中国制造2015
- 格式:docx
- 大小:14.66 KB
- 文档页数:2
中国制造业将实施负面清单,数字化、智能化为发展主线中国版工业4."0规划--《中国制造业发展纲要(2015~2025)》初稿已完成,规划要求相关部门出台税收、投融资、体制改革等扶持政策,实施负面清单。
中国制造业发展主线将体现信息技术与制造技术深度融合的数字化、智能化制造。
规划分五部分,其中总体目标为中国基本实现工业化;进入制造强国行列,打造中国制造升级版。
具体目标为:制造业增加值位居世界第一;主要行业产品质量水平达到或接近国际先进水平,形成一批具有自主知识产权的国际知名品牌;一批优势产业率先实现突破,实现又大又强;部分战略产业掌握核心技术,接近国际先进水平。
规划重点实施领域为新一代信息技术产业、生物医药与生物制造产业、高端装备制造产业、新能源产业等四大产业领域。
而为确保规划实施,规划要求相关部门出台税收、投融资、体制改革等扶持政策,实施负面清单,减少审批事项,鼓励企业创新,加强社会资本进入。
“中国制造业2025规划,主要是结合中国制造业两化融合、工业互联网、工业4."0等趋势,从技术、产业、产品、管理、制造服务化、核心软硬件等领域做了长期的战略规划。
”相关消息透露,虽然规划实施重点领域为四个,但每个领域内又对设计的具体行业有针对性的表述。
“比如在新一代信息技术产业领域,对集成电路产业有一个规划。
高端装备制造产业里面,对机器人、制造技术、芯片、核心软件、基础数据库等又有规划,整个中国制造业2025规划是一个全面性的战略文件。
实际上,作为牵头制定中国制造业2025规划的部门,工信部已着手研究制定装备制造领域相关专项规划,以配合上述规划实施。
根据工信部装备工业司安排,年内将组织制定我国工业机器人产业发展规划、高技术船舶和海洋工程装备2025规划、船舶柴油机及关重件发展推进计划,落实增材制造产业推进计划。
制造业发展将做到四个转变:做到要素驱动向创新驱动转变;由低成本竞争优势向质量效益竞争优势转变;由资源消耗大、污染物排放多的粗放制造向绿色制造转变;由生产型制造向服务型制造转变。
Designation:E8/E8M−15a American Association StateHighway and Transportation Officials StandardAASHTO No.:T68An American National Standard Standard Test Methods forTension Testing of Metallic Materials1This standard is issued under thefixed designation E8/E8M;the number immediately following the designation indicates the year oforiginal adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.Asuperscript epsilon(´)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S.Department of Defense.1.Scope*1.1These test methods cover the tension testing of metallic materials in any form at room temperature,specifically,the methods of determination of yield strength,yield point elongation,tensile strength,elongation,and reduction of area.1.2The gauge lengths for most round specimens are re-quired to be4D for E8and5D for E8M.The gauge length is the most significant difference between E8and E8M test specimens.Test specimens made from powder metallurgy (P/M)materials are exempt from this requirement by industry-wide agreement to keep the pressing of the material to a specific projected area and density.1.3Exceptions to the provisions of these test methods may need to be made in individual specifications or test methods for a particular material.For examples,see Test Methods and Definitions A370and Test Methods B557,and B557M.1.4Room temperature shall be considered to be10to38°C [50to100°F]unless otherwise specified.1.5The values stated in SI units are to be regarded as separate from inch/pound units.The values stated in each system are not exact equivalents;therefore each system must be used independently of the bining values from the two systems may result in non-conformance with the standard.1.6This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:2A356/A356M Specification for Steel Castings,Carbon,Low Alloy,and Stainless Steel,Heavy-Walled for Steam Tur-binesA370Test Methods and Definitions for Mechanical Testing of Steel ProductsB557Test Methods for Tension Testing Wrought and Cast Aluminum-and Magnesium-Alloy ProductsB557M Test Methods for Tension Testing Wrought and Cast Aluminum-and Magnesium-Alloy Products(Metric)E4Practices for Force Verification of Testing MachinesE6Terminology Relating to Methods of Mechanical Testing E29Practice for Using Significant Digits in Test Data to Determine Conformance with SpecificationsE83Practice for Verification and Classification of Exten-someter SystemsE345Test Methods of Tension Testing of Metallic FoilE691Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test MethodE1012Practice for Verification of Testing Frame and Speci-men Alignment Under Tensile and Compressive Axial Force ApplicationD1566Terminology Relating to RubberE1856Guide for Evaluating Computerized Data Acquisition Systems Used to Acquire Data from Universal Testing Machines3.Terminology3.1Definitions of Terms Common to Mechanical Testing—3.1.1The definitions of mechanical testing terms that ap-pear in the Terminology E6apply to this test method.1These test methods are under the jurisdiction of ASTM Committee E28on Mechanical Testing and are the direct responsibility of Subcommittee E28.04onUniaxial Testing.Current edition approved May1,2015.Published June2015.Originally approved st previous edition approved2015as E8/E8M–15.DOI: 10.1520/E0008_E0008M-15A.2For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.*A Summary of Changes section appears at the end of this standard Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959.United States3.1.1.1These terms include bending strain,constraint, elongation,extensometer,force,gauge length,necking,re-duced section,stress-strain diagram,testing machine,and modulus of elasticity.3.1.2In addition,the following common terms from Termi-nology E6are defined:3.1.3discontinuous yielding,n—in a uniaxial test,a hesita-tion orfluctuation of force observed at the onset of plastic deformation,due to localized yielding.3.1.3.1Discussion—The stress-strain curve need not appear to be discontinuous.3.1.4elongation after fracture,n—the elongation measured byfitting the two halves of the broken specimen together. 3.1.5elongation at fracture,n—the elongation measured just prior to the sudden decrease in force associated with fracture.3.1.6lower yield strength,LYS[FL-2]—in a uniaxial test, the minimum stress recorded during discontinuous yielding, ignoring transient effects.3.1.7reduction of area,n—the difference between the original cross-sectional area of a tension test specimen and the area of its smallest cross section.3.1.7.1Discussion—The reduction of area is usually ex-pressed as a percentage of the original cross-sectional area of the specimen.3.1.7.2Discussion—The smallest cross section may be mea-sured at or after fracture as specified for the material under test.3.1.7.3Discussion—The term reduction of area when ap-plied to metals generally means measurement after fracture; when applied to plastics and elastomers,measurement at fracture.Such interpretation is usually applicable to values for reduction of area reported in the literature when no further qualification is given.(E28.04) 3.1.8tensile strength,S u[FL–2],n—the maximum tensile stress that a material is capable of sustaining.3.1.8.1Discussion—Tensile strength is calculated from the maximum force during a tension test carried to rupture and the original cross-sectional area of the specimen.3.1.9uniform elongation,El u,[%]—the elongation deter-mined at the maximum force sustained by the test piece just prior to necking or fracture,or both.3.1.9.1Discussion—Uniform elongation includes both elas-tic and plastic elongation.3.1.10upper yield strength,UYS[FL-2]—in a uniaxial test, thefirst stress maximum(stress atfirst zero slope)associated with discontinuous yielding at or near the onset of plastic deformation.3.1.11yield point elongation,YPE,n—in a uniaxial test,the strain(expressed in percent)separating the stress-strain curve’s first point of zero slope from the point of transition from discontinuous yielding to uniform strain hardening.3.1.11.1Discussion—If the transition occurs over a range of strain,the YPE end point is the intersection between(a)a horizontal line drawn tangent to the curve at the last zero slope and(b)a line drawn tangent to the strain hardening portion of the stress-strain curve at the point of inflection.If there is no point at or near the onset of yielding at which the slope reaches zero,the material has0%YPE.3.1.12yield strength,YS or S y[FL–2],n—the engineering stress at which,by convention,it is considered that plastic elongation of the material has commenced.3.1.12.1Discussion—This stress may be specified in terms of(a)a specified deviation from a linear stress-strain relationship,(b)a specified total extension attained,or(c) maximum or minimum engineering stresses measured during discontinuous yielding.3.2Definitions of Terms Specific to This Standard:3.2.1referee test,n—test made to settle a disagreement as to the conformance to specified requirements,or conducted by a third party to arbitrate between conflicting results.D1566,D11.084.Significance and Use4.1Tension tests provide information on the strength and ductility of materials under uniaxial tensile stresses.This information may be useful in comparisons of materials,alloy development,quality control,and design under certain circum-stances.4.2The results of tension tests of specimens machined to standardized dimensions from selected portions of a part or material may not totally represent the strength and ductility properties of the entire end product or its in-service behavior in different environments.4.3These test methods are considered satisfactory for ac-ceptance testing of commercial shipments.The test methods have been used extensively in the trade for this purpose.5.Apparatus5.1Testing Machines—Machines used for tension testing shall conform to the requirements of Practices E4.The forces used in determining tensile strength and yield strength shall be within the verified force application range of the testing machine as defined in Practices E4.5.2Gripping Devices:5.2.1General—Various types of gripping devices may be used to transmit the measured force applied by the testing machine to the test specimens.To ensure axial tensile stress within the gauge length,the axis of the test specimen should coincide with the center line of the heads of the testing machine.Any departure from this requirement may introduce bending stresses that are not included in the usual stress computation(force divided by cross-sectional area).N OTE1—The effect of this eccentric force application may be illus-trated by calculating the bending moment and stress thus added.For a standard12.5-mm[0.500-in.]diameter specimen,the stress increase is1.5 percentage points for each0.025mm[0.001in.]of eccentricity.This error increases to2.5percentage points/0.025mm[0.001in.]for a9mm [0.350-in.]diameter specimen and to3.2percentage points/0.025mm [0.001in.]for a6-mm[0.250-in.]diameter specimen.N OTE2—Alignment methods are given in Practice E1012.5.2.2Wedge Grips—Testing machines usually are equipped with wedge grips.These wedge grips generally furnish a satisfactory means of gripping long specimens of ductilemetalandflat plate test specimens such as those shown in Fig.1.If, however,for any reason,one grip of a pair advances farther than the other as the grips tighten,an undesirable bending stress may be introduced.When liners are used behind the wedges,they must be of the same thickness and their faces must beflat and parallel.For best results,the wedges should be supported over their entire lengths by the heads of the testing machine.This requires that liners of several thicknesses be available to cover the range of specimen thickness.For proper gripping,it is desirable that the entire length of the serrated face of each wedge be in contact with the specimen.Proper alignment of wedge grips and liners is illustrated in Fig.2.For short specimens and for specimens of many materials it is generally necessary to use machined test specimens and to use a special means of gripping to ensure that the specimens,when under load,shall be as nearly as possible in uniformly distributed pure axial tension(see5.2.3,5.2.4,and5.2.5). 5.2.3Grips for Threaded and Shouldered Specimens and Brittle Materials—A schematic diagram of a gripping device for threaded-end specimens is shown in Fig.3,while Fig.4 shows a device for gripping specimens with shouldered ends. Both of these gripping devices should be attached to the heads of the testing machine through properly lubricated spherical-seated bearings.The distance between spherical bearings should be as great as feasible.5.2.4Grips for Sheet Materials—The self-adjusting grips shown in Fig.5have proven satisfactory for testing sheet materials that cannot be tested satisfactorily in the usual type of wedge grips.5.2.5Grips for Wire—Grips of either the wedge or snubbing types as shown in Fig.5and Fig.6orflat wedge grips may be used.5.3Dimension-Measuring Devices—Micrometers and other devices used for measuring linear dimensions shall be accurate and precise to at least one half the smallest unit to which the individual dimension is required to be measured.5.4Extensometers—Extensometers used in tension testing shall conform to the requirements of Practice E83for the classifications specified by the procedure section of this test method.Extensometers shall be used and verified to include the strains corresponding to the yield strength and elongation at fracture(if determined).5.4.1Extensometers with gauge lengths equal to or shorter than the nominal gauge length of the specimen(dimension shown as“G-Gauge Length”in the accompanyingfigures)may be used to determine the yield behavior.For specimens without a reduced section(for example,full cross sectional area specimens of wire,rod,or bar),the extensometer gauge length for the determination of yield behavior shall not exceed80% of the distance between grips.For measuring elongation at fracture with an appropriate extensometer,the gauge length of the extensometer shall be equal to the nominal gauge length required for the specimen being tested.6.Test Specimens6.1General:6.1.1Specimen Size—Test specimens shall be either sub-stantially full size or machined,as prescribed in the product specifications for the material being tested.6.1.2Location—Unless otherwise specified,the axis of the test specimen shall be located within the parent material as follows:6.1.2.1At the center for products40mm[1.500in.]or less in thickness,diameter,or distance betweenflats.6.1.2.2Midway from the center to the surface for products over40mm[1.500in.]in thickness,diameter,or distance betweenflats.6.1.3Specimen Machining—Improperly prepared test speci-mens often are the reason for unsatisfactory and incorrect test results.It is important,therefore,that care be exercised in the preparation of specimens,particularly in the machining,to maximize precision and minimize bias in test results.6.1.3.1The reduced sections of prepared specimens should be free of cold work,notches,chatter marks,grooves,gouges, burrs,rough surfaces or edges,overheating,or any other condition which can deleteriously affect the properties to be measured.N OTE3—Punching or blanking of the reduced section may produce significant cold work or shear burrs,or both,along the edges which should be removed by machining.6.1.3.2Within the reduced section of rectangular specimens,edges or corners should not be ground or abraded in a manner which could cause the actual cross-sectional area of the specimen to be significantly different from the calculated area.6.1.3.3For brittle materials,large radiusfillets at the ends of the gauge length should be used.6.1.3.4The cross-sectional area of the specimen should be smallest at the center of the reduced section to ensure fracture within the gauge length.For this reason,a small taper is permitted in the reduced section of each of the specimens described in the following sections.6.1.4Specimen Surface Finish—When materials are tested with surface conditions other than as manufactured,the surface finish of the test specimens should be as provided in the applicable product specifications.N OTE4—Particular attention should be given to the uniformity and quality of surfacefinish of specimens for high strength and very low ductility materials since this has been shown to be a factor in the variability of test results.6.2Plate-Type Specimens—The standard plate-type test specimen is shown in Fig.1.This specimen is used for testing metallic materials in the form of plate,shapes,andflat material having a nominal thickness of5mm[0.188in.]or over.When product specifications so permit,other types of specimens may be used,as provided in6.3,6.4,and6.5.6.3Sheet-Type Specimens:6.3.1The standard sheet-type test specimen is shown in Fig.1.This specimen is used for testing metallic materials in the form of sheet,plate,flat wire,strip,band,hoop,rectangles,and shapes ranging in nominal thickness from0.13to19mm [0.005to0.750in.].When product specifications so permit, other types of specimens may be used,as provided in6.2,6.4, and6.5.DimensionsStandard Specimens Subsize SpecimenPlate-Type,40mm [1.500in.]Wide Sheet-Type,12.5mm[0.500in.]Wide6mm[0.250in.]Widemm[in.]mm[in.]mm[in.]G—Gauge length(Note1and Note2)200.0±0.2[8.00±0.01]50.0±0.1[2.000±0.005]25.0±0.1[1.000±0.003]W—Width(Note3and Note4)40.0±2.0[1.500±0.125,-0.250]12.5±0.2[0.500±0.010]6.0±0.1[0.250±0.005]T—Thickness(Note5)thickness of materialR—Radius offillet,min(Note6)25[1]12.5[0.500]6[0.250] L—Overall length,min(Note2,Note7,and Note8)450[18]200[8]100[4] A—Length of reduced section,min225[9]57[2.25]32[1.25] B—Length of grip section,min(Note9)75[3]50[2]30[1.25] C—Width of grip section,approximate(Note4and Note9)50[2]20[0.750]10[0.375] N OTE1—For the40mm[1.500in.]wide specimen,punch marks for measuring elongation after fracture shall be made on theflat or on the edge of the specimen and within the reduced section.Either a set of nine or more punch marks25mm[1in.]apart,or one or more pairs of punch marks200 mm[8in.]apart may be used.N OTE2—When elongation measurements of40mm[1.500in.]wide specimens are not required,a minimum length of reduced section(A)of75mm [2.25in.]may be used with all other dimensions similar to those of the plate-type specimen.N OTE3—For the three sizes of specimens,the ends of the reduced section shall not differ in width by more than0.10,0.05or0.02mm[0.004,0.002 or0.001in.],respectively.Also,there may be a gradual decrease in width from the ends to the center,but the width at each end shall not be more than 1%larger than the width at the center.N OTE4—For each of the three sizes of specimens,narrower widths(W and C)may be used when necessary.In such cases the width of the reduced section should be as large as the width of the material being tested permits;however,unless stated specifically,the requirements for elongation in a product specification shall not apply when these narrower specimens are used.N OTE5—The dimension T is the thickness of the test specimen as provided for in the applicable material specifications.Minimum thickness of40mm [1.500in.]wide specimens shall be5mm[0.188in.].Maximum thickness of12.5and6mm[0.500and0.250in.]wide specimens shall be19and6 mm[0.750and0.250in.],respectively.N OTE6—For the40mm[1.500in.]wide specimen,a13mm[0.500in.]minimum radius at the ends of the reduced section is permitted for steel specimens under690MPa[100000psi]in tensile strength when a profile cutter is used to machine the reduced section.N OTE7—The dimension shown is suggested as a minimum.In determining the minimum length,the grips must not extend in to the transition section between Dimensions A and B,see Note9.N OTE8—To aid in obtaining axial force application during testing of6-mm[0.250-in.]wide specimens,the overall length should be as large as the material will permit,up to200mm[8.00in.].N OTE9—It is desirable,if possible,to make the length of the grip section large enough to allow the specimen to extend into the grips a distance equal to two thirds or more of the length of the grips.If the thickness of12.5mm[0.500-in.]wide specimens is over10mm[0.375in.],longer grips and correspondingly longer grip sections of the specimen may be necessary to prevent failure in the grip section.N OTE10—For the three sizes of specimens,the ends of the specimen shall be symmetrical in width with the center line of the reduced section within 2.5,1.25and0.13mm[0.10,0.05and0.005in.],respectively.However,for referee testing and when required by product specifications,the ends of the 12.5mm[0.500in.]wide specimen shall be symmetrical within0.2mm[0.01in.].N OTE11—For each specimen type,the radii of allfillets shall be equal to each other within a tolerance of1.25mm[0.05in.],and the centers of curvature of the twofillets at a particular end shall be located across from each other(on a line perpendicular to the centerline)within a tolerance of2.5 mm[0.10in.].N OTE12—Specimens with sides parallel throughout their length are permitted,except for referee testing,provided:(a)the above tolerances are used;(b)an adequate number of marks are provided for determination of elongation;and(c)when yield strength is determined,a suitable extensometer is used. If the fracture occurs at a distance of less than2W from the edge of the gripping device,the tensile properties determined may not be representative of the material.In acceptance testing,if the properties meet the minimum requirements specified,no further testing is required,but if they are less than the minimum requirements,discard the test and retest.FIG.1Rectangular Tension Test SpecimensN OTE 5—Test Methods E345may be used for tension testing of materials in thicknesses up to 0.15mm [0.0059in.].6.3.2Pin ends as shown in Fig.7may be used.In order to avoid buckling in tests of thin and high-strength materials,it may be necessary to use stiffening plates at the grip ends.6.4Round Specimens:6.4.1The standard 12.5-mm [0.500-in.]diameter round test specimen shown in Fig.8is used quite generally for testing metallic materials,both cast and wrought.6.4.2Fig.8also shows small-size specimens proportional to the standard specimen.These may be used when it is necessary to test material from which the standard specimen or specimens shown in Fig.1cannot be prepared.Other sizes of small roundspecimens may be used.In any such small-size specimen it is important that the gauge length for measurement ofelongationFIG.2Wedge Grips with Liners for FlatSpecimensFIG.3Gripping Device for Threaded-EndSpecimensFIG.4Gripping Device for Shouldered-EndSpecimensFIG.5Gripping Devices for Sheet and WireSpecimensbe four times the diameter of the specimen when following E8and five times the diameter of the specimen when following E8M.6.4.3The shape of the ends of the specimen outside of the gauge length shall be suitable to the material and of a shape to fit the holders or grips of the testing machine so that the forces may be applied axially.Fig.9shows specimens with various types of ends that have given satisfactory results.6.5Specimens for Sheet,Strip,Flat Wire,and Plate—In testing sheet,strip,flat wire,and plate,use a specimen type appropriate for the nominal thickness of the material,as described in the following:6.5.1For material with a nominal thickness of 0.13to 5mm [0.005to 0.1875in.],use the sheet-type specimen described in 6.3.6.5.2For material with a nominal thickness of 5to 12.5mm [0.1875to 0.500in.],use either the sheet-type specimen of 6.3or the plate-type specimen of 6.2.6.5.3For material with a nominal thickness of 12.5to 19mm [0.500to 0.750in.],use either the sheet-type specimen of 6.3,the plate-type specimen of 6.2,or the largest practical size of round specimen described in 6.4.6.5.4For material with a nominal thickness of 19mm [0.750in.],or greater,use the plate-type specimen of 6.2or the largest practical size of round specimen described in 6.4.6.5.4.1If the product specifications permit,material of a thickness of 19mm [0.750in.],or greater may be tested using a modified sheet-type specimen conforming to the configura-tion shown by Fig.1.The thickness of this modified specimen must be machined to 1060.5mm [0.40060.020in.],and must be uniform within 0.1mm [0.004in.]throughout the reduced section.In the event of disagreement,a round speci-men shall be used as the referee test (comparison)specimen.6.6Specimens for Wire,Rod,and Bar:6.6.1For round wire,rod,and bar,test specimens having the full cross-sectional area of the wire,rod,or bar shall be used wherever practicable.The gauge length for the measurement of elongation of wire less than 4mm [0.125in.]in diameter shall be as prescribed in product specifications.When testing wire,rod,or bar having a diameter of 4mm [0.125in.]or larger,a gauge length equal to four times the diameter shall be used when following E8and a gauge length equal to five times thediameter shall be used when following E8M unless otherwise specified.The total length of the specimens shall be at least equal to the gauge length plus the length of material required for the full use of the grips employed.6.6.2For wire of octagonal,hexagonal,or square cross section,for rod or bar of round cross section where the specimen required in 6.6.1is not practicable,and for rod or bar of octagonal,hexagonal,or square cross section,one of the following types of specimens shall be used:6.6.2.1Full Cross Section (Note 6)—It is permissible to reduce the test section slightly with abrasive cloth or paper,or machine it sufficiently to ensure fracture within the gauge marks.For material not exceeding 5mm [0.188in.]in diameter or distance between flats,the cross-sectional area may be reduced to not less than 90%of the original area without changing the shape of the cross section.For material over 5mm [0.188in.]in diameter or distance between flats,the diameter or distance between flats may be reduced by not more than 0.25mm [0.010in.]without changing the shape of the cross section.Square,hexagonal,or octagonal wire or rod not exceeding 5mm [0.188in.]between flats may be turned to a round having a cross-sectional area not smaller than 90%of the area of the maximum inscribed circle.Fillets,preferably with a radius of 10mm [0.375in.],but not less than 3mm [0.125in.],shall be used at the ends of the reduced sections.Square,hexagonal,or octagonal rod over 5mm [0.188in.]between flats may be turned to a round having a diameter no smaller than 0.25mm [0.010in.]less than the original distance between flats.N OTE 6—The ends of copper or copper alloy specimens may be flattened 10to 50%from the original dimension in a jig similar to that shown in Fig.10,to facilitate fracture within the gauge marks.In flattening the opposite ends of the test specimen,care shall be taken to ensure that the four flattened surfaces are parallel and that the two parallel surfaces on the same side of the axis of the test specimen lie in the same plane.6.6.2.2For rod and bar,the largest practical size of round specimen as described in 6.4may be used in place of a test specimen of full cross section.Unless otherwise specified in the product specification,specimens shall be parallel to the direction of rolling or extrusion.6.7Specimens for Rectangular Bar—In testing rectangular bar one of the following types of specimens shall be used:6.7.1Full Cross Section—It is permissible to reduce the width of the specimen throughout the test section with abrasive cloth or paper,or by machining sufficiently to facilitate fracture within the gauge marks,but in no case shall the reduced width be less than 90%of the original.The edges of the midlength of the reduced section not less than 20mm [3⁄4in.]in length shall be parallel to each other and to the longitudinal axis of the specimen within 0.05mm [0.002in.].Fillets,preferably with a radius of 10mm [3⁄8in.]but not less than 3mm [1⁄8in.]shall be used at the ends of the reduced sections.6.7.2Rectangular bar of thickness small enough to fit the grips of the testing machine but of too great width may be reduced in width by cutting to fit the grips,after which the cut surfaces shall be machined or cut and smoothed to ensure failure within the desired section.The reduced width shallnotFIG.6Snubbing Device for TestingWirebe less than the original bar thickness.Also,one of the types of specimens described in 6.2,6.3,and 6.4may be used.6.8Shapes,Structural and Other—In testing shapes other than those covered by the preceding sections,one of the types of specimens described in 6.2,6.3,and 6.4shall be used.6.9Specimens for Pipe and Tube (Note 7):6.9.1For all small tube (Note 7),particularly sizes 25mm [1in.]and under in nominal outside diameter,and frequently for larger sizes,except as limited by the testing equipment,it is standard practice to use tension test specimens of full-size tubular sections.Snug-fitting metal plugs shall be inserted far enough into the ends of such tubular specimens to permit the testing machine jaws to grip the specimens properly.The plugs shall not extend into that part of the specimen on which the elongation is measured.Elongation is measured over a length of four times the diameter when following E8or five times the diameter when following E8M unless otherwise stated in the product specification.Fig.11shows a suitable form of plug,the location of the plugs in the specimen,and the location of the specimen in the grips of the testing machine.N OTE 7—The term “tube”is used to indicate tubular products in general,and includes pipe,tube,and tubing.6.9.2For large-diameter tube that cannot be tested in full section,longitudinal tension test specimens shall be cut as indicated in Fig.12.Specimens from welded tube shall be located approximately 90°from the weld.If the tube-wall thickness is under 20mm [0.750in.],either a specimen of the form and dimensions shown in Fig.13or one of the small-sizespecimens proportional to the standard 12.5-mm [0.500-in.]specimen,as mentioned in 6.4.2and shown in Fig.8,shall be used.Specimens of the type shown in Fig.13may be tested with grips having a surface contour corresponding to the curvature of the tube.When grips with curved faces are not available,the ends of the specimens may be flattened without heating.If the tube-wall thickness is 20mm [0.750in.]or over,the standard specimen shown in Fig.8shall be used.N OTE 8—In clamping of specimens from pipe and tube (as may be done during machining)or in flattening specimen ends (for gripping),care must be taken so as not to subject the reduced section to any deformation or cold work,as this would alter the mechanical properties.6.9.3Transverse tension test specimens for tube may be taken from rings cut from the ends of the tube as shown in Fig.14.Flattening of the specimen may be either after separating as in A ,or before separating as in B .Transverse tension test specimens for large tube under 20mm [0.750in.]in wall thickness shall be either of the small-size specimens shown in Fig.8or of the form and dimensions shown for Specimen 2in Fig.13.When using the latter specimen,either or both surfaces of the specimen may be machined to secure a uniform thickness,provided not more than 15%of the normal wall thickness is removed from each surface.For large tube 20mm [0.750in.]and over in wall thickness,the standard specimen shown in Fig.8shall be used for transverse tension tests.Specimens for transverse tension tests on large welded tube to determine the strength of welds shall be located perpendicular to the welded seams,with the welds at about the middle of theirlengths.Dimensions,mm [in.]G —Gauge length 50.0±0.1[2.000±0.005]W —Width (Note 1)12.5±0.2[0.500±0.010]T —Thickness,max (Note 2)16[0.625]R —Radius of fillet,min (Note 3)13[0.5]L —Overall length,min200[8]A —Length of reduced section,min 57[2.25]B —Length of grip section,min50[2]C —Width of grip section,approximate 50[2]D —Diameter of hole for pin,min (Note 4)13[0.5]E —Edge distance from pin,approximate 40[1.5]F —Distance from hole to fillet,min13[0.5]N OTE 1—The ends of the reduced section shall differ in width by not more than 0.1mm [0.002in.].There may be a gradual taper in width from the ends to the center,but the width at each end shall be not more than 1%greater than the width at the center.N OTE 2—The dimension T is the thickness of the test specimen as stated in the applicable product specifications.N OTE 3—For some materials,a fillet radius R larger than 13mm [0.500in.]may be needed.N OTE 4—Holes must be on center line of reduced section within 60.05mm [0.002in].N OTE 5—Variations of dimensions C ,D ,E ,F ,and L may be used that will permit failure within the gauge length.FIG.7Pin-Loaded Tension Test Specimen with 50-mm [2-in.]GaugeLength。
《2015年度中国制造强国发展指数报告》发布中国制造前进
步伐减缓
佚名
【期刊名称】《中国信息化》
【年(卷),期】2016(0)6
【摘要】2016年5月,《2015年度中国制造强国发展指数报告》暨《中国制造2025》系列丛书出版新闻发布会在中国工程院召开。
原全国人大常委会副委员长,国家制造强国建设战略咨询委员会主任路甬祥院士,中国工程院院长、国家制造强国建设战略咨询委员会副主任、中国工程院“制造强国战略研究”项目组组长周济院士等二十多位院士、专家出席了会议,机械总院院长李新亚出席新闻发布会。
【总页数】10页(P36-45)
【关键词】中国制造;中国工程院;全国人大常委会;新闻发布会;咨询委员会;副主任;
院士;路甬祥
【正文语种】中文
【中图分类】F424
【相关文献】
1.中国制造强国发展指数报告发布 [J], 陆琦;
2.2015中国制造强国发展指数报告(摘编) [J],
3.中国工程院发布《2017中国制造强国发展指数报告》 [J], 无;
4.固优势、补短板,持续推进制造业优化升级——解读《2019中国制造强国发展指
数报告》 [J], 单忠德
5.《2015年度中国制造强国发展指数报告》发布 [J], 韦仁
因版权原因,仅展示原文概要,查看原文内容请购买。
高三作文素材积累之中国制造(十五)中国“高铁”异军突起近年来,“高铁”凭借安全、快速的优势让越来越多的国家对此显示出浓厚的兴趣,甚至在世界范围内兴起一股高铁热潮。
2015年米兰世博会10月31日闭幕,米兰高铁线路成为这一届博览会的焦点。
运营里程1.7万公里、运营动车组1800列、年运送旅客人次9.1亿,3项数据均居全球第一,这是中国高铁交给世界的答卷,也是中国为中意两国的合作提供了丰富且宝贵的机会,也让来自全球的客人再次将目光聚焦到中国高铁上。
中国高铁起步虽晚,但发展迅速。
10年前中国开始建设第一条高铁线路,如今中国境内开通运行的高铁线路总里程已经超过一万公里,居世界首位。
且还拥有几宗最:运营里程世界第一(截止7月达到1.7万公里,今年年底将到达 1.9万公里);运行实验时速世界第一(486.1公里);建成世界上第一条地处高寒地区的哈达高铁;建成单线最长的京广高铁(2298公里);建成一次性建成里程最长的兰心高铁(1776公里);建成世界线路最长(620公里)且技术标准最高的京泸高铁;2014年中国就有8亿多人次选择高铁出行,多么惊人的运量!如此几宗“最”刷新着大家的认知,更迭着以往的记录,足以诠释中国高铁成绩斐然,举世瞩目。
中国高铁代表的“中国速度”积极向海外扩展:从东南亚(柬埔寨、越南、泰国),到中东(沙特),到非洲(尼日利亚),再到美洲(巴西、阿根廷和墨西哥),以及俄罗斯和美国,中国目标市场扩展到了全世界。
今年6月,中国同俄罗斯达成协议,中国企业将为俄罗斯修建一条从莫斯科到喀山的长达770公里的高铁线路,这成为中国高铁进军国际市场市场的一个重要突破。
今年10月,中国又击败日本,拿下印尼雅万高铁的修建合同,中国高铁在国际市场中的地位进一步稳固。
与此同时,中国也预备参与墨西哥、英国和美国的高铁项目。
中国高铁也接连在俄罗斯、新加坡等国家获得订单或有项目在积极推进,高铁出海速度不断加快。
“中国高铁是现在已经逐渐成为中国制造新名片。
2015年中国制造业新特征:生产小型化、智能化、专业化2014年对于中国制造企业来说是艰难的一年。
劳动力短缺、成本增加、产能过剩及全球经济的疲软制约了企业的发展。
来自全球的竞争在逐渐蚕食着中国“世界工厂”的地位。
低端制造正快速从中国向其他低成本国家转移,而高端制造向发达国家回流对中国制造企业来说无疑更是雪上加霜。
面对种种压力,转型升级已经成为企业的当务之急。
基于互联网技术的产品创新、精益制造、柔性生产以及供应链集成,成为2014年中国制造业发展的主基调。
IDC中国行业研究与咨询服务部研究经理王岳认为:“2015年,中国制造业下行压力依然较大,结构调整阵痛将会显现,企业生产经营困难增多,转型升级需求将更为迫切。
在这一新常态下,创新仍将是企业发展最主要的驱动力。
生产小型化、智能化、专业化将成为制造业新特征。
第三平台技术的加速落地及物联网、机器人、3D打印等创新加速器的潜力释放将成为制造业两化融合和转型升级的关键。
”基于此,IDC对2015年中国制造行业作出如下10大预测:预测一:互联网提速渗透制造业,2015年将是互联网化产品爆发之年预测二:工业机器人换人将在2015年换挡加速预测三:云计算将为企业供应链管理保驾护航预测四:工业4.0将成为传统制造企业打造智能工厂的标杆预测五:互联网技术的发展将对首席信息官的角色进行重塑预测六:数字世界与现实世界的日益融合将对制造企业的信息安全提出严峻的考验预测七:全生命周期管理系统(PLM)将成为中国制造企业创新的源泉预测八:中国制造企业海外淘金步伐加快预测九:制造业服务化将成为企业转型升级的主流趋势预测十:小型化和专业化将成为制造企业发展新特征在纷繁的预测中,IDC建议产业读者可以重点关注以下几组关键词:IDC对以上关键词的解读如下:互联网提速渗透制造业,2015年将是互联网化产品爆发之年根据IDC去年的预测,制造业互联网化将渗透到企业研发、生产、物流、销售、售后等价值链环节。
RANGE ROVER EVOQUE路虎•揽胜极光一问世,即以独一无二的新锐设计耀领业界,更令世人瞩目无比。
中国制造揽胜极光,采撷来源于世界上最伟大城市的设计灵感,造就前所未有的风尚造型,更毫无保留地传承路虎传奇性的全地形技术,以全球领先的尖端智能科技,任您领衔先锋驾驭,显耀独到;辅以豪华真皮打造的指挥官式驾驶座椅,质感上乘的至臻材质和深入每一处细节的匠心精制,流露出无处不在的奢华与精湛,尽显由内而外的夺人魅力。
传承路虎68年专业级品质造诣,凭借全球领先的硬件设施和生产工艺,以执行全球化品质标准和严格的质量控制体系,让揽胜极光的性能和品质始终如一,独到魅力显耀不止。
中国制造 路虎•揽胜极光中国制造揽胜极光,现代动感的外观与毫不妥协的性能相辉映,迸发令人极度渴望的驰骋张力。
它以其运动风范的动感造型在众多车型中独树一帜,更不负其与生俱来的路虎基因:独有的全地形反馈适应系统,辅以 500 毫米涉水深度、陡坡缓降控制系统以及出众的离去角、接近角等非凡全地形性能,让揽胜极光无论公路行驶还是纵情越野,全天侯全地形尽可从容应对。
中国制造揽胜极光不仅拥有出众的运动气质和无与伦比的强劲性能,更在忠于原始设计理念的基础上,引入便捷的多功能性和实用性,使您的城市生活更加得心应手。
首屈一指的扭矩矢量分配制动系统,模拟扭矩引导差速锁的作用,在车辆转弯时,持续平衡四个车轮的发动机扭矩分布,以改善抓地和转向,减少转向不足,为您带来更自信的操控感受,任您惬享旅程。
与生俱来的灵敏动感。
自适应动态系统以每秒1,000 次的频率勘测您的驾驶状态,自动优化车身和行驶控制,确保您在任何路况下都能获得最佳的驾乘感受。
辅以诸多业内领先的智能科技,带来更灵敏、迅捷的操控体验。
深入细节的奢华质感,带来无与伦比的精致。
精挑细选的至臻材质、与时俱进的色彩搭配、标识性的时尚元素,成就中国制造揽胜极光万众瞩目的先锐风范;而至为精美的双针缝合工艺以及简洁利落的奢尚饰面,辅以可选的豪华打孔牛津真皮座椅,更是诠释了这部风尚座驾的耀人之处。
《中国制造》阅读附答案一、本大题共8小题,共25分。
阅读下面材料,完成1一8题。
材料一①今年3月,由中国南车株洲电力机车有限公司输出技术,在南非当地化生产的第95台20E型电力机车下线,南非总统祖马亲自为机车剪彩时感慨:“中国南车在实现本地化生产和采购,技术转让和本土员工培训等方面功不可没。
”②从卖装备到卖技术,从一锤子买卖到赢得回头客,将高铁打造成国家名片的中国南车,顺着轨道的延伸,向世界展示着“中国制造”的崭新形象。
2004年,中国铁路平均运营时速仍停留在百公里之时,中国南车便引进时速200公里的高速动车组,开始了学徒生涯。
四年后,时速300——350公里CRH2C型高速动车组在南车下线,中国成为继日,法,德之后,世界上第四个能够自主研制时速300公里及以上动车组的国家。
又两年,中国南车研制的具有完全自主知识产权的时速380公里CRH380A 型高速动车组,在京沪高铁创造了公里的世界铁路运营试验最高时速。
③拥有着高铁技术与重载技术的双桂冠,中国南车去年签下37亿美元的海外订单,是历年合同总额的两倍。
今年,中国南车仍将不遗余力地推动中国高铁“走出去”。
目前,泰国铁路项目,新马高铁项目都在积极推进,其中3月14日中泰铁路合作项目正式签署合同。
中国相关机构将对该项目建设进行可行性调研,预计于5月将公布调研结果并对货款等事项进行进一步磋商。
④“中国速度”震惊世界!⑤作为国家领导人每逢出访必定推销的“中国制造”,中国南车的触角正伸向高新技术的前沿阵地。
今年3月,南车四方股份研制出世界首列氢能源有轨电车,填补了氢能源在全球有机电车领域应用的空白,也使我国成为世界上第一个掌握氢能源有轨电车技术的国家。
4月15日,中国南车还将斥资12亿元,收购全球第二大深海机器人供应商——英国SMD公司100%的股权。
中国轨道装备巨头从陆地正式潜入海洋,或许不久的将来,海水也将沸腾起来。
(取材于2015年4月4日《人民日报》)1. 根据“材料一”,下列对“中国南车”发展的原因,概括不正确的一项是(2分)A.学习外国技术B.开展自主研发C.加强合作交流D.开拓发展领域2. 根据“材料一”,下列对第④段中“中国速度”的理解,正确的一项是(3分)A. 中国高铁对速度要求很高B.中国高铁创造世界列车运行最快速度C. 中国高铁技求发展速度迅猛D.中国高铁对外合作项目发展迅速材料二①中国经济历经多年的高速增长,广大民众的消食费意识迅速觉醒。
中国制造2025国发〔2015〕28号各省、自治区、直辖市人民政府,国务院各部委、各直属机构:现将《中国制造2025》印发给你们,请认真贯彻执行。
国务院2015年5月8日(本文有删减)中国制造2025制造业是国民经济的主体,是立国之本、兴国之器、强国之基。
十八世纪中叶开启工业文明以来,世界强国的兴衰史和中华民族的奋斗史一再证明,没有强大的制造业,就没有国家和民族的强盛。
打造具有国际竞争力的制造业,是我国提升综合国力、保障国家安全、建设世界强国的必由之路。
新中国成立尤其是改革开放以来,我国制造业持续快速发展,建成了门类齐全、独立完整的产业体系,有力推动工业化和现代化进程,显著增强综合国力,支撑我世界大国地位。
然而,与世界先进水平相比,我国制造业仍然大而不强,在自主创新能力、资源利用效率、产业结构水平、信息化程度、质量效益等方面差距明显,转型升级和跨越发展的任务紧迫而艰巨。
当前,新一轮科技革命和产业变革与我国加快转变经济发展方式形成历史性交汇,国际产业分工格局正在重塑。
必须紧紧抓住这一重大历史机遇,按照“四个全面”战略布局要求,实施制造强国战略,加强统筹规划和前瞻部署,力争通过三个十年的努力,到新中国成立一百年时,把我国建设成为引领世界制造业发展的制造强国,为实现中华民族伟大复兴的中国梦打下坚实基础。
《中国制造2025》,是我国实施制造强国战略第一个十年的行动纲领。
一、发展形势和环境(一)全球制造业格局面临重大调整。
新一代信息技术与制造业深度融合,正在引发影响深远的产业变革,形成新的生产方式、产业形态、商业模式和经济增长点。
各国都在加大科技创新力度,推动三维(3D)打印、移动互联网、云计算、大数据、生物工程、新能源、新材料等领域取得新突破。
基于信息物理系统的智能装备、智能工厂等智能制造正在引领制造方式变革;网络众包、协同设计、大规模个性化定制、精准供应链管理、全生命周期管理、电子商务等正在重塑产业价值链体系;可穿戴智能产品、智能家电、智能汽车等智能终端产品不断拓展制造业新领域。
2015年中国制造业倒闭潮爆发[摘要]:2015年制造业形势不容乐观,2015年制造业倒闭潮爆发了。
2015年广东东莞倒闭企业、重庆企业破产、浙江温州企业破产倒闭潮集中爆发。
其中不乏国内国际知名企业如微软停诺基亚、苏州联建科技、万事达公司、联胜、中国制造业熬过了2008,却熬不过2015。
据了解,目前,松下、日本大金、夏普、TDK均计划回迁日本本土。
优衣库、耐克、富士康、船井电机、三星等世界知名企业也纷纷在东南亚和印度开设新厂,加快了撤离中国的步伐。
制造企业不肯花钱转型,就得倒闭。
在国务院参事室姚景源看来,中国制造的问题在于大而不强。
让国人引以为豪的“Made in china”曾带领中国走在世界前沿。
而如今,一方面,一些东南亚国家正在中低端制造业上发力,抢夺中国成本优势地位;另一方面,原本在华生产的外资高端制造业回流发达国家,投资优势正在消失。
业内人士表示,中国制造业熬过了2008,却熬不过2015。
微软计划关停诺基亚东莞工厂,该工厂近期正加快速将生产设备运往越南工厂。
同时,位于北京的微软诺基亚工厂也将同步关停。
据传此次诺基亚东莞和北京工厂裁员共计9000人。
据了解,2014年12月5日,知名手机零部件代工厂苏州联建科技宣布倒闭,随后联建的兄弟公司,位于东莞的万事达公司和联胜公司相继倒闭,三家公司累计员工人数近万人。
此外,几乎是同时期,位于苏州的诺基亚手机零部件供应商闳晖科技也宣布关门停产。
1月,手机零件制造商东莞市奥思睿德世浦电子科技老板欠债1.35亿元跑路,400员工失业。
从事杂牌手机制造的东莞兆信通讯因资金链断裂倒闭,1000多名员工失业,董事长高民自杀。
业内人士估计,春节前东莞至少上百家大型工厂倒闭或停产。
此外,被称为制造业之都,以生产制造眼镜、鞋子、打火机闻名世界的温州,目前正在经历着制造产业空心化,鞋子、打火机等引以为傲的产业正在逐渐失去光环。
据了解,目前,松下、日本大金、夏普、TDK均计划进一步推进制造基地回迁日本本土。
2015年中国制造业发展现状剖析近几年,我国GDP增长放缓,由过去的高速增长转为中高速增长的新常态,而中国制造业受各种内部因素和外部压力的影响,也开始迈入制造业的新常态。
与互联网产业的风光无限相比,制造业目前可谓在重重困难中艰难跋涉。
而2015年对于中国制造业来说,注定又是不平淡的一年,两化融合体系的大力推进、《中国制造2025》的颁布等,让各界的目光聚焦在制造业。
2015年我国GDP增长速度6.9%迈入经济发展新常态2015年我国GDP增长速度为6.9%,从近20年的数据可以看到,中国经济在2007年GDP增速达到了一个阶段性峰值:14.2%;接近上一个峰值:1992年的14.3%。
2007年后开始下行,虽在2010年又回到了10.6%,但此后并未反弹到原来的高度,近几年持续回落。
中国的经济正在由高速增长转为中高速增长,迈入了经济发展的新常态。
【详细】“中国制造”的“新常态”“新常态”这个概念提出已一年有余,在这一理念的指导下,中国制造也开始步入新的阶段。
成本优势逐步削弱美国波士顿咨询集团发布的报告指出,中国的制造成本已经与美国相差无几。
“中国制造”的劳工成本优势不再,传统劳动密集型制造业竞争力正在逐步消失。
【详细】转型升级和价值链攀升一方面原有劳动密集型产业向东南亚和印度等更低劳动力成本的国家转移,另一方面,中国制造正向价值链更高端的产品延伸。
《中国制造2025》为中国制造业转型升级设计了规划,将“中国制造”向“中国智造“推进。
【详细】互联网和制造业紧密融合互联网和传统行业深度融合,将成为新一轮“中国制造”的制高点。
物联网、云计算、大数据、工业互联网、移动互联网、电子商务等都将成为推动制造业发展的关键技术。
【详细】出口增速放缓受困于全球经济疲软,“中国制造”出口数据增速放缓,过去多为两位数增长,如今已经降到一位数的增长,甚至在某些月份出现负增长。
【详细】消费者需求驱动消费者的需求越来越趋于多元化,对产品质量、创新性等要求高;个性化的需求越来越多,对需求的响应时间要求越来越短;对服务质量的要求越来越高。
中国版“工业4.0”模式派与技术之争
字体:大小换肤:收藏2015-01-12 16:45:41
“工业4.0代表了第四次工业革命,就是全价值链和生命周期控制产品的管理水平。
”2014年12月21日,一场围绕“德国工业4.0”的高端论坛在号称“未来十年全球发展最快城市”的中国成都隆重展开,德国电子与信息技术协会董事长、国际机器人及智能装备产业联盟副主席伯恩哈德.蒂斯如是说。
在德国SAP装备制造首席专家郭智麟看来,德国工业4.0带来的将是产品智能制造的个性化、高端服务和创新性。
面对德国“智能制造”的美好前景,国内正在筹备或计划涉足工业4.0的传统企业倍受鼓舞。
不过,中国企业应如何迎接工业4.0?在上述会议上,分别秉持技术派与商业模式派的相关企业陷入激烈交锋。
技术派认为,互联网、云计算等技术可以全球共享,中国企业必须扎实推进研发,应自主掌握核心技术,避免重蹈汽车领域的覆辙。
而商业模式派则认为,与德国制造的精细、日本制造的精准相比,国内企业难以达到,着力点应在“快”,如快速设计、快速制造等。
模式派:看重发展方式
5年前,美国次贷危机蔓延全球,一直号称是“世界工厂”的中国尤其是沿海地区首次遭遇了“用工荒”。
政府出台了刺激政策,起到了经济托底的效果。
但是,“产业升级”计划还是因为危机而受到一定影响。
中科院院士、华中科技大学机械科学与工程学院院长丁汉直接抛出了疑问,“之前是找不到人,现在是用不起人,人员成本上升,中国制造企业怎么抢占市场?”
面对新一轮工业革命浪潮,特别是传统“制造强国”德国野心勃勃的工业4.0计划,中国决策层也推出了中国版的工业4.0计划。
郭智麟表示,“为什么工业4.0在中国这么热?因为谈到的事情都是中国企业需要的,比如高端设备。
大家都知道,中国所有设备都偏向中低端,中低端利润率肯定较低,我们还是量产的。
”
不过,围绕工业4.0的追赶浪潮,仍处于发育期的中国传统企业似乎有不同的看法,其中一派认为商业模式是核心竞争力,他们认为世界是平的,比如借助资本的力量,但另一派坚持掌握技术才是核心竞争力。
上海高威科电气技术有限公司总经理田津松认为,工业4.0需要解决如何在中国落地的关键问题。
与德国制造的精细化、日本制造的精准化相比,中国制造这两个都相对薄弱。
中国企业应从成本的4个维度入手,尤其是须考虑常被忽略的时间成本。
田津松表示,中国企业的着力点应在“快”字,快速适应市场、快速制造等,但须注意
企业产品要符合市场需求、标准化模块化设计、智能化信息化生产、智能化企业管理和差异化经营模式。
“完全靠自己一点一点掌握核心技术,很可能会丧失机器人产业发展重大机遇,技术必须要做,但更关键的是企业要在发展方式上下工夫。
我们可以学电商,中国电商短短几年走到全球前列,主要是学了国外最新模式,借力全球资本,人才也全球引进。
”新松机器人自动化股份公司总裁、机器人国家工程中心副主任曲道奎亦如是说。
曲道奎以中国高铁为例,认为中国高铁能够成功走出去,得益于中国这个大市场及其培育起来的南北车集团。
在他看来,与自主研发和开放式平台相比,依靠国际资源整合将是一个关键策略。
技术派:首先应把工业化做好
与模式派相比,技术派显得要冷静、低调一些。
丁汉表示,在机器人应用领域,以前较多是搬运、喷漆、焊接、装配,但在航空业使用大的机翼铣削、磨抛机器人,有一些技术不是短期能解决的,练好内功把技术搞上去是紧迫任务。
“德国80%的博士毕业后走向企业界,基础理论很扎实,技术上突破力较强,而这方面正是我们的短板,我们需要做基础理论积累,真正给企业带来竞争力和效益。
”丁汉强调说。
大连光洋科技集团董事长、国际机器人及智能装备产业联盟副主席于德海向《每日经济新闻》记者表示,“实现工业4.0,首先应把工业化做好。
工业4.0其实是工业化和信息化的‘两化’融合,工业化是智能制造的物理基础,比如数控机床、机器人及其控制、执行等的关键部件,这些都是工业化的前提。
”
于德海进一步称,“大家讲的互联网、物联网、云计算等等,这些技术全世界可以共享,但工业化的技术,像高端的控制技术,别说国与国之间,即便是企业之间,也是不交流的,这个没有可跨越的,也不存在中国能走出一种捷径,核心技术是花钱买不来的。
大家一定要静下心来,踏踏实实一步一步走,加上国家的顶层设计,各自发挥协同优势。
”。