2018年贵州省黔东南州高考第一次模拟考试理科数学试题word版含答案
- 格式:doc
- 大小:924.50 KB
- 文档页数:10
黔东南州2018届高三第一次模拟考试理科数学试卷 第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U R =,集合{|1}A x x =>,2{|20}B x x x =-<,则()U C A B =I ( )A .(1,2)B .(0,)+∞C .(0,1]D .(,2)-∞ 2.对于复数(,)z a bi a b R =+∈,若212iz i i-+=+,则b =( ) A .0 B .2 C .-2 D .-13.经过中央电视台《魅力中国城》栏目的三轮角逐,黔东南州以三轮竞演总分排名第一名问鼎“最具人气魅力城市”.如图统计了黔东南州从2010年到2017年的旅游总人数(万人次)的变化情况,从一个侧面展示了大美黔东南的魅力所在.根据这个图表,在下列给出的黔东南州从2010年到2017年的旅游总人数的四个判断中,错误..的是( )A .旅游总人数逐年增加B .2017年旅游总人数超过2015、2016两年的旅游总人数的和C .年份数与旅游总人数成正相关D .从2014年起旅游总人数增长加快4.在等差数列{}n a 中,若1232318a a a ++=,则152a a +=( ) A .9 B .8 C .6 D .35.某正三棱锥正视图如图所示,则俯视图的面积为( )A .2.123.2 D .636.我国古代数学名著《九章算术》在“勾股”一章中有如下数学问题:“今有勾八步,股十五步,勾中容圆,问径几何?”.意思是一个直角三角形的两条直角边的长度分别是8步和15步,则其内切圆的直径是多少步?则此问题的答案是( )A .3步B .6步C .4步D .8步 7.在21(2)nx x-展开式中存在常数项,则正整数n 可以是( ) A .2017 B .2018 C .2019 D .2020 8.执行如图的程序框图,当输入的351n =时,输出的k =( )A .355B .354C .353D .3529.给出函数()2sin cos f x x x =22cos 1x +-,点A ,B 是其一条对称轴上距离为5π的两点,函数()f x 的图象关于点C 对称,则ABC ∆的面积的最小值为( ) A .516 B .58 C .54 D .5210.过抛物线C :24y x =的焦点F 的直线交抛物线C 于11(,)A x y 、22(,)B x y 两点,以线段AB 为直径的圆的圆心为1O ,半径为r .点1O 到C 的准线l 的距离与r 之积为25,则12()r x x +=( ) A .40 B .30 C .25 D .2011.已知(0,3)A 、(2,1)B ,如果函数()y f x =的图象上存在点P ,使PA PB =,则称()y f x =是线段AB 的“和谐函数”.下面四个函数中,是线段AB 的“和谐函数”的是( ) A .ln 2e y x =+ B .1x y e e =+ C .ln x y x=D .11x y e -=+ 12.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c .D 、E 是线段AB 上满足条件1()2CD CB CE =+u u u r u u u r u u u r,1()2CE CA CD =+u u u r u u u r u u u r的点,若2CD CE c λ⋅=u u u r u u u r ,则当角C 为钝角时,λ的取值范围是( )A .12(,)369-B .12(,)189-C .11(,)369-D .11(,)189- 第Ⅱ卷 非选择题二、填空题:本大题共4小题,每小题5分.13.若实数x ,y 满足116x y x y ≥⎧⎪≥⎨⎪+≤⎩,则2z x y =+的最大值是 .14.已知函数2()log 2xf x x m =+-有唯一零点,如果它的零点在区间(1,2)内,则实数m 的取值范围是 .15.已知P 、Q 分别是棱长为2的正方体的内切球和外接球上的动点,则线段PQ 长度的最小值是 . 16.已知点P 是双曲线C :22221(0,0)x y a b a b-=>>右支上一点,C 的左、右顶点分别为A 、B ,C 的右焦点为F ,记PAF α∠=,PBF β∠=,当cos()αβ+=,且0PF AB ⋅=u u u r u u u r 时,双曲线C 的离心率e = .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.各项均为正数的等比数列{}n a 的前n 项和为n S .已知13a =,339S =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列{}n c 满足nn nS c a =,求数列{}n c 的前n 项和n T . 18.为提高黔东南州的整体旅游服务质量,州旅游局举办了黔东南州旅游知识竞赛,参赛单位为本州内各旅游协会,参赛选手为持证导游.现有来自甲旅游协会的导游3名,其中高级导游2名;乙旅游协会的导游5名,其中高级导游3名.从这8名导游中随机选择4人 参加比赛.(Ⅰ)设A 为事件“选出的4人中恰有2名高级导游,且这2名高级导游来自同一个旅游协会”,求事件A 发生的概率.(Ⅱ)设ξ为选出的4人中高级导游的人数,求随机变量ξ的分布列和数学期望. 19.如图所示,在三棱锥P ABC -中,PC ⊥平面ABC ,3PC =,2ACB π∠=,D 、E 分别为线段AB 、BC上的点,且CD DE ==,22CE EB ==.(Ⅰ)求证:DE ⊥平面PCD ; (Ⅱ)求二面角D PE C --的余弦值.20.已知椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别为1F 、2F ,上顶点为A .动直线l :10()x my m R --=∈经过点2F ,且12AF F ∆是等腰直角三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线l 交C 于M 、N 两点,若点A 在以线段MN 为直径的圆外,求实数m 的取值范围. 21.函数()ln xf x e a x b =--在点(1,(1))P f 处的切线方程为0y =. (Ⅰ)求实数a ,b 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)1x ∀≥,22ln (ln )xxex x ke e+≤成立,求实数k 的取值范围. 请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,点P 的坐标为(1,0)-,直线l 的参数方程为1cos sin x t y t αα=-+⎧⎨=⎩(t 为参数).以坐标原点O 为极点,以x 轴的非负半轴为极轴,选择相同的单位长度建立极坐标系,圆C 极坐标方程为2ρ=. (Ⅰ)当3πα=时,求直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)直线l 与圆C 的交点为A 、B ,证明:PA PB ⋅是与α无关的定值. 23.选修4-5:不等式选讲 设()221f x x x =-++. (Ⅰ)求不等式()6f x ≤的解集;(Ⅱ)[2,1]x ∀∈-,()2f x m -≤,求实数m 的取值范围.黔东南州2018届高三第一次模拟考试理科数学参考答案一、选择题1-5: CCBAD 6-10: BCBBA 11、12:DA1.解:由22002x x x -<⇒<<,故()U A I ð{|B x =1}{|02}(0,1]x x x ≤<<=I . 2.解:由212iz i i-+=+得22z i b =-⇒=-. 3.解:从图表中看出,选项B 明显错误.4.解:设{}n a 的公差为d ,由1232318a a a ++=得116818349a d a d +=⇒+=,则1512349a a a d +=+=.5.解:由正视图知,该正三棱锥的底边长为6,高为4,则侧视图是一个底边长为4的三角形,其面积为6.解:由于该直角三角形的两直角边长分别是8和15,则得其斜边长为17,设其内切圆半径为r ,则有8151718152222r r r ++=⨯⨯(等积法),解得3r =,故其直径为6(步). 7.解:通项3121(2)()(1)2r n r r r n r r n rr n n T C x C x x---+=-=-, 依题意得303n r n r -=⇒=.故n 是3的倍数,只有选项C 符合要求. 8.解:①351=n ,则351=k ,0=m ,20000≤=m 成立,3521351=+=k ,02352704m =+⨯=;②7042000m =≤成立,3531352=+=k ,70423531410m =+⨯=;③14102000m =≤成立,3541353=+=k ,141023542118m =+⨯=; ④21182000m =≤不成立,所以输出354=k .故选B .9.解:本题抓住一个主要结论——函数()f x 的最小正周期为π,则C 点到直线AB 距离的最小值为4π,从而得到ABC ∆面积的最小值为58,故选B . 10.解:由抛物线的性质知,点1O 到C 的准线l 的距离为1||2AB r =,依题意得2255r r =⇒=,又点1O 到C 的准线l 的距离为121(2)52x x r ++== ,则有128x x +=,故12()r x x +=40. 11.解:由于线段AB 的垂直平分线方程为1y x =+,则函数()y f x =是线段AB 的“和谐函数”()y f x ⇔=与直线1y x =+有公共点()1y f x x ⇔=--函数有零点.利用函数的导函数的性质,经检验知,只有函数11x y e-=+的图像上存在点(1,2)P 满足上上述条件,故选D .12.解:依题意知D 、E 分别是线段AB 上的两个三等分点,则有2133CD CB CA =+u u u r u u u r u u u r , 1233CE CB CA =+u u u r u u u r u u u r,则22225999a b CD CE CB CA =++⋅⋅u u u r u u u r u u u r u u u r ,而2222a b c CB CA +-=⋅u u u r u u u r , 则222222225()9918a b CD CE a b c c λ=+++-=⋅u u u r u u u r ,得2221859a b c λ++=, 由C 为钝角知2222221a b a b c c ++<⇒<,又222211()22a b a b c +≥+>⇒22212a b c +>, 则有1185129λ+<<⇒12369λ-<<,故选A .二、填空题13.解:本题考查线性规划,答案为11.14.解:因为()f x 在()0,+∞上单调递增,所以(1)(2)025f f m <⇒<<.15.解:依题意知,该正方体的内切球半径为1PQ 长度的1.16.解:由已知得2tan 1()b e a c a α==-+,2tan 1()b e ac a β==+-,则22tan()2e e αβ+=-又cos()tan()2αβαβ+=⇒+=-,则有22222ee e =-⇒=-或1e =-(舍). 三、解答题17.解:(Ⅰ)设{}n a 的公比为q ,由13a =,339S =得12111=339a a a q a q ⎧⎨++=⎩, 于是2120q q +-=,解得3q =(4q =-不符合题意,舍去)故111333n n nn a a q --==⨯=.(Ⅱ)由(Ⅰ)得3(31)2nn S =-,则331223n n n n S c a ==-⨯,则23311(2233n T n =-++ (1))3n + 111(1)3331333122243413n n n n --=-⨯=+-⨯-. 18.解:(Ⅰ)由已知条件知,当两名高级导游来自甲旅游协会时,有22233C C =种不同选法; 当两名高级导游来自乙旅游协会时,有22339C C =种不同选法,则22222333486()35C C C C P A C +==,所以事件A 发生的概率为635. (Ⅱ)随机变量ξ的所有可能取值为1,2,3,4.1353481(1)14C C P C ξ===,2253483(2)7C C P C ξ===, 3153483(3)7C C P C ξ===,4053481(4)14C C P C ξ===. 所以,随机变量ξ的分布列为则随机变量ξ的数学期望12341477142E ξ=⨯+⨯+⨯+⨯=(人). 19.(Ⅰ)证明:由PC ⊥平面ABC ,DE ⊂平面ABC ,故.PC DE ⊥ 由2,CE CD DE ===CDE ∆为等腰直角三角形,故.CD DE ⊥又PC CD C =I ,故DE ⊥平面PCD .(Ⅱ) 由(Ⅰ)知,CDE ∆为等腰直角三角形,,4DCE π∠=过D 作DF 垂直CE 于F ,易知1,DF FC FE ===又已知1EB =,故 2.FB = 以C 为坐标原点,如图建立空间直角坐标系,则(0,0,0),(0,0,3),(0,2,0),(1,1,0),C P E D则有(1,1,0)DE =-u u u r ,(1,1,3)DP =--u u u r.设平面PDE 的法向量为(,,)x y z =m ,则有00300DE x y x y z DP ⎧⋅=-+=⎧⎪⇒⎨⎨--+=⋅=⎩⎪⎩u u u r u u ur m m ,可取(3,3,2)=m ; 因为AC ⊥平面PCE ,所以平面PCE 的法向量可取(1,0,0)=n . 则322cos ,22⋅<>==m n m n |m ||n |. 而二面角D PE C --为锐二面角,故其余弦值为32222.20.解:(Ⅰ) 因为直线:10l x my --=经过点2F ,所以1c =,又12AF F ∆是等腰直角三角形,所以()222222a a c a +=⇒=所以2221b a c =-=故椭圆C 的标准方程为2212x y +=. (Ⅱ) 设11(1,)M my y +,22(1,)N my y +,将:10l x my --=与2212x y +=联立消x 得 22(2)210m y my ++-=.12122221,22m y y y y m m +=-=-++, 点A 在以线段MN 为直径的圆外等价于0AM AN >⋅u u u u r u u u r, ()()()21212112AM AN m y y m y y =++-++⋅u u u u r u u u r()()22212112022m m m m m ⎛⎫⎛⎫=+-+--+> ⎪ ⎪++⎝⎭⎝⎭2230m m ⇒--<,解得13m -<<故实数m 的取值范围是(1,3)-.21. 解:(Ⅰ)()x af x e x'=-, 依题意得(1)0f =,(1)0f '=,则有00e b a ee a b e⎧-==⎧⇒⎨⎨-==⎩⎩.(Ⅱ)由(Ⅰ)得()ln xf x e e x e =--,()x e f x e x'=-, 由于()f x '在区间(0,)+∞上为增函数,且(1)0f '=,则当01x <<时,()(1)0f x f '<'=;当1x >时,()(1)0f x f '>'=, 故函数()f x 的减区间是(0,1),增区间是(1,)+∞.(Ⅲ) 因为2222221ln ln 2ln 1ln ln x x xx x x x exe e e ++++⎛⎫== ⎪⎝⎭, 于是构造函数1ln (),1xxh x x e +=≥, 1x ∀≥,22ln (ln )x x ex x ke e+≤成立,等价于2max ()k h x ⎡⎤≥⎣⎦, 由(Ⅱ)知当1x ≥时,()(1)0f x f ≥=,即(ln 1)xe e x ≥+对1x ≥恒成立. 即ln 11xx e e+≤(当且仅当1x =时取等号) 所以函数max 1()(1)h x h e==,又1x ≥时,()0h x >, 所以222max1()(1)h x h e ⎡⎤==⎣⎦. …(11分)故k 的取值范围是21[,)e+∞. 22. 解:(Ⅰ)当3πα=时,l的参数方程为112x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),消去t得y =+C 极坐标方程为2ρ=,得224x y +=.故直线l的普通方程为1)y x =+圆C 的直角坐标方程为224x y +=.(Ⅱ)将1cos sinx t y t αα=-+⎧⎨=⎩代入224x y +=得, 22cos 30t t α--=.设其两根分别为12,t t ,则123t t =-.由t 的几何意义知||||PA PB ⋅12||||3t t =⋅=.故||||PA PB ⋅为定值3(与α无关) .23. 解:(Ⅰ)3, (1)()4, (12)3, (2)x x f x x x x x -≤-⎧⎪=+-<<⎨⎪≥⎩,由()6f x ≤解得22x -≤≤, 故不等式()6f x ≤的解集为[2,2]-. (Ⅱ) 由(Ⅰ)及一次函数的性质知:()f x 在区间[2,1]--为减函数,在区间[1,1]-上为增函数,而(2)6(1)5f f -=>=,故在区间[2,1]-上,min ()(1)3f x f =-=,max ()(2)6f x f =-=. 由|()|22()2f x m m f x m -≤⇒-≤≤+. 所以max 2()m f x +≥且min 2()m f x -≤, 于是26m +≥且23m -≤, 故实数m 的取值范围是[4,5].黔东南州2018届高三第一次模拟考试理科数学参考答案一、选择题1. 解:由2002x x x -<⇒<<,故U A I ð{|B x =1}{|02}(0,1]x x x ≤<<=I . 2. 解:由212iz i i-+=+得22z i b =-⇒=-. 3. 解:从图表中看出,选项B 明显错误.4. 解:设{}n a 的公差为d ,由1232318a a a ++=得116818349a d a d +=⇒+=,则1512349a a a d +=+=.5. 解:由正视图知,该正三棱锥的底边长为6,高为4,则侧视图是一个底边长为高为4的三角形,其面积为6. 解:由于该直角三角形的两直角边长分别是8和15,则得其斜边长为17,设其内切圆半径为r ,则有8151718152222r r r ++=⨯⨯(等积法),解得3r =,故其直径为6(步). 7. 解:通项3121(2)()(1)2rn r r r n r r n rr n n T C x C x x---+=-=-, 依题意得303n r n r -=⇒=.故n 是3的倍数,只有选项C 符合要求. 8. 解:①351=n ,则351=k ,0=m ,20000≤=m 成立,3521351=+=k ,02352704m =+⨯=;②7042000m =≤成立,3531352=+=k ,70423531410m =+⨯=; ③14102000m =≤成立,3541353=+=k ,141023542118m =+⨯=; ④21182000m =≤不成立,所以输出354=k .故选B .9. 解:本题抓住一个主要结论——函数()f x 的最小正周期为π,则C 点到直线AB 距离的最小值为4π,从而得到ABC ∆面积的最小值为58,故选B . 10. 解:由抛物线的性质知,点1O 到C 的准线l 的距离为1||2AB r =,依题意得2255r r =⇒=,又点1O 到C 的准线l 的距离为121(2)52x x r ++== ,则有128x x +=,故12()r x x +=40. 11. 解:由于线段AB 的垂直平分线方程为1y x =+,则函数()y f x =是线段AB 的“和谐函数”()y f x ⇔=与直线1y x =+有公共点()1y f x x ⇔=--函数有零点.利用函数的导函数的性质,经检验知,只有函数11x y e-=+的图像上存在点(1,2)P 满足上上述条件,故选D .12. 解:依题意知D 、E 分别是线段AB 上的两个三等分点,则有2133CD CB CA =+u u u r u u u r u u u r,1233CE CB CA =+u u u r u u u r u u u r ,则22225999a b CD CE CB CA =++⋅⋅u u u r u u u r u u u r u u u r ,而2222a b c CB CA +-=⋅u u u r u u u r ,则222222225()9918a b CD CE a b c c λ=+++-=⋅u u u r u u u r ,得2221859a b c λ++=,由C 为钝角知2222221a b a b c c ++<⇒<,又222211()22a b a b c +≥+>⇒22212a b c +>,则有1185129λ+<<⇒12369λ-<<,故选A . 二、填空题1314. 解:因为()f x 在()0,+∞上单调递增,所以(1)(2)025f f m <⇒<<.15. 解:依题意知,该正方体的内切球半径为1PQ 长度1.16. 解:由已知得2tan 1()b e a c a α==-+,2tan 1()b e ac a β==+-,则22tan()2e e αβ+=- 又cos()tan()2αβαβ+=⇒+=-,则有22222ee e =-⇒=-或1e =-(舍). 三、解答题17. 解:(Ⅰ)设{}n a 的公比为q ,由13a =,339S =得12111=339a a a q a q ⎧⎨++=⎩, …………………………………………………(2分) 于是2120q q +-=,解得3q =(4q =-不符合题意,舍去) ……………(4分)故111333n n nn a a q --==⨯=. …………………………………………………(6分)(Ⅱ)由(Ⅰ)得3(31)2nn S =- , ……(8分)则331223n n n n S c a ==-⨯,则23311(2233n T n =-++ (1))3n + ………(10分) 111(1)3331333122243413n n n n --=-⨯=+-⨯-. …………(12分)18. 解:(Ⅰ)由已知条件知,当两名高级导游来自甲旅游协会时,有22233C C =种不同选法;当两名高级导游来自乙旅游协会时,有22339C C =种不同选法,则 ……………(2分)22222333486()35C C C C P A C +==,所以事件A发生的概率为635. ……(6分) (Ⅱ)随机变量ξ的所有可能取值为1,2,3,4. ……………………………(7分)1353481(1)14C C P C ξ===,2253483(2)7C C P C ξ===, 3153483(3)7C C P C ξ===,4053481(4)14C C P C ξ===. ………………(11分) 所以,随机变量ξ的分布列为ξ1 2 3 4p114 37 37 114则随机变量ξ的数学期望512341477142E ξ=⨯+⨯+⨯+⨯=(人).……(12分) 19. (Ⅰ)证明:由PC ⊥平面ABC ,DE ⊂平面ABC ,故.PC DE ⊥由2,2CE CD DE ===CDE ∆为等腰直角三角形,故.CD DE ⊥又PC CD C =I ,故DE ⊥平面PCD . ……………(6分) (Ⅱ) 由(Ⅰ)知,CDE ∆为等腰直角三角形,,4DCE π∠=过D 作DF 垂直CE 于F ,易知1,DF FC FE ===又已知1EB =,故 2.FB =(7分) 以C 为坐标原点,如图建立空间直角坐标系,则(0,0,0),(0,0,3),(0,2,0),(1,1,0),C P E D则有(1,1,0)DE =-u u u r ,(1,1,3)DP =--u u u r. 设平面PDE 的法向量为(,,)x y z =m ,则有00300DE x y x y z DP ⎧⋅=-+=⎧⎪⇒⎨⎨--+=⋅=⎩⎪⎩u u u r u u ur m m ,可取(3,3,2)=m ; 因为AC ⊥平面PCE ,所以平面PCE 的法向量可取(1,0,0)=n .…………(9分) 则322cos ,22⋅<>==m n m n |m ||n |. …………………………………………(11分) 而二面角D PE C --322………………(12分) 20. 解:(Ⅰ) 因为直线:10l x my --=经过点2F ,所以1c =,又12AF F ∆是等腰直角三角形,所以()222222a a c a +=⇒=所以2221b a c =-=故椭圆C 的标准方程为2212x y +=. ……………………………………………(5分) (Ⅱ) 设11(1,)M my y +,22(1,)N my y +,将:10l x my --=与2212x y +=联立消x 得 22(2)210m y my ++-=.12122221,22m y y y y m m +=-=-++ ………(8分) 点A 在以线段MN 为直径的圆外等价于0AM AN >⋅u u u u r u u u r, ()()()21212112AM AN m y y m y y =++-++⋅u u u u r u u u r()()22212112022m m m m m ⎛⎫⎛⎫=+-+--+> ⎪ ⎪++⎝⎭⎝⎭2230m m ⇒--<,解得13m -<<故实数m 的取值范围是(1,3)-.…(12分)21. 解:(Ⅰ)()x af x e x'=-, …………………………………………………(1分) 依题意得(1)0f =,(1)0f '=,则有 ………………………………(2分)00e b a ee a b e ⎧-==⎧⇒⎨⎨-==⎩⎩. …………………………………………………(4分) (Ⅱ)由(Ⅰ)得()ln xf x e e x e =--,()x ef x e x'=-, 由于()f x '在区间(0,)+∞上为增函数,且(1)0f '=,则当01x <<时,()(1)0f x f '<'=;当1x >时,()(1)0f x f '>'=,故函数()f x 的减区间是(0,1),增区间是(1,)+∞.……………………………(8分)(Ⅲ) 因为2222221ln ln 2ln 1ln ln x x xx x x x exe e e ++++⎛⎫== ⎪⎝⎭, 于是构造函数1ln (),1xxh x x e+=≥, 1x ∀≥,22ln (ln )xx ex x ke e+≤成立,等价于2max ()k h x ⎡⎤≥⎣⎦………………(9分) 由(Ⅱ)知当1x ≥时,()(1)0f x f ≥=,即(ln 1)xe e x ≥+对1x ≥恒成立. 即ln 11x x e e+≤(当且仅当1x =时取等号) 所以函数max 1()(1)h x h e==,又1x ≥时,()0h x >, 所以222max1()(1)h x h e ⎡⎤==⎣⎦. …(11分)故k 的取值范围是21[,)e +∞. …(12分)22. 解:(Ⅰ)当3πα=时,l的参数方程为112x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数)消去t得y =+C 极坐标方程为2ρ=,得224x y +=.故直线l的普通方程为1)y x =+圆C 的直角坐标方程为224x y +=. ……(5分) (Ⅱ)将1cos sinx t y t αα=-+⎧⎨=⎩代入224x y +=得, 22cos 30t t α--=.设其两根分别为12,t t ,则123t t =-.由t 的几何意义知||||PA PB ⋅12||||3t t =⋅=.故||||PA PB ⋅为定值3(与α无关)(10分)23. 解:(Ⅰ)3, (1)()4, (12)3, (2)x x f x x x x x -≤-⎧⎪=+-<<⎨⎪≥⎩,由()6f x ≤解得22x -≤≤,故不等式()6f x ≤的解集为[2,2]-. ……………………………………………(5分) (Ⅱ) 由(Ⅰ)及一次函数的性质知:()f x 在区间[2,1]--为减函数,在区间[1,1]-上为增函数,而(2)6(1)5f f -=>=,故在区间[2,1]-上,min ()(1)3f x f =-=,max ()(2)6f x f =-=. 由|()|22()2f x m m f x m -≤⇒-≤≤+. 所以max 2()m f x +≥且min 2()m f x -≤, 于是26m +≥且23m -≤,故实数m 的取值范围是[4,5]. …………………………………………………(10分)。
贵州省黔东南州2018届高三数学上学期第一次联考试题文(扫描版) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(贵州省黔东南州2018届高三数学上学期第一次联考试题文(扫描版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为贵州省黔东南州2018届高三数学上学期第一次联考试题文(扫描版)的全部内容。
贵州省黔东南州2018届高三数学上学期第一次联考试题文(扫描版)以上就是本文的全部内容,可以编辑修改。
高尔基说过:“书是人类进步的阶梯。
”我希望各位朋友能借助这个阶梯不断进步。
物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。
很多人已经不再如饥似渴地追逐一篇文档了,但只要你依然有着这样一份小小的坚持,你就会不断成长进步,当纷繁复杂的世界牵引着我们疲于向外追逐的时候,阅读一文或者做一道题却让我们静下心来,回归自我。
用学习来激活我们的想象力和思维,建立我们的信仰,从而保有我们纯粹的精神世界,抵御外部世界的袭扰。
The above is the whole content of this article, Gorky said: "the bookis the ladderof human progress." I hope you can make progress with the help of this ladder. Material life is extremelyrich, science and technology are developing rapidly, allof which gradually change theway of people's study and leisure. Many people are no longer eager to pursue a document, but as long as you still have such a small persistence, you will continue to grow and progress. When th ecomplex world leadsus to chase out, readingan artic le or doing a problem makesus calm down and return to ourselves. Withlearning, we canactivate our imagination and thinking, establish our belief, keep our pure spiritual worldand resistthe attack ofthe external world.。
黔东南州2018届高三第一次模拟考试理科综合参考答案一、选择题:本题共13小题,每小题6分。
二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~17题只有一项符合题目要求;第18~21题有多项符合题目要求,全部选对的给6分,选对但不全的给3分,有选错的给0分。
1.大肠杆菌为原核细胞,没有复杂的细胞器;细胞生物的遗传物质都是DNA;人的造血干细胞属于真核细胞,有丝分裂是真核细胞的分裂方式。
故选A2.连续分裂的细胞才具有细胞周期;分裂间期细胞有适度生长;蚕豆根尖分生区细胞没有中心体(中心粒);故选C3.转录是以DNA的一条链为模板合成RNA,A错误;转录时需要RNA聚合酶的作用,B错误;翻译时一个mRNA分子上可以结合多个核糖体同时翻译,C错误;一种氨基酸可能有多种遗传密码,因此在翻译时一种氨基酸可能被多种tRNA转运,故选D4.免疫活性物质是由免疫细胞或其他细胞产生的发挥免疫作用的物质,A错误;有T细胞参与的特异性免疫既有可能是体液免疫也有可能是细胞免疫,B错误;有B细胞参与的特异性免疫就是体液免疫,C正确;癌细胞的清除属于免疫系统的监控和清除功能,D错误;故选C5.CO2可使溴麝香草酚蓝水溶液由蓝变绿再变黄,A正确;吡罗红可使RNA呈现红色,B错误;健那绿可使活细胞中的线粒体呈现蓝绿色,C正确;酸性条件下重铬酸钾与乙醇反应变为灰绿色,D正确;故选B6.根据题目信息可知,控制这两对相对性状的基因位于同一对同源染色体上,基因型为HhhMM高茎红花植株的出现不可能是染色体数目变异导致的,因为控制花色的基因是正常成对存在的,HhhMM应该是h基因所在染色体片段的增加导致,A错误;基因型为HoMM 高茎红花植株控制花色的基因是正常成对存在的,是由于控制茎高度的基因所在的一条染色体的片段缺失导致,B错误;基因型为hoMm矮茎红花植株控制花色的基因是正常成对存在的,是由于控制茎高度的基因所在的一条染色体的片段缺失导致的,不可能是染色体数目变异导致,C错误;基因型为hoMm矮茎红花植株自交,产生的配子有hM、om或hm、oM两种,用棋盘法写出子代的基因型,由于oo是控制茎高度性状的基因都缺失,该受精卵不能发育,因此存活的子代中染色体结构正常(hhMM或hhmm)占1/3,故选D7.硅酸盐种类繁多,结构复杂,组成各异,通常用二氧化硅和金属氧化物的组合形式表示其组成,A 选项正确,详见必修一教材第77页。
黔东南州2018届高三第一次模拟考试文科数学试卷 第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集{1,2,3,4,5,6,7,8}U =,集合{1,2,3,4}A =,{3,4,5,6}B =,则()U C A B =U ( ) A .{1,2,3,4,5,6} B .{7,8} C .{3,4} D .{1,2,5,6,7,8} 2.已知复数z 满足(1)1i z i +=-,则z 的共轭复数的虚部是( ) A .i - B .-1 C .i D .13. 经过中央电视台《魅力中国城》栏目的三轮角逐,黔东南州以三轮竞演总分排名第一名问鼎“最具人气魅力城市”.如图统计了黔东南州从2010年到2017年的旅游总人数(万人次)的变化情况,从一个侧面展示了大美黔东南的魅力所在.根据这个图表,在下列给出的黔东南州从2010年到2017年的旅游总人数的四个判断中,错误..的是( )A .旅游总人数逐年增加B .2017年旅游总人数超过2015、2016两年的旅游总人数的和C .年份数与旅游总人数成正相关D .从2014年起旅游总人数增长加快4.在等差数列{}n a 中,若124a a +=,3412a a +=,则56a a +=( ) A .8 B .16 C .20 D .285. 某正三棱锥正视图如图所示,则俯视图的面积为( )A .63.123.2 D .26. 我国古代数学名著《九章算术》在“勾股”一章中有如下数学问题:“今有勾八步,股十五步,勾中容圆,问径几何?”.意思是一个直角三角形的两条直角边的长度分别是8步和15步,则其内切圆的直径是多少步?则此问题的答案是( )A .3步B .6步C .4步D .8步 7.等比数列{}n a 的前n 项和为n S ,若公比8q =,28S =,则( ) A .872n n S a =+ B .872n n S a =- C .872n n a S =+ D .872n n a S =- 8. 执行如图的程序框图,当输入的351n =时,输出的k =( )A .355B .354C .353D .3529.已知函数()2sin cos f x x x =22cos 1x +-,则函数ln ()y f x =的单调递增区间是( ) A .(,]88k k ππππ-+()k Z ∈ B .3[,]88k k ππππ-+()k Z ∈ C .3[,)88k k ππππ++()k Z ∈ D .5[,]88k k ππππ++()k Z ∈ 10.已知过抛物线C :24y x =的焦点F 且倾斜角为60o 的直线交抛物线于A ,B 两点,过A ,B 分别作准线l 的垂线,垂足分别为M ,N ,则四边形AMNB 的面积为( ) A 83643 C 1283 D 64311.已知梯形ABCD 中,//AB CD ,2AB CD =,且90DAB ∠=o,2AB =,1AD =,若点Q 满足2AQ QB =u u u r u u u r ,则QC QD ⋅=u u u r u u u r( )A .109-B .109C .139-D .13912.如果对定义在R 上的函数()f x ,对任意m n ≠,均有()()mf m nf n +()()0mf n nf m -->成立,则称函数()f x 为“和谐函数”.给出下列函数:①()ln 25xf x =-;②3()43f x x x =-++;③()2(sin cos )f x x x x =--;④ln ,0()0,0x x f x x ⎧≠⎪=⎨=⎪⎩.其中函数是“和谐函数”的个数为( )A .1B .2C .3D .4第Ⅱ卷 非选择题二、填空题:本大题共4小题,每小题5分.13. 若实数x ,y 满足116x y x y ≥⎧⎪≥⎨⎪+≤⎩,则2z x y =+的最大值是 .14.函数2()log 2xf x x -=-的零点个数是 .15.直线20ax by -+=(0,0)a b >>与圆C :22220x y x y ++-=交于两点A ,B ,当AB 最大时,14a b+的最小值为 . 16.正四面体(四个面均为正三角形的四面体)的外接球和内切球上各有一个动点P 、Q ,若线段PQ 长度,则这个四面体的棱长为 . 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知a ,b ,c 分别为ABC ∆三个内角A ,B ,Csin cos 20A a B a --=. (Ⅰ)求B 的大小;(Ⅱ)若b =,ABC ∆的面积为2,求a c +的值. 18.为提高黔东南州的整体旅游服务质量,州旅游局举办了黔东南州旅游知识竞赛,参赛单位为本州内各旅游协会,参赛选手为持证导游.现有来自甲旅游协会的导游3名,其中高级导游2名;乙旅游协会的导游3名,其中高级导游1名.从这6名导游中随机选择2人 参加比赛. (Ⅰ)求选出的2人都是高级导游的概率;(Ⅱ)为了进一步了解各旅游协会每年对本地经济收入的贡献情况,经多次统计得到,甲旅游协会对本地经济收入的贡献范围是[30,50](单位:万元),乙旅游协会对本地经济收入的贡献范围是[20,40](单位:万元),求甲旅游协会对本地经济收入的贡献不低于乙旅游协会对本地经济收入的贡献的概率.19.如图所示,在三棱锥P ABC -中,PC ⊥平面ABC ,3PC =,D 、E 分别为线段AB 、BC 上的点,且CD DE ==22CE EB ==.(Ⅰ)求证:DE ⊥平面PCD ; (Ⅱ)求点B 到平面PDE 的距离.20.已知椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别为1F 、2F ,上顶点为A .动直线l :10()x my m R --=∈经过点2F ,且12AF F ∆是等腰直角三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设直线l 交C 于M 、N 两点,若点A 在以线段MN 为直径的圆上,求实数m 的值. 21.函数()ln xf x e a x b =--在点(1,(1))P f 处的切线方程为0y =. (Ⅰ)求实数a ,b 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)1x ∀≥,ln 0x ex ke -≤成立,求实数k 的取值范围.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,点P 的坐标为(1,0)-,直线l 的参数方程为1cos sin x t y t αα=-+⎧⎨=⎩(t 为参数).以坐标原点O 为极点,以x 轴的非负半轴为极轴,选择相同的单位长度建立极坐标系,圆C 极坐标方程为2ρ=. (Ⅰ)当3πα=时,求直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)直线l 与圆C 的交点为A 、B ,证明:PA PB ⋅是与α无关的定值. 23.选修4-5:不等式选讲 设()221f x x x =-++. (Ⅰ)求不等式()6f x ≤的解集;(Ⅱ)[2,1]x ∀∈-,()2f x m -≤,求实数m 的取值范围.黔东南州2018届高三第一次模拟考试文科数学参考答案一、选择题1-5: BDBCA 6-10: BCBAD 11、12:DB1.解:由已知,{1,2,3,4,5,6},(){7,8}U A B A B =∴=U U ð,故选B.2. 解:由已知得21(1)2122i i iz i i ---====-+,所以共轭复数z i =,虚部为1,故选D. 3. 解:从图表中看出,选项B 明显错误.4. 解:设{}n a 的公差为d ,由124a a +=得124a d +=,由3412a a +=得12512a d +=联立解得11,2a d ==,所以5612920a a a d +=+=,故选C.5. 解:由正视图知,该正三棱锥的底边长为6,高为4,则侧视图是一个底边长为高为4的三角形,其面积为 A.6. 解:由于该直角三角形的两直角边长分别是8和15,则得其斜边长为17,设其内切圆半径为r ,则有8151718152222r r r ++=⨯⨯(等积法),解得3r =,故其直径为6(步).故选B. 7. 解:设等比数列{}n a 的首项为1a ,由1128282818-⨯=⇒⎩⎨⎧==⇒⎩⎨⎧==n n a q a q S ;)282(7118)18(2-⨯⨯=--⨯=n n n S ;所以)28(71)282(71-⨯=-⨯⨯=n n n a S ,即278+=n n S a .故选C. 8. 解: ①351=n ,则351=k ,0=m ,20000≤=m 成立,3521351=+=k ,02352704m =+⨯=;②7042000m =≤成立,3531352=+=k ,70423531410m =+⨯=; ③14102000m =≤成立,3541353=+=k ,141023542118m =+⨯=; ④21182000m =≤不成立,所以输出354=k .故选B .9. 解:由已知,化简得()sin 2cos 2)4f x x x x π=+=+,又ln ()y f x =与()y f x =的单调性相同且()0f x >,所以2(2,2],(,]()4288x k k x k k k Z ππππππππ+∈+∴∈-+∈,故选A.10. 解:设1122(,),(,)A x y B x y ,由已知得1)y x =-代入抛物线方程24y x =化简得212131030,,33x x x x -+=∴==,所以1(,(3,33A B -,易知四边形AMNB 为梯形,故1(||||)||2AMNB S AM BN MN =+⋅1162339=⨯⨯=,故选D 11. 解:由已知,以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立平面直角坐标系,则(2,0),(1,1),(0,1)B C D ,又2AQ QB =u u u r u u u r ,所以4(,0)3Q所以14413(,1)(,1)13399QC QD =-⋅-=+=u u u v u u u v g ,故选D.12. 解:由已知得()(()())0m n f m f n -->,所以函数()f x 为“和谐函数”等价于()f x 在R 上为增函数,由此判断①()ln 25xf x =-在R 上为增函数,符合题意;②3()43f x x x =-++得2()34f x x '=-+,所以()f x 在R 上有增有减,不合题意;③()2(sin cos )f x x x =--得()2(cos sin )sin()]04f x x x x π'=+=-+≥,所以()f x 在R 上为增函数,符合题意;④ln ||,0()0,0x x f x x ≠⎧=⎨=⎩可知为偶函数,不合题意,所以①③符合题意,故选B. 二、填空题13. 11 14. 2 15.9216. 4 13. 解:本题考查线性规划,答案为11.14. 解:由2()0|log |20xf x x -=⇒-=,得21|log |()2x x =在同一坐标系中作出2|log |y x =与1()2x y =的图象,可知交点个数为2, 即()f x 的零点个数为2.15. 解:由已知,圆方程化为22(1)(1)2x y ++-=,所以圆心为(1,1),C r -=当||AB 最大时,直线经过圆心,所以20a b --+=,即2a b +=,即12a b+= 所以14141419()(14)(522)2222a b b a a b a b a b ++=+⋅=+++≥+⨯= 当且仅当4b a a b =且2a b +=时取等号,所以14a b +的最小值为92.16. 解:设这个四面体的棱长为a ,则它的外接球与内切球的球心重合,且半径4R a =外,12r a =内,依题意得,44123a a a +=∴=. 三、解答题17. 解:sin sin cos 2sin 0B A A B A --=, 因为sin 0A ≠cos 20B B --=,即sin()1,6B π-=又5(0,),(,)666B B ππππ∈∴-∈-,62B ππ∴-=,所以23B π=.(Ⅱ)由已知11sin 222ABC S ac B ac ac ∆===∴=, 由余弦定理得 2222cos b a c ac B =+-,即217()22()2a c ac ac =+--⋅-, 即27()a c ac =+-,又0,0a c >>所以3a c +=.18. 解:(Ⅰ)设来自甲旅游协会的3名导游为123,,A A A ,其中23,A A 为高级导游, 来自乙旅游协会的3名导游为123,,B B B ,其中3B 为高级导游,从这6名导游中随机选择2人参加比赛,有下列基本情况:1213111213,,,,A A A A A B A B A B ;23212223,,,A A A B A B A B ; 313233,,A B A B A B ; 1213,B B B B ;23B B 共15种,其中选出的2人都是高级导游的有2323,,A A A B 33A B ,共3种 所以选出的2人都是高级导游的概率为 31155p ==. (Ⅱ)依题意,设甲旅游协会对本地经济收入的贡献为x (单位:万元),乙旅游协会对本地经济收入的贡献为y (单位:万元),则[30,50]x ∈且[20,40]y ∈, 若甲旅游协会对本地经济收入的贡献不低于乙旅游协会对本地经济收入的贡献, 则x y ≥,属于几何概型问题作图,由图可知 1,DEF ABCD S S S S ∆==,所求概率为1111010721120208S S S p S S ⨯⨯-==-=-=⨯.FE y=x 40205030OyxD C A B19. (Ⅰ)证明:由PC ⊥平面ABC ,DE ⊂平面ABC ,故.PC DE ⊥ 由2,2CE CD DE ===,得CDE ∆为等腰直角三角形,故.CD DE ⊥又PC CD C =I ,故DE ⊥平面PCD .(Ⅱ) 由(Ⅰ)知,CDE ∆为等腰直角三角形,,4DCE π∠=过D 作DF 垂直CE 于F ,易知1DF CF EF ===, 又DE ⊥平面PCD ,所以DE PD ⊥,2211PD PC CD =+=,设点B 到平面PDE 的距离为h ,即为三棱锥B PDE -的高, 由B PDE P BDE V V --=得 1133PDE BDE S h S PC ∆∆⋅=⋅, 即11113232PD DE h BE DF PC ⋅⋅⋅⋅=⋅⋅⋅⋅, 即112113h ⨯⨯=⨯⨯,所以322h =, 所以点B 到平面PDE 的距离为32222.20. 解:(Ⅰ) 因为直线:10l x my --=经过点2(,0)F c ,所以1c =, 又12AF F ∆是等腰直角三角形,所以()222222a a c a +=⇒=,所以2221b a c =-=故椭圆C 的标准方程为2212x y +=. (Ⅱ) 设11(,)M x y ,22(,)N x y ,易知(0,1)A ,若点A 在以线段MN 为直径的圆上,则AM AN ⊥,即0AM AN =⋅u u u u r u u u r,所以1122(,1)(,1)0x y x y -⋅-=,即1212(1)(1)0x x y y +--=, 化简得121212()10x x y y y y +-++=①,由221012x my x y --=⎧⎪⎨+=⎪⎩得22(2)210m y my ++-=.所以12122221,22m y y y y m m +=-=-++, 21212222(1)(1)2m x x my my m -=++=+代入①中得2222221210222m m m m m --++=+++化简得2230m m --=,解得1m =-,或3m =. 因此所求m 的值为1-或3. 21. 解:(Ⅰ)()x af x e x'=-,依题意得(1)0f =,(1)0f '=,则有 00e b a ee a b e ⎧-==⎧⇒⎨⎨-==⎩⎩. (Ⅱ)由(Ⅰ)得()ln xf x e e x e =--,()x ef x e x'=-, 由于()f x '在区间(0,)+∞上为增函数,且(1)0f '=,则当01x <<时,()(1)0f x f '<'=;当1x >时,()(1)0f x f '>'=, 故函数()f x 的减区间是(0,1),增区间是(1,)+∞. (Ⅲ) 由ln 0x ex ke -≤得1ln 0x x ke +-≤,所以1ln xxk e +≥, 设1ln (),1xxh x x e +=≥,只须max ()|k h x ≥, 由(Ⅱ)知当1x ≥时,()(1)0f x f ≥=,即(ln 1)xe e x ≥+对1x ≥恒成立. 即ln 11xx e e +≤(当且仅当1x =时取等号)所以函数max 1()(1)h x h e==, 故k 的取值范围是1[,)e+∞.22. 解:(Ⅰ)当3πα=时,l的参数方程为1122x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数)消去t得y =由圆C 极坐标方程为2ρ=,得224x y +=.故直线l的普通方程为1)y x =+, 圆C 的直角坐标方程为224x y +=.(Ⅱ)将1cos sinx t y t αα=-+⎧⎨=⎩代入224x y +=得,22cos 30t t α--=.设其两根分别为12,t t ,则123t t =-.由t 的几何意义知||||PA PB ⋅12||||3t t =⋅=. 故||||PA PB ⋅为定值3(与α无关) .23. 解:(Ⅰ)3, (1)()4, (12)3, (2)x x f x x x x x -≤-⎧⎪=+-<<⎨⎪≥⎩,由()6f x ≤解得22x -≤≤,故不等式()6f x ≤的解集为[2,2]-. (Ⅱ) 由(Ⅰ)及一次函数的性质知:()f x 在区间[2,1]--为减函数,在区间[1,1]-上为增函数,而(2)6(1)5f f -=>=,故在区间[2,1]-上,min ()(1)3f x f =-=,max ()(2)6f x f =-=. 由|()|22()2f x m m f x m -≤⇒-≤≤+. 所以max 2()m f x +≥且min 2()m f x -≤, 于是26m +≥且23m -≤, 故实数m 的取值范围是[4,5].黔东南州2018届高三第一次模拟考试文科数学参考答案一、选择题1.解:由已知,U ,故选B.2. 解:由已知得21(1)2122i i iz i i ---====-+,所以共轭复数z i =,虚部为1,故选D. 3. 解:从图表中看出,选项B 明显错误.4. 解:设{}n a 的公差为d ,由124a a +=得124a d +=,由3412a a +=得12512a d +=联立解得11,2a d ==,所以5612920a a a d +=+=,故选C.5. 解:由正视图知,该正三棱锥的底边长为6,高为4,则侧视图是一个底边长为高为4的三角形,其面积为 A.6. 解:由于该直角三角形的两直角边长分别是8和15,则得其斜边长为17,设其内切圆半径为r ,则有8151718152222r r r ++=⨯⨯(等积法),解得3r =,故其直径为6(步).故选B. 7. 解:设等比数列{}n a 的首项为1a ,由1128282818-⨯=⇒⎩⎨⎧==⇒⎩⎨⎧==n n a q a q S ;)282(7118)18(2-⨯⨯=--⨯=n n n S ;所以)28(71)282(71-⨯=-⨯⨯=n n n a S ,即278+=n n S a .故选C. 8. 解: ①351=n ,则351=k ,0=m ,20000≤=m 成立,3521351=+=k ,02352704m =+⨯=;②7042000m =≤成立,3531352=+=k ,70423531410m =+⨯=; ③14102000m =≤成立,3541353=+=k ,141023542118m =+⨯=; ④21182000m =≤不成立,所以输出354=k .故选B .9. 解:由已知,化简得()sin 2cos 2)4f x x x x π=+=+,又ln ()y f x =与()y f x =的单调性相同且()0f x >,所以2(2,2],(,]()4288x k k x k k k Z ππππππππ+∈+∴∈-+∈,故选A.10. 解:设1122(,),(,)A x y B x y ,由已知得1)y x =-代入抛物线方程24y x =化简得212131030,,33x x x x -+=∴==,所以1(,(3,33A B -,易知四边形AMNB 为梯形,故1(||||)||2AMNB S AM BN MN =+⋅1162339=⨯⨯=,故选D 11. 解:由已知,以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立平面直角坐标系,则(2,0),(1,1),(0,1)B C D ,又2AQ QB =u u u ru u u r,所以4(,0)3Q所以14413(,1)(,1)13399QC QD =-⋅-=+=u u u v u u u v g ,故选D.12. 解:由已知得()(()())0m n f m f n -->,所以函数()f x 为“和谐函数”等价于()f x 在R 上为增函数,由此判断①()ln 25xf x =-在R 上为增函数,符合题意;②3()43f x x x =-++得2()34f x x '=-+,所以()f x 在R 上有增有减,不合题意;③()2(sin cos )f x x x =--得()2(cos sin )sin()]04f x x x x π'=+=-+≥,所以()f x 在R 上为增函数,符合题意;④ln ||,0()0,0x x f x x ≠⎧=⎨=⎩可知为偶函数,不合题意,所以①③符合题意,故选B. 二、填空题14. 解:由2()0|log |20xf x x -=⇒-=,得21|log |()2x x =在同一坐标系中作出2|log |y x =与1()2x y =的图象,可知交点个数为2, 即()f x 的零点个数为2.15. 解:由已知,圆方程化为22(1)(1)2x y ++-=,所以圆心为(1,1),C r -=当||AB 最大时,直线经过圆心,所以20a b --+=,即2a b +=,即12a b+= 所以14141419()(14)(522)2222a b b a a b a b a b ++=+⋅=+++≥+⨯= 当且仅当4b a a b =且2a b +=时取等号,所以14a b +的最小值为9216. 解:设这个四面体的棱长为a ,则它的外接球与内切球的球心重合,且半径R =外, r =内,4a +=∴=.三、解答题:解答题应写出文字说明,证明过程或演算步骤.17. 解:sin sin cos 2sin 0B A A B A --=, 因为sin 0A ≠cos 20B B --=,即sin()1,6B π-=又5(0,),(,)666B B ππππ∈∴-∈-62B ππ∴-=所以23B π=…………………(6分)(Ⅱ)由已知11sin 222ABC S ac B ac ac ∆===∴= 由余弦定理得 2222cos b a c ac B =+-,即217()22()2a c ac ac =+--⋅- 即27()a c ac =+-,又0,0a c >>所以3a c += …(12分) 18. 解:(Ⅰ)设来自甲旅游协会的3名导游为123,,A A A ,其中23,A A 为高级导游, 来自乙旅游协会的3名导游为123,,B B B ,其中3B 为高级导游,从这6名导游中随机选择2人参加比赛,有下列基本情况:1213111213,,,,A A A A A B A B A B ;23212223,,,A A A B A B A B ; 313233,,A B A B A B ; 1213,B B B B ;23B B 共15种,其中选出的2人都是高级导游的有2323,,A A A B 33A B ,共3种所以选出的2人都是高级导游的概率为 31155p == ………………………(6分) (Ⅱ)依题意,设甲旅游协会对本地经济收入的贡献为x (单位:万元),乙旅游协会对本地经济收入的贡献为y (单位:万元),则[30,50]x ∈且[20,40]y ∈,若甲旅游协会对本地经济收入的贡献不低于乙旅游协会对本地经济收入的贡献,则x y ≥,属于几何概型问题作图,由图可知 1,DEF ABCD S S S S ∆==,所求概率为1111010721120208S S S p S S ⨯⨯-==-=-=⨯ ……………………………(12分)19. (Ⅰ)证明:由PC ⊥平面ABC ,DE ⊂平面ABC ,故.PC DE ⊥由2,CE CD DE ===CDE ∆为等腰直角三角形,故.CD DE ⊥又PC CD C =I ,故DE ⊥平面PCD . …………………(6分) (Ⅱ) 由(Ⅰ)知,CDE ∆为等腰直角三角形,,4DCE π∠=过D 作DF 垂直CE 于F ,易知1DF CF EF === 又DE ⊥平面PCD ,所以DE PD ⊥,2211PD PC CD =+=设点B 到平面PDE 的距离为h ,即为三棱锥B PDE -的高 由B PDE P BDE V V --=得 1133PDE BDE S h S PC ∆∆⋅=⋅ 即11113232PD DE h BE DF PC ⋅⋅⋅⋅=⋅⋅⋅⋅ 112113h =⨯⨯,所以322h =所以点B 到平面PDE 的距离为32222………………………………(12分) 20. 解:(Ⅰ) 因为直线:10l x my --=经过点2(,0)F c ,所以1c =, 又12AF F ∆是等腰直角三角形,所以()222222a a c a +=⇒=所以2221b a c =-=故椭圆C 的标准方程为2212x y +=.……(5分) (Ⅱ) 设11(,)M x y ,22(,)N x y ,易知(0,1)A若点A 在以线段MN 为直径的圆上,则AM AN ⊥,即0AM AN =⋅u u u u r u u u r所以1122(,1)(,1)0x y x y -⋅-=,即1212(1)(1)0x x y y +--= 化简得121212()10x x y y y y +-++= ①由221012x my x y --=⎧⎪⎨+=⎪⎩得22(2)210m y my ++-=.所以12122221,22m y y y y m m +=-=-++ …………………………………………(8分) 21212222(1)(1)2m x x my my m -=++=+代入①中得2222221210222m m m m m --++=+++化简得2230m m --=,解得1m =-,或3m = 因此所求m 的值为1-或3 ……………………………………………(12分) 21. 解:(Ⅰ)()x af x e x'=-, 依题意得(1)0f =,(1)0f '=,则有 00e b a ee a b e ⎧-==⎧⇒⎨⎨-==⎩⎩. …………………………………………………(4分) (Ⅱ)由(Ⅰ)得()ln xf x e e x e =--,()x ef x e x'=-,由于()f x '在区间(0,)+∞上为增函数,且(1)0f '=,则当01x <<时,()(1)0f x f '<'=;当1x >时,()(1)0f x f '>'=,故函数()f x 的减区间是(0,1),增区间是(1,)+∞.…………………………………(8分) (Ⅲ) 由ln 0x ex ke -≤得1ln 0x x ke +-≤,所以1ln xxk e+≥ 设1ln (),1xxh x x e+=≥,只须max ()|k h x ≥, 由(Ⅱ)知当1x ≥时,()(1)0f x f ≥=,即(ln 1)xe e x ≥+对1x ≥恒成立. 即ln 11x x e e +≤(当且仅当1x =时取等号)所以函数max1()(1)h x h e==, , 故k 的取值范围是1[,)e+∞. …………………………………………………(12分)22. 解:(Ⅰ)当3πα=时,l的参数方程为1122x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数)消去t得y =由圆C 极坐标方程为2ρ=,得224x y +=.故直线l的普通方程为1)y x =+ 圆C 的直角坐标方程为224x y +=. …………………………………………………(5分) (Ⅱ)将1cos sinx t y t αα=-+⎧⎨=⎩代入224x y +=得,22cos 30t t α--=.设其两根分别为12,t t ,则123t t =-. 由t 的几何意义知||||PA PB ⋅12||||3t t =⋅=. 故||||PA PB ⋅为定值3(与α无关) . ………………………………………………(10分)23. 解:(Ⅰ)3, (1)()4, (12)3, (2)x x f x x x x x -≤-⎧⎪=+-<<⎨⎪≥⎩,由()6f x ≤解得22x -≤≤,故不等式()6f x ≤的解集为[2,2]-. …………………………………………………(5分) (Ⅱ) 由(Ⅰ)及一次函数的性质知:()f x 在区间[2,1]--为减函数,在区间[1,1]-上为增函数,而(2)6(1)5f f -=>=,故在区间[2,1]-上,min ()(1)3f x f =-=,max ()(2)6f x f =-=. 由|()|22()2f x m m f x m -≤⇒-≤≤+. 所以max 2()m f x +≥且min 2()m f x -≤, 于是26m +≥且23m -≤,故实数m 的取值范围是[4,5]. …………………………………………………(10分)。
2018年贵州省贵阳市高考数学一模试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设A={x|2x>},B={﹣3,﹣2,﹣1},则A∩B=()A.∅B.{﹣3,﹣2,﹣1}C.{﹣2,﹣1}D.{x|x>﹣3}2.(5分)设是复数z的共轭复数,满足=,则|z|=()A.2B.2C.D.3.(5分)贵阳地铁1号线12月28日开通运营,某机车某时刻从下麦西站驶往贵阳北站的过程中,10个车站上车的人数统计如下:70、60、60、50、60、40、40、30、30、10,则这组数据的众数、中位数、平均数的和为()A.170B.165C.160D.1504.(5分)若实数x,y满足约束条件,则z=2x﹣y的最大值为()A.3B.6C.10D.125.(5分)某程序框图如图所示,若该程序运行后输出的值是,则整数a的值为()A.6B.7C.8D.96.(5分)《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,文各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,丙所得为()A.钱B.钱C.钱D.1钱7.(5分)把函数y=sin(x+)+1图象上各点的横坐标缩短为原来的倍(纵坐标不变),那么所得图象的一条对称轴方程为()A.x=B.C.D.8.(5分)已知等比数列{a n}的前n项和为S n,且a1=,a2a6=8(a4﹣2),则S2018=()A.22017﹣B.1﹣()2017C.22018﹣D.1﹣()20189.(5分)已知奇函数f(x)在R上是减函数,且a=﹣f(log3),b=f(log39.1),c=f(20.8),则a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>a>c D.c>a>b 10.(5分)如图,格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的四个面的面积中最大与最小之和是()A.8+4B.12C.8+4D.1011.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为,△AOB的面积为2,则p=()A.2B.1C.2D.312.(5分)已知函数f(x)=的图象上有两对关于y轴对称的点,则实数k的取值范围是()A.(0,e)B.(0,e﹣2)C.(0,2e2)D.(0,e﹣2)二、填空题,本题共4小题,每小题5分,共20分.13.(5分)若向量=(x,1)与向量=(1,﹣2)垂直,则|+|=.14.(5分)某校选定4名教师去3个边远地区支教(每地至少1人),则甲、乙两人不在同一边远地区的概率是.15.(5分)若直线l:ax﹣3y+12=0(a∈R)与圆M:x2+y2﹣4y=0相交于A、B 两点,若∠ABM的平分线过线段MA的中点,则实数a=.16.(5分)已知底面是正六边形的六棱锥P﹣ABCDEF的七个顶点均在球O的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为,则球O 的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知在△ABC中,角A,B,C所对的边长分别是a,b,c,AB边上的高h=c.(Ⅰ)若△ABC为锐角三角形,且cos A=,求角C的正弦值;(Ⅱ)若∠C=,M=,求M的值.18.(12分)某高校通过自主招生方式在贵阳招收一名优秀的高三毕业生,经过层层筛选,甲、乙两名学生进入最后测试,该校设计了一个测试方案:甲、乙两名学生各自从6个问题中随机抽3个问题.已知这6道问题中,学生甲能正确回答其中的4个问题,而学生乙能正确回答每个问题的概率均为,甲、乙两名学生对每个问题的回答都是相互独立、互不影响的.(Ⅰ)求甲、乙两名学生共答对2个问题的概率.(Ⅱ)请从期望和方差的角度分析,甲、乙两名学生哪位被录取的可能性更大?19.(12分)如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面P AD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,P A=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.20.(12分)已知椭圆C:+=1(a>0,b>0)的左、右焦点分别为F1,F2,点M为短轴的上端点,•=0,过F2垂直于x轴的直线交椭圆C 于A,B两点,且|AB|=.(Ⅰ)求椭圆C的方程;(Ⅱ)设经过点(2,﹣1)且不经过点M的直线l与C相交于G,H两点.若k1,k2分别为直线MH,MG的斜率,求k1+k2的值.21.(12分)已知函数f(x)=lnx+x2﹣ax+a(a∈R).(Ⅰ)若函数f(x)在(0,+∞)上为单调增函数,求实数a的取值范围;(Ⅱ)若函数f(x)在x=x1和x=x2处取得极值,且x2≥x1(e为自然对数的底数),求f(x2)﹣f(x1)的最大值.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时用2B铅笔在答题卡上把所选题目对应题号的方框涂黑.[选修坐标系与参数方程选讲]22.(10分)在平面直角坐标系xOy中,曲线C:(α为参数),在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρcos(θ+)=﹣1.(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;(Ⅱ)过点M(﹣1,0)且与直线l平行的直线l1交曲线C于A,B两点,求点M到A,B两点的距离之和.[选修不等式选讲]23.已知函数f(x)=|x﹣2|﹣|x+1|.(Ⅰ)解不等式f(x)>﹣x;(Ⅱ)若关于x的不等式f(x)≤a2﹣2a的解集为R,求实数a的取值范围.2018年贵州省贵阳市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设A={x|2x>},B={﹣3,﹣2,﹣1},则A∩B=()A.∅B.{﹣3,﹣2,﹣1}C.{﹣2,﹣1}D.{x|x>﹣3}【解答】解:A={x|2x>}={x|x>﹣3}B={﹣3,﹣2,﹣1},则A∩B={﹣2,﹣1},故选:C.2.(5分)设是复数z的共轭复数,满足=,则|z|=()A.2B.2C.D.【解答】解:∵==,∴|z|=||=.故选:B.3.(5分)贵阳地铁1号线12月28日开通运营,某机车某时刻从下麦西站驶往贵阳北站的过程中,10个车站上车的人数统计如下:70、60、60、50、60、40、40、30、30、10,则这组数据的众数、中位数、平均数的和为()A.170B.165C.160D.150【解答】解:数据70、60、60、50、60、40、40、30、30、10的众数是60、中位数是45、平均数是45,故众数、中位数、平均数的和为150,故选:D.4.(5分)若实数x,y满足约束条件,则z=2x﹣y的最大值为()A.3B.6C.10D.12【解答】解:实数x,y满足约束条件的可行域如图所示:联立,解得A(3,﹣4).化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过A时,直线在y轴上的截距最小,z有最大值为2×3+4=10.故选:C.5.(5分)某程序框图如图所示,若该程序运行后输出的值是,则整数a的值为()A.6B.7C.8D.9【解答】解:当S=1,k=1时,应不满足退出循环的条件,故S=,k=2;当S=,k=2时,应不满足退出循环的条件,故S=,k=3;当S=,k=3时,应不满足退出循环的条件,故S=,k=4;当S=,k=4时,应不满足退出循环的条件,故S=,k=5;当S=,k=5时,应不满足退出循环的条件,故S=,k=6;当S=,k=6时,应不满足退出循环的条件,故S=,k=7;当S=,k=7时,应满足退出循环的条件,故整数a的值为6,故选:A.6.(5分)《九章算术》是我国古代的数学名著,书中《均输章》有如下问题:“今有五人分五钱,令上二人所得与下三人等,文各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,丙所得为()A.钱B.钱C.钱D.1钱【解答】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,∴在这个问题中,丙所得为1钱.故选:D.7.(5分)把函数y=sin(x+)+1图象上各点的横坐标缩短为原来的倍(纵坐标不变),那么所得图象的一条对称轴方程为()A.x=B.C.D.【解答】解:函数y=sin(x+)+1图象上各点的横坐标缩短为原来的倍(纵坐标不变),可得:y=sin(2x+)+1.令2x+=,k∈Z.可得:x=,令k=0,可得图象的一条对称轴方程为x=.故选:D.8.(5分)已知等比数列{a n}的前n项和为S n,且a1=,a2a6=8(a4﹣2),则S2018=()A.22017﹣B.1﹣()2017C.22018﹣D.1﹣()2018【解答】解:根据题意,设等比数列{a n}的公比为q,若a2a6=8(a4﹣2),则有(a4)2=8(a4﹣2),即a42﹣8a4+16=0,解可得a4=4,则q3===8,则q=2,则S2018==22017﹣,故选:A.9.(5分)已知奇函数f(x)在R上是减函数,且a=﹣f(log3),b=f(log39.1),c=f(20.8),则a,b,c的大小关系为()A.a>b>c B.c>b>a C.b>a>c D.c>a>b【解答】解:∵奇函数f(x)在R上是减函数,且a=﹣f(log3),b=f(log39.1),c=f(20.8),∴a=﹣f(log3)=f(log310)<b=f(log39.1)<c=f(20.8),则a,b,c的大小关系为a<b<c.故选:B.10.(5分)如图,格纸上小正方形的边长为1,粗实线画出的是某三棱锥的三视图,则该三棱锥的四个面的面积中最大与最小之和是()A.8+4B.12C.8+4D.10【解答】解:三视图可知三棱锥是从长方体中截出来的P﹣ABC,数据如图:S P AB=×4×4=8,S△P AC=×2 ×4=4 .S△ABC=×4×2=4,S△PBC=×2 ×2 =4 .则该三棱锥的四个面的面积中最大的是:8.面积的最小值为4.所以则该三棱锥的四个面的面积中最大与最小之和是:12,故选:B.11.(5分)已知双曲线﹣=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为,△AOB的面积为2,则p=()A.2B.1C.2D.3【解答】解:双曲线﹣=1(a>0,b>0)的离心率e=,∴e2===1+=5,∴=4,∴=2,∴双曲线﹣=1(a>0,b>0)的两条渐近线方程为y=±2x,∵抛物线y2=2px(p>0)的准线方程为x=﹣,∴或,解得,或,∴|AB|=p﹣(﹣p)=2p,点O到AB的距离为d=,=|AB|×d==2,∴S△AOB解得p=2,故选:A.12.(5分)已知函数f(x)=的图象上有两对关于y轴对称的点,则实数k的取值范围是()A.(0,e)B.(0,e﹣2)C.(0,2e2)D.(0,e﹣2)【解答】解:当x<0时,f(x)=ln(﹣2x),则此时函数f(x)关于y轴对称的函数为y=ln2x,x>0,若函数f(x)=的图象上有两对关于y轴对称的点,等价为当x≥0时,函数f(x)=kx﹣3与函数g(x)=ln2x,x>0有两个交点即可,由题意可得g(x)的图象和y=kx﹣3(x>0)的图象有两个交点.设直线y=kx﹣3与y=g(x)相切的切点为(m,ln2m)由g(x)的导数为g′(x)==,即有切线的斜率为=k,又ln2m=km﹣3,即ln2m=•m﹣3=1﹣3=﹣2,解得m=e﹣2,k=2e2,由图象可得0<k<2e2时,有两个交点,故选:C.二、填空题,本题共4小题,每小题5分,共20分.13.(5分)若向量=(x,1)与向量=(1,﹣2)垂直,则|+|=.【解答】解:根据题意,向量=(x,1)与向量=(1,﹣2)垂直,则有•=x﹣2=0,则x=2;则向量=(2,1),则+=(3,﹣1),则|+|==;故答案为:14.(5分)某校选定4名教师去3个边远地区支教(每地至少1人),则甲、乙两人不在同一边远地区的概率是.【解答】解:某校选定4名教师去3个边远地区支教(每地至少1人),基本事件总数n=•=36,甲、乙两人在同一边远地区包含的基本事件个数m==6,∴甲、乙两人不在同一边远地区的概率是p=1﹣=1﹣=.故答案为:.15.(5分)若直线l:ax﹣3y+12=0(a∈R)与圆M:x2+y2﹣4y=0相交于A、B两点,若∠ABM的平分线过线段MA的中点,则实数a=.【解答】解:如图,由圆M:x2+y2﹣4y=0,得x2+(y﹣2)2=4,圆心M(0,2),半径为2,直线l:ax﹣3y+12=0(a∈R)过定点A(0,4),要使∠ABM的平分线过线段MA的中点,则AM=BM,∴B为(,3)或(,3),∴,即a=.故答案为:.16.(5分)已知底面是正六边形的六棱锥P﹣ABCDEF的七个顶点均在球O的表面上,底面正六边形的边长为1,若该六棱锥体积的最大值为,则球O的表面积为.【解答】解:当六棱锥P﹣ABCDEF为正六棱锥时,体积最大,由于底面正六边形的边长为1,故底面外接圆半径r=1,底面面积S==,设高为h,则V==,解得:h=2,设此时外接球半径为R,则球心到底面的距离d=|h﹣R|=|2﹣R|,由R2=d2+r2得:R2=(2﹣R)2+1,解得:R=,故球O的表面积为4πR2=,故答案为:三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)已知在△ABC中,角A,B,C所对的边长分别是a,b,c,AB边上的高h=c.(Ⅰ)若△ABC为锐角三角形,且cos A=,求角C的正弦值;(Ⅱ)若∠C=,M=,求M的值.【解答】解:(Ⅰ)作CD⊥AB与D,∵△ABC为锐角三角形,且cos A=,∴sin A==.⇒AD=cot A•CD=.,∴=.由正弦定理得=.(Ⅱ)∵S=.△ABC∴.由余弦定理得.∴M==.18.(12分)某高校通过自主招生方式在贵阳招收一名优秀的高三毕业生,经过层层筛选,甲、乙两名学生进入最后测试,该校设计了一个测试方案:甲、乙两名学生各自从6个问题中随机抽3个问题.已知这6道问题中,学生甲能正确回答其中的4个问题,而学生乙能正确回答每个问题的概率均为,甲、乙两名学生对每个问题的回答都是相互独立、互不影响的.(Ⅰ)求甲、乙两名学生共答对2个问题的概率.(Ⅱ)请从期望和方差的角度分析,甲、乙两名学生哪位被录取的可能性更大?【解答】解:(Ⅰ)由题意得甲、乙两名学生共答对2个问题的概率:P=×+=.(Ⅱ)设学生甲答对的题数为X,则X的所有可能取值为1,2,3,P(X=1)==,P(X=2)==,P(X=3)==,E(X)==2,D(X)=(1﹣2)2×+(2﹣2)2×+(3﹣2)2×=,设学生乙答对题数为Y,则Y所有可能的取值为0,1,2,3,由题意知Y~B(3,),E(Y)=3×=2,D(Y)==,E(X)=E(Y),D(X)<D(Y),∴甲被录取的可能性更大.19.(12分)如图,在四棱锥P﹣ABCD中.底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面P AD⊥底面ABCD.Q为AD的中点,M是棱PC上的点,P A=PD=2.BC=AD=1,CD=.(I)求证:平面PBC⊥平面PQB;(Ⅱ)若平面QMB与平面PDC所成的锐二面角的大小为60°,求PM的长.【解答】(I)证明:∵P A=PD,Q是AD的中点,∴PQ⊥AD,又平面P AD⊥底面ABCD,平面P AD∩底面ABCD=AD,PQ⊂平面P AD,∴PQ⊥平面ABCD,∴BC⊥PQ,∵BC=AD=DQ,BC∥AD,∠ADC=90°,∴四边形BCDQ是矩形,∴BC⊥BQ,又PQ∩BQ=Q,∴BC⊥平面PBQ,又BC⊂平面PBC,∴平面PBC⊥平面PQB.(II)过M作MN∥CD交PD与N,则平面BMQ∩平面PCD=MN,∵平面P AD⊥底面ABCD,平面P AD∩底面ABCD=AD,BQ⊥AD,BQ⊂平面P AD,∴BQ⊥平面P AD,又BQ∥CD∥MN,∴MN⊥平面P AD,∴MN⊥NQ,MN⊥PD,∴∠DNQ为平面BMQ与平面PCD所成角,即∠DNQ=60°,∵PD=P A=2,AD=2BC=2,∴∠PDO=60°,∴△DNQ是等比三角形,∴DN=DQ=1,即N是PD的中点,∴M是PC的中点,∵PD=2,CD=,∴PC=,∴PM==.20.(12分)已知椭圆C:+=1(a>0,b>0)的左、右焦点分别为F1,F2,点M为短轴的上端点,•=0,过F2垂直于x轴的直线交椭圆C 于A,B两点,且|AB|=.(Ⅰ)求椭圆C的方程;(Ⅱ)设经过点(2,﹣1)且不经过点M的直线l与C相交于G,H两点.若k1,k2分别为直线MH,MG的斜率,求k1+k2的值.【解答】解:(Ⅰ)由•=0,可得b=c,∵过F2垂直于x轴的直线交椭圆C于A,B两点,且|AB|=,∴=,由,解得a2=2,b2=1,∴椭圆C的方程为+y2=1(Ⅱ)经过点(2,﹣1)且不经过点M的直线l的方程为y+1=k(x﹣2),即y =kx﹣2k﹣1,代入椭圆程+y2=1可得(2k2+1)x2﹣4k(1+2k)x+(8k2+8k)=0,△=﹣16k(k+2)>0,设G(x1,y1),H(x2,y2).则x1+x2=,x1x2=,∴k1+k2=+=+=2k﹣=2k﹣(2k+1)=﹣1,即k1+k2=﹣121.(12分)已知函数f(x)=lnx+x2﹣ax+a(a∈R).(Ⅰ)若函数f(x)在(0,+∞)上为单调增函数,求实数a的取值范围;(Ⅱ)若函数f(x)在x=x1和x=x2处取得极值,且x2≥x1(e为自然对数的底数),求f(x2)﹣f(x1)的最大值.【解答】解:(Ⅰ)∵f′(x)=+x﹣a,(x>0),又f(x)在(0,+∞)递增,故恒有f′(x)≥0,即+x﹣a≥0(x>0)恒成立,a≤(x+)min,而x+≥2=2,当且仅当x=1时取“=”,故a≤2,即函数f(x)在(0,+∞)递增时a的范围是(﹣∞,2];(Ⅱ)f(x2)﹣f(x1)=ln+(﹣)﹣a(x2﹣x1),又f′(x)=(x>0),故x1,x2是方程x2﹣ax+1=0的2个根,由韦达定理得:x1+x2=a,x1x2=1,故f(x2)﹣f(x1)=ln+(﹣)﹣a(x2﹣x1),=ln﹣(﹣),设t=(t≥),令h(t)=lnt﹣(t﹣),(t≥),h′(t)=<0,∴h(t)在[,+∞)递减,h(t)≤h()=(1﹣+),故f(x2)﹣f(x1)的最大值是(1﹣+).请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时用2B铅笔在答题卡上把所选题目对应题号的方框涂黑.[选修坐标系与参数方程选讲]22.(10分)在平面直角坐标系xOy中,曲线C:(α为参数),在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρcos(θ+)=﹣1.(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;(Ⅱ)过点M(﹣1,0)且与直线l平行的直线l1交曲线C于A,B两点,求点M到A,B两点的距离之和.【解答】解:(Ⅰ)∵曲线C:(α为参数),∴曲线C化为普通方程得:+y2=1,∵直线l的极坐标方程为ρcos(θ+)=﹣1.∴ρcosθ﹣ρsinθ=﹣2,∴直线l的直角坐标方程为x﹣y+2=0.(Ⅱ)直线l1的参数方程为(t为参数),代入=1,化简,得:,设A,B两点对应的参数分别为t1,t2,则t1+t2=,t1t2=﹣1,∴点M到A,B两点的距离之和:|MA|+|MB|=|t1|+|t2|=|t1﹣t2|===.[选修不等式选讲]23.已知函数f(x)=|x﹣2|﹣|x+1|.(Ⅰ)解不等式f(x)>﹣x;(Ⅱ)若关于x的不等式f(x)≤a2﹣2a的解集为R,求实数a的取值范围.【解答】解:(Ⅰ)不等式f(x)>﹣x,即为|x﹣2|﹣|x+1|>﹣x,当x≥2时,x﹣2﹣x﹣1>﹣x,可得x>3,即x>3;当x≤﹣1时,2﹣x+x+1>﹣x,解得x>﹣3,即﹣3<x≤﹣1;当﹣1<x<2时,2﹣x﹣x﹣1>﹣x,解得x<1,即﹣1<x<1,综上可得原不等式的解集为{x|x>3或﹣3<x<1};(Ⅱ)关于x的不等式f(x)≤a2﹣2a的解集为R,即有a2﹣2a≥f(x)的最大值,由|x﹣2|﹣|x+1|≤|x﹣2﹣x﹣1|=3,当且仅当x≤﹣1时,等号成立,可得a2﹣2a≥3,解得a≥3或a≤﹣1.第21页(共21页)。
贵州黔东南州2019高三第一次重点考试试卷--数学理2018年黔东南州第一次高考模拟考试试题理科数学本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两部分。
第一卷1至2页。
第Ⅱ3至4页。
第一卷〔本卷共12小题,每题5分,共60分〕考前须知1、每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮檫檫干净后,再选涂其它答案标号,不能答在试题卷上。
2、答题前认真阅读答题卡上的“考前须知”。
参考公式:假如事件A 、B 互斥,那么)()()(B P A P B A P +=+ 假如事件A 、B 相互独立,那么)()()(B P A P B A P ⋅=⋅假如事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中事件A 发生k 次的概率为0()1()(=-=-k p p C k P k n kk n n ,1,2,…,)n球的表面积公式:24R S π=〔R 为球的半径〕球的体积公式:334R V π=〔R 为球的半径〕在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1、在集合}4,1,1|),{(≤+≥≥=y x y x y x A 中,y x 2+的最大值是A 、5B 、6C 、7D 、8、2、i 是虚数单位,复数),(12R b a bi a i∈+=-,那么=+b aA 、0B 、2C 、1D 、2-、3、函数)0(log 1)(2>+=x x x f 的反函数是A 、)(21R x y x ∈=-B 、)1(21>=-x y xC 、)(21R x y x ∈=+D 、)1(21>=+x y x 、4、正方体1111D C B A ABCD -中,二面角D AC D --1的正切值为A 、1B 、2C 、22D 、2、 5、)32sin()(π-=x x f ,那么=+)32()3(//ππf f A 、21-B 、1-C 、21D 、1、6、向量a =)2,3(-,b =)2,1(2x x -+,那么条件“2=x ”是条件“a //b ”成立的A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件、7、函数)0)(sin(2)(>+=ωϕωx x f 的图象通过)2,12(--πA 、)2,4(πB 两点,那么ω的 A 、最大值为3B 、最小值为3C 、最大值为6D 、最小值为6、8、圆C :822=+y x 上有两个相异的点到直线5-=x y 的距离为都为d ,那么d 的取值范围是A 、)29,21(B 、]29,21[C 、)229,22(D 、]229,22[、 9、春节期间,某单位要安排3位行政领导从初一至初六值班,每天安排1人,每人值班两天,那么共有多少种安排方案?A 、90B 、120C 、150D 、15、10、正三棱锥ABC P -中,3=PA ,2=AB ,那么PA 与平面PBC 所成角的余弦值为A 、932B 、126C 、1227D 、42、11、函数mx x x f -+-=1|2|)(的图象总在x 轴的上方,那么实数m 的取值范围是A 、)21,1[-B 、)21,1(-C 、]21,1(-D 、]21,1[-、12、过椭圆C :)0(12222>>=+b a by a x 的右焦点2F 引直线l ,与C 的右准线交于A 点,与C 交于B 、C 两点,与y 轴交于D 点,假设CD BC AB ==,那么C 的离心率为A 、21B 、35C 、33D 、22、绝密★使用完毕前3月3日15∶00—17∶002018年黔东南州第一次高考模拟考试试题理科数学第二卷〔本卷共10小题,共90分〕考前须知1、考生不能将答案直截了当答在试卷上,必须答在答题卡上。
2018年高考数学(理科)模拟试卷(一) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016年四川)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是() A.6 B.5C.4D.31.B解析:由题意,A∩Z={1,2,3,4,5},故其中的元素的个数为5.故选B.2.(2016年山东)若复数z满足2z+z=3-2i,其中i为虚数单位,则z=()A.1+2i B.1-2iC.-1+2i D.-1-2i2.B解析:设z=a+b i(a,b∈R),则2z+z=3a+b i=3-2i,故a=1,b=-2,则z=1-2i.故选B.3.(2015年北京)某四棱锥的三视图如图M1-1,该四棱锥最长棱的棱长为()图M1-1A.1 B.2 C.3D.23.C解析:四棱锥的直观图如图D188:由三视图可知,SC⊥平面ABCD,SA是四棱锥最长的棱,SA=SC2+AC2=SC2+AB2+BC2=3.故选C.图D1884.曲线y=x3-2x+4在点(1,3)处的切线的倾斜角为()A. B. C. D.4.C解析:f′(x)=3x2-2,f′(1)=1,所以切线的斜率是1,倾斜角为.进入循环体,a=-,否,k=1,a=-2,否,k=2,a=1,ππππ6342π4 5.设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[t n]=n同时成立,则正整数n的最大值是() A.3B.4C.5D.65.B解析:因为[x]表示不超过x的最大整数.由[t]=1,得1≤t<2,由[t2]=2,得2≤t2<3.由[t3]=3,得3≤t3<4.由[t4]=4,得4≤t4<5.所以2≤t2<5.所以6≤t5<45.由[t5]=5,得5≤t5<6,与6≤t5<45矛盾,故正整数n的最大值是4.6.(2016年北京)执行如图M1-2所示的程序框图,若输入的a值为1,则输出的k值为()图M1-2A.1B.2C.3D.46.B解析:输入a=1,则k=0,b=1;12此时a=b=1,输出k,则k=2.故选B.7.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图M1-3,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+n的值是()7.C解析:由题意,得=88,n=9.所以m+n=12.⎪⎩x≥0,图M1-3A.10B.11C.12D.1378+88+84+86+92+90+m+957故选C.8.(2015年陕西)某企业生产甲、乙两种产品均需用A,B两种原料.已知分别生产1吨甲、乙产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()项目A/吨B/吨甲31乙22原料限额128A.12万元B.16万元C.17万元D.18万元8.D解析:设该企业每天生产甲、乙两种产品分别为x吨、y吨,则利润z=3x+4y.⎧⎪3x+2y≤12,由题意可得⎨x+2y≤8,y≥0.其表示如图D189阴影部分区域:图D189当直线3x+4y-z=0过点A(2,3)时,z取得最大值,所以zmax=3×2+4×3=18.故选D.9.(2016年新课标Ⅲ)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有() A.18个B.16个C.14个D.12个9.C解析:由题意,必有a1=0,a8=1,则具体的排法列表如下:10.(2016 年 天 津 )已知函数f(x)=sin 2ω x + sin ωx - (ω>0),x ∈ ⎛ 1⎤ ⎛ 1⎤ ⎡5 ⎫ A. 0, ⎥ B. 0, ⎥∪⎢ ,1⎪ ⎛5⎤ ⎛ 1⎤ ⎡1 5⎤ C. 0, ⎥ D. 0, ⎥∪⎢ , ⎥ 1-cos ω x sin ω x 1 2 ⎛ ⎛π ⎫ 10.D 解析:f(x)= + - = sin ω x - ⎪,f(x)=0⇒sin ω x - ⎪ k π +⎛1 1⎫ ⎛5 5⎫ ⎛9 9⎫ ⎛1 1⎫ ⎛5 ⎫ ⎛ 1⎤ ⎡1 5⎤因此 ω , ⎪∪ , ⎪∪ , ⎪∪…= , ⎪∪ ,+∞⎪⇒ω∈ 0, ⎥∪⎢ , ⎥.故选4 ⎭ A .3 B. C .23 D. ∥PA ,所以 OE ⊥底面 ABCD ,则 O 到四棱锥的所有顶点的距离相等,即 O 为球心, PC =1 1 4 ⎛1 ⎫ 243π 7 PA2+AC2= PA2+8,所以由球的体积可得 π PA2+8⎪3= ,解得 PA = .故选1 12 2 2R.若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()⎝ 8⎦ ⎝ 4⎦ ⎣8 ⎭⎝ 8⎦ ⎝ 8⎦ ⎣4 8⎦2 2 2 2 ⎝ ⎝ 4 ⎭ =0,π4所以 x = (π,2π),(k ∈Z).ω⎝8 4⎭ ⎝8 4⎭ ⎝8 4⎭ ⎝8 4⎭ ⎝8 ⎭ ⎝ 8⎦ ⎣4 8⎦D.11.四棱锥P-ABCD 的底面ABCD 为正方形,PA底面ABCD ,AB =2,若该四棱锥的所有顶点都在体积为⊥243π 16的同一球面上,则P A =()729211.B 解析:如图 D190,连接 AC ,BD 交于点 E ,取 PC 的中点 O ,连接 OE ,则 OE122 23 ⎝2 ⎭ 16 2B.12.已知F 为抛物线y 2=x 的焦点,点A 、B 在该抛物线上且位于x 轴两侧,若 OA ·OBA .4 B. C. D. 10OA · OB =6,所以 x 1· x 2+y 1· y 2=6,从而(y 1· y 2)2+y 1· y 2-6=0,因为点 A ,B 位于 x 轴的两侧, 所以 y 1· y 2=-3,故 m =3,不妨令点 A 在 x 轴上方,则 y 1>0,又 F ,0⎪,所以 △S ABO +△S ⎝4⎭8 2 y1 2 8×3×(y 1-y 2)+ × y 1= y 1+,即 y 1= 时取等号,故其最小值为 .故选 B.|c|·|a| |c|·|b| 5a2 -y214.设F 是双曲线C :x2b图D190→→=6(O 为坐标原点△),则 ABO 与△AOF 面积之和的最小值为()3 1317 2 2412.B 解析:设直线 AB 的方程为 x =ty +m ,点 A(x 1,y 1),B(x 2,y 2),直线 AB 与 x轴的交点为 M (m,0),将直线方程与抛物线方程联立,可得 y 2-ty -m =0,根据韦达定理有 y 1· y 2=-m ,因为 →→⎛1 ⎫AFO 1 1 1 13 9 =2 2 4 8 2y1 ≥213 9 1 313 13y1 ·y1· · = ,当且仅当 =9 6 13 3 132y1 13 2第Ⅱ卷(非选择题 满分90分)本卷包括必考题和选考题两部分.第 13~21 题为必考题,每个试题考生必须作答.第22~23 题为选考题,考生根据要求作答.二、填空题:本大题共 4 小题,每小题 5 分.13.平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =________.13.2 解析:a =(1,2),b =(4,2),则 c =m a +b =(m +4,2m +2),|a |= 5,|b |=2 5,c·a c·b 5m +8a · c =5m +8,· c =8m +20.∵c 与 a 的夹角等于 c 与b 的夹角,∴ = .∴8m +20 = .解得 m =2.2 5b2=1的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为__________.16.在区间[0,π]上随机地取一个数x ,则事件“sin x ≤ ”发生的概率为________.⎛π ⎫ ⎛5π ⎫ 6⎝ 6 ⎭ 1-0 + π - ⎪ ⎪17.解:(1)设{a n }的公比为 q ,{b n }的公差为 d ,由题意知 q >0.由已知,有⎨c,2b )在双曲线上,有 - =1,则 e 2=5,e = 5. 11⎡ ⎤0,16.解析:由正弦函数的图象与性质知,当 x ∈⎢∪⎢ ,π ⎥时,sin x ≤ .⎥π 36 ⎦ ⎣ 6 ⎩14. 5 解析:根据双曲线的对称性,不妨设 F(c,0),虚轴端点为(0,b ),从而可知点(-c2 4b2a2 b215.(2016 年北京)在(1-2x)6的展开式中,x 2的系数为________.(用数字作答)15.60 解析:根据二项展开的通项公式 T r +1=C r6·(-2)r x r 可知,x 2 的系数为 C 26(-2)2=60,故填 60.123⎣ ⎦ 2⎭ ⎝ 所以所求概率为 = .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分 )已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5 -3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.⎧⎪2q2-3d =2, ⎪q4-3d =10. 消去 d ,得 q 4-2q 2-8=0.解得 q =2,d =2.所以{a n }的通项公式为 a n =2n -1,n ∈N *, {b n }的通项公式为 b n =2n -1,n ∈N *.(2)由(1)有 c n =(2n -1)2n -1,设{c n }的前 n 项和为 S n , 则 S n =1×20+3×21+5×22+…+(2n -1)×2n -1, 2S n =1×21+3×22+5×23+…+(2n -1)×2n .两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =-(2n -3)×2n -3. 所以 S n =(2n -3)·2n +3,n ∈N *.18.( 本 小 题 满 分 12 分 )(2014 年 大纲 )设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人 是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.18.解:记 A 1 表示事件:同一工作日乙、丙中恰有 i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D 表示事件:同一工作日至少 3 人需使用设备.(1)因为 P(B)=0.6,P(C)=0.4,P(A i )=C i2×0.52,i =0,1,2,∠P AB=90°,BC=CD=AD,E为边AD的中点,异面直线P A与CD所成的角为90°.所以P(D)=P(A1·B·C+A2·B+A2·B·C)=P(A1·B·C)+P(A2·B)+P(A2·B·C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A·C+B·A·C+B·A1·C)=P(B)P(A)P(C)+P(B)P(A)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,所以E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.19.(本小题满分12分)(2016年四川)如图M1-4,在四棱锥P-ABCD中,AD∥BC,∠ADC=12(1)在平面P AB内找一点M,使得直线CM∥平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45°,求直线P A与平面PCE所成角的正弦值.图M1-419.解:(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面P AB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED,所以四边形BCDE是平行四边形.所以CD∥EB.从而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(2)方法一,由已知,CD⊥P A,CD⊥AD,PA∩AD=A,所以CD⊥平面P AD.从而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.所以AH=.在△Rt P AH中,PH=PA2+AH2=,所以sin∠APH==.作Ay⊥AD,以A为原点,以AD,AP的方向分别为x轴,z轴的正方向,建立如图D192所以PE=(1,0,-2),EC=(1,1,0),AP=(0,0,2)PEEC→则sinα==|n|·|AP|2×22+-+123所以直线PA与平面PCE所成角的正弦值为.设BC=1,则在Rt△P AD中,P A=AD=2.如图D191,过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知P A⊥平面ABCD,从而P A⊥CE.于是CE⊥平面P AH.所以平面PCE⊥平面P AH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以∠APH是PA与平面PCE所成的角.在△Rt AEH中,∠AEH=45°,AE=1,22322AH1PH3图D191图D192方法二,由已知,CD⊥P A,CD⊥AD,PA∩AD=A,所以CD⊥平面P AD.于是CD⊥PD.从而∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.设BC=1,则在△Rt P AD中,P A=AD=2.→→所示的空间直角坐标系Axyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),→→→设平面PCE的法向量为n=(x,y,z),⎧⎪n·→=0,由⎨⎪⎩n·→=0,⎧⎪x-2z=0,得⎨⎪⎩x+y=0.设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,|n·AP|2→1=.1320.(本小题满分12分)(2016年新课标Ⅲ)设函数f(x)=ln x-x+1.(2)证明当x ∈(1,+∞)时,1< <x ;20.解:(1)由题设,f(x)的定义域为(0,+∞),f ′(x)= -1,令 f ′(x)=0,解得 x =1.故当 x ∈(1,+∞)时,ln x <x -1,ln < -1,即 1< <x.ln c 令 g ′(x)=0,解得 x 0= .21.解:(1)设椭圆 C 的方程为 + =1(a >b >0),因为点 B(2, 2)在椭圆 C 上,所以 + =1.②所以椭圆 C 的方程为 + =1.因为直线 y =kx(k ≠0)与椭圆 + =1 交于两点 E ,F ,(1)讨论f(x)的单调性;x -1ln x(3)设c >1,证明当x ∈(0,1)时,1+(c -1)x >c x .1x当 0<x <1 时,f ′(x)>0,f(x)单调递增; 当 x >1 时,f ′(x)<0,f(x)单调递减.(2)由(1)知,f(x)在 x =1 处取得最大值,最大值为 f(1)=0. 所以当 x ≠1 时,ln x <x -1.1 1 x -1x x ln x(3)由题设 c >1,设 g (x)=1+(c -1)x -c x , 则 g ′(x)=c -1-c x ln c.c -1 lnln c当 x <x 0 时,g ′(x)>0,g (x)单调递增; 当 x >x 0 时,g ′(x)<0,g (x)单调递减.c -1由(2)知,1<ln c <c ,故 0<x 0<1.又 g (0)=g (1)=0,故当 0<x <1 时,g (x)>0. 所以 x ∈(0,1)时,1+(c -1)x >c x .21.( 本 小 题 满 分 12 分 )(2016 年 广 东 广 州 综 合 测 试一)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(-2,0),点B(2, 2 )在椭圆C 上,直线y =kx(k ≠0)与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(1)求椭圆C 的方程;(2)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理 由.x2 y2a2 b2因为椭圆的左焦点为 F 1(-2,0),所以 a 2-b 2=4.①4 2a2 b2由①②,解得 a =22,b =2. x2 y28 4(2)因为椭圆 C 的左顶点为 A ,则点 A 的坐标为(-2 2,0).x2 y28 4设点 E(x 0,y 0)(不妨设 x 0>0),则点 F(-x 0,-y 0).⎪⎩ 84 .所以 x 0= 2,则 y 0= .- ⎝ 2⎫2⎫2⎪ ,即 x 2+y 2+ y =4.⎛ 4π ⎫(2,π)、B 2, ⎪.⎛4π 4π ⎫ 22.解:(1)将 A 、B 化为直角坐标为 A(2cos π,2sin π),B 2cos ,2sin ⎪,即 A ,⎪⎨ d = =⎧⎪y =kx ,联立方程组⎨x2 y2+ =1消去 y ,得 x 2=81+2k22 1+2k2 2 2k 1+2k2k所以直线 AE 的方程为 y = (x +2 2).1+ 1+2k2因为直线 AE ,AF 分别与 y 轴交于点 M ,N ,2 2k ⎛ 2 2k ⎫令 x =0 得 y = ,即点 M 0, ⎪.1+ 1+2k2 ⎝ 1+ 1+2k2⎭ ⎛ 2 2k ⎫同理可得点 N 0, ⎪.⎝ 1- 1+2k2⎭⎪ 2 2k 2 2k ⎪ 2 所以|MN |=⎪ ⎪=⎪1+ 1+2k2 1- 1+2k2⎪⎛ 设 MN 的中点为 P ,则点 P 的坐标为 P 0,- ⎝+|k|2⎫⎪.k ⎭.⎛ ⎛ 则以 MN 为直径的圆的方程为 x 2+ y + ⎪ =k ⎭ ⎝+ |k| 2 2⎭ k令 y =0,得 x 2=4,即 x =2 或 x =-2.故以 MN 为直径的圆经过两定点 P 1(2,0),P 2(-2,0),请考生在第(22)(23)两题中任选一题作答.注意:只能作答在所选定的题目上.如果多做,则按所做的第一个题目计分.22.(本小题满分 10 分)选修4-4:极坐标与参数方程已知曲线C 的参数方程是⎧x =2cos θ , ⎪⎩y =sin θ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,A 、B 的极坐标分别为A⎝ 3 ⎭(1)求直线AB 的直角坐标方程;(2)设M 为曲线C 上的动点,求点M 到直线AB 距离的最大值.⎝ 3 3 ⎭ B 的直角坐标分别为 A(-2,0),B(-1,- 3),k AB = - 3-0 -1+2=- 3,∴直线 AB 的方程为 y -0=- 3(x +2), 即直线 AB 的方程为 3x +y +2 3=0.(2)设 M (2cos θ,sin θ),它到直线 AB 的距离|2 3cos θ +sin θ +2 3| | 13 2θ +φ2+2 3|,2 ⎧⎪x≤ , ⎩ 解得 1<x ≤ ,或 <x < . ⎧⎪ ⎪ 5 所以原不等式的解集为⎨x ⎪1<x< ⎪⎩ ⎪∴d max =13+2 3 .23.(本小题满分 10 分)选修4-5:不等式选讲已知函数f(x)=|x -2|-|2x -a|,a ∈R .(1)当a =3时,解不等式f(x)>0;(2)当x ∈(-∞,2)时,f(x)<0恒成立,求a 的取值范围. 23.解:(1)当 a =3 时,f(x)>0,即|x -2|-|2x -3|>0, 3 等价于⎨ 2 ⎪⎩x -1>0, ⎧⎪3<x<2, 或⎨2 ⎪⎩-3x +5>0,⎧⎪x≥2, 或⎨ ⎪-x +1>0. 3 3 5 2 2 33 ⎫⎪ ⎬. ⎪⎭ (2)f(x)=2-x -|2x -a|,所以 f(x)<0 可化为|2x -a|>2-x , ①即 2x -a >2-x ,或 2x -a <x -2.①式恒成立等价于(3x -2)min >a 或(x +2)max <a , ∵x ∈(-∞,2),∴a ≥4.。
黔东南州2018 届高三第一次模拟考试理科综合参考答案一、选择题:本题共题号1 2 13 小题,每小题34 56 分。
6 7 8 9 1011 1213答案A C二、选择题:本题共一项符合题目要求;第给 3 分,有选错的给题号14D C B D D C A D B C B8 小题,每小题 6 分。
在每小题给出的四个选项中,第14~ 17 题只有18~ 21 题有多项符合题目要求,全部选对的给 6 分,选对但不全的0 分。
15161718192021答案D A B C B AC ABD ABD解析1.大肠杆菌为原核细胞,没有复杂的细胞器;细胞生物的遗传物质都是DNA;人的造血干细胞属于真核细胞,有丝分裂是真核细胞的分裂方式。
故选 A2.连续分裂的细胞才具有细胞周期;分裂间期细胞有适度生长;蚕豆根尖分生区细胞没有中心体(中心粒);故选 C3.转录是以DNA 的一条链为模板合成RNA,A 错误;转录时需要RNA 聚合酶的作用, B 错误;翻译时一个mRNA 分子上可以结合多个核糖体同时翻译, C 错误;一种氨基酸可能有多种遗传密码,因此在翻译时一种氨基酸可能被多种tRNA 转运,故选 D 4.免疫活性物质是由免疫细胞或其他细胞产生的发挥免疫作用的物质, A 错误;有T 细胞参与的特异性免疫既有可能是体液免疫也有可能是细胞免疫, B 错误;有 B 细胞参与的特异性免疫就是体液免疫, C 正确;癌细胞的清除属于免疫系统的监控和清除功能, D错误;故选 C5.CO2可使溴麝香草酚蓝水溶液由蓝变绿再变黄, A 正确;吡罗红可使RNA 呈现红色, B 错误;健那绿可使活细胞中的线粒体呈现蓝绿色, C 正确;酸性条件下重铬酸钾与乙醇反应变为灰绿色, D 正确;故选 B6.根据题目信息可知,控制这两对相对性状的基因位于同一对同源染色体上,基因型为HhhMM 高茎红花植株的出现不可能是染色体数目变异导致的,因为控制花色的基因是正常成对存在的,HhhMM 应该是 h 基因所在染色体片段的增加导致, A 错误;基因型为HoMM 高茎红花植株控制花色的基因是正常成对存在的,是由于控制茎高度的基因所在的一条染色体的片段缺失导致, B 错误;基因型为hoMm 矮茎红花植株控制花色的基因是正常成对存在的,是由于控制茎高度的基因所在的一条染色体的片段缺失导致的,不可能是染色体数目变异导致, C 错误;基因型为hoMm 矮茎红花植株自交,产生的配子有 hM 、 om 或hm 、 oM 两种,用棋盘法写出子代的基因型,由于oo 是控制茎高度性状的基因都缺失,该受精卵不能发育,因此存活的子代中染色体结构正常(hhMM 或hhmm)占 1/3,故选 D7.硅酸盐种类繁多,结构复杂,组成各异,通常用二氧化硅和金属氧化物的组合形式表示其组成, A 选项正确,详见必修一教材第77 页。
秘密★启用前2018年贵州省黔东南州高考第一次模拟考试理科数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
满分150分,考试时间120分钟。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.) 1.已知集合2{|230},{|24}A x x x B x x =-->=<<,则集合B A ⋂=( ) A .()4,1 B .()4,2 C .()3,2D .()4,32. 若复数,215iiz -=则z 的共轭复数对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D. 第四象限 3. 某几何体三视图如右图所示,图中三个等腰直角三角形的直角边长都是2, 该几何体的体积为 ( )A .43 B. 83 C.4 D. 1634.下列命题中正确的是( ) A.cos 0α≠是2()2k k Z παπ≠+∈的充分必要条件B.函数x x f ln 3)(=的零点是(1,0)和(1,0)-C.设随机变量ζ服从正态分布(0,1)N ,若(1)P p ζ>=,则1(10)2P p ζ-<<=- D.若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差会改变5.若{}n a 是等差数列,公差632,,,0a a a d ≠成等比数列,则该等比数列的 公比为( )A. 1B. 2C. 3D. 46.阅读如图所示的程序框图,运行相应的程序,则输出i 的值为( ) A .3 B .4 C .5 D .67.变量,x y 满足条件1011x y y x -+≤⎧⎪≤⎨⎪>-⎩,则22(2)x y -+的最小值为( )正视图俯视图侧视图92 D. 58.在平行四边形ABCD 中,0AC CB ⋅=, 1,2==BC AC ,若将其沿AC 折成直二面角D AC B --,则AC 与BD 所成的角的余弦值为( )A .21 B. 22 C. 23 D. 339.过点(-2,0)的直线l 与圆x 2+y 2=5相交于M 、N 两点,且线段MN=23,则直线l 的斜率为( )A .3±B .33±C .1±D .23± 10. 设不等式组0301x y ≤≤⎧⎨≤≤⎩表示的平面区域为D ,在区域D 内随机取一点,则此点到坐标原点的距离小于2的概率是( ) A.218πB. 36π-C. 312πD. 4π11. 如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点。
若四边形21BF AF 为矩形,则2C 的离心率是( )A. 2B. 3C. 23D. 2612.已知函数()ln f x x x k =-+,在区间1[,]e e上任取三个数,,,c b a 均存在以)(),(),(c f b f a f 为边长的三角形,则k 的取值范围是( )A .(1)-+∞, B.(,1)-∞- C. (,3)e -∞- D. (3)e -+∞,第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个试题考生都必须作答。
第22题~第24题为选考题,考生依据要求作答。
二、填空题(本大题共计4小题,每小题5分.)13.已知向量OA AB ⊥ ,||3OA =,则=⋅__________。
14.在*3)()n n N ∈的展开式中,所有项的系数和为32-,则1x 的系数等于__________。
15. 已知函数⎩⎨⎧≤->=0,40,)(2x x x x x x f ,若1)(-≥ax x f 恒成立,则实数a 的取值范围是_____。
16.已知数列{}n a 满足1,2211+-==+n n n na a a a ,令11+=n n n a a b ,则数列{}n b 的前n 项和n S =__________。
三、解答题(本大题共8小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)在ABC ∆中,角A 、B 、C 所对的边分别是a 、b 、c ,已知B C A C A 2cos 2sin sin 32cos cos 3+=+.(I )求角B 的大小;(II )若1=+c a ,求b 的取值范围.18.(本小题满分12分)为了解高三年级学生寒假期间的学习情况,某学校抽取了甲、乙两班作为对象,调查这两个班的学生在寒假期间平均每天学习的时间(单位:小时),统计结果绘成频率分布直方图(如图).已知甲、乙两班学生人数相同,甲班学生平均每天学习时间在区间]4,2[的有8人.甲0.150.1250.1乙0.0250.050.0750.175(I )求直方图中a 的值及甲班学生平均每天学习时间在区间]12,10(的人数;(II )从甲、乙两个班平均每天学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为k ,求k 的分布列和数学期望.MDCBAP19.(本小题满分12分)如图,四棱锥ABCD P -中,底面ABCD 是菱形,60=∠ADC ,面PCD ⊥面ABCD ,2===CD PD PC ,点M 为线段PB 上异于P 、B 的点. (I )当点M 为PB 的中点时,求证:PD //平面ACM ;(II )当二面角M AC B --的余弦值为55时,试确定点M 的位置.20.已知抛物线)0(2:2>=p px y E 的准线与x 轴交于点K ,过K 点作曲线034:22=++-y x x C 的切线,切点M 到x 轴的距离为322, (I )求抛物线E 的方程;(II )设B A ,是抛物线E 上分别位于x 轴两侧的两个动点,且49=⋅OB OA (其中O 为坐标原点) (i )求证:直线AB 必过定点,并求出该定点Q 的坐标;(ii )过点Q 作AB 的垂线与抛物线交D G ,于两点,求四边形AGBD 面积的最小值.21.已知函数)1(31ln 1)(2>--++=a x xx a a x f (I )讨论函数)(x f 在)1,0(上的单调区间;(II )当3≥a 时,曲线)(x f y =上总存在相异两点Q P ,,使得曲线)(x f y =在Q P ,处的切线互相平行,求线段PQ 中点横坐标的取值范围.请考生在第22、23、24三道题中任选一题作答。
如果多做,则按所做的第一题计分。
做答时请写清题号。
22.(本小题满分10分)选修4-1:几何证明选讲如图,在ABC ∆中,CD 是ACB ∠的角平分线,ADC ∆的外接圆交BC 于点E ,2AB AC =.(1)求证:2BE AD =;(2)当3,6AC EC ==时,求AD 的长.23.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线3649:22=+y x C ,直线⎪⎪⎩⎪⎪⎨⎧+=+=32cos 4265sin 22:ππt y t x l (t 为参数)(I )写出曲线C 的参数方程,直线l 的普通方程;(II )过曲线C 上任意一点P 作与l 夹角为030的直线,交l 于点A ,求PA 的最大值与最小值.24.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|2,()|2| 3.f x x g x x =-+=-++ (I )解不等式:()2g x ≥-;(II )当x R ∈时,()()2f x g x m -≥+恒成立,求实数m 的取值范围.2018年贵州省黔东南州高考第一次模拟考试理科数学试题参考答案12、解:∵ xx x f 1)('=-=,令0)('=x f ,得1=x , ∵函数定义域为1[,]e e∴)(x f 在)1,1(e单调递减,在),1(e 单调递增 ∴k f x f +==1)1()(min k e e f x f +-==1)()(max 由题意知 01)1(>+=k f ①)()1()1(e f f f >+,即 k e k +->+122 ②由①②得 3->e k 故选D二、填空题13、 9 14、 -270 15、 [﹣6,0] 16、2121+-n 15、解析:由题意,1)(-≥ax x f 恒成立,等价于1-=ax y 始终在)(x f y =的下方,即直线夹在与)0(42≤-=x x x y 相切的直线,和1-=y 之间,所以转化为求切线斜率.由⎩⎨⎧-=-=142ax y x x y ,可得01)4(2=++-x a x ①, 令04)4(2=-+=∆a ,解得6-=a 或2-=a , 6-=a 时,1-=x 成立;2-=a 时,1=x 不成立, ∴实数a 的取值范围是[﹣6,0] .16、提示:通过递推关系求出前4项,再根据前4项猜想出{}n a 的通项,结合递推关系验证通项的正确性,最后再求n b 、n S . 三、解答题17解:(I )由已知得02sin sin 3cos cos 3cos 22=-+-C A C A B即02)cos(3cos 22=-+-C A B ,即02cos 3cos 22=-+B B 解得21cos =B 或2cos -=B (舍去) 又因为π<<B 0 所以3π=B ……………………………………………………………………6分[(II )由余弦定理,有B ac c a b cos 2222-+=,因为1=+c a ,21cos =B ,所以41)21(322+-=a b ,又因为10<<a , 所以1412<≤b ,即121<≤b . ……………………………………12分[ 18、甲0.150.1250.1乙0.0250.050.0750.175解:(I ) 由直方图知,12)0875.01.0125.015.0(=⨯++++a ,解得0375.0=a , 因为甲班学习时间在区间]4,2[的有8人,所以甲班的学生人数为402.08=,所以甲、乙两班人数均为40人. 所以甲班学习时间在区间]12,10(的人数为30375.040=⨯(人).………………………………5分 (II )乙班学习时间在区间]12,10(的人数为4205.040=⨯⨯(人). 由⑴知甲班学习时间在区间]12,10(的人数为3人,在两班中学习时间大于10小时的同学共7人,k 的所有可能取值为0,1,2,3.351)0(474403===C C C k P ,3512)1(473413===C C C k P , 3518)2(472423===C C C k P ,354)3(471433===C C C k P .712354335182351213510=⨯+⨯+⨯+⨯=Ek .………………………………12分 19解:(I )设AC 、BD 的交点为N ,连结MN , 因为M 、N 分别为BP 、BD 的中点, 所以MN PD //,又⊂MN 平面ACM ,所以PD //平面ACM …………………………………………………5分 (II )设CD 的中点为O ,因为2===CD PD PC ,面PCD ⊥面ABCD 所以⊥PO 面ABCD ,又因为在菱形ABCD 中,60=∠ADC 所以CD OA ⊥B分别以OA 、OC 、OP 为x 轴、y 轴、z 轴建立空间直角坐标系,则)0,0,3(A ,)0,2,3(B ,)0,1,0(C ,)3,0,0(P ,设)10(<<=λλ,则)3,21,33(λλλλ--=+=+=,)0,1,3(-=,……7分 设平面ACM 的法向量为),,(z y x =由⎪⎩⎪⎨⎧=⋅=⋅00得⎩⎨⎧=+-+-=-03)21()33(03z y x y x λλλ 令1=x ,则)23,3,1(λ-=n ……8分[来又平面ABCD 的法向量为)3,0,0(=…………………10分所以553124133233|||||,cos |2=⨯---==><λλλn OP n OP解得:21=λ或1=λ(舍去),所以点M 为线段PB 的中点.…………………………………………………12分20解:(I )由已知可得)0,2(pK -,圆1)2(:22=+-y x C 的圆心)0,2(C ,半径为1,过M 点作x MR ⊥轴,且与x 轴垂直相交于点R ,由题意可知22,1,322pKC MC MR +===,则,31=RC 而MKC ∆∽RMC ∆,则MCKC RC MC =,即122311p +=, 则2=p ,抛物线x y E 42=的方程为……………………………………4分(II )(i )设直线),4(),,4(),0(:222121y y B y y A y t my x AB ≠+=, 由⎩⎨⎧=+=xy t my x 42可得0442=--t my y ,所以m y y 421=+,t y y 421-=, 又49=⋅,即49)4(21221=+y y y y ,解得1821-=y y 或221=y y (舍去),所以184-=-t ,解得29=t ,则有AB 恒过定点)0,29(Q ………………………………9分(ii )由题意得0≠m ,由(i )可得72161122122+⋅+=-+=m m y y m AB ,同理72161122+⋅+=m m GD , 则四边形AGBD 面积7216117216*********+⋅+⋅+⋅+=⋅=mm m m GD AB S⎥⎦⎤⎢⎣⎡++⎥⎦⎤⎢⎣⎡++=)1(1885)1(242222m m m m ,令)2(122≥=+μμmm ,则1701211842++=μμS 是关于μ的增函数, 则当2=μ时,S 取得最小值,且为88.即当且仅当1±=m 时,四边形AGBD 面积的最小值为88. ………………………12分21解:(I )函数)(x f 的定义域为),0(+∞,求导数得2222/)1)((1)1(111)(xa x a x x x a a x x x a a x f ---=++--=--+= 令0)(/=x f 解得ax a x 1==或)(,11,0)(,10110,1//><<<<<∴<<∴>x f x a x f a x aa 时当时当故)(x f 在)1,0(a 上单调递减,在)1,1(a上单调递增. ……………………………5分(II )由题得,当3≥a 时)0,)(()(21212/1/x x x x x f x f ≠>且=即111111222211--+=--+x x a a x x a a 212121111x x x x x x a a +=+=+∴ 221212121)2(0,x x x x x x x x +<∴≠>且 恒成立 aa x x x x x x x x a a x x x x x x 14,410,)(41212121212122121+>++>+=+∴>++>∴整理得,又令0)1()1(4)(,1414)(222/2<+-=+=+=a a a g a a aa a g 则 )(a g ∴在),3[+∞上单调递减)(a g ∴在),3[+∞上的最大值为56)3(=g5621>+∴x x即线段PQ 中点横坐标的取值范围为),53(+∞.……………………12分22.解:(I )连接DE ,因为ACED 是圆内接四边形,所以,BCA BDE ∠=∠又,CBA DBE ∠=∠DBE ∆∴∽CBA ∆,即有,CADEBA BE = 又因为AC AB 2=,可得,2DE BE =因为CD 是ACB ∠的平分线,所以DE AD =, 从而AD BE 2=;分5(II )由条件知62==AC AB ,设t AD =,则62,2+==t BC t BE ,根据割线定理得BC BE BA BD ⋅=⋅, 即),62(26)6(+⋅=⨯-t t t 即018922=-+t t ,解得23=t 或6-(舍去),则.23=AD 分1023.解:(I )曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩(θ为参数)直线l 的普通方程为062=-+y x ……………………………5分(II )曲线C 上任意一点()2cos ,3sin P θθ到l的距离为3sin 6d θθ=+- 则()6sin 30d PA θα==+- ,其中α为锐角,且4tan 3α= 当1)sin(-=+αθ时,PA当1)sin(=+αθ时,PA取得最小值,最小值为5. ……………………………10分24.解:(I )由()2g x ≥-得52≤+x ,解得37-≤≤x所以不等式的解集是{}37≤≤-x x ……………………………5分 (II )设()()()21+21h x f x g x x x =-=-+-则()⎪⎩⎪⎨⎧+---=xx x x h 3223 212122≥<<--≤x x x 所以()23≥x h 所以对应任意R x ∈,不等式()()2+≥-m x g x f 恒成立,得232≤+m ,得21-≤m 所以m 的取值范围是21-≤m .……………………………10分。