不对称短路电流计算
- 格式:ppt
- 大小:3.48 MB
- 文档页数:55
35kv线路短路电流计算公式35kV线路短路电流计算公式引言:35kV线路是一种高压输电线路,其短路电流是指在线路发生故障时,电流流过故障点的大小。
准确计算35kV线路的短路电流对于线路的设计、运行和维护至关重要。
本文将介绍35kV线路短路电流的计算公式及其相关内容。
一、35kV线路短路电流的定义短路电流是指在电力系统中,当电路发生故障时,电流从电源到达故障点的电流值。
短路电流的大小决定了电路故障时的电压和电流水平,对电力设备的选择、保护和运行有着重要影响。
二、35kV线路短路电流计算公式35kV线路的短路电流计算公式可以根据电路参数和故障类型来进行推导。
以下是常用的两种计算公式:1. 对称短路电流计算公式对称短路电流是指电路发生对称故障时的短路电流,通常包括三相短路故障和两相短路故障。
对称短路电流计算公式如下:Isc = U / (√3 * Z)其中,Isc为对称短路电流,U为电压,Z为电路阻抗。
2. 不对称短路电流计算公式不对称短路电流是指电路发生不对称故障时的短路电流,通常包括单相接地故障和两相短路故障。
不对称短路电流计算公式如下:Isc = U / Z其中,Isc为不对称短路电流,U为电压,Z为电路阻抗。
三、35kV线路短路电流计算步骤根据以上的短路电流计算公式,我们可以按照以下步骤来计算35kV 线路的短路电流:1. 确定故障类型:根据实际情况确定故障类型,是对称故障还是不对称故障。
2. 收集电路参数:收集35kV线路的电压和电路阻抗参数,包括电源电压、线路长度、线路材料等。
3. 计算短路电流:根据故障类型和电路参数,利用相应的短路电流计算公式进行计算。
4. 分析计算结果:得到短路电流数值后,需要对结果进行分析,判断是否符合线路设计要求,是否会对设备产生过大的负荷,从而选择合适的保护装置。
四、35kV线路短路电流计算的影响因素35kV线路的短路电流受到多种因素的影响,以下是一些常见的影响因素:1. 电源电压:电源电压的大小直接影响短路电流的大小,电压越高,短路电流越大。
武汉理工大学《电力系统分析》课程设计说明书目录摘要 (3)1 电力系统短路故障的基本概念 (4)1.1短路故障的概述 (4)1.2 三序网络原理 (5)1.2.1 同步发电机的三序电抗 (5)1.2.2 变压器的三序电抗 (5)1.2.3 架空输电线的三序电抗 (6)1.3 标幺制 (6)1.3.1 标幺制概念 (6)1.2.2标幺值的计算 (7)1.4 短路次暂态电流标幺值和短路次暂态电流 (8)2 简单不对称短路的分析与计算 (9)2.1单相(a相)接地短路 (9)2.2 两相(b,c相)短路 (10)2.3两相(b相和c相)短路接地 (12)2.4 正序等效定则 (14)3 不对称短路的计算的实际应用 (14)3.1 设计任务及要求 (14)3.2 等值电路及参数标幺值的计算 (15)3.3 各序网络的化简和计算 (17)3.3.1 正序网络 (17)3.3.2 负序网络 (19)3.3.3 零序网络 (20)3.4 短路点处短路电流、冲击电流的计算 (20)4 实验结果分析 (21)5 心得体会 (22)6 参考文献 (23)2摘要电力系统的安全、稳定、经济运行无疑是历代电力工作者所致力追求的,但是从电力系统建立之初至今电力系统就一直伴随着故障的发生而且电力系统的故障类型多样。
在电力系统运行过程中,时常会发生故障,且大多是短路故障。
短路通常分为三相短路、单相接地短路、两相短路和两相接地短路。
其中三相短路为对称短路,后三者为不对称短路。
电力运行经验指出单相接地短路占大多数,因此分析与计算不对称短路具有非常重要意义。
求解不对称短路,首先应该计算各原件的序参数和画出等值电路。
然后制定各序网络。
根据不同的故障类型,确定出以相分量表示的边界条件,进而列出以序分量表示的边界条件,按边界条件将三个序网联合成复合网,由复合网求出故障处各序电流和电压,进而合成三相电流电压。
关键词: 不对称短路计算、对称分量法、节点导纳矩阵31电力系统短路故障的基本概念1.1短路故障的概述在电力系统运行过程中,时常发生故障,其中大多数是短路故障。
变电站各电压等级不对称短路电流的计算X l∗=x(0)×L×S B U BX1(0)=X2(0)=X3(0)=X4(0)=0.45×149.25×1002302=0.127X5(0)=X6(0)=X7(0)=X8(0)=0.45×97.25×1001152=0.331X220(0)=X A(0)+X1(0)||X2(0)||X3(0)||X4(0)=0.25+14×0.127=0.28X110(0)=X B(0)+X5(0)||X6(0)||X7(0)||X8(0)=0.5+14×0.331=0.581.1 220kV侧不对称短路电流计算图6- 1 K1点短路正序网络图图6- 2 K1点短路负序网络图图6- 3 K1点短路零序网络图等值电抗X∑(0)=X220(0)||(X110(0)+X T1(0)+X T2(0))=0.193X∑(1)=X∑(2)=X220||X15=0.1826||0.3122=0.115(1)K1点发生单相接地短路时:X Δ=X ∑(2)+X ∑(0)=0.193+0.115=0.308图6- 4 K1点单相接地短路转移电抗计算转移电抗: X A1(1)=X 220A +X △+X 220A ×X △X 15=0.1826+0.308+0.1823×0.3080.3122=0.670X B1(1)=X 15+X △+X 15×X △X 220A =0.3122+0.308+0.3122×0.3080.1826=1.147计算电抗:系统A :X caA1(1)=0.670×1300100=8.71 系统B :X caB1(1)=1.147×1000100=11.47各支路短路电流:当X ca∗>3.45时,认为系统无限大 系统A :I A (1)(1)=18.17×3.263=0.374 (kA) 系统B :I B(1)(1)=111.47×2.510=0.219 (kA)K1总短路电流:I K1(1)=M (I A (1)(1)+I B(1)(1))=3×(0.219+0.374)=1.778 (kA)(2)K1点发生两相短路时:X Δ=X ∑(2)=0.115图6- 5 K1点两相短路转移电抗计算转移电抗:X A1(2)=X 220A +X △+X 220A ×X △X 15=0.1826+0.115+0.1823×0.1150.3122=0.364X B1(2)=X 15+X △+X 15×X △X 220A =0.3122+0.115+0.3122×0.1150.1826=0.6238计算电抗:系统A :X caA1(2)=0.364×1300100=4.732 系统B :X caB1(2)=0.6238×1000100=6.238各支路短路电流:当X ca∗>3.45时,认为系统无限大 系统A :I A (1)(2)=14.732×3.263=0.689 (kA) 系统B :I B(1)(2)=16.238×2.510=0.402 (kA)K1总短路电流:I K1(2)=M (I A (1)(2)+I B(1)(2))=√3×(0.689+0.402)=1.891 (kA) (3)K1点发生两相短路接地时:X Δ=X ∑(2)×X ∑(0)X ∑(2)+X ∑(0)=0.115×0.1930.115+0.193=0.072图6- 6 K1点两相短路接地转移电抗计算转移电抗: X A1(1,1)=X 220A +X △+X 220A ×X △X 15=0.1826+0.072+0.1823×0.0720.3122=0.29X B1(1,1)=X 15+X △+X 15×X △X 220A =0.3122+0.072+0.3122×0.0720.1826=0.507计算电抗:系统A :X caA1(1,1)=0.29×1300100=3.77系统B :X caB1(1,1)=0.507×1000100=5.07各支路短路电流:当X ca∗>3.45时,认为系统无限大 系统A :I A (1)(1,1)=13.77×3.263=0.866 (kA) 系统B :I B(1)(1,1)=15.07×2.510=0.495 (kA)M =√3×√1−X ∑(2)×X ∑(0)(X ∑(2)+X ∑(0))2=1.516K1总短路电流:I K1(1,1)=M (I A (1)(1,1)+I B(1)(1,1))=1.516×(0.866+0.495)=2.06(kA)1.2 110kV 侧不对称短路电流计算图6- 7 K2点短路正序阻抗图图6- 8 K2点短路负序阻抗图图6- 9 K2点短路零序阻抗图等值电抗X ∑(0)=X 110(0)||(X 220(0)+X T1(0)+X T2(0))=0.206X ∑(1)=X ∑(2)=X 110||X 16=0.2735||0.2213=0.122(1) K2点发生单相接地短路时:X Δ=X ∑(2)+X ∑(0)=0.206+0.122=0.328图6- 10 K2点单相接地短路转移电抗计算转移电抗:X A2(1)=X 16+X △+X 16×X △X 110B =0.2735+0.328+0.2735×0.3280.2213=1.01X B2(1)=X 110B +X △+X 110B ×X △X 16=0.2213+0.328+0.2213×0.3280.2735=0.815计算电抗:系统A :X caA2(1)=1.01×1300100=13.13 系统B :X caB2(1)=0.815×1000100=8.15各支路短路电流:当X ca∗>3.45时,认为系统无限大 系统A :I A (1)(1)=113.13×6.527=0.497 (kA) 系统B :I B(1)(1)=18.15×5.020=0.615 (kA)K2总短路电流:I K2(1)=M (I A (1)(1)+I B(1)(1))=3×(0.479+0.615)=3.34 (kA) (2)K2点发生两相短路时:X Δ=X ∑(2)=0.122图6- 11 K2点两相短路转移电抗计算转移电抗:X A2(2)=X 16+X △+X 16×X △X 110B =0.2735+0.122+0.2735×0.1220.2213=0.546X B2(2)=X 110B +X △+X 110B ×X △X 16=0.2213+0.122+0.2213×0.1220.2735=0.442计算电抗:系统A :X caA2(2)=0.546×1300100=7.098 系统B :X caB2(2)=0.442×1000100=4.42各支路短路电流:当X ca∗>3.45时,认为系统无限大 系统A :I A (1)(2)=17.098×6.527=0.92 (kA) 系统B :I B(1)(2)=14.42×5.020=1.14 (kA)K2总短路电流:I K2(2)=M (I A (1)(2)+I B(1)(2))=√3×(0.92+1.14)=3.55 (kA) (3)K2点发生两相短路接地时:X Δ=X ∑(2)×X ∑(0)X ∑(2)+X ∑(0)=0.206×0.1220.206+0.122=0.0766图6- 12 K2点两相短路接地转移电抗计算转移电抗:X A2(1,1)=X 16+X △+X 16×X △X 110B =0.2735+0.0766+0.2735×0.07660.2213=0.445X B2(1,1)=X 110B +X △+X 110B ×X △X 16=0.2213+0.0766+0.2213×0.07660.2735=0.3599计算电抗:系统A :X caA2(1,1)=0.445×1300100=5.785 系统B :X caB2(1,1)=0.3599×1000100=3.599各支路短路电流:当X ca∗>3.45时,认为系统无限大 系统A :I A (1)(1,1)=15.785×6.527=1.12 (kA) 系统B :I B(1)(1,1)=13.599×5.020=1.39 (kA)M =√3×√1−X ∑(2)×X ∑(0)(X ∑(2)+X ∑(0))2=1.516K2总短路电流:I K2(1,1)=M (I A (1)(1,1)+I B(1)(1,1))=1.516×(1.12+1.39)=3.825 (kA)1.3 10kV 侧不对称短路电流计算图6- 13 K3点短路正序阻抗图图6- 14 K3点短路负序阻抗图4等值电抗X∑(1)=X∑(2)=(X110+X T2)||(X220+X T1)=0.266X∑(0)=∞(2)K3点发生单相接地短路时:XΔ=X∑(2)+X∑(0)=∞计算转移电抗:X A3(1)=∞X B3(1)=∞计算电抗:系统A :X caA3(1)=∞ 系统B :X caB3(1)=∞ 各支路短路电流:系统A :I A (1)(1,1)=0 系统B :I B(1)(1,1)=0K3总短路电流:I K3(1)=M (I A (1)(1)+I B(1)(1))=3(0+0)=0(kA) (2)K3点发生两相短路时:X Δ=X ∑(2)=0.266图6- 15 K3点两相短路转移电抗计算转移电抗:X A3(2)=X 19+X △+X 19×X △X 20=0.427+0.266+0.427×0.2660.515=0.913 X B3(2)=X 20+X △+X 20×X △X 19=0.515+0.266+0.515×0.2660.427=1.1018计算电抗:系统A :X caA3(2)=0.913×1300100=11.869 系统B :X caB3(2)=1.1018×1000100=11.018各支路短路电流:当X ca∗>3.45时,认为系统无限大 系统A :I A (1)(2)=111.869×71.48=6.022 (kA) 系统B :I B(1)(2)=111.018×54.99=4.99 (kA)K3总短路电流:I K2(2)=M (I A (1)(2)+I B(1)(2))=√3×(6.022+4.99)=19.075(kA)(3)K3点发生两相短路接地时:X Δ=X ∑(2)×X ∑(0)X ∑(2)+X ∑(0)=0.266×∞0.266+∞=0.266图6- 16 K3点两相短路接地转移电抗计算转移电抗:X A3(1,1)=X 19+X △+X 19×X △X 20=0.427+0.266+0.427×0.2660.515=0.913X B3(1,1)=X 20+X △+X 20×X △X 19=0.515+0.266+0.515×0.2660.427=1.1018计算电抗:系统A :X caA3(1,1)=0.913×1300100=11.869 系统B :X caB3(1,1)=1.1018×1000100=11.018各支路短路电流:当X ca∗>3.45时,认为系统无限大 系统A :I A (1)(1,1)=111.869×71.48=6.022 (kA) 系统B :I B(1)(1,1)=111.018×54.99=4.99 (kA)M =√3×√1−X ∑(2)×X ∑(0)(X ∑(2)+X ∑(0))2=√3K3总短路电流:I K3(1,1)=M (I A (1)(1,1)+I B(1)(1,1))=√3×(6.022+4.99)=19.075(kA)。
计算题部分:1、电力系统如图所示,变压器T 2低压侧开路。
在输电线中间发生单相短路时,计算:(1)故障点的次暂态短路电流;(2)变压器T1,变压器T2中性线中的次暂态短路电流。
解:1)画出正序、负序、零序网,求正序、负序、零序等值电抗:125.0)18.0087.0//()18.0056.0(19.006.0056.0074.0176.006.0056.006.0021=++==++==++=∑∑∑x x x2)画出复合序网,求故障点正序、负序、零序电流:)(51.02303100)125.019.0176.0(1I I I 021kA j j a a a =⨯⨯++===3)故障点的次暂态短路电流:)(53.151.03I 3I 1kA a fa =⨯== 4)在零序网中求流过变压器T1,变压器T2的零序电流:)(24.027.051.0)(27.018.0056.0125.051.02010kA I kA I T T =-==+⨯=5)求流过变压器T1,变压器T2中性线中的次暂态短路电流)(72.024.033)(81.027.033202101kA I I kA I I T N T T N T =⨯===⨯==2、电力系统如图所示,变压器T 2低压侧开路。
在输电线中间发生两相接地短路时,计算:(1)故障点的次暂态短路电流;(2)变压器T1,变压器T2中性线中的次暂态短路电流。
解:1)画出正序、负序、零序网,求正序、负序、零序等值电抗:08.0)09.0087.0//()09.006.0(16.003.0056.0074.015.003.006.006.0021=++==++==++=∑∑∑x x x ;2)画出复合序网,求故障点正序、零序电流:)(36.024.016.025.1)(I I )(25.12303100)08.0//16.015.0(1I 022101kA x x x kA j j a a a =⨯=+==⨯⨯+=∑∑∑ 3)故障点的次暂态短路电流:)(687.4)08.0(0.160.080.16-125.13I )(x x -13I I 2120202kA x x a fc fb =+⨯⨯⨯=+==∑∑∑∑4)在零序网中求流过变压器T1,变压器T2的零序电流:)(168.0192.036.0);(192.009.006.008.036.02010kA I kA I T T =-==+⨯= 5)求流过变压器T1,变压器T2中性线中的次暂态短路电流)(504.0168.033);(576.0192.033202101kA I I kA I I T N T T N T =⨯===⨯==3、在如图所示的电力系统中,各元件参数如下:如图所示电路,在f 点发生A 相单相接地短路时,流过短路点的电流为3KA 。
对称分量法在不对称短路故障处计算短路电流中的应用应用对称分量法计算不对称短路故障处短路电流的步骤如下:1. 进行不对称短路故障模拟,生成短路故障模拟数据。
该数据包括短路点电压、短路点电流、母线电压等参数。
2. 对短路故障模拟数据进行变换,将其转换为对称分量形式。
具体来说,可以将短路故障模拟数据进行傅里叶变换,将其分解成正弦波和余弦波的乘积。
其中以正弦波为主,余弦波为辅,因为它们构成短路故障时的主要分量。
3. 计算对称分量中的正弦波分量和余弦波分量。
具体来说,可以使用短路故障模拟数据中的正弦波分量和余弦波分量的系数,乘以母线电压和短路点电流的系数,得到对称分量中的正弦波分量和余弦波分量。
4. 计算不对称短路故障处的短路电流。
具体来说,可以使用对称分量法计算出正弦波分量和余弦波分量的和,即短路电流的幅值和相位。
拓展:除了上述步骤外,使用对称分量法计算不对称短路故障处的短路电流,还需要注意以下几点:1. 确保短路故障模拟数据的准确性和可靠性。
在进行短路故障模拟时,需要考虑多种因素,如导线电阻、电缆电阻、短路点热稳定等。
此外,还需要考虑不同电气设备的阻抗和导纳,以确保计算结果的准确性。
2. 确保对称分量法的计算模型正确。
在使用对称分量法计算不对称短路故障处的短路电流时,需要确保计算模型正确。
具体来说,需要确保母线电压、短路点电流和正弦波分量和余弦波分量的系数正确,否则计算结果可能不准确。
3. 考虑不对称短路故障处的电气特性。
在使用对称分量法计算不对称短路故障处的短路电流时,需要考虑到不对称短路故障处的电气特性,如短路点电压、短路点电流、母线电压等参数的变化。
否则,计算结果可能不准确。
电力系统不对称短路电流的计算 - 电力配电学问(一)相量及其计算:相量à是旋转相量,他在复数平面用一个有向线段和初相角表示,以ωt角速度逆时针绕原点旋转,他在竖轴上的投影即为正弦波的瞬时值。
计算出相量即可算出正弦波的瞬时值。
(正弦波的瞬时值才能进行四则运算)相量在数学上表示为à= Aejф如两个相量:它的四则运算:相量加减用平行四边形计算、相量乘除是幅值相乘除,角度相加减。
如两相量相乘:单位相量:为算子。
(二)对称重量法及其应用1、对称重量法任何一组三相不对称相量都可用数学分析的方法分解成三组三相对称相量,他们是三相正序对称相量、负序对称相量和零序对称相量,如图1-7所示图1-7 三相不对称电压分解成三组正、负、零序对称电压或者说,三相不对称相量的相值等于相应于该相各序值的和:以三相电压为例úA=úa1+úa2+úa0úB=úb1+úb2+úb0úC=úc1+úc2+úc0各序值为三相对称相量,则上面方程式可写成:úA=úa1+úa2+úa0úB=a2úa1+aúa2+úa0úC=aúa1+a2úa2+úC0三个方程有三个未知数,可联立求解2、对称重量法的应用图1-8 对称重量的独立性接受叠加原理:在短路点有一组不对称电压,用对称重量法分解成三组对称电压,在对三相对称短路阻挠系统中各序有独立性,可以用单相计算各序电流,相电流为相应相各序电流的和。
图1-9 正序网等值图正序网对短路点简化后的回路方程为:úda1=èA—jìda1X1∑图1-10 负序网等值图电源没有负序电压,只有短路点有一组负序电压。
负序网对短路点简化后的回路方程为úda2=0—jìda2X2∑图1-11零序网等值图电源没有零序电压,只有短路点有一组零序电压。
第8章电力系统不对称故障的分析和计算8.1 复习笔记一、简单不对称短路的分析各序网络故障点的电压方程式式中,,即是短路发生前故障点的电压。
1.单相(a相)接地短路图8-1-1 单相接地短路(1)边界条件单相接地短路时,故障处的三个边界条件为①用对称分量表示为②用序量表示为(2)短路点电压和电流的各序分量(3)复合序网求解图8-1-2 单相短路的复合序网①短路点故障相电流②短路点非故障相的对地电压(4)相量图分析图8-1-3 单相接地短路时短路处的电流电压相量图和都与方向相同、大小相等,比超前90º,而和比落后90º。
①当X ff(0)→0时,相当于短路发生在直接接地的中性点附近,与反相,即θv=180º,电压的绝对值为。
②当X ff(0)→∞时,为不接地系统,单相短路电流为零,非故障相电压上升为线电压,大小为其夹角为60º。
③当X ff(0)=X ff(2)时,非故障相电压即等于故障前正常电压,夹角为120º。
2.两相(b相和c相)短路图8-1-4 两相短路(1)边界条件故障处的三个边界条件为用对称分量表示为整理后可得(2)方程联立求解(3)复合序网求解图8-1-5 两相短路的复合序网①短路点故障相的电流为b、c两相电流大小相等为②短路点各相对地电压为总结:两相短路电流为正序电流的倍;短路点非故障相电压为正序电压的两倍,而故障相电压只有非故障相电压的一半而且方向相反。
(4)相量图分析图8-1-6 两相短路时短路处电流电压相量图以正序电流作为参考相量,负序电流与它方向相反。
正序电压与负序电压相等,都比超前90º。
3.两相(b相和c相)短路接地图8-1-7 两相短路接地(1)边界条件故障处的三个边界条件为用序量表示的边界条件为(2)方程联立求解。
短路电流的计算与影响分析在电力系统中,短路电流是指由于线路或设备出现故障导致的电流异常增大的现象。
短路电流的计算与影响分析是电力系统运行与规划中关键的一环。
本文将从计算方法和影响分析两个方面来深入探讨短路电流的相关问题。
一、短路电流的计算方法短路电流的计算是建立在电力系统的拓扑结构和电气参数的基础上进行的。
一般来说,短路电流可以分为对称短路电流和不对称短路电流两种情况,下面将介绍它们的计算方法。
1. 对称短路电流的计算对称短路电流是指系统中的三相电流均相等的情况。
在计算对称短路电流时,我们常用的方法是采用对称分解法。
首先,根据系统的拓扑结构和电气参数,我们可以得到系统的节点导纳矩阵Y和节点电压向量U。
然后,通过对称分解法,我们可以将节点导纳矩阵Y分解为正序分量矩阵Y0、负序分量矩阵Y1和零序分量矩阵Y2。
最后,利用节点电压向量U和分解得到的矩阵Y0,我们可以计算得到对称短路电流。
2. 不对称短路电流的计算不对称短路电流是指系统中的三相电流不相等的情况。
在计算不对称短路电流时,我们常用的方法是采用正序不对称分量法。
首先,根据系统的拓扑结构和电气参数,我们可以得到系统的节点导纳矩阵Y和节点电压向量U。
然后,通过正序不对称分量法,我们可以将节点导纳矩阵Y分解为正序分量矩阵Y0、负序分量矩阵Y1和零序分量矩阵Y2。
最后,利用节点电压向量U和分解得到的矩阵Y0、Y1和Y2,我们可以计算得到不对称短路电流。
二、短路电流的影响分析短路电流的异常增大会对电力系统的设备和运行产生一系列的影响,下面将对其进行分析。
1. 设备保护与安全短路电流的计算可以为设备保护提供重要依据。
通过计算得到的短路电流,可以确定合适的保护器件的额定电流和动作时间,从而保护设备免受过载和短路故障的损害。
另外,短路电流的异常增大还可能导致设备的温升过高,进而影响设备的正常运行和寿命。
2. 动态稳定性短路电流的异常增大会对电力系统的动态稳定性产生影响。