还存在着效率低、成本高、可靠性差等缺点。
2. 新型光伏电池的诞生20世纪80年代中期以来,随着太阳能市场的快速发展和技术水平的提高,光伏电池技术也得到了迅速发展。
砷化镓太阳能电池(GaAs电池)、硒化铜铟镓硫(TCIGS)太阳能电池、非晶硅太阳能电池、多结构太阳能电池等新型光伏电池相继诞生,各类新型光伏电池以其高效率、光伏电池我国背景综述环保和成本低廉等特点受到了广泛关注。
三、光伏电池的种类1. 结晶硅太阳能电池结晶硅太阳能电池是目前市场上应用最为广泛的太阳能电池,其占据着市场份额的80以上。
其制造工艺相对成熟,生产规模化,因此成本较低。
但也存在着材料短缺、能效低以及外观较为单一等问题。
2. 薄膜太阳能电池薄膜太阳能电池具有重量轻、材料节省、工艺简单等优点,是光伏电池领域的新生力量。
该类太阳能电池主要包括非晶硅太阳能电池、铜铟镓硒太阳能电池、柔性CIGS(S/D/MO)电池等。
然而,其稳定性和寿命仍然是目前制约其发展的主要因素。
3. 多结构太阳能电池多结构太阳能电池是一种新型太阳能电池,其由多层结构组成,可利用多种波段的太阳光。
在提高太阳能电池转换效率的还可以减少光伏系统的投资成本。
多结构太阳能电池备受研究者的关注。
太阳能发电技术综述太阳能作为一种可再生能源,具有很高的发展潜力和广阔的应用前景。
在当前推动绿色能源发展的背景下,太阳能发电技术成为了人们关注的焦点。
本文将综述太阳能发电技术的各个方面,包括光伏发电技术、太阳能热发电技术以及太阳能光热联合发电技术。
一、光伏发电技术光伏发电技术是利用太阳能电池将太阳能转化为电能的一种技术。
太阳能电池是将光能直接转化为电能的器件,常见的太阳能电池有晶体硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池等。
光伏发电技术具有环保、可再生、分布式发电等优势,不受地域限制,可以应用于各个领域,如建筑物屋顶、太阳能电站等。
目前,光伏发电技术已经得到了广泛应用,市场规模不断扩大。
二、太阳能热发电技术太阳能热发电技术是利用太阳能将光能转化为热能,再通过热能转化为电能的一种技术。
太阳能热发电技术包括槽式集热器系统、太阳能塔式集热器系统等。
槽式集热器系统通过镜面将太阳光聚焦在一个集热管上,使管内的工质受热,产生高温和高压蒸汽,再通过涡轮机发电。
太阳能塔式集热器系统通过高塔将太阳光聚焦在接收器上,接收器受热后产生高温流体,通过换热器转化为蒸汽,再通过涡轮机发电。
太阳能热发电技术具有高效、稳定的特点,可以实现大规模发电。
三、太阳能光热联合发电技术太阳能光热联合发电技术是将光伏发电技术和太阳能热发电技术结合起来的一种发电方式。
通过太阳能光热联合发电系统,可以使得光伏电池在发电过程中产生的热量通过集热器回收利用,提高能量利用效率。
太阳能光热联合发电技术可以兼具光伏发电技术和太阳能热发电技术的优势,既可以转化光能为电能,又可以利用余热发电,提高整体发电效率。
总结太阳能发电技术作为一种清洁、可再生的能源技术,在解决能源和环境问题上具有重要意义。
光伏发电技术、太阳能热发电技术以及太阳能光热联合发电技术是目前主流的太阳能发电技术。
随着技术的不断进步和成本的降低,太阳能发电技术的应用将越来越广泛,对推动绿色能源发展和实现可持续发展目标具有重要意义。
Cite this:DOI:10.1039/c1cs15201g Photosensitized electron transfer processes of nanocarbons applicable to solar cellsFrancis D’Souza*a and Osamu Ito*bReceived 27th July 2011DOI:10.1039/c1cs15201gPhotosensitized electron-transfer processes of nanocarbon materials hybridized with electrondonating or electron accepting molecules have been surveyed in this tutorial review on the basis of the recent results reported mainly from our laboratories.As nano-carbon materials,fullerenes and single wall carbon nanotubes (SWCNTs)have been employed.Fullerenes act as photo-sensitizing electron acceptors with respect to a wide variety of electron donors;in addition,the fullerenes act as good ground state electron acceptors in the presence of light-absorbing electron donors such as porphyrins and phthalocyanines.In the case of SWCNTs,their ground states act as electronacceptor and electron donors,depending on the photosensitizers.For example,with respect to the photoexcited porphyrins and phthalocyanines,SWCNTs usually act as electron acceptors,whereas for the photoexcited fullerenes,SWCNTs act as electron donors.The diameter sorted semi-conductive SWCNTs have been used to verify the size-dependent electron transfer rates.For the confirmation of the electron transfer processes,the transient absorption methods have been widely used,in addition to the time-resolved fluorescence spectral measurements.The kinetic data thus obtained in solution are found to be quite useful to predict the efficiencies of photovoltaic cells constructed on semiconductor nanoparticle modified electrodes and their photocatalytic processes.Department of Chemistry,University of North Texas,1155Union Circle,#305070,Denton,TX 76203-5017,USA.E-mail:Francis.DSouza@;Fax:+1940-565-4318;Tel:+1940-369-8832bPRESTO Adviser,Japan Science and Technology Agency and CarbonPhotoScience,Kita-Nakayama 2-1-6,Izum-kui,Sendai,981-3215,Japan.E-mail:ito@tagen.tohoku.ac.jp;Fax:+81-22-376-5970Francis D’SouzaFrancis D’Souza is a Professor of Chemistry,and Materials Science and Engineering at the University of North Texas (UNT),Denton,TX.Prior joining UNT in 2011,he was a Professor of Chemistry at Wichita State University,Wichita,KS.He received PhD (1992)from the Indian Institute of Science,Bangalore,India.His research covers wide areas of chemistry,nano-photonics and materials science.Principal research interests include chemistry and supra-molecular chemistry of porphyrins and carbon nanomaterials,light energy harvesting,photoelectrochemistry and photovoltaics,electrochemical and photochemical sensors and catalysts,fluore-scent chemosensors and biosensors,conducting nanocomposite hybrid materials for energy storage and conversion.Honors and Award include Excellence in Research Award,2006,Japan Society for the Promotion of Science (JSPS)Fellow,2008,Fellow of the Electrochemistry Society,2010.Osamu ItoOsamu Ito is an Emeritus Professor at Tohoku Univer-sity of Sendai,Japan.He received PhD (1973)from the Department of Chemistry of Tohoku University.He fulfilled his academic positions at Tohoku University as an Associate Researcher (1973–1983),an Associate Professor (1984–1992)and a Full Profes-sor of the Institute of Multi-disciplinary Research for Advan-ced Materials (1993–2007).After retirement,he holds the positions of Adjunct Professorof Tohoku University,and Research Adviser at the National Institute for Materials Science (Tsukuba,Japan)and at Japan Science and Technology Agency.He was a recipient of the Award for Distinguished Achievements to Japanese Photochemistry Association (2009).His present research interests include the photo-physical studies using laser flash photolysis of various mole-cules and carbon nanomaterials.Chem Soc RevDynamic Article Links/csrTUTORIAL REVIEWD o w n l o a d e d b y H e n a n N o r m a l U n i v e r s i t y o n 06 O c t o b e r 2011P u b l i s h e d o n 05 O c t o b e r 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 1C S 15201GView OnlineIntroductionRecently,supramolecular nanocarbon architectures involving fullerenes and single wall carbon-nanotubes (SWCNTs)linked to photosensitizers have received considerable attention due to their distinguishing electronic properties suitable for opto-electronic and light-induced applications.1–9The chemically functionalized fullerenes and SWCNTs with photoactive molecules such as light-harvesting donors have been recognized to be useful materials for photocatalytic and light-energy conversion applications,as shown in Fig.1.1–9Covalent functionalization is structurally a simpler method;however,the procedures are intricate due to the multi-step synthetic processes.10–13This problem especially comes up against nanocarbons which demonstrate poor solubility in organic solvents used for the syntheses.Furthermore,direct covalent functionalization converts the sp 2carbons of some of the double bonds of fullerenes and SWCNTs to sp 3carbons,cutting-offthe p -conjugations.However,since these carbon materials contain a large number of p -bonds,loss of a few p -bonds would only slightly alter their electronic properties impacting their electronic conductivities and light absorption abilities.10–13On the other hand,the noncovalent self-assembly methods using intermolecular interactions with the photosensitizers retain completely the p -networks of SWCNTs making them useful for the wide applications to various photodevices and optoelectronics.11Among the non-covalent functionalization approaches,the simplest method is the direct p –p stacking of the sensitizers such as porphyrins (MP)and phthalocyanines (MPc)onto the SWCNT surface.However,such direct p –p interactions promote the closest contact between the entities,which is sometimes crucial for photoinduced electron transfer,although it alters their electronic properties of the corres-ponding individual characteristic features with charge-transfer interactions.10–13Usage of adsorbent-connected sensitizer molecules can avoid such direct interaction making appropriate space,preservingthe charge-separated states induced by the light illumination for longer times.14–17For this purpose,appropriate linkages are necessary to connect the sensitizers to fullerenes and/or SWCNTs.In the case of fullerenes,the functional groups with nonbonding abilities are easily linked with covalent bonds.In the case of SWCNTs,the aromatic compounds such as pyrene appended with the desired sensitizers can be employed as adsorbents onto the SWCNTs surface via p –p stacking.15–17When the covalent bonds are used to connect the photo-sensitizers to the pyrene unit,a ‘‘double-decker’’architecture could be envisioned as seen in the left side of Fig.1.18When additional intermolecular binding motifs such as metal–ligand coordination,crown-ether inclusion complexation,and ion-paring and/or hydrogen bonding interactions are employed to connect the sensitizer via appropriately functiona-lised pyrene receptors,novel ‘‘triple-decker’’architectures could be envisioned as seen in the right side of Fig.1.15–17Dendrimers possessing photosensitizers can also be used to construct photosensitizer–SWCNT nanohybrids,since the dendrons intertwine with the SWCNT and probably prevent direct interaction between the photosensitizer and SWCNT.19Additionally,photosensitizers with long alkyl or alkyl-ether chains can form the hybrids by intertwining the SWCNT with these long chains.Recent progresses on the SWCNTs include separation of the mixtures of SWCNTs into the metallic and semiconductor,which would exhibit quite different properties in photosensitizing electron transfer reactions.Furthermore,size-sorted SWCNTs are now available,which makes researchers to consider them as single molecular events.This tutorial review documents the recent progresses on supramolecular constructions of nano-architectures using photo-sensitizing electron-donor and electron-acceptor molecules with fullerene and diameter sorted SWCNTs as one of the compo-nents of photovoltaic devices.The key findings in the areas of photoinduced charge separation (CS),photocatalysis,and photo-electrochemistry,mainly from our laboratories are discussed.FullerenesEfficient photoinduced electron transfer (ET)can occur between the fullerene and electron donor (D)in solution in a wide range of polarity.As shown in Fig.2(a),the light excitation of the D molecule elevates an electron on the HOMO (D)to the LUMO (D),from which the electron transfers to the LUMO (C60),giving D +and C 60 À.The energy difference between the LUMO (D)and the LUMO (C60)(D G 0ET(D*))corresponds to the difference between D G 0ET (LUMO (C60)ÀHOMO (D))and E EX(D)(LUMO (D)ÀHOMO (D)).20On the other hand,light-excitation of C 60raises an electron from the HOMO (C60)to the LUMO (C60)(E EX(C60));then,one of the electrons of the HOMO (D)transfers to the half-vacant HOMO (C60),forming C 60 Àand D +(Fig.2(b)).Although the electron configuration of the radical ions is same as that of the D-excitation,the trail of electron transfer is different.That is,for the D-excitation,the extra electron of C 60 Àon the LUMO (C60)comes from the HOMO (D),whereas for the C 60-excitation,the extra electron of C 60 Àon the HOMO (C60)comes from the HOMO (D).20Fig.1Functionalized fullerenes and SWCNTs linked with photo-sensitizers via various self-assembly methods and their potential light-induced applications via photoinduced charge-separation processes;hexangular shape is adsorbent with p –p stacking,bar is covalent bond,and other shape with space is non-covalent bonding.D o w n l o a d e d b y H e n a n N o r m a l U n i v e r s i t y o n 06 O c t o b e r 2011P u b l i s h e d o n 05 O c t o b e r 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 1C S 15201GFor example,in the case of a mixture of C 60and ZnPc,selective excitation of C 60generates the 3C 60*(740nm band),which decays by accepting an electron from ZnPc;then,ZnPc +(860nm)and C 60 À(1000nm)are produced as intermolecular ET intermediates as shown in Fig.3(a).21The energy level diagram for this process is shown in Fig.3(a 0),in which the energy level of the radical ions (ZnPc +and C 60 À)is lower than the 3C 60*energy in polar solvents.In non-polar solvents,where the energy level of sum of ZnPc +and C 60 Àentities is higher than the 3C 60*energy,only a slow decaying 3C 60*-band could be expected.On the other hand,the predominant excitation of ZnP produces the 3ZnP*(840nm),which decays to produce C 60 À(1000nm)and ZnP +(620nm),although the latter absorption band is not shown in Fig.3(b).The energy level diagram for ZnP-excitation shown in Fig.3(b 0)is essentially the same as that of C 60-excitation,in which the energy level of sum of ZnP +and C 60 Àis lower than the energy level of 3ZnP*,which is similar to 3C 60*.However,since the energy level of 1ZnP*is higher than the 1C 60*,the excited singlet state energy-transfer (EnT)process occurs from 1ZnP*to C 60,generating 3C 60*,from which theET is also initiated.In Fig.3(upper right),the 740nm band of 3C 60*appears due to this EnT process in addition to the direct C 60-excitation;thus,the observed absorption intensity of C 60 Àis a total of the ET processes via 1ZnP*and 3C 60*.22The ET process via 1ZnP*is also possible from the energy diagram;for this process,it is necessary to increase the C 60-concentration to prevent the competitive unimolecular intersystem crossing to 3ZnP*.Therefore,for intermolecular ET,the appropriate selections of the solvent polarity,concen-tration of the individual reactants,and excitation light are all important factors.Fullerene derivatives covalently linked to D molecules via spacers are also good candidates for light-controlling mole-cular devices.23For about two decades,the C 60B spacer B D molecules have successfully been synthesized,which gave usually long-living radical ion-pairs such as C 60 ÀB D +after the photoinduced charge separation (CS)process (B refers to a covalent bond with a suitable spacer).24,25Although the lifetimes of the radical ion-pairs (RIPs)produced by the photoinduced CS process depend on the length and kind of spacer in addition to property of D molecules,some of them gave surprisingly long-persisting RIPs even in dyads with short spacers,mainly due to the small reorganization energy characteristic of the large spherical fullerene molecules.26–28Therefore,various fullerene derivatives are incorporated into a number of molecular photovoltaic devices,which are denoted as photoinduced charge-separation type solar cells,to distin-guish from the dye-sensitized solar cells (Gra tzel cell).29,30In the case of covalently linked C 60with MP and MPc,two types of dyads can be constructed:(i)C 60connected to the peripheral positions of MP and MPc in an in-plane arrange-ment,and (ii)C 60connected to the axial positions of MP and MPc,producing upright positioning with respect to the plane of the macrocycle.In a simple in-plane connected C 60B ZnP dyad with an amide group as a spacer linking the meso -phenyl group of the porphyrin (Fig.4(a)),31,32the picosecond fluorescence emission and transient absorption measurements in the visible region revealed that the CS mainly takes place via 1ZnP*and partly via 1C 60*in polar solvents,generating the C 60 ÀB ZnP +radical ion pair.Most of the radical ion absorption bands of the C 60 ÀB ZnP +moiety decayed within about 1ns.Addi-tionally,the C 60 ÀB ZnP +may retain the singlet spin charac-ter of the precursors (1ZnP*and 1C 60*)wherein the CR rate of 1(C 60 ÀB ZnP +)is expected to be much faster.31,32In the nanosecond time region,the transient absorption bands of the C 60 ÀB ZnP +were clearly observed at 1000and 640nm after the decay of the 3C 60*moiety as shown in Fig.4(b).31,32The time profile of the C 60 Àmoiety at 1000nm shows the slow rise and slow decay (Fig.4(c)),after the quick CS and quick CR processes via 1ZnP*and/or 1C 60*.Therefore,the slow rise of C 60 ÀB ZnP +can be attributed to the CS process via 3ZnP*and 3C 60*,generating 3(C 60 ÀB ZnP +)with long t RIP .As origins of 3ZnP*and 3C 60*,their ISC process can be considered.Triplet spin character of ZnP +B C 60 Àcan be confirmed by the rapid decay in the presence of O 2due to the triplet EnT process.Such C 60B ZnP derivatives have been applied to the photoinduced CS-type solar cells,giving high light-to-electricity conversion efficiency.33Fig.2Molecular orbital (MO)diagrams showing photoinduced electron transfer for donor+C 60systems:(a)D-excitation and (b)C 60-excitation.For a covalently bonded donor–C 60dyad,similar events would be expected tooccur.Fig.3Nanosecond transient absorption spectral traces confirming intermolecular photoinduced ET under (a)C 60-excitation in the presence of ZnPc,and (b)ZnP-excitation in the presence of C 60in benzonitrile.(a 0)and (b 0)The energy-level diagrams for the ET for these two donor–acceptor systems.D o w n l o a d e d b y H e n a n N o r m a l U n i v e r s i t y o n 06 O c t o b e r 2011P u b l i s h e d o n 05 O c t o b e r 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 1C S 15201GCompared with the above in-plane linked C 60B MP dyad,dyads with upright positioning of the fullerene entity with respect to the plane of the macrocycle at one side (MP B C 60,MPc B C 60)or both sides (MP B C 60B MP,MPc B C 60B MPc)and (C 60B MP B C 60,C 60B MPc B C 60)have recently been reported.8,9An example for the one-side type dyad is shown in Fig.5(a),in which the C 60unit is linked axially to the aluminium(III )porphyrin (AlPor)via a rigid benzoate spacer;thus,this dyad is represented as AlPor B C 60in this review.34The fluorescence quenching of AlPor with the C 60unit suggests that the CS process from the 1AlPor*to C 60entity occurs very fast,generat-ing AlPor +B C 60 À,which is confirmed by the transient absorp-tion band of the C 60 À(1000nm)as shown in Fig.5(b).From the time profile at 1020nm,the t RIP value was evaluated to be about 40ns of AlPor +B C 60 Àin o -dichloro-benzene (o -DCB)at RT.This value is lesser than the t RIP value of the in-plane positioned dyad,ZnP +B C 60 À.This may reflect a stronger electronic coupling of the vertically posi-tioned entities,AlPor +and C 60 À,compared with the in-plane positioned ZnP +and C 60 Àentities in Fig.4.In the transient spectra (Fig.5(b)),although the 3AlPor*and 3C 60*entities areobserved,the CS process via these triplet states may not occur since no decay of these bands until 500ns,a time scale beyond the formation of AlPor +B C 60 À,is observed.Thus,the short t RIP of AlPor +B C 60 Àmay be caused by the less contribution of the triplet spin character.A charge-separation photoelectrochemical solar cell was constructed by adsorbing the AlPorBC 60dyad onto the SnO 2nanoparticle surface pasted on FTO (Fig.6(a)).Here,the photogenerated electron on C 60of AlPor +B C 60 Àis expected to transfer to SnO 2generating photo-current.Photo-current measurements showed good photovoltaic performance of the cell (Fig.6(b));maximal incident photon-to-current conversion efficiency (IPCE)of FTO/SnO 2/AlPor B C 60was accomplished to be 25%at 450nm,which is higher than those of the individual components (FTO/SnO 2/AlPor and FTO/SnO 2/C 60).In addition to the fast CS rate and high efficiency of AlPor +B C 60 Àformation,and its low t RIP ,the morphology seems to be also an important factor.As shown by the TEM images,the AlPor B C 60dyad formed chained nanoparticles as shown in Fig.6(c-B)compared with the globular nanoparticles for the starting materials.34The chained nanoparticle morphology of the dyads might facilitate charge transportation.Similar to porphyrins and phthalocyanines,oligothiophenes (n Ts;n =4,8,12)are also known to be good electron donors especially for the C 60in the covalently linked systems.35Otsubo’s group synthesized C 60B n T type dyads shown in Fig.7(a).By the selective excitation of the C 60moiety,a rapid CS process is shown to take place via 1C 60*in polar solvents;the CS efficiency increases with the length of the n T moiety.That is,even in longer n Ts the CS process is observed.36,37In Fig.7(b),the nanosecond transient spectrum of C 60B 4T is shown as an example;this spectrum is ascribed to the formation of C 60 ÀB 4T +since the 680and 1100nmbandsFig.4(a)Molecular structure of a covalently linked ZnP B C 60dyad and experimentally determined rate parameters.(b)Transient absorp-tion spectra of the ZnP B C 60dyad and (c)time profile of the 1000nm band corresponding to C 60 Àin Ar-saturated PhCN (t RIP is lifetime of RIP).Adapted from ref.31.Fig.5(a)Structure of the AlPor B C 60dyad and the experimentally determined rate parameters.(b)Nanosecond transient absorption spectra observed with 532nm laser irradiation in Ar-saturated o -DCB.Inset:absorption-time profile.Adapted from ref.34.Fig.6(a)Design of the photoelectrochemical solar cell (M:mediator (I À/I 3À)).(b)The incident photon-to-current efficiency (IPCE)vs.wavelength of the illumination light of the FTO/SnO 2electrode coated with AlPor B C 60,AlPor and C 60.(c)TEM images of (A)FTO/SnO 2/RC 60and (B)FTO/SnO 2/AlPor B C 60.Adapted from ref.34.D o w n l o a d e d b y H e n a n N o r m a l U n i v e r s i t y o n 06 O c t o b e r 2011P u b l i s h e d o n 05 O c t o b e r 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 1C S 15201Gare associated to 4T +,whereas the 1000nm band of C 60 Àis hidden.The t RIP values of (C 60 ÀB n T +)attain the micro-second range.The longest t RIP was obtained for the shortest C 60B 4T (Fig.7(b))as a consequence of the closest energy level of C 60 ÀB 4T +with that of 3C 60*B 4T and C 60B 34T*,increas-ing the triplet spin character in C 60 ÀB 4T +.36This was supported by the rapid quenching of the C 60 ÀB 4T +in the presence of O 2(inset of Fig.7),as the individual radical ions are not reactive to O 2.The excitation of the n T moiety in the C 60B n T dyads induces both the CS process via 1n T*and the EnT process from 1n T*to 1C 60*,from which the CS process subsequently occurs in polar solvent.However,in the presence of nanoparticles,such a high t RIP value was not observed in the relatively short n T,probably because of the extra inter-molecular interactions among C 60B n T.38On the basis of these photochemical outcomes,organic thin-layer solar cells were constructed by Otsubo’s group (Fig.7(c)).39The curves of photocurrent vs.wavelength for the C 60B n T dyads show similar spectra to the absorption spectra of n Ts,indicating that the CS process takes place via 1n T*.The peaks at 450nm are extremely high compared to that observed in the pristine n Ts,and they increase with the n T length as shown in Fig.7(d).Further connection of a porphyrin (ZnP)at the opposite end of C 60in the 8T structured system (Fig.8)increases the visible light absorption ability.40When the ZnP moiety is predominantly excited,the long distant CS process from the 1ZnP*to the C 60is attained through the n T chain,since the n T chain is p -conjugative linkage.The relative energy levels of the MOs of the LUMO and HOMO of the ZnP,n T and C 60moieties are important to understand the CS process,in which an electron jumps from the half-occupied LUMO of the 1ZnP*moiety to the LUMO of the n T chain (CS-1),forming ZnP +B n T ÀB C 60as an intermediate.Then,the electron of the LUMO of the n T chain transfers to the LUMOof C 60(CS-2),generating ZnP +B n T B C 60 Àas a final stable CS state.After a while,the CR process is triggered by an electron-jump from the HOMO of the n T chain moiety up to the half-vacant HOMO of the MP +moiety (CR-1).40Then,the electron of C 60 Àcovers the electron loss of the HOMO of the n T chain,returning to the original neutral ZnP B n T B C 60molecule in the HOMO level.With regard to noncovalent binding of fullerene to various electron donor molecules,coordination of either pyridine-or imidazole-appended fullerenes to the coordinatively unsatu-rated central metal of the porphyrins and phthalocyanines has been widely used to construct the photosensitizing donor–acceptor supramolecular hybrids.8,9However,such coordina-tion bonding is competitive with the solvent coordination;thus,such studies in polar solvents are limited.Hydrogen bonding (including complementary base-pairing)can also be used to build supramolecular hybrids between the fullerenes and donor molecules possessing hydrogen-bonding functionalities.41–43In the subsequent studies such supramolecular hybrids have also been employed as components of photo-voltaic solar cell systems;high visible light-to-photocurrent efficiencies are reported by relative easy fabrication of the energy harvesting devices.4SWCNTsIt is essential to employ size-sorted SWCNTs for both funda-mental and application-oriented research in photosensitizer–SWCNT systems.One of the successful methods ofseparationFig.7(a)Molecular structures of C 60B n T dyads (x =4n )and observed rate parameters in PhCN at RT.(b)Nanosecond transient absorption spectrum of C 60B 4T in PhCN at 100ns after 532-nm laser irradiation.Inset:absorption time profile at 680nm in the absence and presence of O 2.Adapted from ref.37and 38.(c)Design of the organic thin-layer solar cells.(d)Photocurrent vs.wavelength of n T-C 60dyads in comparison with n T.Adapted from ref.39.Fig.8MO representation of the CS and CR processes of ZnP B 8T B C 60.The HOMO is localized on the ZnP moiety;the light excitation raises the electron to the LUMO +9localized on the ZnP moiety;the electron of LUMO +9jumps up to LUMO +14localized on the 8T moiety;the electron falls down to the LUMO localized on the C 60moiety,generating the stable ZnP +B 8T B C 60 À.As for the CR process,the electron of the HOMO À2localized on the 8T moiety jumps up to the HOMO;then,the electron of the LUMO on the C 60 Àmoiety falls down to the HOMO À2,returning to the original neutral molecule.Adapted from ref.20.D o w n l o a d e d b y H e n a n N o r m a l U n i v e r s i t y o n 06 O c t o b e r 2011P u b l i s h e d o n 05 O c t o b e r 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 1C S 15201Gof mixture of SWCNTs is the density gradient centrifugation with gel media reported by Hersam and Tanaka–Kataura group,as shown pictorially in Fig.9.44,45Semiconductive and metallic SWCNTs,which have quite different electronic properties,46are now commercially available.47Furthermore,diameter-sorted semiconductive (6,7)-SWCNT and (7,6)-SWCNT are also now commercially available.48Energy level diagrams depicting the possible photoinduced processes for the sensitizer molecule (M)and SWCNT are illustrated in Fig.10,in which the narrow band gap of the SWCNT usually positions inside the wider HOMO–LUMO gap of M.This type of relative positioning of energy levels is quite different from that observed for the usual donor–acceptor molecular pair shown in Fig.2.Therefore,when M is selectively excited (Fig.10(a)),two types of photoinduced CS processes could be envisioned as shown by curved arrows,viz.,CS-1is a CS process from the LUMO of M to the conduction level of SWCNT,generating the M +/SWCNT Àion-pair and CS-2is a CS process from the valence band of SWCNT to the half-filled HOMO level of the 1M*,generating the M À/SWCNT +ion-pair.49When M is a strong electron acceptor such as C 60,even upon excitation of the C 60entity,the LUMO of 1C 60*cannot transfer an electron to the conduction band of SWCNT,because the LUMO of C 60is lower than the conduction band,whereas an electron of the valence band of SWCNT can readilytransfer to the half-vacant HOMO level of 1C 60*,resulting in the C 60 À/SWCNT +ion pair,illustrated as CS-2in Fig.10(a).49Alternatively,when the SWCNT is directly light-excited,the exciton (electron–hole pair)can be generated on the SWCNTs;however,the exciton rapidly relaxes to the ground state before the electron or hole transfers to M (Fig.10(b)),since its lifetime is usually shorter than 10ps.50Furthermore,since the light absorptivity of the SWCNT in the visible region is quite low,it is not advantageous to employ such a process for an efficient light-energy conversion system,when SWCNTs are functionalized with light-harvesting molecules.Therefore,the photo-sensitizing processes of the type shown in Fig.10a are widely studied and explained in this review.The first example of the photo-sensitizing processes of SWCNTs is ‘‘double-decker’’architectures via the p –p stacking and covalent-bonding.Among the non-covalent functionaliza-tion approaches,the simplest method is to utilize glue molecules such as aromatic p -systems,to which the desired photo-sensitizers are appended to adhere to the surface of the SWCNT.As indicated in Fig.10,a wide variety of molecules are possible as photoinduced CS counter parts with respect to the SWCNT.For comparison,direct binding methodology and dendrimer methodology to functionalize the SWCNTs are also introduced here.Many studied examples employed porphyrin as a photo-sensitizer with respect to the SWCNTs.The first example of a donor–acceptor hybrid using diameter sorted SWCNTs is a double-decker architecture held by p –p stacking interactions.As shown in Fig.11b,this involved ZnP functionalized with four pyrene (Pyr)entities (ZnP(Pyr)4),in which ZnP is a typical visible-light sensitizer and the pyr entity is a p -stacking agent to the surface of SWCNT.The four pyr entities provided the necessary energy for p –p interaction.18The ZnP(Pyr)4/SWCNT(n ,m )hybrids are constructed by simple mixing of the individual components in DMF.The obtained homogeneous solution is stable and transparent for several days.TEM images of the dried ZnP(Pyr)4/SWCNT(n ,m )samples are shown in Fig.11(a),in which the treatment with ZnP(Pyr)4unravelled the tangled SWCNT(n ,m )in DMF;expanded images also show that each SWCNT(n ,m )looks smeared and thicker,probably due to the attachments of the ZnP(Pyr)4and itsaggregates.Fig.9Separation of SWCNTs by a density gradient centrifugation method,commercially available semiconductive and metallic SWCNTs and their HOMOs;commercially available diameter sorted SWCNTs,SWCNT(6,5)and SWCNT(7,6).Adapted from ref.44–48.Fig.10Schematic energy level diagrams for photoinduced CS pro-cesses of SWCNT(n ,m )hybrids with M (molecule);(a)M-excitation,(b)SWCNT excitation.The curved arrows represent the CS paths and vertical arrows represent the excitation and relaxation processes.Modified from ref.49.Fig.11(a)TEM images of SWCNT(6,5)and ZnP(Pyr)4/SWCNT(6,5)at different magnification scales.(b)Absorption spectra of ZnP(Pyr)4/SWCNT(n ,m )in DMF (black (6,5)and red (7,6)).Inset:presumed structure,in which the pyrene entities adsorb directly onto the surface of SWCNT,perhaps leaving an appropriate space between ZnP and SWCNT(n ,m ).Modified from ref.18.D o w n l o a d e d b y H e n a n N o r m a l U n i v e r s i t y o n 06 O c t o b e r 2011P u b l i s h e d o n 05 O c t o b e r 2011 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/C 1C S 15201G。