九年级下期中考试数学试题及答案
- 格式:doc
- 大小:246.18 KB
- 文档页数:8
人教版九年级数学下册期中考试题及答案【完整版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. C. D.2.将直线向右平移2个单位, 再向上平移3个单位后, 所得的直线的表达式为()A. B. C. D.3. 抛物线y=3(x﹣2)2+5的顶点坐标是()A. (﹣2, 5)B. (﹣2, ﹣5)C. (2, 5)D. (2, ﹣5)4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题: ”一百馒头一百僧, 大僧三个更无争, 小僧三人分一个, 大小和尚各几丁?”意思是: 有100个和尚分100个馒头, 如果大和尚1人分3个, 小和尚3人分1个, 正好分完, 试问大、小和尚各多少人?设大和尚有x人, 依题意列方程得()A. =100 B. =100C. D.5.体育测试中, 小进和小俊进行800米跑测试, 小进的速度是小俊的1.25倍, 小进比小俊少用了40秒, 设小俊的速度是米/秒, 则所列方程正确的是()A. B.C. D.6.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(, m), 则不等式组mx﹣2<kx+1<mx的解集为()A. x>B. <x<C. x<D. 0<x<7.在以下绿色食品、回收、节能、节水四个标志中, 是轴对称图形的是()A. B. C. D.8.如图, 下列条件不能判定△ADB∽△ABC的是()A. ∠ABD=∠ACBB. ∠ADB=∠ABCC. AB2=AD•ACD.9.扬帆中学有一块长, 宽的矩形空地, 计划在这块空地上划出四分之一的区域种花, 小禹同学设计方案如图所示, 求花带的宽度.设花带的宽度为, 则可列方程为()A. B.C. D.10.如图, 二次函数的图象经过点, , 下列说法正确的是()A. B.C. D. 图象的对称轴是直线二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算( -)×+2 的结果是_____________.2. 分解因式: _______.3. 已知、为两个连续的整数, 且, 则=________.4. 如图, 矩形ABCD面积为40, 点P在边CD上, PE⊥AC, PF⊥BD, 足分别为E,F. 若AC=10, 则PE+PF=__________.5. 如图, 某高速公路建设中需要测量某条江的宽度AB, 飞机上的测量人员在C 处测得A, B两点的俯角分别为和若飞机离地面的高度CH为1200米, 且点H, A, B在同一水平直线上, 则这条江的宽度AB为______米结果保留根号.6. 如图, 在平面直角坐标系中, 已知点A(1, 0), B(1﹣a, 0), C(1+a, 0)(a>0), 点P在以D(4, 4)为圆心, 1为半径的圆上运动, 且始终满足∠BPC=90°, 则a的最大值是__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1.x2.(1)求k的取值范围;(2)若x1+x2=1﹣x1x2, 求k的值.3. 如图, 矩形ABCD中, AB=6, BC=4, 过对角线BD中点O的直线分别交AB,CD边于点E, F.(1)求证: 四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时, 求EF的长.4. 如图, 在平面直角坐标系中, 的三个顶点坐标分别为、、, 平分交于点, 点、分别是线段、上的动点, 求的最小值.5. 抚顺某中学为了解八年级学生的体能状况, 从八年级学生中随机抽取部分学生进行体能测试, 测试结果分为A, B, C, D四个等级. 请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数, 并补全条形图;(3)若该中学八年级共有700名学生, 请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生, 做为该校培养运动员的重点对象, 请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.6. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元, 甲种图书每本的售价是乙种图书每本售价的1.4倍, 若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者, 决定甲种图书售价每本降低3元, 乙种图书售价每本降低2元, 问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.A3.C4.B5.C6.B7、D8、D9、D10、D二、填空题(本大题共6小题, 每小题3分, 共18分)1.2.3.114.45.6.6三、解答题(本大题共6小题, 共72分)1、x=3.2.(1);(2)3、(1)略;(2).4.5.(1)50;(2)16;(3)56(4)见解析6、(1)甲种图书售价每本28元, 乙种图书售价每本20元;(2)甲种图书进货533本, 乙种图书进货667本时利润最大.。
2024年秋学期九年级数学期中考试试卷一、选择题(每题3分,计24分)1.下列方程,属于一元二次方程的是()A.x2﹣xy=1 B.x2﹣2x+3=0 C.D.2(x+1)=x2.一元二次方程x2﹣3=2x的二次项系数、一次项系数、常数项分别是()A.1,﹣2,﹣3 B.1,﹣2,3 C.1,2,3 D.1,2,﹣33.若m、n是关于x的方程2x2﹣4x+1=0的两个根,则的值为()A.4 B.﹣4 C.D.4.电影《志愿军》不仅讲述了中国人民志愿军抗美援朝的故事,更是通过鲜活生动的人物塑造,让观众体会到历史事件背后的人性和情感,一上映就获得全国人民的追捧.某地第一天票房约3亿元,若以后每天票房按相同的增长率增长,三天后票房收入累计达18亿元,若把增长率记作x,则方程可以列为()A.3(1+x)=18 B.3(1+x)2=18 C.3+3(1+x)2=18 D.3+3(1+x)+3(1+x)2=185.下列说法正确的是()A.三点确定一个圆B.平分弦的直径垂直于弦C.相等的圆心角所对的弦相等D.三角形的外心到三角形三个顶点的距离相等.6.如图,AB是⊙O的直径,弦CD交AB于点E,∠ACD=60°,∠ADC=40°,则∠AED的度数为()A.110°B.115°C.120°D.105°7.如图,圆O的半径是4,BC是弦,∠B=30°且A是弧BC的中点,则弦AB的长为()A.B.C.4 D.68.如图,⊙M的半径为4,圆心M的坐标为(6,8),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最大值为()A .13B .14C .12D .28二、填空题(每题3分,计30分)9.写一个一元二次方程,使它有两个相等的实数根: (写出一个即可).10.关于x 的方程x 2+kx +1=0有两个相等的实数根,则k 值为 .11.若m 是方程2x 2﹣3x ﹣1=0的一个根,则4m 2﹣6m +2022的值为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =8,EB =2,则⊙O 的半径为 . 13.任意抛掷一枚均匀的骰子,骰子各个面的点数分别为1,2,3,4,5,6,则朝上的点数是奇数的概率是 .14.为迎接全市的禁毒知识竞赛,某校进行了相关知识测试,经过层层预赛,小洋和小亮进入了最后的决赛,如图,是他们6次的测试成绩,若要从中选一名测试成绩稳定的同学去参加竞赛,则应选 .(填“小洋”或“小亮”).第12题 第14题15. 如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=°,则ABI ∠=.16.如图,60BAC ∠=°,45ABC ∠=°,AB =,D 是线段BC 上的一个动点,以AD 为直径画O 分别交AB 、AC 于E 、F ,连接EF ,则线段EF 长度的最小值为______.17.如图有一个三角形点阵,从上向下有无数多行,其中第一行有1个点,第二行有2个点,…,第n 行有n 个点,容易发现,10是三角点阵中前4行的点数之和.当三角点阵中点数之和是300时,则三角点阵点的行数为 .18.如图,在矩形ABCD 中,12AB =,16BC =,点E F 、分别是边AB BC 、上的动点,且10EF =,点G 是EF 的中点,连接AG CG 、,则四边形AGCD 面积的最小值为 .第15题 第16题 第17题 第18题三、解答题(共9题,计96分)19.解方程:(1)36x 2﹣1=0;(2)x 2+10x +21=0;20.初一某班16名男生在体检时测量了身高.以160cm 为基准,记录男生们的身高,超过160cm 记为正,不足160cm 记为负.前15名男生的相对身高(单位:cm )记录如表,第16名男生身高为171cm . 序号1 2 3 4 5 6 7 8 相对身高7− 4+ 0 16+ 2+ 3− 1+ 5− 序号9 10 11 12 13 14 15 16 相对身高 9− 3+ 4− 7+ 1+ 2− 1+ m(1)表格中m = ;(2)该班最高的男生与最矮的男生身高相差 cm ;(3)计算该班男生的平均身高.21.如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃.为了方便出人,建造时,在BC 上用其它材料做了宽为2米的两扇小门,在EF 上用其它材料做了宽为1米的一扇小门.(1)设花圃的一边AB 长为x 米,请你用含x 的代数式表示另一边AD 的长为___________米;(2)若此时花圃的面积刚好为254m ,求此时花圃的长与宽.22.如图,在四边形ABCD 中,,AC BD 相交于点E ,且AB AC AD ==,经过A ,C ,D 三点的O 交BD 于点F ,连接CF .(1)求证:CF BF =;(2)若CD CB =,求证:CB 是O 的切线.23.已知x 1,x 2是关于x 的一元二次方程x 2﹣2(m +1)x +m 2+10=0的两实数根.(1)求m 的取值范围;(2)已知等腰△ABC 的一边长为7,若x 1,x 2恰好是△ABC 另外两边的边长,求m 的值和△ABC 的周长.24.定义:一元二次方程()200ax bx c a ++=≠,若根的判别式24b ac −是一个完全平方数(式),则此方程叫“完美方程”.(1)判断下列方程一定是“完美方程”的是 ;(直接填序号)①2430x x −−=;②220x mx m ++−=;③()210x b x b +++=;(2)若关于x 的一元二次方程222(1)20x m x m m −−+−=①证明:此方程一定是“完美方程”;②设方程的两个实数根分别为1x ,()212x x x <,是否存在实数k ,使得()12,P x x 始终在函数3y kx k =−+的图像上?若存在,求出k 的值;若不存在,请说明理由.25.某电商销售一款秋季时装,进价40元/件,售价110元/件,每天销售20件.为了庆祝二十大的胜利召开,未来30天,这款时装将开展“喜迎二十大,每天降1元”的促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.(1)这30天内该电商第几天的利润最大?最大利润是多少?(2)为了回馈社会,在这30天内,该电商决定每销售一件时装,向希望工程捐a 元(0,a >).要使每天捐款后的利润随天数t (t 为正整数)的增大而增大,求a 的取值范围.26.如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O ,交BC 于点D ,交AC 于点E .(1)求证:点D 是边BC 的中点.(2)记的度数为α,∠C 的度数为β.探究α与β的数量关系.27.如图①,在四边形ABCD 中,9086BAD D AD CD AB m ∠=∠=°===,,,.过A B C ,,三点的O 的圆心位置和半径,随着m 的变化而变化.解决下列问题:【特殊情形】(1)如图②,当0m =时,圆心O 在AD 上,求O 的半径.【一般情形】(2)(Ⅰ)当2m =时,求O 的半径;(Ⅱ)当0m >时,随着m 的增大,点O 的运动路径是; (填写序号)①射线;②弧;③双曲线的一部分;④不规则的曲线【深入研究】(3)如图③,连接AC ,以O 为圆心,作出与CD 边相切的圆,记为小O .当小O 与AC 相交且与BC 相离时,直接写出m 的取值范围.参考答案1-4BAAD 5-8DACD9.x 2+2x +1=0(答案不唯一) 10.±2 11.2023 12.5 13.½ 14.小亮 15.50° 16.18.14219.解:(1)36x 2﹣1=0,36x 2=1,,解得,;(2)x 2+10x +21=0,x 2+10x =﹣21,x 2+10x +25=﹣21+25,即(x +5)2=4,x +5=±2,解得x 1=﹣3,x 2=﹣7;20.(1)解:由题意得,17116011m =−=+,故答案为:11+;(2)解:16(9)16925cm +−−=+=,即该班最高的男生与最矮的男生身高相差25cm ,故答案为:25;(3)解:1(740162315934712111)16016×−++++−+−−+−++−+++ 11616016=×+ 161cm =答:该班男生的平均身高为161cm .21.1)()273x −(2)长为9米,宽为6米22.(1)证明:AB AC = ,ACB ABC ∴∠=,AB AD = ,ADB ABD ∴∠=∠,又ADB ACF ∠=∠ , ACF ABD ∴∠=∠,ACB ACF ABC ABD ∴∠−∠=−∠,即:BCF CBF ∠=∠, CF BF ∴=;(2)证明:连接CO 并延长交O 于G 点,再连接GF ,CG 为O 直径,90GFC ∴∠=°,90G GCF ∴∠+∠=°,CDB G ∠=∠ ,90CDB GCF ∴∠+∠=°,CD CB = ,CDB CBD ∴∠=∠,CF BF = ,BCF CBD ∴∠=∠,BCF CDB ∴∠=∠,90BCF GCF ∴∠+∠=°,90BCG ∴∠=°,CG BC ∴⊥,CB ∴是O 的切线.23.解:(1)根据题意得Δ=4(m +1)﹣4(m 2+10)≥0,解得;(2)当腰长为7时,则x =7是一元二次方程x 2﹣2(m +1)x +m 2+10=0的一个解, 把x =7代入方程得49﹣14(m +1)+m 2+10=0,整理得m 2﹣14m +45=0,解得m 1=9,m 2=5,当m =9时,x 1+x 2=2(m +1)=20,解得x 2=13,则三角形周长为13+7+7=27;当m =5时,x 1+x 2=2(m +1)=12,解得x 2=5,则三角形周长为5+7+7=19;当7为等腰三角形的底边时,则x 1=x 2,所以,方程化为4x 2﹣44x +121=0,解得,三边长为, 其周长为, 综上所述,m 的值是9或5或,这个三角形的周长为27或19或18. 24.(1)解:①2430x x −−=,()()224441328b ac −=−−××−= ,不是完全平方数,2430x x ∴−−=不是“完美方程”; ②220x mx m ++−=, ()()22224424824b ac m m m m m −=−−=−+=−+ ,不是完全平方式,220x mx m ∴++−=不是“完美方程”;③()210x b x b +++=, ()()2222414211b ac b b b b b −+−−+− ,是完全平方式,()210x b x b ∴+++=是“完美方程”; 故答案为:③;(2)解:①证明:222(1)20x m x m m −−+−=()()2222242142484484b ac m m m m m m m −=−−−=−+−+= ,且4是完全平方数, ∴此方程一定是“完美方程”;②存在,理由如下:222(1)20x m x m m −−+−= ,()()20x m x m ∴−−−=, 0x m ∴−=或()20x m −−=, x m ∴=或2x m =−,设方程222(1)20x m x m m −−+−=的两个实数根分别为1x 、()212x x x <,12x m ∴=−,2x m =,()12,P x x 始终在函数3y kx k =−+的图像上,()23m k m k ∴=−−+,313m k m −∴==−, 即存在实数k ,使得PP (xx 1,xx 2)始终在函数3y kx k =−+的图像上,k 的值为1 25.解:(1)设销售利润为w 元,销售时间为x 天,由题意可知,(11040)(420),wx x =−−+ 242601400x x =−++24(32.5)5625,x =−−+∵50,a =−< ∴函数有最大值,∴当30x =时,w 取最大值为24302603014005600w =−×+×+=元, ∴第30天的利润最大,最大利润是5600元;(2)设未来30天每天获得的利润为y ,时间为t 天,根据题意,得(11040)(204)(204),y t t t a =−−+−+化简,得24(2604)140020,y t a t a =−+−+− 每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大, ∴260429.5,2(4)a −−>×− 解得,6,a又∵0,a >即a 的取值范围是:06a <<.26.(1)证明:如图,连接AD ,∵AB 是⊙O 的直径,点D 在圆上,∴∠ADB =90°,即AD ⊥BC ,∵AB =AC ,∴BD =CD ,即点D 是BC 的中点;(2)解:β﹣α=45°; 如图,连接OE ,∵的度数为α,∴∠AOE =α,∵OA =OE ,∴∠OAE =,∵AB =AC ,AD ⊥BC ,∴∠CAD =∠OAE =45°﹣α, ∵∠CAD +∠C =90°,∴45°﹣α+β=90°即β﹣α=45°.27.(1)解:连接OC ,在O 中,设OA O =C r =,则8OD r =−. 在Rt OCD 中,90D ∠=︒,∴222OD CD OC +=,即222(8)6r r −+=.解得254r =. (2)(I )解:过点O 分别作,OF AB OE CD ⊥⊥,连接,OC OB ,∵OF 过圆心,OF AB ⊥, ∴1AF BF ==.∵90A D OFA ∠=∠=∠=°, ∴四边形AFED 是矩形.∴1AF DE ==.∴5CE CD DE =−=.设OE x =,则8OF x =−,在Rt COE 中222OE CE OC +=, 在Rt BOF 中222OF BF OB +=, ∴2222OE CE OF BF +=+,即2225(8)x x +=−21+. 解得52x =,∴2221254OC OE CE =+=,即r OC == (II )过点O 分别作,OF AB OE CD ⊥⊥,连接,OC OB ,如图:由(I )知:1,82BFAF DE m EF AD =====, 16,2CE CD DE m ∴=−=− 设OE x =,则8OF x =−,∵OC OB =,∴2222OE CE OF BF +=+, 即2222116(8)24x m x m +−=−+ , 整理得:1438m x +=, ∵0,m O >到AD 的距离12DEm =, 类比平面直角坐标系内xy 的几何意义, ∴O 的轨迹是一条射线,故答案为:①;(3)过O 作EF CD ⊥,交CD 于E ,交AB 于F ,过O 作OM AC ⊥于M ,作ON BC ⊥于N ,连接O ,C OB ,过B 作BG CD ⊥于G ,如图:由(II )知,1438m OE +=, ()222225420,64OC CE OE m m ∴+−+ 8,6,AD CD ==10,AC ∴= 15,2CM AC ∴== ()22222525420256464OM OC CM m m ∴=−=−+−=()2444,m m −− ,,,BG CD AD CD DG AB ⊥⊥∥ ∴四边形ABGD 是矩形,,8,DG AB m BG AD ∴====6,CG m ∴=−222212100,BC CG BG m m ∴=+=−+()2221112100,24CN BC m m ∴==−+ ()22221992900,64ON OC CN m m ∴=−=+− 小O 与AC 相交且与BC 相离, ,OM OE ON ∴<<222,OM OE ON ∴<< 即()()222251431444992900,64864m m m m m + −−<<+− 解得:1123m <<.。
2023~2024学年度第二学期期中考试九年级数学学科试题(考试时间:120分钟分值:150分)一、选择题(每题3分,共24分)1.-8的倒数是( )A .8B.C .D .-82.下列运算正确的是( )A .B .C .D .3有意义,则x 可以取的最小整数是( )A .1B .2C .3D .44.在一次中考体育模拟测试中,某班41名学生参加测试(满分为40分),成绩统计如表,部分数据被遮盖,下列统计量中,与被遮盖的数据无关的是()成绩(分)32343637383940人数(人)■■2619■7A .中位数、众数B .中位数、方差C .平均数、众数D .平均数、方差5.如图,的直径AB 垂直于弦CD ,垂足为E ,,半径为2,则弦CD 的长为()A .2B .CD .46.如图,将绕点A 逆时针旋转100°得到.若点D 在线段BC 的延长线上,∠BDE 的度数为()A .100°B .90°C .80°D .70°7.在平面直角坐标系中,已知抛物线.若,,为抛物线上三点,且总有,则m 的取值范围是( )1818-()325a a -=-3515a a a ⋅=22321a a -=()22346a ba b -=O e 30A ∠=︒ABC △ADE △()2440y ax ax a =-+>()11,A m y -()2,B m y ()32,C m y +132y y y >>A .B .C .D .8.如图,在平面直角坐标系xOy 中,点,点在双曲线上,,分别过点A ,点B 作x 轴的平行线,与双曲线分别交于点C ,点D ,若的面积为,则的值为()A .BC .D二、填空题(每题3分,共24分)9.因式分解=______.10.一粒大米的质量约为0.000021千克,数据0.000021用科学记数法可表为______.11.《算学启蒙》中记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行10天,快马几天可追上慢马?若设快马x 天可追上慢马,则列出方程为______.12.如图所示,河堤横断面迎水坡AB 的坡度,堤高BC =6m ,则坡面AB 的长度是______.13.已知圆锥的底面圆半径为3,高为4,则它的侧面展开图面积为______.14.若a ,b 是一元二次方程的两个实数根,则的值______.15.如图,在等边中,,点P 是BC 边上的动点(不包括B 、C ),点P 关于直线AB ,AC 的对称点分别为M ,N ,则线段MN 长的取值范围是______.1m <32m >01m <<312m <<()11,A x y ()22,B x y 2y x=120x x <<4y x =AOB △56AC BD2312244x-1:2i =2550x x --=11a b+ABC △4AB =16.如图,在直角坐标系中,,D 是OA 上一点,B 是y 正半轴上一点,且,,垂足为E ,则OE 的最小值为______.三、解答题(本大题共11小题,共102分)17.(本题618.(本题6分)解不等式组:解不等式组:并写出它的最大整数解.19.(本题6分)先化简,再求值:,其中.20.(本题8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷,某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如图两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了______名学生;(2)将条形统计图补充完整;在扇形统计图中,“QQ ”所对应的扇形的圆心角是______度;(3)若某校有2000名学生,试估计最喜欢用“微信”沟通的人数.21.(本题10分)为深入贯彻习近平总书记关于劳动教育的重要论述,坚持“五育并举”,培养学生勤俭、奋斗、创新、奉献的劳动精神,某校开设了“劳以启智、动以润心”劳动教育课程、小明对其中的A 种植、B 烹饪、C 陶艺、D 木工4门课程都很感兴趣若每门课程被选中的可能性相等.(1)小明从4门课程中随机选择一门学习,恰好选中B 烹饪的概率为______;(2)小明从4门课程中随机选择两门学习,用画树状图或列表的方法,求他恰好选中B 烹饪、C 陶艺的概()6,0A -OB AD =DE AB ⊥01tan 302024︒-⎛⎫⎪⎝⎭4312123x x x x +<⎧⎪+-⎨≥⎪⎩221422211a a a a a a --⋅---+-1a =+率.22.(本题10分)在中,D 是BC 边的中点,E 、F 分别在AD 及其延长线上,,连接BE 、CF .(1)求证:(2)若,试判断四边形BFCE 的形状,并说明理由.23.(本题10分)如图,小华和同伴春游时,发现在某地小山坡的点E 处有一棵小树,他们想利用皮尺、倾角器和平面镜测量小树到山脚下的距离(即DE 的长度),小华站在点B 处,让同伴移动平面镜至点C 处,此时小华在平面镜内可以看到点E .且测得BC =3米,CD =28米.∠CDE =127°.已知小华的眼睛到地面的距离AB =1.5米,请根据以上数据,求DE 的长度.(参考数据:,)24.(本题10分)红灯笼,象征着阖家团圆,红红火火,挂灯笼成为我国的一种传统文化.某商店在春节前购进甲、乙两种红灯笼,用2600元购进甲灯笼与用3500元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.经市场调查发现,甲灯笼每天的销量(单位:对)与销售单价z (单位:元/对)的函数关系为,乙灯笼每天的销量(单位:对)与销售单价x (单位:元/对)的函数关系,其中x ,z 均为整数.商场按照每对甲灯笼和每对乙灯笼的利润相同的标准确定销售单价,销售单价均高于进价.(1)求甲、乙两种灯笼每对的进价:(2)当乙灯笼的销售单价为多少元/对时,这两种灯笼每天销售的总利润的和最大?最大利润是多少元?25.(本题10分)如图,CD 是的直径,点B 在上,点A 为DC 延长线上一点,过点O 作交AB 的延长线于点E ,且(1)求证:AE 是的切线;(2)若线段OE 与的交点F 是OE 的中点,的半径为3,求阴影部分的面积.ABC △CE BF ∥BDF CDE ≌△△12DE BC =3sin 375︒≈3tan 374︒≈1y 13202z y =-+2y 22196x y =-+O e O e OE BC ∥D E ∠=∠O e O e O e26.(本题12分)如图,已知边长为6的正方形纸片ABCD ,点G 、H 分别是边AD 与BC 上的点,连接GH ,将正方形纸片ABCD 沿GH 折叠,使点B 的对应点M 落在边CD 上,AB 的对应线段NM 交AD 于点E .(1)当点E 为AD 中点时①若,则∠MHC 的大小为______;②若,则线段BH 的长度为______;线段GH 的长度为______;(2)记,四边形ABHG 的面积为S ,请写出S 关于x 的函数表达式并求出S 的最小值.27.(本题14分)在平面直角坐标系中,抛物线经过点,,与y 轴交于点C .(1)求该抛物线的函数表达式;(2)点P 是该抛物线上的一个动点,①若中有一个内角是∠OCB 的3倍,求点P 坐标.②若抛物线上的点P 在第二象限且直线PB 与y 轴和直线AC 分别交于点D 和点E ,若,,的面积分别为,,,且满足,求点P 的横坐标.参考答案及评分标准一、选择题(本大题共有8小题,每小题3分,共24分)45MED ∠=︒2CM =CM x =)2y x bx c =++()3,0A -()2,0B PCB △BCD △CDE △CEP △1S 2S 3S 1322S S S +=题号12345678答案CDCABCDA二、填空题(本大题共有8小题,每小题3分,共24分)9.10.11.12.13.14.-115.16.三、解答题(本大题共有11小题,共102分)17.原式==2.18.由①得,由②得,∴原不等式组的解集,最大整数解为19.原式=当,原式20.(1)100;(2)条形图(略);108;(3)800名.答:估计最喜欢用“微信”沟通的人数有800名.21.解:(1)解:小明恰好选中B烹饪的概率为.(2)树状图或列表(略),由树状图(或图表)可知,共有12种等可能的结果,其中符合题意的结果共有12种,∴P (恰好选中项目B 和C 的概率为).22.证明:(1)∵,∴,;又∵D 是BC 的中点,即,∴;(2)四边形BFCE 是菱形,证明如下:∵,∴是等腰三角形;又∵,∴,由(1)知:,则,;∴四边形BFCE 是菱形23.解:过点E 作交BD 的延长线于F ,设米,∵,∴,在中,,则,由题意得:,∵,∴,∴,即,4(1)(1)x x +-52.110-⨯150(10)240x x +=15π6MN ≤<3-221+-2x >5x ≤25x <≤5x =21(2)(2)22(1)1a a a a a a -+-⋅----22111a a a a a +=-=---1a =+=1421126==CE BF ∥ECD FBD ∠=∠DEC DFB ∠=∠BD DC =()BDF EDC AAS ≌△△AB AC =ABC △BD DC =AD BC ⊥BDF EDC ≌△△DE DF =DB DC =EFBD ⊥EF x =127CDE ∠=︒1279037DEF ∠=︒-︒=︒Rt EDF △tan DEF DF EF ∠=tan 34DF EF D x EF =⋅∠≈ACB ECF ∠=∠90ABC EFC ∠=∠=︒ABC EFC ∽△△AB BCEF FC = 1.533284x x =+解得:,∴,∴(米),答:DE 的长度约为28米.24.解:(1)由题意,设甲种灯笼每对的进价为a 元,则乙种灯笼每对的进价为元,∴.∴.∴经检验是原方程的根.∴.答:甲种灯笼每对的单价为26元,乙种灯笼每对的单价为35元.(2)由题意,设两种灯笼每天的销售的总利润的和为w 元,乙灯笼的销售单价为x 元/对,∴.∵每对甲灯笼和每对乙灯笼的利润相同的标准确定销售单价,∴.∴.∴.∵,∴当时,w 最大,最大为.答:乙灯笼的销售单价为60元/对时,每天销售的总利润的和最大,最大利润是3125元.25.(1)证明:连接OB ,∵CD 是的直径,∴,即,∵∴,∴,,∵,∴,∵,∴,∴,∴,∴∵OB 是的半径,∴AE 是的切线;(2)解:连接BF ,∵,F 是OE 的中点,∴,∵的半径为6,,∴,,∴是等边三角形,∴,∴,∴,∴阴影部分的面积为:26.(1)①45°②;(2)连接BM ,过点G 作,,,设,,在中,,得,,得,当,y 取最小值为27.(1)(2)时,或时22.4x =1.8346x DF ==16.8283sin 5DF DEF DE ≈=∠=()9a +()9a +260035009a a =+26a =26a =926935a +=+=()()()()263202352196w z z x x =--++--+2635z x -=-9z x =-()()()()()()3532720235219653585w x x x x x x =--+++--+=---50-<60x =()()5603560853125---=O e BC BD ⊥90CBD ∠=︒OE BC ∥90DGO CBD ∠=∠=︒90BGE DGO ∠=∠=︒90D DOG ∠+∠=︒D E ∠=∠DOE DBE ∠=∠OE OB =D OBD ∠=∠90OBD DBE D DOG ∠+∠=∠+∠=︒90OBE ∠=︒OB AE ⊥O e O e 90OBE ∠=︒BF OF =O e 90DGO ∠=︒3BF OF OB ===18090BGO DGO ∠=︒-∠=︒OBF △60BOF ∠=︒9030OBG BOF ∠=︒-∠=︒1322OG OB ==BG =2603133360222ππ⨯⨯-⨯=103GP BC ⊥GPH BMC ≌△△BP CM x ==BH HM t ==6CH t =-HCM △222(6)t x t -+=23612x t +=AG BP t x ==-1()62y AG BH =+⨯1()62y t x t =-+⨯221127318(3)222y x x x =-+=-+3x =2722y x x =+90PCB ∠=︒⎛- ⎝90PBC ∠=︒(4,--(3)过点P 和点E 分别做x 轴的垂线于点M 、N ,得,,设,,由,,直线AC :∴,,,,化简得,,得或(第二象限,舍),,∴P 的横坐标为-21322s s s +=2DB PE DB PE OB MN DE DE DE ON ON +=+=+=22MNON ON+=22MN ON +=()0ON m m =>22MN m =-BEN BPM ∽△△EN BNPM BM=y x =+,E m ⎛-+ ⎝()232,P m -+-+y yE BNP BM=23m m +=226235m m m m m-+=-2340m m --=()()3410m m -+=143m =21m =-0m >322m -+=-。
数学温馨提示:本卷共三道大题,满分120分,考试时间120分钟。
一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知,若,则的相反数是A.B.C.D.2、如图,,点为上一点,连接.若,,则的大小为A.B.C.D.3、如图是小强用八块相同的小正方体积木搭建的几何体,这个几何体的左视图是A.B.C.D.4、《红楼梦》是我国古典四大名著之一,其总字数大约731000字,其中731000用科学记数法表示应为A.B.C.D.5、图1是一把扇形书法纸扇,图2是其完全打开后的示意图,外侧两竹条和的夹角为,的长为,贴纸部分的宽为,则弧的长为A.B.C.D.6、下列说法正确的是A.随机抛掷一枚硬币,反面一定朝上B.数据3,3,5,5,8的众数是8C.某商场抽奖活动获奖的概率为,说明每买50张奖券中一定有一张中奖D.想了解湖南省城镇居民人均年收入水平,宜采用抽样调查7、如图,将四边形纸片沿折叠,点落在处,若,则的度数是A.B.C.D.8、《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板距离地面的高度就与人的身高相等,这个人的身高为5尺,秋千的绳索始终拉得很直(如图所示),试问绳索有多长?”若设绳索长为尺,则根据题意可列方程为A.B.C.D.9、如图,点,,,在上,,垂足为,若,,则A.6B.C.D.310、如图,二次函数的图像与轴正半轴相交于,两点,与轴相交于点,对称轴为直线,且,则下列结论:①;②;③;④关于的方程有一个根为.其中正确的结论有A.1个B.2个C.3个D.4个二、填空题(本大题有8个小题,每小题3分,共24分)11、已知,,那么________.12、如图,在中,,,则________度.13、已知关于的一元二次方程的一个根为,则它的另一个根为________.14、如图,小明在处测得风筝的仰角为,同时在正对着风筝方向距处30米的处,小明测得风筝的仰角为,则风筝此时的高度________米.(结果保留根号)15、下列算式中计算正确的有________(填序号).①,②,③,④.16、不等式组的正整数解是________.17、如图,是坐标原点,平行四边形的顶点的坐标为,顶点在轴的负半轴上,反比例函数的图像经过位于第二象限的顶点,若平行四边形的面积为16,则的值为________.18、如图1,在中,,,点为边的中点,作,射线交边于点,设,,若与的函数图象如图2所示,且其顶点坐标为,则的值为________.三、解答题(本大题有8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26题每小题10分,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19、计算:.20、已知关于的一元二次方程有两个相等的实数根,求代数式的值.21、端午节是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了了解市民对今年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味的粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅不完整的统计图:请根据所给信息,解答以下问题:(1)本次参加抽样调查的居民有多少人?(2)请将两幅不完整的统计图补充完整;(3)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小明吃了两个。
九年级(下)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.﹣1+2的值是()A.﹣1 B.1 C.﹣3 D.32.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2 C.ab2D.3ab3.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°4.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.5.菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.106.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元二、填空题(本大题共6小题,每小题3分,共18分)7.计算:20=.8.如图,在△ABC中,D、E为边AB、AC的中点,已知△ADE的面积为4,那么△ABC的面积是.9.如图,已知AB=CB,要使四边形ABCD成为一个轴对称图形,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)10.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是.11.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是.12.平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:﹣3tan30°+(2)在平行四边形ABCD中,对角线AC于BD交于点O,∠DAC=42°,∠CBD=23°,求∠COD的度数.14.解不等式组:.15.先化简,再求值:(1﹣),其中x=3.16.如图,在正方形ABCD中,点M是BC边上任意一点,请你仅用无刻度直尺、用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在图(1)中,在AB边上求作一点N,连接CN,使CN=AM;(2)在图(2)中,在AD边上求作一点Q,连接CQ,使CQ∥AM.17.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)画树状图,求两次传球后,球恰在B手中的概率;(2)画树状图,求三次传球后,球恰在A手中的概率.四、解答题(本大题共3小题,每小题8分,共24分)18.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?组雾霾天气的主要成因百分比别A工业污染45%B汽车尾气排放mC炉烟气排放15%D其他(滥砍滥伐等)n19.如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为i=:3.若新坡角外需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)20.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.如图,▱ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D (0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段AA′的长及点E的坐标.22.小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=﹣x2+3x﹣2的“旋转函数”.小明是这样思考的:由y=﹣x2+3x﹣2函数可知a1=﹣1,b1=3,c1=﹣3,根据a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;(2)若函数y=﹣x2+mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2017的值;(3)已知函数y=﹣(x+1)(x﹣4)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数”.六、解答题(本大题共1小题,共12分)23.(1)问题如图1,在四边形ABCD中,点P为AB 上一点,当∠DPC=∠A=∠B=90°时,求证:AD•BC=AP•BP.(2)探究如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=α时,上述结论是否依然成立?说明理由.(3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.﹣1+2的值是()A.﹣1 B.1 C.﹣3 D.3【考点】19:有理数的加法.【分析】依据有理数的加法法则计算即可.【解答】解:﹣1+2=2﹣1=1.故选:B.2.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2 C.ab2D.3ab【考点】34:同类项.【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.故选A.3.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是()A.60°B.50°C.40°D.30°【考点】JA:平行线的性质;J3:垂线.【分析】根据直角三角形的两锐角互余,求出∠D=40°,再根据平行线的性质即可解答.【解答】解:如图所示,∵FE⊥BD,∴∠FED=90°,∴∠1+∠D=90°,∵∠1=50°,∴∠D=40°,∵AB∥CD,∴∠2=∠D=40°.故选C.4.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.【考点】X4:概率公式;P3:轴对称图形.【分析】由随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,共有5种等可能的结果,使与图中阴影部分构成轴对称图形的有②④⑤,3种情况,∴使与图中阴影部分构成轴对称图形的概率是:3÷5=.故选C.5.菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD的周长为()A.8 B.20 C.8或20 D.10【考点】L8:菱形的性质;A8:解一元二次方程﹣因式分解法.【分析】边AB的长是方程y2﹣7y+10=0的一个根,解方程求得y的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.【解答】解:∵解方程y2﹣7y+10=0得:y=2或5∵对角线长为6,2+2<6,不能构成三角形;∴菱形的边长为5.∴菱形ABCD的周长为4×5=20.故选B.6.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等D.第30天的日销售利润是750元【考点】FH:一次函数的应用.【分析】根据函数图象分别求出设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=﹣x+25,当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=,根据日销售利润=日销售量×一件产品的销售利润,即可进行判断.【解答】解:A、根据图①可得第24天的销售量为200件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=,当t=12时,y=150,z=﹣12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),750≠1950,故C错误;D、第30天的日销售利润为;150×5=750(元),故正确.故选:C二、填空题(本大题共6小题,每小题3分,共18分)7.计算:20=1.【考点】6E:零指数幂.【分析】直接根据非0数的0次幂等于1进行解答.【解答】解:∵2≠0,∴20=1.故答案为:1.8.如图,在△ABC中,D、E为边AB、AC的中点,已知△ADE的面积为4,那么△ABC的面积是16.【考点】S9:相似三角形的判定与性质;KX:三角形中位线定理.【分析】根据三角形的中位线定理求出DE=BC,DE∥BC,求出△ADE∽△ABC,根据相似三角形的性质得出比例式,代入求出即可.【解答】解:∵D、E为边AB、AC的中点,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴=()2=,∵△ADE的面积为4,∴△ABC的面积是16,故答案为:16.9.如图,已知AB=CB,要使四边形ABCD成为一个轴对称图形,还需添加一个条件,你添加的条件是AD=CD.(只需写一个,不添加辅助线)【考点】P3:轴对称图形.【分析】轴对称图形的定义即可得到结论.【解答】解:AD=CD,理由:在△ABD与△CBD中,,∴△ABD≌△CBD,∴四边形ABCD是一个轴对称图形,故答案为:AD=CD.10.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则实数k的取值范围是k<2且k≠1.【考点】AA:根的判别式;A1:一元二次方程的定义.【分析】根据一元二次方程的定义和判别式的意义得到k﹣1≠0且△=(﹣2)2﹣4(k﹣1)>0,然后求出两个不等式的公共部分即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,∴k﹣1≠0且△=(﹣2)2﹣4(k﹣1)>0,解得:k<2且k≠1.故答案为:k<2且k≠1.11.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是﹣1.【考点】R2:旋转的性质;LE:正方形的性质.【分析】先根据正方形的边长,求得CB1=OB1=AC﹣AB1=﹣1,进而得到S△OB1C==,即可得出四边形AB1OD的面积.(﹣1)2,再根据S△ADC【解答】解:∵四边形ABCD是正方形,∴AC=,∠OCB1=45°,∴CB1=OB1∵AB1=1,∴CB1=OB1=AC﹣AB1=﹣1,=•OB1•CB1=(﹣1)2,∴S△OB1C=AD•AC=×1×1=,∵S△ADC=S△ADC﹣S△OB1C=﹣(﹣1)2=﹣1,∴S四边形AB1OD故答案为:﹣1.12.平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是2,3,4.【考点】M2:垂径定理;KM:等边三角形的判定与性质.【分析】分类讨论:如图1,根据圆周角定理可以推出点C在以点O为圆心的圆上;如图2,根据已知条件可知对角∠AOB+∠ACB=180°,则四个点A、O、B、C共圆.分类讨论:如图1,如图2,在不同的四边形中,利用垂径定理、等边△MAO的性质来求OC的长度.【解答】解:如图1,∵∠AOB=120°,∠ACB=60°,∴∠ACB=∠AOB=60°,∴点C在以点O为圆心的圆上,且在优弧AB上.∴OC=AO=BO=2;如图2,∵∠AOB=120°,∠ACB=60°,∴∠AOB+∠ACB=180°,∴四个点A、O、B、C共圆.设这四点都在⊙M上.点C在优弧AB上运动.连接OM、AM、AB、MB.∵∠ACB=60°,∴∠AMB=2∠ACB=120°.∵AO=BO=2,∴∠AMO=∠BMO=60°.又∵MA=MO,∴△AMO是等边三角形,∴MA=AO=2,∴MA<OC≤2MA,即2<OC≤4,∴OC可以取整数3和4.综上所述,OC可以取整数2,3,4.故答案是:2,3,4.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:﹣3tan30°+(2)在平行四边形ABCD中,对角线AC于BD交于点O,∠DAC=42°,∠CBD=23°,求∠COD的度数.【考点】L5:平行四边形的性质;2C:实数的运算;T5:特殊角的三角函数值.【分析】(1)首先代入30°角的正切值、化简二次根式,即可得出答案;(2)由平行四边形的性质得出∠BCA=∠DAC=42°,再由三角形的外角性质得出∠COD=∠CBD+∠BCA,即可得出结果.【解答】解:(1)﹣3tan30°+=﹣3×+2=﹣+2=(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BCA=∠DAC=42°,∴∠COD=∠CBD+∠BCA=42°+23°=65°.14.解不等式组:.【考点】CB:解一元一次不等式组.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,x>﹣1,由②得,x>﹣3,所以,不等式组的解集为x>﹣1.15.先化简,再求值:(1﹣),其中x=3.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=3时,原式=2.16.如图,在正方形ABCD中,点M是BC边上任意一点,请你仅用无刻度直尺、用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在图(1)中,在AB边上求作一点N,连接CN,使CN=AM;(2)在图(2)中,在AD边上求作一点Q,连接CQ,使CQ∥AM.【考点】N3:作图—复杂作图.【分析】(1)连接BD,BD与AM交于点O,连接CO并延长交于AB,则CO与AB的交点为点N.可先证明△AOD≌△COD,再证明△MOB≌NOB,从而可得NB=MB;(2)连接AC,BD交于点O,连接MO并延长与AE交于点Q,连接QC,则CQ ∥AM.理由如下:由正方形的性质以及对顶角相等可证△BMO≌DQO,所以QO=MO,由于∠QOC=∠MOA,CO=AO,所以△COQ≌AOM,则∠QCO=∠MAO,从而可得CQ∥AM.【解答】解:(1)在BA上截取BN=BM,连结CN,则CN为所作,如图1(2)在DA上截取DQ=BM,连结CQ,则CQ为所作,如图2.17.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)画树状图,求两次传球后,球恰在B手中的概率;(2)画树状图,求三次传球后,球恰在A手中的概率.【考点】X6:列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在B手中的情况,再利用概率公式即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三次传球后,球恰在A手中的情况,再利用概率公式即可求得答案.【解答】解:(1)画树状图得:∵共有4种等可能的结果,两次传球后,球恰在B手中的只有1种情况,∴两次传球后,球恰在B手中的概率为:;(2)画树状图得:∵共有8种等可能的结果,三次传球后,球恰在A手中的有2种情况,∴三次传球后,球恰在A手中的概率为:=.四、解答题(本大题共3小题,每小题8分,共24分)18.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?组雾霾天气的主要成因百分比别A工业污染45%B汽车尾气排放mC炉烟气排放15%D其他(滥砍滥伐等)n【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据条形图和扇形图信息,得到A组人数和所占百分比,求出调查的市民的人数;(2)根据B组人数求出B组百分比,得到D组百分比,根据扇形圆心角的度数=百分比×360°求出扇形圆心角的度数,根据所求信息补全条形统计图和扇形统计图;(3)根据持有A、B两组主要成因的市民百分比之和求出答案.【解答】解:(1)从条形图和扇形图可知,A组人数为90人,占45%,∴本次被调查的市民共有:90÷45%=200人;(2)60÷200=30%,30%×360°=108°,区域B所对应的扇形圆心角的度数为:108°,1﹣45%﹣30%﹣15%=10%,D组人数为:200×10%=20人,(3)100万×(45%+30%)=75万,∴若该市有100万人口,持有A、B两组主要成因的市民有75万人.19.如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB,坡面AC的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC 的坡度为i=:3.若新坡角外需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据:≈1.414,≈1.732)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】需要拆除,理由为:根据题意得到三角形ABC为等腰直角三角形,求出AB的长,在直角三角形BCD中,根据新坡面的坡度求出∠BDC的度数为30,利用30度所对的直角边等于斜边的一半求出DC的长,再利用勾股定理求出DB 的长,由DB﹣AB求出AD的长,由AD+3与10比较即可得到结果.【解答】解:需要拆除,理由为:∵CB⊥AB,∠CAB=45°,∴△ABC为等腰直角三角形,∴AB=BC=10米,在Rt△BCD中,新坡面DC的坡度为i=:3,即∠CDB=30°,∴DC=2BC=20米,BD==10米,∴AD=BD﹣AB=(10﹣10)米≈7.32米,∵3+7.32=10.32>10,∴需要拆除.20.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.【考点】MD:切线的判定;KO:含30度角的直角三角形;M5:圆周角定理.【分析】(1)根据圆周角定理求得∠ADB=90°,然后解直角三角形即可求得BD,进而求得BC即可;(2)要证明直线DE是⊙O的切线只要证明∠EDO=90°即可.【解答】证明:(1)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ABC=30°,AB=4,∴BD=2,∵D是BC的中点,∴BC=2BD=4;(2)证明:连接OD.∵D是BC的中点,O是AB的中点,∴DO是△ABC的中位线,∴OD∥AC,则∠EDO=∠CED又∵DE⊥AC,∴∠CED=90°,∠EDO=∠CED=90°∴DE是⊙O的切线.五、解答题(本大题共2小题,每小题9分,共18分)21.如图,▱ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D (0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段AA′的长及点E的坐【考点】L5:平行四边形的性质;G6:反比例函数图象上点的坐标特征;G7:待定系数法求反比例函数解析式.【分析】(1)由A与B的坐标求出AB的长,根据四边形ABCD为平行四边形,求出DC的长,进而确定出C坐标,设反比例解析式为y=,把C坐标代入求出k的值,即可确定出反比例解析式;(2)根据平移的性质得到B与B′横坐标相同,代入反比例解析式求出B′纵坐标得到平移的距离,即为AA′的长,求出D′纵坐标,即为E纵坐标,代入反比例解析式求出E横坐标,即可确定出E坐标.【解答】解:(1)∵▱ABCD中,A(2,0),B(6,0),D(0,3),∴AB=CD=4,DC∥AB,∴C(4,3),设反比例解析式为y=,把C坐标代入得:k=12,则反比例解析式为y=;(2)∵B(6,0),∴把x=6代入反比例解析式得:y=2,即B′(6,2),∴平行四边形ABCD向上平移2个单位,即AA′=2,∴D′(0,5),把y=5代入反比例解析式得:x=,即E(,5).22.小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=﹣x2+3x﹣2的“旋转函数”.小明是这样思考的:由y=﹣x2+3x﹣2函数可知a1=﹣1,b1=3,c1=﹣3,根据a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面的问题:(1)写出函数y=﹣x2+3x﹣2的“旋转函数”;(2)若函数y=﹣x2+mx﹣2与y=x2﹣2nx+n互为“旋转函数”,求(m+n)2017的值;(3)已知函数y=﹣(x+1)(x﹣4)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数”.【考点】HF:二次函数综合题.【分析】(1)由函数函数y=﹣x2+3x﹣2的解析式可知a1=﹣1,b1=3,c1=﹣2,然后依据旋转函数的定义得到﹣1+a2=0,b2=3,﹣2+c2=0,然后求得a2,b2,c2的值即可;(2)依据旋转函数的定义列出关于m、n的方程,从而可求得m、n的值,然后代入计算即可;(3)先求得A,B,C三点的坐标,然后再求得A1,B1,C1的坐标,然后可求得经过点A1,B1,C1的二次函数的解析式,最后依据旋转函数的定义进行判断即可.【解答】解:(1)∵a1=﹣1,b1=3,c1=﹣2,∴﹣1+a2=0,b2=3,﹣2+c2=0,∴a2=1,b2=3,c2=2,∴函数y=﹣x2+3x﹣2的“旋转函数”为y=x2+3x+2;(2)解:根据题意得m=﹣2n,﹣2+n=0,解得m=﹣3,n=2,∴(m+n)2017=(﹣3+2)2017=﹣1;(3)证明:当x=0时,y=﹣(x+1)(x﹣4)=2,则C(0,2),当y=0时,﹣(x+1)(x﹣4)=0,解得x1=﹣1,x2=4,则A(﹣1,0),B(4,0),∵点A、B、C关于原点的对称点分别是A1,B1,C1,∴A1(1,0),B1(﹣4,0),C1(0,﹣2),…设经过点A1,B1,C1的二次函数解析式为y=a2(x﹣1)(x+4),把C1(0,﹣2)代入得a2•(﹣1)•4=﹣2,解得a2=,∴经过点A1,B1,C1的二次函数解析式为y=(x﹣1)(x+4)=x2+x﹣2,∵y=﹣(x+1)(x﹣4)=﹣x2+x+2,∴a1+a2=﹣+=0,b1=b2=,c1+c2=2﹣2=0,∴经过点A1,B1,C1的二次函数与函数y=﹣(x+1)(x﹣4)互为“旋转函数.六、解答题(本大题共1小题,共12分)23.(1)问题如图1,在四边形ABCD中,点P为AB 上一点,当∠DPC=∠A=∠B=90°时,求证:AD•BC=AP•BP.(2)探究如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=α时,上述结论是否依然成立?说明理由.(3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值.【考点】MR:圆的综合题.【分析】(1)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(2)由∠DPC=∠A=∠B=α可得∠ADP=∠BPC,即可证到△ADP∽△BPC,然后运用相似三角形的性质即可解决问题;(3)过点D作DE⊥AB于点E,根据等腰三角形的性质可得AE=BE=3,根据勾股定理可得DE=4,由题可得DC=DE=4,则有BC=5﹣4=1.易证∠DPC=∠A=∠B.根据AD•BC=AP•BP,就可求出t的值.【解答】(1)证明:如图1,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(2)结论AD•BC=AP•BP仍成立;理由:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=α,∴∠BPC=∠APD,又∵∠A=∠B=α,∴△ADP∽△BPC,∴=,∴AD•BC=AP•BP;(3)解:如图3,过点D作DE⊥AB于点E,∵AD=BD=5,AB=6,∴AE=BE=3∴DE==4,∵以D为圆心,以DC为半径的圆与AB相切,∴DC=DE=4,∴BC=5﹣4=1,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(1)(2)的经验得AD•BC=AP•BP,又∵AP=t,BP=6﹣t,∴t(6﹣t)=5×1,∴解得:t1=1,t2=5,∴t的值为1秒或5秒.。
2023-2024学年度第二学期中期过关性评价数学试卷九年级数学试卷一.选择题(共10小题)1.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是()A.Φ44.9B.Φ45.02C.Φ44.98D.Φ45.012.第19届亚运会在浙江杭州举行,下列与杭州亚运会相关的图案中,是轴对称图形的是()A.B.C.D.3.2022年10月12日下午,“天宫课堂”第三课在中国空间站开讲,神舟十四号飞行乘组三位航天员陈冬、刘洋、蔡旭哲进行授课,央视新闻抖音号进行全程直播,某一时刻观看人数达到421.1万,421.1万用科学记数法可以表示为()A.0.4211×107B.4.211×106C.421.1×104D.4211×1034.如图,分别在长方形ABCD的边DC,BC上取两点E,F,使得AE平分∠DAF,若∠BAF=60°,则∠DAE=()A.45° B.30° C.15° D.60°5.在某次数学质量监测中,八年一班数学老师随机抽取了10份试卷,成绩表中所显示的分数如下:105,101,109,101,92,102,97,101,99,103,则这组数据的中位数是()A.101 B.96.5 C.97 D.1026.下列运算一定正确的是()A.(m+n)2=m2+n2B.(mn)3=m3n3C.(m3)2=m5D.m•m2=2m27.校园里一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么AP的长度为()cm.A.√5−1 B.2√5−2 C.5√5−5 D.10√5−108.11月17日,2023年“全民健身日”系列活动——玉溪市健步走暨玉溪市职工“勤锻炼健康行”在玉溪高原体育运动中心举行,广大人民群众通过运动收获愉悦、收获健康、收获幸福.甲、乙两人沿着总长度为9千米的“健身步道”行走,甲的速度是乙的1.5倍,甲比乙提前15分钟走完全程,如果设乙的速度为x千米/时,那么下列方程中正确的是()A.9xx−91.5xx=15B.9xx−91.5xx=14C.91.5xx−9xx=15D.91.5xx−9xx=149.如图,在平地上种植树木时,要求株距(相邻两棵树之间的水平距离)为5m,若在坡比为i=1:2.5的山坡种树,也要求株距为5m,那么相邻两棵树间的坡面距离为()A.2.5m B.5m C.√29mm D.10m10.如图①,在正方形ABCD中,点E为DC边的中点,点P为线段BE上的一个动点.设BP=x,AP=y,图②是点P运动时y随x变化的关系图象,则正方形的周长为()A.4√5B.8 C.8√2D.10二.填空题(共5小题)11.新学期开始,小颖从学校开设的感兴趣的5门劳动教育课程:烹饪、茶艺、花卉种植、整理收纳、家电维修中,随机选择一门课程学习,她选择“茶艺”课程的概率是______.12.已知a+b=1,则代数式a2﹣b2+2b+9的值为______.13.如图,AB为⊙O的直径,点C在⊙O上,点P在线段OB上运动(不与O,B重合),若∠CAB=30°,设∠ACP为α,则α的取值范围是______.14.如图,D、E分别是△ABC的边上AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,当S△DOE=1时,则S△AOC的值为______.15.如图所示,点A1,A2,A3在x轴上且OA1=A1A2=A2A3,分别过点A1,A2,A3作y轴的平行线与反比例函数y=kk xx(k>0,x>0)的图象分别交于点B1,B2,B3,分别过点B1,B2,B3作x轴的平行线分别与y轴交于点C1,C2,C3,连接OB1,OB2,OB3,那么图中阴影部分的面积之和为______.三.解答题(共7小题)16.(5分)计算:2ssss ss60°+√12+|−5|−(ππ−√2)0.17.(7分)先化简,再求值:(xx2−4xx2−4xx+4−1xx−2)⋅xx2−2xx xx+1,其中x=5.18.全球工业互联网大会永久会址落户沈阳.为了让学生了解工业互联网相关知识,某校准备开展“工业互联网”主题日活动,聘请专家为学生做五个领域的专题报告:A.数字孪生;B.人工智能;C.应用5G ;D .工业机器人;E .区块链.为了解学生的研学意向,在随机抽取的部分学生中下发如图所示的调查问卷,所有问卷全部收回且有效,根据调查数据绘制成两幅不完整的统计图. “工业互联网”主题日学生研学意向调查问卷请在下列选项中选择您的研学意向,并在其后“□”内打“√”(每名同学必选且只能选择其中一项),非常感谢您的合作.A .数字孪生□B .人工智能□C .应用5G □D .工业机器人□E .区块链□请根据统计图提供的信息,解答下列问题:(1)本次调查所抽取的学生人数为____________,并直接补全条形统计图;(2)扇形统计图中领域“B ”对应扇形的圆心角的度数为_________;(3)学校有600名学生参加本次活动,地点安排在两个多功能厅,每场报告时间为90分钟.由下面的活动日程表可知,A 和C 两场报告时间与场地已经确定.在确保听取报告的每名同学都有座位的情况下,请你合理安排B ,D ,E 三场报告,补全此次活动日程表(写出一种方案即可),并说明理由. “工业互联网”主题日活动日程表地点(座位数)时间1号多功能厅(200座) 2号多功能厅(100座)8:00﹣9:30①________ A 10:00﹣11:30C ②________ 13:00﹣14:30 ③________ 设备检修暂停使用 19.家用电灭蚊器的发热部分使用了PTC 发热材料,电阻R (单位:k Ω)随温度t (单位:℃)(在一定范围内)变化而变化,通电后该表记录了发热材料温度从上升到30℃的过程中,发现电阻与温度有如下关系:t (℃) 5 10 15 20 30R(kΩ)12 6 4 3 2(1)根据表中的数据,在图中描出实数对(t,R)的对应点,猜测并确定R与t之间的函数解析式并画出其图象;(2)当t≥30时,R与t间的函数解析式为R=415t﹣6.在图中画出该函数图象;(3)根据以上信息,家用电灭蚊器在使用过程中,温度在什么范围内发热材料的电阻不超过6kΩ.20.列方程(组)或不等式(组)解应用题:学校为了支持体育社团开展活动,鼓励同学们加强锻炼,准备增购一些羽毛球拍和乒乓球拍.(1)根据图中信息,求出每支羽毛球拍和每支乒乓球拍的价格;(2)学校准备用5300元购买羽毛球拍和乒乓球拍,且乒乓球拍的数量为羽毛球拍数量的3倍,请问最多能购买多少支羽毛球拍?21.根据背景素材,探索解决问题.生活中的数学﹣﹣﹣﹣自动旋转式洒水喷头如何灌溉草坪背景素材数学来源于生活,九4班分四个小组,开展数学项目式实践活动,获取所有数据共享,对草坪喷水管建立数学模型.草坪装有1个自动旋转式洒水喷头,灌溉园林草坪.如图1所示,观察喷头可顺、逆时针往返喷洒.22.例:如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=12AB.证明:延长CD至点E,使DE=CD,连接AE,BE.…(1)请根据教材提示,结合图1,写出完整的证明过程.(2)初步探究如图2,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,∠CBD=30°,AP⊥BD于点P,连接CP,AAAA=√3+1①∠ACD的度数为45°.②求AD长.(3)拓展运用如图3,在平行四边形ABCD中,F是BC边上一点,∠ABC=60°,BC=6,BF=2.按以下步骤作图:①以点B为圆心,以适当的长为半径作弧,分别交AB,BC于点M,N;②分别以点M,N为圆心,大于12MMMM的长为半径作弧,两弧交于点E,作射线BE.过点F作FP∥AB交BE于点P,过点P作PG⊥AB于点G,Q为射线BE上一动点,连接GQ,CQ,若PPPP=12BBPP,直接写出GGGG CCGG的值.九年级数学期中答案参考答案与试题解析一.选择题(共10小题)1.【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【解答】解:∵45+0.03=45.03,45﹣0.04=44.96,∴零件的直径的合格范围是:44.96≤零件的直径≤45.03,∵44.9不在该范围之内,∴不合格的是A,故选:A.【点评】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.2.【分析】根据轴对称图形的概念判断即可.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,符合题意;故选:D.个图形叫做轴对称图形.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:421.1万=4211000=4.211×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.【分析】长方形内角为90°,已知∠BAF=60°,所以可以得到∠DAF,又因为AE平分∠DAF,所以∠DAE便可求出.【解答】解:在长方形ABCD中,∠BAD=90°∵∠BAF=60°∴∠DAF=90°﹣∠BAF=30°又AE平分∠DAF所以∠DAE=12∠DAF=15°故选:C.【点评】运用了长方形的四个角都是直角以及角平分线的概念即可解决.5.【分析】根据中位数的定义进行计算即可.【解答】解:将这10个数据从小到大排列,处在中间位置的两个数的平均数是101+1012=101,因此掌握是101,故选:A.【点评】本题考查中位数,理解中位数的定义,掌握中位数的计算方法是正确解答的前提.6.【分析】直接利用完全平方公式以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、(m+n)2=m2+2mn+n2,不符合题意;B、(mn)3=m3n3,符合题意;C、(m3)2=m6,不符合题意;D、m•m2=m3,不符合题意.故选:B.解题关键.7.【分析】直接利用黄金分割的定义计算出AP的长即可.【解答】解:∵P为AB的黄金分割点(AP>PB),AB=10cm,∴AP=�5−12AB=�5−12×10=5√5−5(cm),故选:C.【点评】此题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.8.【分析】由甲、乙速度之间的关系可得出甲的速度为1.5x km/h,利用时间=路程÷速度,结合甲比乙提前15分钟走完全程,即可得出关于x的分式方程,此题得解.【解答】解:∵甲的速度是乙的1.5倍,且乙的速度为x km/h,∴甲的速度为1.5x km/h.根据题意得9xx91.5xx=14.故选:B.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.【分析】利用坡度先求得垂直距离,根据勾股定理求得坡面距离.【解答】解:∵水平距离为5m,坡比为i=1:2.5,∴铅直高度为5÷2.5=2(m).根据勾股定理可得:坡面相邻两株树间的坡面距离为√52+22=√29(m).故选:C.【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,解决本题的关键是对坡度坡角的理解掌握情况.10.【分析】由点P的运动可知,当点AP⊥BE时,AP的值最小;再根据题可证得△ABP∽△BEC,进而可得AB的长,进而可得正方形的周长.【解答】解:由点P的运动可知,当点AP⊥BE时,AP的值最小,如图;∵点E是CD的中点,∴CE:CD=1:2,∴CE:BC=1:2,∵∠C=∴CE:BC:BE=1:2:√5,∵∠ABC=∠C=∠APB=90°,∴∠ABP+∠CBE=∠CBE+∠BEC=90°,∴∠ABP=∠BEC,∴△ABP∽△BEC,∴AP:AB=BC:BE=2:√5,∴AB=√5,∴正方形的周长为:4√5,故选:A.【点评】本题考查的是正方形中的动点问题,解题的关键是找到图中的关键点及对应的关键数.二.填空题(共5小题)11.【分析】直接利用概率公式可得答案.【解答】解:∵共有烹饪、茶艺、花卉种植、整理收纳、家电维修5门兴趣课程,∴小颖选择“茶艺”课程的概率是15.故答案为:15.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.12.【分析】方法一:直接将a2﹣b2进行因式分解为(a+b)(a﹣b),再根据a+b=1,可得a2﹣b2=a﹣b,由此可得原式=a+b+9=10.方法二:将原式分为三部分,即a2﹣(b2﹣2b+1)+10,把前两部分利用平方差进行因式分解,其中得到一因式a+b﹣1=0.从而得出原式的值.【解答】方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9=a2﹣(b2﹣2b+1)+10=a2﹣(b﹣1)2+10=(a﹣b+1)(a+b﹣1)+10.又∵a+b=1,∴原式=10.【点评】本题考查了因式分解应用,用到的知识为平方差公式:a2﹣b2=(a+b)(a﹣b).13.【分析】由于P为动点,由图可知,当点P位于O点时α取得最小值,当点P位于B点时α取得最大值.【解答】解:当点P位于O点时,OA=OC,则α=∠CAB=30°,此时α的值最小;当点P位于B点时,根据直径所对的角是90°可得α=∠ACB=90°,此时α的值最大;由于点P不与O,B重合,于是30°<α<90°.故答案为:30°<α<90°.【点评】此题考查了圆周角定理与等腰三角形的性质.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.14.【分析】由题意可得BE:CE=1:3,通过证明△BDE∽△BAC,可得BBBB BBCC=DDBB AACC=14,通过证明△DEO ∽△CAO,可得SS△DDDDDDSS△CCCCDD=(DDBB AACC)2=116,即可求解.【解答】解:∵S△BDE:S△CDE=1:3,∴BE:CE=1:3,∴BBBB BBCC=14,∵DE∥AC,∴△BDE∽△BAC,∴BBBB BBCC=DDBB AACC=14,∵DE∥AC,∴△DEO∽△CAO,∴SS△DDDDDDSS△CCCCDD=(DDBB AACC)2=116,∵S△DOE=1,∴S△AOC=16,故答案为:16.【点评】本题考查了相似三角形的判定和性质,掌握相似三角形的性质是解题的关键.15.【分析】先根据反比例函数上的点向x轴、y轴引垂线形成的矩形面积等于反比例函数的|k|,得到S△OB1C1=S△OB2C2=S△OB3C3=12k,再根据相似三角形的面积比等于相似比的平方得到3个阴影部分的三角形的面积从而求得面积和.【解答】解:根据题意可知S△OB1C1=S△OB2C2=S△OB3C3=12k,∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y轴,设图中阴影部分的面积从左向右依次为s1,s2,s3则s1=12k,∵OA1=A1A2=A2A3,∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9,∴图中阴影部分的面积分别是=12kk,s2=18kk,s3=118kk,∴图中阴影部分的面积之和=12kk+18kk+118kk=49kk72,故答案为:49kk72.【点评】此题综合考查了反比例函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点向x轴、y轴引垂线形成的矩形面积等于反比例函数的|k|.三.解答题(共7小题)16.【分析】先化简各式,然后再进行计算即可解答.【解答】解:2ssss ss60°+√12+|−5|−(ππ−√2)0=2×�32+2√3+5﹣1=√3+2√3+5﹣1=3√3+4.【点评】本题考查了实数的运算,零指数幂,特殊角的三角函数值,准确熟练地进行计算是解题的关键.17.【分析】根据分式的加减运算法则、乘除运算法则进行化简,然后将x的值代入化简后的式子即可求出答案.【解答】解:原式=[(xx+2)(xx−2)(xx−2)2−1xx−2]•xx(xx−2)xx+1=(xx+2xx−2−1xx−2)•xx(xx−2)xx+1=xx+1xx−2•xx(xx−2)xx+1=x,当x=5时,原式=5.【点评】本题考查分式的化简求值,解题的关键是熟练运用分式的加减运算法则、乘除运算法则,本题属于基础题型.18.【分析】(1)根据意向领域“A”的人数及其百分比求得总人数,用总人数减去其它领域的人数求出意向领域“D”的人数即可补全条形统计图;(2)用360°乘以意向领域“B”的百分比即可;(3)分别求出意向领域“B”“D”“E”的人数,补全此次活动日程表即可.【解答】解:(1)40本次调查所抽取的学生人数为4÷10%=40(人),意向领域“D”的人数为40﹣(4+6+10+8)=12(人),补全条形统计图如下:(2)54°360°×640×100%=54°,答:扇形统计图中领域“B”对应扇形的圆心角的度数为54°;(3)意向领域“B”的人数为600×640=90(人),意向领域“D”的人数为600×1240=180(人),意向领域“E”的人数为600×840=120(人),补全此次活动日程表如下:“工业互联网”主题日活动日程表地点(座位数)时间 1号多功能厅(200座)2号多功能厅(100座)8:00﹣9:30 ① DA10:00﹣11:30 C② B13:00﹣14:30③ E设备检修暂停使用【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.【分析】(1)待定系数法求出即可; (2)待定系数法求出一次函数解析式即可;(3)从图象直接获取满足条件的自变量取值范围即可.【解答】解:(1)由题意得,当10≤t ≤30时,设R 和t 的函数的解析式为 RR =kk tt, 把(10,6)代入 RR =kktt 中,解得k =60. ∴反比例函数的解析式为 RR =60tt, 画出其图象如下:(2)当t ≥30时,R 与t 间的函数解析式为R =415t ﹣6.∵当x=30时,y=2;当x=45时,y=6.∴(30,2),(45,6)在函数R=415t﹣6上.图象如图所示.(3)根据图上信息,家用电灭蚊器在使用过程中,温度在10°C≤t≤45°C时发热材料的电阻不超过6kΩ.【点评】主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.20.【分析】(1)设每支羽毛球拍的价格为x元,每支乒乓球拍的价格为y元,利用总价=单价×数量,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m支羽毛球拍,则购买3m支乒乓球拍,利用总价=单价×数量,结合总价不超过5300元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.【解答】解:(1)设每支羽毛球拍的价格为x元,每支乒乓球拍的价格为y元,依题意得:�xx+2yy=2002xx+yy=220,解得:�xx=80yy=60.答:每支羽毛球拍的价格为80元,每支乒乓球拍的价格为60元.(2)设购买m 支羽毛球拍,则购买3m 支乒乓球拍, 依题意得:80m +60×3m ≤5300, 解得:m ≤26513.又∵m 为整数,∴m 的最大值为20. 答:最多能购买20支羽毛球拍. (答不写,倒扣1分)【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.21.【分析】任务1由题意得抛物线过点D (8,0),(7,54),A (0,23),设抛物线的解析式为y =ax 2+bx +c ,待定系数法求出解析式即可; 任务2求出F 点的坐标(6,136),则E (6,0),即可求解;任务3①根据扇形的面积公式即可求解;②根据等腰三角形以及直角三角形的性质,解答即可.【解答】解:任务1由题意得抛物线过点D (8,0),(7,54),A (0,23), 设抛物线的解析式为y =ax 2+bx +c , ∴⎩⎨⎧64aa +8bb +cc =049aa +7bb +cc =54cc =23,解得⎩⎪⎨⎪⎧aa −16bb =54cc =23, ∴水柱所在抛物线的函数解析式为y =−16x 2+54x +23; 任务2∵水柱所在抛物线的函数解析式为y =−16x 2+54x +23, 当y =136时,−16x 2+54x +23=136,解得x =32或6,∵点F 在抛物线上且离水喷头水平距离较远, ∴F (6,136),∵E 在OD 上,OD ⊥EF .∴E (6,0),∴OE =6,∴OE 的长为6米; 任务3①由题意得OD =8米, ∴这个喷头最多可洒水的面积为:240ππ×82360=1283π(平方米),答:这个喷头最多可洒水1283π平方米;②过点O 作OH ⊥DD ′于H ,由题意得OD=OD′=8米,∠DOD′=360°﹣240°=120°,∵OD=OD′=8米,OH⊥DD′,∴DH=D′H=12DD′,∠DOH=12∠DOD′=60°,∴∠ODH=30°,∴OH=12OD=4米,DH=√3OH=4√3米,∴DD′=2DH=8√3米.【点评】此题是二次函数综合题,考查了二次函数的实际应用以及二次函数的性质,扇形的面积,等腰三角形以及直角三角形的性质,理解题意,利用数形结合思想解题是关键.22.【分析】(1)证延长CD到点E,使DE=CD,连接AE,BE,求得AACC=12AACC⋅根据直角三角形的性质得到AD=BD,推出四边形ACBE是矩形,根据矩形的性质即可得到结论;(2)①根据三角形的内角和定理得到∠ADB=45°,∠BDC=60°,根据等边三角形的判定定理得到△PDC 是等边三角形,求得∠CPD=∠PCD=60°,根据等腰三角形的性质得到∠ACP=15°,根据三角形内角和定理即可得到结论;②如图2,过点D作DG⊥AC于点G,设CG=DG=m,则AAAA=√3mm,AD=2m,根据AC=AG+CG,列方程得到mm+√3mm=√3+1,解方程即可得到结论;(3)过点Q作QH⊥BC于点H.根据平行四边形的性质得到AB∥CD,求得∠BFP=180°﹣∠ABC=120°,根据角平分线的定义得到∠FFBBPP=12∠AABBAA=30°,根据等腰三角形的性质得到PF=BF=2,于是得到BBPP=√3BBFF=2√3⋅分两种情况:①如图3,当点Q在线段BP上时,过点Q作QH⊥BC于H,求得AAPP= PPPP=12BBPP=√3⋅②如图4,当点Q在BP延长线上时,过Q作QH⊥BC于H,解直角三角形即可得到结论.【解答】(1)证明:延长CD到点E,使DE=CD,连接AE,BE,则CD=12CE,∵CD是斜边AB上的中线,∴AD=BD,∴四边形ACBE是平行四边形,∵∠ACB=90°,∴四边形ACBE是矩形,∵CE=AB,∴AACC=12AABB;解:①45°∵∠BAD=∠BCD=90°,AB=AD,∠CBD=30°,∴∠ADB=45°,∠BDC=60°,∵AP⊥BD于点P,∴PB=PD=P A,∴PC=PD=P A,∴△PDC是等边三角形,∴∠CPD=∠PCD=60°,∴∠APC=150°,∴∠ACP=15°,∴∠ACD=∠PCD﹣∠ACD=45°,∴∠DAC=180°﹣∠ACD﹣∠ADC=30°,②如图2,过点D作DG⊥AC G,设CG=DG=m,则AAAA=√3mm,AD=2m,∵AC=AG+CG,∴mm+√3mm=√3+1,解得m=1,∴AD=2m=2;√77或1;(2)(只写出一个,给1分,两个都写出来给3分)过点Q作QH⊥BC于点H.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BFP=180°﹣∠ABC=120°,由作图可知,BE平分∠ABC,∴∠FFBBPP=12∠AABBAA=30°,∵PF∥AB,∴∠ABP=∠BPF,∴∠BPF=∠FBP,∴PF=BF=2,∴BP=√3BP=√3BF=2√3;分两种情况:①如图3,当点Q在线段BP上时,过点Q作QH⊥BC于H,∵PPPP=12BBPP,则Q为BP的中点,∴GQ=PQ=12BP=√3,在Rt△BHQ中,∠HBQ=30°,∴BBBB=ccccss∠BBBBPP⋅BBPP=�32×√3=32,BBPP=12BBPP=�32,∴AABB=BBAA−BBBB=92,在Rt△CHQ中,AAPP=�BBPP2+AABB2=�(�32)2+(92)2=√21,∴GGGG CCGG=√3√2=√77,②如图4,当点Q在BP延长线上时,过Q作QH⊥BC于H,∵BP=2√3,PQ=12PPBB=√3,∴BBPP=3√3,∵PG⊥AB,∴∠PGB=90°,∴PG=12PB=√3,∴PPAA=PPPP=√3,∴∠QGP=∠GQP=30°,∴GQ=3,在Rt△BHQ中,∠HBQ=30°,∴BBBB=ccccss∠BBBBPP⋅BBPP=�32×3√3=92,BBPP=12BBPP=3�32,∴AABB=BBAA−BBBB=32,在Rt△CHQ中,AAPP=�BBPP2+AABB2=�(3�32)2+(32)2=3,∴GGGG CCGG=33=1,综上GGGG CCGG的值为√77或1.【点评】本题是四边形的综合题,考查了矩形的判定和性质,平行四边形的判定和性质,直角三角形的性质,等腰三角形的判定和性质,勾股定理,基本作图,正确地作出辅助线是解题的关键.。
吉安市十校联盟2023—2024学年第二学期期中联考九年级数学试卷考试时间:120分钟、全卷满分120分一、选择题(本大题共6小题,每小题3分,共18分)1. ﹣3的相反数是( )A. B. C. D. 【答案】D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3,故选D .【点睛】本题考查相反数,题目简单,熟记定义是关键.2. 下列运算正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查合并同类项,积的乘方和幂的乘方,完全平方公式以及同底数幂的除法,根据相关运算法则逐项计算即可判断【详解】解:A.,故选项A 计算错误,不符合题意;B. ,故选项B 计算错误,不符合题意;C. ,故选项C 计算错误,不符合题意;D. ,此选项计算正确,符合题意;故选:D3. 如图,几何体的左视图是( )13-133-32242a a a +=()222436ab a b -=()222a b a b -=-()264a a a ÷-=2222a a a +=()222439ab a b -=()2222a b a ab b -=-+()26624a a a a a =÷-÷=A. B. C. D.【答案】B【解析】【分析】本题考查了简单几何体的三视图,根据从左面看得到的图形是左视图,可得答案.【详解】解:左面看,得到的图形是:.故选:B .4. 如图,点A 和点B 恰好分别在GH 和EF 上,GH ∥EF 且BA 平分∠DBE ,若∠C =90°,∠CAD =32°,则∠BAD 度数为( )A. 28°B. 29°C. 30°D. 31°【答案】B【解析】【分析】根据三角形的内角和定理,平行线的性质以及角平分线的定义即可得到结论.详解】解:,,,,,平分,的【90C ∠=︒ 32CAD ∠=︒903258ADC ∴∠=︒-︒=︒ //EF GH 58DBE ADC ∴∠=∠=︒BA DBE ∠,直线直线,,故选:B .【点睛】本题主要考查了平行线的性质,角平分线的定义以及三角形内角和定理,解题时注意:两直线平行,内错角相等.5. 如图,将矩形绕点逆时针旋转得到矩形,交于点,若,,则长为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了利用旋转的性质结合勾股定理求线段长.解题过程中涉及到矩形的性质、勾股定理等知识,熟练掌握几何图形旋转不变性及勾股定理求线段长是解决问题的关键.根据旋转不变性得到,设,在中结合勾股定理即可得出结论.【详解】解:∵将矩形绕点逆时针旋转得到矩形,∴,∵,∴,设,则,∵,∴,即,的1292ABE DBE ∴∠=∠=︒ //EF GH 29BAD ABE ∴∠=∠=︒ABCD A AB C D '''AB 'CD E DE B E '=5,4AB AD ==AE325841105AB AB '==AE CE x ==Rt ADE △ABCD A AB C D '''5AB AB '==DE B E '=AE CE =AE CE x ==5DE x =-90D ∠=︒222AD DE AE +=()22245+-=x x解得:,故选:.6. 如图1在矩形中,点从点出发,匀速沿向点运动,连接,设点的运动距离为的长为关于的函数图像如图2所示,则当点为中点时,的长为( )A. 5B. 8C. D. 【答案】D【解析】【分析】本题考查了动点问题的函数图象,矩形的性质,勾股定理,从函数图象中获取信息是解题的关键.通过观察图2可以得出,,,由勾股定理可以求出a 的值,从而得出,当P 为的中点时,由股定理求出长度.【详解】解∶因为P 点是从A 点出发的,A 为初始点,观察图象时,则,P 从A 向B 移动的过程中,是不断增加的而P 从B 向D 移动的过程中,是不断减少的,因此转折点为B 点,P 运动到B 点时,即时,,此时,即,,由勾股定理得:解得:当点P 为中点时,,4110=x D ABCD P A AB BD →D DP P x DP ,y y ,x P AB DP 6AD =AB a =2BD a =+8AB =AB 4AP =DP 0x =6y =6AD =DP DP x a =AB a =2y a =+2DP DB a ==+6AD =AB a=90A ∠=︒()22226a a +=+8a =8AB ∴=AB 4AP =DP ∴====故选:D .二、填空题(本大题共6小题,每小题3分,共18分)7.的值______.【答案】答案不唯一【解析】【分析】此题考查了二次根式的有意义的条件,二次根式被开方数大于等于零时,二次根式有意义,据此解答.在实数范围内有意义,则,即,则写出一个满足条件的的值为.故答案为:答案不唯一.8. 刘慈欣科幻巨作《三体》中所描述的三体文明距地球大约光年,它们之间被大量氢气和暗物质纽带连接,看起来似乎是连在一起的“三体星系”.其中数字用科学记数法表示为_______.【答案】【解析】【分析】此题考查了科学记数法的表示方法,根据科学记数法的表示形式为的形式,其中,为整数即可求解,解题的关键要正确确定的值以及的值.【详解】解:,故答案为:.9. 已知是方程的两个实数根,求的值为__________.【答案】4【解析】【分析】由已知中,是方程的两个实数根,结合根与系数的关系转化求解即可.【详解】解:,是方程的两个实数根,可得,,x 3()10x -≥1x ≥x 33()420000004200000074.210⨯10n a ⨯110a ≤<n a n 742000000 4.210=⨯74.210⨯,αβ2220230x x +-=22ααββ+-αβ2220230x x +-=αβ2220230x x +-=2αβ+=-2023=-αβ.所以的值为4.故答案为:4.【点睛】本题考查的知识点是一元二次方程根与关系,若,是一元二次方程的两根时,,.10. 如图,在中,,,,分别是边,的中点,连接,过点作于点,连接,若,则的长为______.【解析】【分析】本题主要考查等边三角形的性质,三角形中位线定理,角所对直角边等于斜边一半,勾股定理等,根据中位线定理求出,由得由勾股定理求出,再求出由勾股定理可求出【详解】解:∵在中,,,∴是等边三角形,∴∵,分别是边,的中点,∴是的中位线,∴∴∵,即∴()()()()222224222=+-=--=-+=-⨯-=+-ααββαβαββααβ22ααββ+-αβ()200ax bx c a ++=≠b a αβ+=-c aαβ=ABC AB BC ==60B ∠︒D E AC BC DE D DF AB ⊥F EF 2AB =EF 30︒1,60DE EDC =∠=︒DF AB ⊥130,1,2ADE AF AD ∠=︒==DF =90,FDE Ð=°EF ABC AB BC ==60B ∠︒ABC 2,60,AC AB BC A B ===∠=∠=︒D E AC BC DE ABC 11,,2DE AB DE AB ==∥11,2AD AC ==60,EDC B ∠=∠=︒DF AB ⊥90,DFB ∠=︒30,ADF ∠=︒∴在中,又∴11. 如图,在平面直角坐标系中,点在反比例函数的图象上,,是轴正半轴上的两点,,,若的面积为4,则的值为______.【答案】12【解析】【分析】过点作于点,连接,根据可知,再由可知,故可得出,进而可得出的面积,根据反比例函数系数的几何意义即可得出结论.本题考查反比例函数系数的几何意义,过双曲线上的任意一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.【详解】解:过点作于点,连接,,的面积为4,11,22AF AD ==Rt ADF DF ===180180603090,EDF CDE ADF ∠=︒-∠-∠=︒-︒-︒=︒EF ===A ()0k y x x =>B C x AB AC =OB BC =ABC k A AD BC ⊥D OA OB BC =4ABC AOB S S == AB AC =BD CD =122ADB ABC S S == AOD △k k 1||2k A AD BC ⊥D OA BC OB = ABC∴.,,,,点在反比例函数的图象上,,.故答案为:12.12. 如图,在中,已知,,点P 为边上一动点,若为直角三角形,则的长为__________.【答案】2或4或10【解析】【分析】本题考查了直角三角形的性质,解直角三角形,解一元二次方程.分情况讨论,当时,为直角三角形,由,设,则,利用勾股定理求得,;当时,为直角三角形,作于点,求得,利用正切函数的定义列式求解即可.【详解】解:当时,为直角三角形,4ABC AOB S S == AB=AC BD CD ∴=114222ADB ABC S S ∴==⨯= 246AOD ADB AOB S S S ∴=+=+= A (0)k y x x=<∴162AOD k S == 12k ∴=ABCD Y AB =10BC =tan 2A =AD PBC AP 1PB BC ⊥1PBC △11tan 2PB A AP ==1AP x =12PB x =12AP =14PB =290BP C ∠=︒2P BC △2P E BC ⊥E 22tan tan BP E P CE ∠=∠1PB BC ⊥1PBC△∵,设,则,∵∴,解得,∴,;当时,为直角三角形,作于点,则四边形是矩形,∴,,∴,∴,即,∴,解得或,经检验或都是方程的解,∴或,∴或,此时点与点重合,综上,的长为2或4或10,故答案为:2或4或10.三、解答题(本大题共5小题,每小题6分,共30分)13. (1)计算:.(2)如图,在中,点,分别是边,上的点,.求证:.11tan 2PB A AP ==1AP x =12PB x =AB =()(2222x x +=2x =12AP =14PB =290BP C ∠=︒2P BC △2P E BC ⊥E 12PBEP 12PP BE =124PB EP ==22290BP E CP E P CE ∠=︒-∠=∠22tan tan BP E P CE ∠=∠22P E BE P E CE=4410BE BE=-2BE =8BE =2BE =8BE =122PP BE ==128PP BE ==2224AP =+=32810AP =+=3P D AP ()01232sin 45π++--+︒ABC D E AB AC 180BDE C ∠+∠=︒ADE ACB ∽【答案】(1;(3)见详解【解析】【分析】本题考查了含特殊角的三角函数的混合运算以及相似三角形的判定.(1)先化简零次幂、绝对值、正弦值,再进行加减运算,即可作答.(2)根据两角对应相等的两个三角形相似证明即可.【详解】解:(1)(2),,,,∴.14. 先化简,再求值:,其中: 【答案】,【解析】【分析】先根据分式的加减乘除混合运算进行化简,再根据分母有理化的方法求值即可.【详解】解:()01232sin 45π++--+︒2321+-+=123=+-+=180C EDB ∠+∠=︒ 180ADE EDB ∠+∠=︒C ADE ∠∠∴=A A ∠=∠ ADE ACB ∽2121211x x x x -⎛⎫÷- ⎪+++⎝⎭1x =-11x -+2121211x x x x -⎛⎫÷- ⎪+++⎝⎭()2121111x x x x x -+⎛⎫=÷- ⎪++⎝⎭+()21111x x x x -+=⨯-+当时,原式【点睛】本题考查分式的加减乘除混合运算,分母有理化,正确计算是解题的关键.15. 如图,点在上,点在内,,,请仅用无刻度的直尺按下列要求作图(保留作图痕迹).(1)在图1中作弦,使;(2)在图2中作矩形,使矩形的面积是面积的8倍.【答案】(1)见解析(2)见解析【解析】【分析】本题主要考查圆周角定理的应用:(1)通过延长交于点,延长交于点,连接,即可完成作图任务;(2)通过延长交于点,延长交于点,连接并延长,交于点,依次连接,即可完成作图任务【小问1详解】解:如图,即为所作;理由如下:∵,,∴,∴11x =-+1x =-===A O B O 30A ∠=︒90B Ð=°CD CD AO ∥AMNP AMNP AOB AB O D OB O C CD AB O M AO O N MO O P MN NP PA ,,CD 30A ∠=︒90∠=︒ABO 60O ∠=︒1302D O ∠=∠=︒∴,∴;【小问2详解】解:如图,矩形即为所作;理由如下:∵,∴,∵,∴∴,∵,∴,∵,为的直径,∴,∴四边形是矩形,且16. 随着社会经济发展和物质消费水平的大幅度提高,我国每年垃圾产生量迅速增长,为了倡导绿色社区,做好垃圾分类工作,某社区成立了甲、乙两个检查组,采取随机抽查的方式对辖区内四个小区进行抽查,并且每个小区不重复检查.(1)若由甲组对四个小区进行抽查,则抽到B 小区的概率是________;(2)若甲、乙两组同时抽查,请用画树状图法或列表法求出甲组抽到C 小区,同时乙组抽到D 小区的概率.【答案】(1) 30A D ∠=∠=︒CD AO ∥AMNP 90∠=︒ABO OB AM ⊥OA OM =2AM AB=2AOM AOB S S = OP ON OM OA ===2AOP PON MON AOM AOB S S S S S ==== AN PM O 90PAN APN PNM AMN ∠=∠=∠=∠=︒AMNP 8AOBAMNP S S = 矩形,,,A B C D ,,,A B C D 14(2)【解析】【分析】此题考查列表法与树状图法,解题关键在于根据题意画出树状图.(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【小问1详解】解:由甲组对四个小区进行抽查,则抽到B 小区的概率是;【小问2详解】画树状图为:共有12种等可能的结果数,其中甲组抽到C 小区,同时乙组抽到D 小区的结果数为1,∴甲组抽到C 小区,同时乙组抽到D 小区的概率为.17. 为响应国家节能减排的倡议,某汽车专卖店销售A ,B 两种型号的新能源汽车,B 型汽车的售价比A 型汽车售价高8万元,本周售出1辆A 型车和3辆B 型车,销售总额为96万元.(1)求每辆A 型车和B 型车的售价;(2)随着新能源汽车越来越受消费者认可,汽车专卖店计划下周销售A ,B 两种型号汽车共10辆,若销售总额不少于220万元,求B 型车至少销售多少辆?【答案】(1)每辆A 型汽车的售价为18万元,每辆B 型汽车的售价为26万元(2)5辆【解析】【分析】本题考查了二元一次方程组的应用以及一元一次不等式的应用.(1)设每辆型车的售价是万元,每辆型车的售价是万元,根据“型汽车的售价比型汽车售价高8万元,本周售出1辆型车和3辆型车,销售总额为96万元”,可列出关于,的二元一次方程组,解之即可得出结论;(2)设销售型车辆,则销售型车辆,利用销售总额每辆型车的售价销售型车的的112,,,A B C D 14112A xB y B A A B x y B m A (10)m -=A ⨯A数量每辆型车的售价销售型车的数量,结合销售总额不少于220万元,可列出关于的一元一次不等式,解之取其中的最小值,即可得出结论.【小问1详解】解:设每辆型车的售价是万元,每辆型车的售价是万元,根据题意得:,解得:.答:每辆型车的售价是18万元,每辆型车的售价是26万元;【小问2详解】解:设销售型车辆,则销售型车辆,根据题意得:,解得:,的最小值为5.答:型车至少销售5辆.四、解答题(本大题共3小题,每小题8分,共24分)18. 如图,点A 在第一象限,轴,垂足为C ,,,反比例函数的图像经过的中点B ,与交于点D .(1)求k 值;(2)求的面积.【答案】(1)2(2)【解析】【分析】(1)在中,,,再结合勾股定理求出,,得+B ⨯B m A x B y 8396y x x y -=⎧⎨+=⎩1826x y =⎧⎨=⎩A B B m A (10)m -18(10)26220m m -+≥5m ≥m ∴B AC x ⊥OA =1tan 2A =k y x=OA AC OBD 32Rt ACO ∆90ACO ∠=︒1tan 2A =2OC =4AC =到,再利用中点坐标公式即可得出,求出值即可;(2)在平面直角坐标系中求三角形面积,找平行于坐标轴的边为底,根据轴,选择为底,利用代值求解即可得出面积.【小问1详解】解:根据题意可得,在中,,,,,,,,的中点是B ,,;【小问2详解】解:当时,,,,.【点睛】本题考查反比例函数的图像与性质,涉及到勾股定理,三角函数求线段长,中点坐标公式、待定系数法确定函数关系式中的,平面直角坐标系中三角形面积的求解,熟练掌握反比例函数的图像与性质是解决问题的关键.19. 为了保护小吉的视力,妈妈为他购买了可升降夹书阅读架(如图1),将其放置在水平桌面上的侧面示意图(如图2),测得底座高为,,支架为,面板长为,为.(厚度忽略不计)()2,4A ()1,2B k AD y ∥AD O B D O A D B A D S S S =-△△△Rt ACO ∆90ACO ∠=︒1tan 2A =2AC OC ∴=222(2)OC OC ∴+=2OC ∴=4AC =()2,4A ∴ OA ()1,2B ∴2k ∴=2x =1y =()2,1D ∴413AD ∴=-=∴O B D O A D B A D S S S =-△△△()11332321222=⨯⨯-⨯⨯-=k AB 2cm 150ABC ∠=︒BC 18cm DE 24cm CD 6cm(1)求支点C 离桌面l 的高度;(计算结果保留根号)(2)小吉通过查阅资料,当面板绕点C 转动时,面板与桌面的夹角α满足时,问面板上端E 离桌面l 的高度是增加了还是减少了?增加或减少了多少?(精确到,参考数据:)【答案】(1)(2)当α从变化到的过程中,高度增加了【解析】【分析】本题考查解直角三角形的应用.把所求线段和所给角放在合适的直角三角形中是解决本题的关键. (1)过点C 作于点F ,过点B 作于点M ,,易得四边形为矩形,那么可得,所以,利用的三角函数值可得长,进而可求解;(2)过点C 作,过点E 作于点H ,分别得到与所成的角为和时的值,相减即可得到面板上端E 离桌面l 的高度增加或减少了.【小问1详解】解:过点C 作于点F ,过点B 作于点M ,,由题意得:,四边形为矩形,.,DE 3070α︒≤≤︒0.1cm sin 700.94,cos 700.34,tan 70 2.75︒≈︒≈︒≈2)cm 30︒70︒7.9cmCF l ⊥BM CF ⊥ABMF 2cm 90MF AB ABM ==∠=︒,60MBC ∠=︒60︒CM CN l EH CN ⊥CE CN 30︒70︒EH CF l ⊥BM CF ⊥90CFA BMC BMF ∴∠=∠=∠=︒90BAF ∠=︒∴ABMF 2cm 90MF AB ABM ∴==∠=︒,150ABC ∠=︒.,,答:支点C离桌面l的高度为;【小问2详解】解:过点C作,过点E作于点H,,,,当时,;当时,;,∴当α从变化到的过程中,面板上端E离桌面l的高度是增加了.20. 某区积极响应国家“双减”政策,为了了解全区4000名七年级的学生完成作业时间情况,随机抽取几所学校七年级学生进行调查,统计他们平均每天完成作业的时间,并根据调查结果绘制如下不完整的统计图:60MBC∴∠=︒18cmBC=sin6018CM BC∴=⋅︒==2)cmCF CM MF∴=+=+()2cm+CN l EH CN⊥90EHC∴∠=︒24cm,2cmDE CD==18cmCE∴=30ECH∠=︒1sin30189cm2EH CE=⋅︒=⨯=70ECH∠=︒sin70180.9416.92cmEH CE=⋅︒≈⨯=16.9297.927.9cm∴-=≈30︒70︒请根据图表中提供的信息,解答下面的问题:(1)此次调查活动抽取的七年级有______人,扇形统计图中的值是______;(2)补全频数分布直方图,并估计全区平均每天完成作业时长在“”分钟的学生约有______人;(3)若平均每天完成作业时长在100分钟以下学生认定为“学习轻松者”,那你估计一下全区有多少位七年级的孩子是“学习轻松者”?【答案】(1)200;10(2)图见解析,400(3)2200名【解析】【分析】本题考查频数分布直方图、扇形统计图、用样本估计总体.(1)根据选A 人数和所占的百分比,可以求得此次调查的人数,再根据频数分布直方图中的数据,即可得到m 的值;(2)根据(1)的结果和条形统计图中的数据,可以计算出B 组的人数,从而可以将条形统计图补充完整,再用样本估计总体即可;(3)利用样本估计总体即可.【小问1详解】解:此次调查活动抽取的七年级人数为:(人),(人),,即m 的值是10,故答案为:200,10;【小问2详解】的m 6080t ≤<4020%200÷=2004050306020----=%20200100%10%m =÷⨯=解:补充统计图如图所示:(人),即估计全区平均每天完成作业时长在“”分钟的学生约有400人.故答案为:400;【小问3详解】解:(人),答:估计全区有2200位七年级的孩子是“学习轻松者”.五、解答题(本大题共2小题,每小题9分,共18分)21. 如图,已知是的直径,点是弧上的一点,于,点是弧的中点,交于点,交于点.(1)判断的形状,并证明;(2)若,.①求的长.②求阴影部分的面积.【答案】(1)是等腰三角形,详见解析(2)①;②【解析】【分析】(1)根据直径所对的圆周角是直角可得,从而可得,根据垂直定义可得,从而可得,然后根据已知可得,从而可得204000400200⨯=6080t ≤<11040002200200⨯=AB O C AB CEAB ⊥E D BC ADCE F BC G FGC △30CAD ∠=︒12AB =CF FGC△CF=6π-90ACB ∠=︒90CAG AGC ∠+∠=︒90CEA ∠=︒90FAE AFE ∠+∠=︒ DCDB =,进而可得,最后根据对顶角相等可得,从而可得,进而根据等角对等边即可解答;(2)①由(1)得故可得所以再证明通过解直角,求出②连接,可得是等边三角形,故有根据可得结论.【小问1详解】是等腰三角形,理由如下:∵为的直径,∴,∴,∵,∴,∴,∵D 为弧的中点,∴,∴,∴,∵,∴,∴,∴是等腰三角形;【小问2详解】①∵∴∵即∴∵CAG FAE ∠=∠AGC AFE ∠=∠AFE CFG ∠=∠AGC CFG ∠=∠60,CAE CAF EAF ∠=∠+∠=︒30,30,ACE ABC ∠=︒∠=︒116,3,22AC AB AE AC ====AF CF =,AEF AE AF ==CO AOC 60,AOC ∠=︒AOC AOC S S S =- 阴影扇形FGC △AB O 90ACB ∠=︒90CAG AGC ∠+∠=︒CE AB ⊥90CEA ∠=︒90FAE AFE ∠+∠=︒BC DCDB =CAG FAE ∠=∠AGC AFE ∠=∠AFE CFG ∠=∠AGC CFG ∠=∠CF CG =FGC △30,BAD CAD ∠=∠=︒303060,CAE CAF EAF ∠=∠+∠=︒+︒=︒,CE AB ⊥90,CED ∠=︒90906030,ACE CAE ∠=︒-∠=︒-︒=︒90,ACB ∠=︒∴∴∴在直角中,∵,∴∵∴②连接如图,∵∴是等边三角形,∴又∴【点睛】本题考查了圆周角定理,扇形的面积等知识,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22. 阅读下列材料并完成问题.抛物线()的图象如图(1)所示,我们把点称为该抛物线的焦点,把抛物线上任意一点到焦点的距离称为焦半径,把直线称为该抛物线的准线,抛物线上任意一点到准线的距离称为准距.90906030,ABC CAB ∠=︒-∠=︒-︒=︒11126,22AC AB ==⨯=1163,22AE AC ==⨯=AEF △cos AEEAF AF=∠3cos cos30AE AF EAF ===∠︒30,CAF ACF ∠=∠=︒CF AF ==,CO 60,,CAO AO CO ∠=︒=AOC 60,AOC ∠=︒CE ===26061663602AOCAOC S S S ππ⨯⨯=-=-⨯=- 阴影扇形2y ax =0a >10,4A a ⎛⎫⎪⎝⎭P PA 14y a=-P 14y a=-PB[知识感悟](1)抛物线的焦点的坐标是______,若抛物线上点的坐标为,则焦半径______,准距______.[问题探究](2)对于抛物线()上点,试猜想焦半径与准距的数量关系,并说明理由.[知识应用](3)如图(2),已知抛物线的焦点为,点为抛物线上一点,连接,过点作直线的垂线,垂足为,直线与轴交于点,当时,求点的坐标.【答案】(1),4,4(2),理由见解析;(3)或【解析】【分析】本题主要考查二次函数图象与性质的应用:(1)根据示例中的定义求解即可;(2)设点,根据两点间距离公式求出的长即可判断;(3)连接,证明是等边三角形,求出,设,得,求出方程的解即可得出点P 的坐标218y x =A P ()4,2PA =PB =2y ax =0a >P PA PB 212y x =A P PA P 12y =-B 12y =-y M 60APB ∠=︒P ()02,PA PB =32⎫⎪⎭,32⎛⎫ ⎪⎝⎭,()2,P m am,PA PB AB PAB 2PB =212P x x ⎛⎫ ⎪⎝⎭,211222x +=【详解】解:(1)∵,∴焦点A 的坐标为∴点与焦点的距离,点到准线的距离为:故答案为:,4,4(2),理由如下:由题意知,焦点为,准线为直线,设点,∴,,∴(3)连接,由(2)知,,,∴是等边三角形,∴,由题意知,,∴,∵与直线垂直,∴∴1121448a ==⨯()02,()4,2P ()02A ,4PA =()4,2P =2y -()224,P =--=()02,PA PB =104A a ⎛⎫ ⎪⎝⎭,14y a=-()2,P m am2222221144PA m am am a a ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭22214PB am a ⎛⎫=+ ⎪⎝⎭PA PB =AB PA PB =60APB ︒∠=PAB 60PBA ︒∠=102A ⎛⎫ ⎪⎝⎭,1AM =BP 12y =-30ABM ∠=︒22AB AM ==∴;设,得,解得,∴点的坐标为或六、解答题(本大题共12分)23. (1)发现问题:如图1,在和中,,,,连接,,延长交于点.则与的数量关系是______,______;(2)类比探究:如图2,在和中,,,,连接,,延长,交于点.请猜想与的数量关系及的度数,并说明理由;(3)拓展延伸:如图3,和均为等腰直角三角形,,连接,,且点,,在一条直线上,过点作,垂足为点.求,,之间的数量关系;(4)实践应用:正方形中,,若平面内存在点满足,,则______.【答案】(1)(2)(3)(4)【解析】【分析】(1)根据等腰三角形的性质,利用证明即可得出结论;(2)根据等腰三角形的性质,利用证明即可得出结论;(3)根据等腰直角三角形的性质,利用证明即可得出结论;(4)根据直径所对的圆周角是直角,先找到点P ,利用勾股定理计算出,再利用第3小题的结论得到2PB =212P x x ⎛⎫⎪⎝⎭,211222x +=x =P 32⎫⎪⎭,32⎛⎫ ⎪⎝⎭,ABC AEF △AB AC =AE AF =30BAC EAF ∠=∠=︒BE CF BE CF D BE CF BDC ∠=ABC AEF △AB AC =AE AF =120BAC EAF ∠=∠=︒BE CF BE FC D BE CF BDC ∠ABC AEF △90BAC EAF ∠=∠=︒BE CF B E F A AM BF ⊥M BF CF AM ABCD 2AB =P 90BPD ∠=︒1PD =S ABP =△30BE CF =︒,60BE CF BDC =∠=︒,2BF CF AM =+SAS ABE ACF ≌ SAS BAE CAF ≌ SAS BAE CAE ≌ BP三角形的高,的面积即可求出.【详解】解:(1),理由如下:如图1所示:∵和都是等腰三角形,∴,又∵,∴,即∴,∴,∴,∵,,∴;故答案为:(2),理由如下:如图2所示:证明:∵,∴,即,又∵,ABP 30BE CF BDC =∠=︒,ABC AEF △AB AC AE AF ==,30BAC EAF ∠=∠=︒BAC CAE FAE CAE ∠+∠=∠+∠,BAE CAF Ð=Ð()SAS ABE ACF ≌BE CF =ABE ACD ∠=∠A O E A B E B A C ∠=∠+∠AOE ACD BDC ∠=∠+∠30BDC BAC ∠=∠=︒30BE CF =︒,60BE CF BDC =∠=︒,120BAC EAF ∠=∠=︒BAC EAC EAF EAC ∠-∠=∠-∠BAE CAF ∠=∠AB AC AE AF ==,∴∴,∴,∵,∴,∴;(3),理由如下:如图3所示:∵和都是等腰三角形,∴,∴,即:,∴,∴,∵,∴,∵,∴;(4)如图4所示:连接,以为直径作圆,()SAS BAE CAF ≌BE CF =AEB AFC Ð=Ð120EAF AE AF ∠=︒=,30AEF AFE ∠=∠=︒30(30)60B D C B E F E FD A E B A FC ∠=∠-∠=∠+︒-∠-︒=︒2BF CF AM =+ABC AEF △90CAB EAF AB AC AE AF ∠=∠=︒==,,CAB CAE FAE CAE ∠-∠=∠-∠BAE CAF ∠=∠()SAS BAE CAF ≌BE CF =90AM BF AE AF EAF ⊥=∠=︒,,2EF AM =BF BE EF =+2BF CF AM =+BD BD由题意,取满足条件的点P ,,则.,∵,∴,∴,连接,作于点F ,在上截取,∵,∴,∴,∴,由(3)可得:,∴,∴,延长至点,使,过点A 作于点,连接,,∵,,∴,∴,∴,∴,∴,P '1PD P D '==90BPD BP D '∠=∠=︒2AB=BD=BP ===PA ⊥AF PB BP BE PD =PDA ABE AD AB ∠==,()SAS ADP ABE ≌AP AE BAE DAP =∠=∠,90PAE ∠=︒2PB PD AF -=2PB PD AF -==12PAB S PB AF =⋅=P B 'G BG P D '=AF BP '⊥'F ''AP AG AB AD =ABG ADP ∠'=∠(SAS)ABG ADP '≌ AG AP BAG DAP =∠=∠'',90GAP '∠=︒12AF F P GP ''''==2GP AF DP BP ''''==+∴,∴故.【点睛】本题主要考查了全等三角形的判定,等腰三角形和等腰直角三角形的性质,圆周角定理,勾股定理,三角形的面积等知识,熟练掌握全等三角形的判定是解题的关键.2DP BP AF ''+'==12P AB S P B AF '''=⋅= ABP。
九年级(下)期中数学试卷一、选择题1.﹣3的相反数是()A.3 B.﹣3 C.D.2.如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15°B.30°C.45°D.60°3.若a﹣b+c=0,则关于x的一元二次方程ax2+bx+c=0必有一根为()A.0 B.1 C.﹣1 D.24.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4 B.3 C.D.25.如图,△ABO的面积为3,且AO=AB,双曲线y=经过点A,则k的值为()A.B.3 C.6 D.96.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1二、填空题7.因式分解3x2﹣3y2=.8.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是.9.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为.10.在函数y=中,自变量x的取值范围是.11.小明用S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=.12.当﹣1≤x≤2时,二次函数y=(x﹣m)2+m2有最小值3,则实数m的值为.三、解答题13.(1)解方程:=﹣(2)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB,求证:∠A=∠E.14.先化简,再求代数式(﹣)÷的值,其中a=+1.15.如图,AB是⊙O的直径,点C在⊙O上,点D在AB延长线上,且∠BCD=∠A.(1)求证:DC是⊙O的切线;(2)若∠A=30°,AC=2,求图中阴影部分的面积.16.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?17.如图,已知矩形OABC中,OA=3,AB=4,双曲线y=(k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD(1)求k的值和点E的坐标;(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.四、解答题18.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.19.利用直尺画图(先用铅笔画图,然后再用墨水笔将符合条件的图形画出).(1)利用图1中的网格,过P点画直线AB的平行线和垂线;(2)平移图(2)网格中的三条线段AB、CD、EF,使平移后三条线段首尾顺次相接组成一个三角形;(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于.20.如图,一个书架上的方格中放着四本厚度和长度相同的书,其中左边两边上紧贴书架方格内侧竖放,右边两本书自然向左斜放,支撑点为C,E,右侧书角正好靠在方格内侧上,若书架方格长BF=40cm,∠DCE=30°.(1)设一本书的厚度为acm,则EF=cm;(2)若书的长度AB=20cm,求一本书的厚度(结果保留根号)五、解答题21.如图,抛物线C1:y=x2+4x﹣3与x轴交于A、B两点,将C1向右平移得到C2,C2与x轴交于B、C两点.(1)求抛物线C2的解析式.(2)点D是抛物线C2在x轴上方的图象上一点,求S△ABD的最大值.(3)直线l过点A,且垂直于x轴,直线l沿x轴正方向向右平移的过程中,交C1于点E交C2于点F,当线段EF=5时,求点E的坐标.22.如图,△AOB是等腰直角三角形,直线BD∥OA,OB=OA=1,P是线段AB上一动点,过P点作MN∥OB,分别交OA、BD于M、N,PC⊥PO,交BD于点C.(1)求证:OP=PC;(2)当点C在射线BN上时,设AP长为m,四边形POBC的面积为S,请求出S 与m间的函数关系式,并写出自变量m的取值范围;(3)当点P在线段AB上移动时,点C也随之在直线BN上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形时的PM的值;如果不可能,请说明理由.六、解答题23.问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP的最小值为.(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.3 B.﹣3 C.D.【考点】14:相反数.【分析】由相反数的定义容易得出结果.【解答】解:﹣3的相反数是3,故选:A.2.如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15°B.30°C.45°D.60°【考点】JA:平行线的性质.【分析】根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补解答.【解答】解:如图,∠3=∠1=60°(对顶角相等),∵AB∥CD,EG⊥EF,∴∠3+90°+∠2=180°,即60°+90°+∠2=180°,解得∠2=30°.故选B.3.若a﹣b+c=0,则关于x的一元二次方程ax2+bx+c=0必有一根为()A.0 B.1 C.﹣1 D.2【考点】A3:一元二次方程的解.【分析】由a﹣b+c=0求得b=a+c,将其代入方程ax2+bx+c=0中,可得方程的一个根是﹣1.【解答】解:∵a﹣b+c=0,∴b=a+c,①把①代入方程ax2+bx+c=0中,ax2+(a+c)x+c=0,ax2+ax+cx+c=0,ax(x+1)+c(x+1)=0,(x+1)(ax+c)=0,∴x1=﹣1,x2=﹣(非零实数a、b、c).故选:C.4.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4 B.3 C.D.2【考点】KX:三角形中位线定理;KO:含30度角的直角三角形.【分析】先由含30°角的直角三角形的性质,得出BC,再由三角形的中位线定理得出DE即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选D.5.如图,△ABO的面积为3,且AO=AB,双曲线y=经过点A,则k的值为()A.B.3 C.6 D.9【考点】G5:反比例函数系数k的几何意义;KH:等腰三角形的性质.【分析】过点A作OB的垂线,垂足为点C,根据等腰三角形的性质得OC=BC,再根据三角形的面积公式得到OB•AC=3,易得OC•AC=3,设A点坐标为(x,y),即可得到k=xy=OC•AC=3.【解答】解:过点A作OB的垂线,垂足为点C,如图,∵AO=AB,∴OC=BC=OB,∵△ABO的面积为3,∴OB•AC=3,∴OC•AC=3.设A点坐标为(x,y),而点A在反比例函数y=(k>0)的图象上,∴k=xy=OC•AC=3.故选B.6.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1【考点】H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征;HA:抛物线与x轴的交点;HC:二次函数与不等式(组).【分析】由抛物线与x轴有两个交点则可对A进行判断;由于抛物线开口向上,有最小值则可对B进行判断;根据抛物线上的点离对称轴的远近,则可对C进行判断;根据二次函数的对称性可对D进行判断.【解答】解:A、图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2﹣4ac>0所以b2>4ac,故A选项正确;B、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax2+bx+c ≥﹣6,故B选项正确;C、抛物线的对称轴为直线x=﹣3,因为﹣5离对称轴的距离大于﹣2离对称轴的距离,所以m<n,故C选项错误;D、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,故D选项正确.故选C.二、填空题7.因式分解3x2﹣3y2=3(x+y)(x﹣y).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3x2﹣3y2=3(x2﹣y2)=3(x+y)(x﹣y).故答案为:3(x+y)(x﹣y).8.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是5.【考点】U3:由三视图判断几何体.【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数,即可得出这个几何体的体积.【解答】解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故答案为:5.9.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为25.【考点】MO:扇形面积的计算.【分析】根据扇形面积公式:S=•L•R(L是弧长,R是半径),求出弧长BD,根据题意=CD+BC,由此即可解决问题.【解答】解:由题意=CD+BC=10,S扇形ADB=••AB=×10×5=25,故答案为25.10.在函数y=中,自变量x的取值范围是x≥1.【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.11.小明用S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=30.【考点】W7:方差.【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.【解答】解:∵S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],∴平均数为3,共10个数据,∴x1+x2+x3+…+x10=10×3=30,故答案为:30.12.当﹣1≤x≤2时,二次函数y=(x﹣m)2+m2有最小值3,则实数m的值为或.【考点】H7:二次函数的最值.【分析】根据二次函数的最值问题列出方程求出m的值,再根据二次项系数大于0解答.【解答】解:∵二次函数y=(x﹣m)2+m2有最小值3,二次项系数a=1>0,故图象开口向上,对称轴为x=m,当m<﹣1时,最小值在x=﹣1取得,此时有(m+1)2+m2=3,求得m=,∵m<﹣1,∴m=;当﹣1≤m≤2时,最小值在x=m时取得,即有1﹣m2=﹣2求得m=或m=﹣(舍去)当m>2时,最小值在x=2时取得,即(2﹣m)2+m2=3求得m=(舍去)故答案为:或.三、解答题13.(1)解方程:=﹣(2)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB,求证:∠A=∠E.【考点】KD:全等三角形的判定与性质;B3:解分式方程.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)由BC与DE平行得到一对同位角相等,利用SAS得到三角形ABC与三角形EDB全等,利用全等三角形对应角相等即可得证.【解答】解:(1)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解;(2)∵BC∥DE,∴∠ABC=∠D,在△ABC和△EDB中,,∴△ABC≌△EDB,∴∠A=∠E.14.先化简,再求代数式(﹣)÷的值,其中a=+1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•(a+1)=,当a=+1时,原式=.15.如图,AB是⊙O的直径,点C在⊙O上,点D在AB延长线上,且∠BCD=∠A.(1)求证:DC是⊙O的切线;(2)若∠A=30°,AC=2,求图中阴影部分的面积.【考点】MD:切线的判定;MO:扇形面积的计算.【分析】(1)连结OC,如图,根据圆周角定理得∠ACB=90°,再利用等腰三角形的性质得∠A=∠OCA,∠OBC=∠OCB,则∠A+∠BCO=90°,加上∠BCD=∠A,所以∠BCD+∠BCO=90°,于是根据切线的判定方法可判断DC是⊙O的切线;(2)根据含30度的直角三角形三边的关系,在Rt△ACB中计算出BC=AC=2,AB=2BC=4,再计算出∠AOC=120°,然后根据扇形面积公式,利用图中阴影部分的面积=S扇形AOC ﹣S△AOC进行计算.【解答】(1)证明:连结OC,如图,∵AB是⊙O的直径,∴∠ACB=90°,∵OA=OC,OB=OC,∴∠A=∠OCA,∠OBC=∠OCB,∴∠A+∠BCO=90°,∵∠BCD=∠A,∴∠BCD+∠BCO=90°,即∠OCD=90°,∴OC⊥CD,∴DC是⊙O的切线;(2)在Rt△ACB中,∵∠A=30°,∴BC=AC=2,AB=2BC=4,∵∠AOC=180°﹣∠A﹣∠ACO=120°,∴图中阴影部分的面积=S扇形AOC ﹣S△AOC=S扇形AOC﹣S△ABC=﹣••2•2=π﹣.16.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?【考点】AD:一元二次方程的应用;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)让根的判别式为0即可求得m,进而求得方程的根即为菱形的边长;(2)求得m的值,进而代入原方程求得另一根,即易求得平行四边形的周长.【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5,故当m=1时,四边形ABCD是菱形,菱形的边长是0.5;(2)把AB=2代入原方程得,m=2.5,把m=2.5代入原方程得x2﹣2.5x+1=0,解得x1=2,x2=0.5,∴C▱ABCD=2×(2+0.5)=5.17.如图,已知矩形OABC中,OA=3,AB=4,双曲线y=(k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD(1)求k的值和点E的坐标;(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.【考点】GB:反比例函数综合题.【分析】(1)由矩形OABC中,AB=4,BD=2AD,可得3AD=4,即可求得AD的长,然后求得点D的坐标,即可求得k的值,继而求得点E的坐标;(2)首先假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m,由∠APE=90°,易证得△AOP∽△PCE,然后由相似三角形的对应边成比例,求得m的值,继而求得此时点P的坐标.【解答】解:(1)∵AB=4,BD=2AD,∴AB=AD+BD=AD+2AD=3AD=4,∴AD=,又∵OA=3,∴D(,3),∵点D在双曲线y=上,∴k=×3=4;∵四边形OABC为矩形,∴AB=OC=4,∴点E的横坐标为4.把x=4代入y=中,得y=1,∴E(4,1);(2)假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m.∵∠APE=90°,∴∠APO+∠EPC=90°,又∵∠APO+∠OAP=90°,∴∠EPC=∠OAP,又∵∠AOP=∠PCE=90°,∴△AOP∽△PCE,∴,∴,解得:m=1或m=3,∴存在要求的点P,坐标为(1,0)或(3,0).四、解答题18.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由题意可得:王老师一共调查学生:(2+1)÷15%=20(名);(2)由题意可得:C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【解答】解:(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为:20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2…女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:=.19.利用直尺画图(先用铅笔画图,然后再用墨水笔将符合条件的图形画出).(1)利用图1中的网格,过P点画直线AB的平行线和垂线;(2)平移图(2)网格中的三条线段AB、CD、EF,使平移后三条线段首尾顺次相接组成一个三角形;(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于3.5.【考点】Q4:作图﹣平移变换;JA:平行线的性质.【分析】(1)根据网格结构的特点,利用直线与网格的夹角的关系找出与AB平行的格点以及垂直的格点作出即可;(2)根据网格结构的特点,过点E找出与AB、CD位置相同的线段,过点F找出与AB、CD位置相同的线段,作出即可;(3)根据S△=S正方形﹣三个角上的三角形的面积即可得出结论.【解答】解:(1)、(2)如图所示;=3×3﹣×1×2﹣×2×3﹣×1×3(3)S△EFH=9﹣1﹣3﹣=3.5.故答案为:3.5.20.如图,一个书架上的方格中放着四本厚度和长度相同的书,其中左边两边上紧贴书架方格内侧竖放,右边两本书自然向左斜放,支撑点为C,E,右侧书角正好靠在方格内侧上,若书架方格长BF=40cm,∠DCE=30°.(1)设一本书的厚度为acm,则EF=a cm;(2)若书的长度AB=20cm,求一本书的厚度(结果保留根号)【考点】T8:解直角三角形的应用.【分析】(1)根据三角形的内角和得到∠CED=60°,根据三角函数的定义即可得到结论;(2)设一本书的厚度为acm,根据BF=40cm,列方程即可得到结论.【解答】解:(1)如图,∵∠DCE=30°,∴∠CED=60°,∴∠GEH=30°,∴EH==a,∴HF=acos30°=a;∴EF=EH+HF=a故答案为:a;(2)设一本书的厚度为acm,则BD=2a,∴DE=CE=10cm,∵BF=40cm,∴2a+10+a=40,解得:a≈7.4.答:一本书的厚度7.4cm.五、解答题21.如图,抛物线C1:y=x2+4x﹣3与x轴交于A、B两点,将C1向右平移得到C2,C2与x轴交于B、C两点.(1)求抛物线C2的解析式.(2)点D是抛物线C2在x轴上方的图象上一点,求S△ABD的最大值.(3)直线l过点A,且垂直于x轴,直线l沿x轴正方向向右平移的过程中,交C1于点E交C2于点F,当线段EF=5时,求点E的坐标.【考点】HF:二次函数综合题.【分析】(1)先依据配方法求得抛物线C1的顶点坐标,然后令y=0,求得点A、B的坐标,从而可判断出C1平移的方向和距离,于是得到抛物线C2的顶点坐标,从而得到C2的解析式;(2)根据函数图象可知,当点D为C2的顶点时,△ABD的面积最大;(3)设点E的坐标为(x,﹣x2+4x﹣3),则点F的坐标为(x,﹣x2+8x﹣15),然后可求得EF长度的解析式,最后根据EF=5,可列出关于x的方程,从而可求得x的值,于是的得到点E的坐标.【解答】解:(1)∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴抛物线C1的顶点坐标为(2,1).令y=0,得﹣(x﹣2)2+1=0,解得:x1=1,x2=3.∵C2经过B,∴C1向右平移了2个单位长度.∵将抛物线向右平移两个单位时,抛物线C2的顶点坐标为(4,1),∴C2的解析式为y2=﹣(x﹣4)2+1,即y=﹣x2+8x﹣15.(2)根据函数图象可知,当点D为C2的顶点时,纵坐标最大,即D(4,1)时,△ABD的面积最大.S△ABD=AB•|y D|=×2×1=1.(3)设点E的坐标为(x,﹣x2+4x﹣3),则点F的坐标为(x,﹣x2+8x﹣15).EF=|(﹣x2+4x﹣3)﹣(﹣x2+8x﹣15)|=|﹣4x+12|.∵EF=5,∴﹣4x+12=5或﹣4x+12=﹣5.解得:x=或x=.∴点E的坐标为(,)或(,﹣)时,EF=5.22.如图,△AOB是等腰直角三角形,直线BD∥OA,OB=OA=1,P是线段AB上一动点,过P点作MN∥OB,分别交OA、BD于M、N,PC⊥PO,交BD于点C.(1)求证:OP=PC;(2)当点C在射线BN上时,设AP长为m,四边形POBC的面积为S,请求出S 与m间的函数关系式,并写出自变量m的取值范围;(3)当点P在线段AB上移动时,点C也随之在直线BN上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形时的PM的值;如果不可能,请说明理由.【考点】LO:四边形综合题.【分析】(1)首先利用矩形的判定得出四边形OBNM 为矩形,即可得出∠CPN=∠POM ,进而得出△OPM ≌△PCN ,求出即可;(2)利用S=S △OPB +S △PBC 进而得出S 与m 的函数关系;(3)利用①当点P 与点A 重合时,PC=BC=1,②如图②,当点C 在OB 下方,且PB=CB 时,分别求出即可.【解答】(1)证明:如图①,△AOB 是等腰直角三角形,AO=BO=1,∴∠A=45°,∠AOB=90°,直线BN ∥OA ,MN ∥OB ,∴四边形OBNM 为矩形,∴MN=OB=1,∠PMO=∠CNP=90°而∠AMP=90°,∠A=∠APM=∠BPN=45°,∴OM=BN=PN ,∵∠OPC=90°,∴∠OPM +∠CPN=90°,又∵∠OPM +∠POM=90°,∴∠CPN=∠POM ,在△OPM 和△PCN 中,∴△OPM ≌△PCN (ASA ),∴OP=PC ,(2)解:∵AM=PM=APsin45°=m , ∴NC=PM=m ,∴BN=OM=PN=1﹣m ;∴BC=BN ﹣NC=1﹣m ﹣m=1﹣m , S=S △OPB +S △PBC =BO•MO +BC•PN ,=m 2﹣m +1(0≤m );(3)解:△PBC可能为等腰三角形,①当点P与点A重合时,PC=BC=1,此时PM=0,②如图②,当点C在OB下方,且PB=CB时,有OM=BN=PN=1﹣m,∴BC=PB=PN=﹣m,∴NC=BN+BC=1﹣m+﹣m,由(2)知:NC=PM=m,∴1﹣m+﹣m=m,∴m=1.∴PM=m=;∴使△PBC为等腰三角形时的PM的值为0或.六、解答题23.问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP的最小值为.(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.【考点】MR:圆的综合题.【分析】(1)利用勾股定理即可求出,最小值为AD=;(2)连接CP,在CA上取点D,使CD=,则有,可证△PCD∽△ACP,得到PD=AP,即:AP+BP=BP+PD,从而AP+BP的最小值为BD;(3)延长OA到点E,使CE=6,连接PE、OP,可证△OAP∽△OPE,得到EP=2PA,得到2PA+PB=EP+PB,当E、P、B三点共线时,得到最小值.【解答】解:(1)如图1,连结AD,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为,故答案为:;(2)如图2,连接CP,在CA上取点D,使CD=,∴,∵∠PCD=∠ACP,∴△PCD∽△ACP,∴,∴PD=AP,∴AP+BP=BP+PD,∴同(1)的方法得出AP+BP的最小值为BD==.故答案为:;(3)如图3,延长OA到点E,使CE=6,∴OE=OC+CE=12,连接PE、OP,∵OA=3,∴,∵∠AOP=∠AOP,∴△OAP∽△OPE,∴,∴EP=2PA,∴2PA+PB=EP+PB,∴当E、P、B三点共线时,取得最小值为:BE==13.。
九年级(下)期中数学试卷一、选择题(本题共14个小题,每小题3分,共42分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣2.如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°3.下列运算正确的是()A.a2•a3=a6 B.(a3)2=a9C.(﹣)﹣2=4 D.(sin30°﹣π)0=04.不等式组的解集在数轴上表示为()A.B.C.D.5.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最大值()A.6 B.7 C.8 D.96.如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D.7.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是()A.10% B.20% C.30% D.40%8.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小9.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用时间与乙搬运8000kg所用时间相等,求甲、乙两人每小时分别搬运多少kg货物,设甲每小时搬运xkg货物,则可列方程为()A.B.C.D.10.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2 B.C.π﹣4 D.11.任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A .△EGH 为等腰三角形B .△EGF 为等边三角形C .四边形EGFH 为菱形D .△EHF 为等腰三角形12.二次函数y=x 2﹣2x +4化为y=a (x ﹣h )2+k 的形式,下列正确的是( ) A .y=(x ﹣1)2+2 B .y=(x ﹣1)2+3 C .y=(x ﹣2)2+2 D .y=(x ﹣2)2+4 13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为 ( )A .y=xB .y=xC .y=xD .y=x14.反比例函数y=(a >0,a 为常数)和y=在第一象限内的图象如图所示,点M 在y=的图象上,MC ⊥x 轴于点C ,交y=的图象于点A ;MD ⊥y 轴于点D ,交y=的图象于点B ,当点M 在y=的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( )A .0B .1C .2D .3二、填空题(本大题共5小题,每小题3分,共15分)15.在实数范围内分解因式:x4﹣36=.16.计算:﹣(a+1)=.17.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是.19.已知以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y﹣b)2=r2.例如:以A(2,3)为圆心,半径为2的圆的标准方程为(x﹣2)2+(y﹣3)2=4,则以原点为圆心,过点P(1,0)的圆的标准方程为.二、填空题(本大题共7小题,共63分)20.计算:20170+|1﹣sin30°|﹣()﹣1+.21.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.22.禁渔期间,我渔政船在A处发现正北方向B处有一艘可以船只,测得A、B 两处距离为200海里,可疑船只正沿南偏东45°方向航行,我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).23.如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.(1)求证:AB是圆的切线;(2)若点E是BC上一点,已知BE=4,tan∠AEB=,AB:BC=2:3,求圆的直径.24.孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.25.【问题背景】如图1,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD 之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图2),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD【简单应用】(1)在图1中,若AC=,BC=2,则CD=.(2)如图3,AB是⊙O的直径,点C、D在⊙O上,=,若AB=13,BC=12,求CD的长.【拓展规律】(3)如图4,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)26.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线和直线BC的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本题共14个小题,每小题3分,共42分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣【考点】15:绝对值.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.2.如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°【考点】JA:平行线的性质.【分析】如图,由平行线的性质可求得∠1=∠C,再根据三角形外角的性质可求得∠A.【解答】解:如图,∵a∥b,∴∠1=∠C=50°,又∠1=∠A+∠B,∴∠A=∠1﹣∠B=50°﹣22°=28°,故选:B.3.下列运算正确的是()A.a2•a3=a6 B.(a3)2=a9C.(﹣)﹣2=4 D.(sin30°﹣π)0=0【考点】47:幂的乘方与积的乘方;46:同底数幂的乘法;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】结合选项分别进行幂的乘方和积的乘方、负整数指数幂、零指数幂等运算,然后选项正确选项.【解答】解:A、a2•a3=a5,原式计算错误,故本选项错误;B、(a3)2=a6,原式计算错误,故本选项错误;C、(﹣)﹣2=4,原式计算正确,故本选项正确;D、(sin30°﹣π)0=1,原式计算错误,故本选项错误.故选C.4.不等式组的解集在数轴上表示为()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可【解答】解:由x﹣1≥0,得x≥1,由4﹣2x>0,得x<2,不等式组的解集是1≤x<2,故选:D.5.如图是正方体的展开图,则原正方体相对两个面上的数字之和的最大值()A.6 B.7 C.8 D.9【考点】I8:专题:正方体相对两个面上的文字.【分析】根据相对的面相隔一个面得到相对的2个数,相加后比较即可.【解答】解:易得2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最大的是8.故选C.6.如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.B.C.D.【考点】X5:几何概率;MI:三角形的内切圆与内心.【分析】由AB=15,BC=12,AC=9,得到AB2=BC2+AC2,根据勾股定理的逆定理得到△ABC为直角三角形,于是得到△ABC的内切圆半径==3,求得直角三角形的面积和圆的面积,即可得到结论.【解答】解:∵AB=15,BC=12,AC=9,∴AB2=BC2+AC2,∴△ABC为直角三角形,∴△ABC的内切圆半径==3,=AC•BC=×12×9=54,∴S△ABCS圆=9π,∴小鸟落在花圃上的概率==,故选B.7.某种衬衣的价格经过连续两次降价后,由每件150元降至96元,平均每次降价的百分率是()A.10% B.20% C.30% D.40%【考点】AD:一元二次方程的应用.【分析】如果价格每次降价的百分率为x,降一次后就是降到价格的(1﹣x)倍,连降两次就是降到原来的(1﹣x)2倍.则两次降价后的价格是150×(1﹣x)2,即可列方程求解.【解答】解:设平均每次降价的百分率为x,由题意得150×(1﹣x)2=96,解得:x1=0.2,x2=1.8(不符合题意,舍去).答:平均每次降价的百分率是20%.故选:B.8.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.【解答】解:A、==8,==8,故此选项正确;B、甲得分次数最多是8分,即众数为8分,乙得分最多的是9分,即众数为9分,故此选项正确;C、∵甲得分从小到大排列为:7、8、8、8、9,∴甲的中位数是8分;∵乙得分从小到大排列为:6、7、9、9、9,∴乙的中位数是9分;故此选项错误;D、∵=×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=×2=0.4,=×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]=×8=1.6,∴<,故D正确;故选:C.9.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用时间与乙搬运8000kg所用时间相等,求甲、乙两人每小时分别搬运多少kg货物,设甲每小时搬运xkg货物,则可列方程为()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】设甲搬运工每小时搬运x千克,则乙搬运工每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【解答】解:设甲搬运工每小时搬运x千克,则乙搬运工每小时搬运(x+600)千克,由题意得,故选B10.如图,点A、B、C在⊙O上,若∠BAC=45°,OB=2,则图中阴影部分的面积为()A.π﹣2 B.C.π﹣4 D.【考点】M5:圆周角定理;MO:扇形面积的计算.【分析】先证得△OBC是等腰直角三角形,然后根据S阴影=S扇形OBC﹣S△OBC即可求得.【解答】解:∵∠BAC=45°,∴∠BOC=90°,∴△OBC是等腰直角三角形,∵OB=2,∴S阴影=S扇形OBC﹣S△OBC=π×22﹣×2×2=π﹣2.故选A.11.任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形 D.△EHF为等腰三角形【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据等腰三角形的定义、菱形的定义、等边三角形的定义一一判断即可.【解答】解:A、正确.∵EG=EH,∴△EGH是等腰三角形.B、错误.∵EG=GF,∴△EFG是等腰三角形,若△EFG是等边三角形,则EF=EG,显然不可能.C、正确.∵EG=EH=HF=FG,∴四边形EHFG是菱形.D、正确.∵EH=FH,∴△EFH是等腰三角形.故选B.12.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣1)2+3 C.y=(x﹣2)2+2 D.y=(x﹣2)2+4【考点】H9:二次函数的三种形式.【分析】根据配方法,可得顶点式函数解析式.【解答】解:y=x2﹣2x+4配方,得y=(x﹣1)2+3,故选:B.13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=x B.y=x C.y=x D.y=x【考点】FI:一次函数综合题.【分析】设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B过A 作AC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标即可得到该直线l的解析式.【解答】解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B 过A作AC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO 面积是5,∴OB•AB=5,∴AB=, ∴OC=,由此可知直线l 经过(,3), 设直线方程为y=kx ,则3=k ,k=, ∴直线l 解析式为y=x ,故选C .14.反比例函数y=(a >0,a 为常数)和y=在第一象限内的图象如图所示,点M 在y=的图象上,MC ⊥x 轴于点C ,交y=的图象于点A ;MD ⊥y 轴于点D ,交y=的图象于点B ,当点M 在y=的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点.其中正确结论的个数是( )A.0 B.1 C.2 D.3【考点】G2:反比例函数的图象;G4:反比例函数的性质.【分析】①由反比例系数的几何意义可得答案;②由四边形OAMB的面积=矩形OCMD面积﹣(三角形ODB面积+面积三角形OCA),解答可知;③连接OM,点A是MC的中点可得△OAM和△OAC的面积相等,根据△ODM 的面积=△OCM的面积、△ODB与△OCA的面积相等解答可得.【解答】解:①由于A、B在同一反比例函数y=图象上,则△ODB与△OCA的面积相等,都为×2=1,正确;②由于矩形OCMD、三角形ODB、三角形OCA为定值,则四边形MAOB的面积不会发生变化,正确;③连接OM,点A是MC的中点,则△OAM和△OAC的面积相等,∵△ODM的面积=△OCM的面积=,△ODB与△OCA的面积相等,∴△OBM与△OAM的面积相等,∴△OBD和△OBM面积相等,∴点B一定是MD的中点.正确;故选:D.二、填空题(本大题共5小题,每小题3分,共15分)15.在实数范围内分解因式:x4﹣36=(x2+6)(x+)(x﹣).【考点】58:实数范围内分解因式.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x2+6)(x2﹣6)=(x2+6)(x+)(x﹣),故答案为:(x2+6)(x+)(x﹣)16.计算:﹣(a+1)=.【考点】6B:分式的加减法.【分析】根据分式的运算即可求出答案.【解答】解:原式=﹣=故答案为:17.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.【考点】LE:正方形的性质;KW:等腰直角三角形;T7:解直角三角形.【分析】作EF⊥BC于F,如图,设DE=CE=a,根据等腰直角三角形的性质得CD= CE=a,∠DCE=45°,再利用正方形的性质得CB=CD=a,∠BCD=90°,接着判断△CEF为等腰直角三角形得到CF=EF=CE=a,然后在Rt△BEF中根据正切的定义求解.【解答】解:作EF⊥BC于F,如图,设DE=CE=a,∵△CDE为等腰直角三角形,∴CD=CE=a,∠DCE=45°,∵四边形ABCD为正方形,∴CB=CD=a,∠BCD=90°,∴∠ECF=45°,∴△CEF为等腰直角三角形,∴CF=EF=CE=a,在Rt△BEF中,tan∠EBF===,即tan∠EBC=.故答案为.18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 1.2.【考点】PB:翻折变换(折叠问题).【分析】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到=求出FM即可解决问题.【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.(点P在以F为圆心CF为半径的圆上,当FP⊥AB时,点P到AB的距离最小)∵∠A=∠A,∠AMF=∠C=90°,∴△AFM∽△ABC,∴=,∵CF=2,AC=6,BC=8,∴AF=4,AB==10,∴=,∴FM=3.2,∵PF=CF=2,∴PM=1.2∴点P到边AB距离的最小值是1.2.故答案为1.2.19.已知以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y﹣b)2=r2.例如:以A(2,3)为圆心,半径为2的圆的标准方程为(x﹣2)2+(y﹣3)2=4,则以原点为圆心,过点P(1,0)的圆的标准方程为x2+y2=1.【考点】D5:坐标与图形性质.【分析】根据以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y ﹣b)2=r2进行判断即可.【解答】解:∵以点C(a,b)为圆心,半径为r的圆的标准方程为(x﹣a)2+(y﹣b)2=r2,∴以原点为圆心,过点P(1,0)的圆的标准方程为(x﹣0)2+(y﹣0)2=12,即x2+y2=1,故答案为:x2+y2=1.二、填空题(本大题共7小题,共63分)20.计算:20170+|1﹣sin30°|﹣()﹣1+.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:20170+|1﹣sin30°|﹣()﹣1+=1+﹣3+4=221.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了50名学生,a=30%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为36度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由赞同的人数20,所占40%,即可求出样本容量,进而求出a的值;(2)由(1)可知抽查的人数,即可求出无所谓态度的人数,即可将条形统计图补充完整;(3)求出不赞成人数的百分数,即可求出圆心角的度数;(4)求出“赞同”和“非常赞同”两种态度的人数所占的百分数,用样本估计总体的思想计算即可.【解答】解:(1)20÷40%=50(人),无所谓态度的人数为50﹣10﹣20﹣5=15,则a=×100%=30%;(2)补全条形统计图如图所示:(3)不赞成人数占总人数的百分数为×100%=10%,持“不赞同”态度的学生人数的百分比所占扇形的圆心角为10%×360°=36°,(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800(人).故答案为(1)50;30;(3)36.22.禁渔期间,我渔政船在A处发现正北方向B处有一艘可以船只,测得A、B 两处距离为200海里,可疑船只正沿南偏东45°方向航行,我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).【考点】TB:解直角三角形的应用﹣方向角问题.【分析】先过点C作CD⊥AB,垂足为点D,设BD=x海里,得出AD=海里,在Rt△BCD中,根据tan45°=,求出CD,再根据BD=CD求出BD,在Rt△BCD中,根据cos45°=,求出BC,从而得出答案.【解答】解:过点C作CD⊥AB,垂足为点D,设BD=x海里,则AD=海里,∵∠ABC=45°,∴BD=CD=x,∵∠BAC=30°,∴tan30°=,在Rt△ACD中,则CD=AD•tan30°=,则x=,解得,x=100﹣100,即BD=100﹣100,在Rt△BCD中,cos45°=,解得:BC=100﹣100,则÷4=25(﹣)(海里/时),则该可疑船只的航行速度约为25(﹣)海里/时.23.如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.(1)求证:AB是圆的切线;(2)若点E是BC上一点,已知BE=4,tan∠AEB=,AB:BC=2:3,求圆的直径.【考点】MD:切线的判定.【分析】(1)欲证明AB是圆的切线,只要证明∠ABC=90°即可.(2)在RT△AEB中,根据tan∠AEB=,求出BC,在RT△ABC中,根据=求出AB即可.【解答】(1)证明:∵BC是直径,∴∠BDC=90°,∴∠ACB+∠DBC=90°,∵∠ABD=∠ACB,∴∠ABD+∠DBC=90°∴∠ABC=90°∴AB⊥BC,∴AB是圆的切线.(2)解:在RT△AEB中,tan∠AEB=,∴=,即AB=BE=,在RT△ABC中,=,∴BC=AB=10,∴圆的直径为10.24.孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A,B 两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.【考点】FH:一次函数的应用;9A:二元一次方程组的应用.【分析】(1)设A种树每棵x元,B种树每棵y元,根据“购买A种树木2棵,B 种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元”列出方程组并解答;(2)设购买A种树木为a棵,则购买B种树木为棵,根据“购买A种树木的数量不少于B种树木数量的3倍”列出不等式并求得a的取值范围,结合实际付款总金额=0.9(A种树的金额+B种树的金额)进行解答.【解答】解:(1)设A种树每棵x元,B种树每棵y元,依题意得:,解得.答:A种树每棵100元,B种树每棵80元;(2)设购买A种树木为a棵,则购买B种树木为棵,则a≥3,解得a≥75.设实际付款总金额是y元,则y=0.9[100a+80],即y=18a+7200.∵18>0,y随a的增大而增大,∴当a=75时,y最小.75+7200=8550(元).即当a=75时,y最小值=18×答:当购买A种树木75棵,B种树木25棵时,所需费用最少,最少为8550元.25.【问题背景】如图1,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD 之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图2),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD【简单应用】(1)在图1中,若AC=,BC=2,则CD=3.(2)如图3,AB是⊙O的直径,点C、D在⊙O上,=,若AB=13,BC=12,求CD的长.【拓展规律】(3)如图4,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)【考点】MR:圆的综合题.【分析】(1)代入结论:AC+BC=CD,直接计算即可;(2)如图3,作辅助线,根据直径所对的圆周角是直角得:∠ADB=∠ACB=90°,由弧相等可知所对的弦相等,得到满足图1的条件,所以AC+BC=CD,代入可得CD的长;(3)介绍两种解法:解法一:作辅助线,构建如图3所示的图形,由AC+BC=D1C,得D1C=,在直角△CDD1,利用勾股定理可得CD的长;解法二:如图5,根据小吴同学的思路作辅助线,构建全等三角形:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处,得△BCD≌△AED,证明△CDE是等腰直角三角形,所以CE=CD,从而得出结论.【解答】解:(1)由题意知:AC+BC=CD,∴+2=CD,∴CD=3;故答案为:3;(2)如图3,连接AC、BD、AD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵=,∴AD=BD,∵AB=13,BC=12,∴由勾股定理得:AC=5,由图1得:AC+BC=CD,5+12=CD,∴CD=;(3)解法一:以AB为直径作⊙O,连接DO并延长交⊙O于点D1,连接D1A、D1B、D1C、CD,如图4,由(2)得:AC+BC=D1C,∴D1C=,∵D1D是⊙O的直径,∴∠D1CD=90°,∵AC=m,BC=n,∴由勾股定理可求得:AB2=m2+n2,∴D1D2=AB2=m2+n2,∵D1C2+DC2=D1D2,∴CD2=m2+n2﹣=,∵m<n,∴CD=;解法二:如图5,∵∠ACB=∠DB=90°,∴A、B、C、D在以AB为直径的圆上,∴∠DAC=∠DBC,将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处,∴△BCD≌△AED,∴CD=ED,∠ADC=∠ADE,∴∠ADC﹣∠ADC=∠ADE﹣∠ADC,即∠ADB=∠CDE=90°,∴△CDE是等腰直角三角形,所以CE=CD,∵AC=m,BC=n=AE,∴CE=n﹣m,∴CD=.26.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线和直线BC的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)设交点式y=a(x+1)(x﹣4),然后把C点坐标代入求出a的值即可得到抛物线解析式;然后利用待定系数法求直线BC的解析式;(2)易得△ABE只能是以E点为直角顶点的三角形,利用勾股定理的逆定理可证明ACB=90°,再证明△ACB∽△COB,所以当点E在点C时满足条件;当E为点C在抛物线上的对称点时也满足条件,然后利用对称性写出E点坐标即可.【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣4),把C(0,2)代入得a•1•(﹣4)=2,解得a=﹣,∴抛物线解析式为y=﹣(x+1)(x﹣4),即y=﹣x2+x+2;设直线BC的解析式为y=mx+n,把C(0,2),B(4,0)代入得,解得,∴直线BC的解析式为y=﹣x+2;(2)存在.由图象可得以A或B点为直角顶点的△ABE不存在,∴△ABE只能是以E点为直角顶点的三角形,∵AC2=12+22=5,BC2=42+22=20,AB2=52=25,∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°,∵∠ABC=∠CBO,∴△ACB∽△COB∴当点E在点C时,以A、B、E为顶点的三角形与△COB相似;∵点C关于直线x=的对称点的坐标为(3,2),∴点E的坐标为(3,2)时,以A、B、E为顶点的三角形与△COB相似,综上所述,点E的坐标为(0,2)或(3,2).。
九年级(下)期中数学试卷一、选择题:1.使式子有意义的取值为()A.x>0 B.x≠1 C.x≠﹣1 D.x≠±12.下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1 C.m2﹣n D.m2﹣2m+13.一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10 B.10,12.5 C.11,12.5 D.11,104.下列各式,分解因式正确的是()A.a2+b2=(a+b)2 B.xy+xz+x=x(y+z)C.x2+x3=x3 D.a2﹣2ab+b2=(a﹣b)25.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()班级1班2班3班4班5班6班人数52 60 62 54 58 62A.平均数是58 B.中位数是58 C.极差是40 D.众数是606.若m+n=3,则2m2+4mn+2n2﹣6的值为()A.12 B.6 C. 3 D.07.为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x天,由题意列出的方程是()A.B.C.D.8.(﹣8)2014+(﹣8)2013能被下列数整除的是()A.3 B. 5 C.7 D.99.在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为S甲2=172,S乙2=256.下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的共有()分数50 60 70 80 90 100人数甲组2 5 10 13 14 6乙组4 4 16 2 12 12A.2种B.3种C.4种D.5种10.关于x的分式方程=1,下列说法正确的是()A.方程的解是x=m+5 B.m>﹣5时,方程的解是正数C.m<﹣5时,方程的解为负数D.无法确定二、填空题:11.若分式有意义,则实数x的取值范围是.12.若x2+4x+4=(x+2)(x+n),则n=.13.一段山路400m,一人上山每分钟走50m,下山时每分钟走80m,则他在这段时间内平均速度为每分钟走m.14.因式分解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1)=.15.化简+的结果为.16.小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示,则小明5次成绩的方差S12与小兵5次成绩的方差S22之间的大小关系为S12S22.(填“>”、“<”、“=”)17.若关于x的分式方程的解为正数,那么字母a的取值范围是.18.将边长分别为1、2、3、4…19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为.三、解答题:19.(2006•北京)已知2x﹣3=0,求代数式x(x2﹣x)+x2(5﹣x)﹣9的值.20.(2015春•莱城区校级期中)把下列各式分解因式:(1)2a2﹣2ab(2)2x2﹣18(3)﹣3ma3+6ma2﹣3ma.21.(2015春•莱城区校级期中)解方程:(1)﹣1=.(2)+=2.22.(2013•乌鲁木齐)先化简:(﹣x+1)÷,然后从﹣1≤x≤2中选一个合适的整数作为x的值代入求值.23.(2013•宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表班级平均数方差中位数极差一班168 168 6二班168 3.8(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.24.(2005•泰州)春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?25.(2013•贺州)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?参考答案与试题解析一、选择题:1.使式子有意义的取值为()A.x>0 B.x≠1 C.x≠﹣1 D.x≠±1考点:分式有意义的条件.分析:要使分式有意义,分式的分母不能为0.解答:解:∵|x|﹣1≠0,即|x|≠1,∴x≠±1.故选D.点评:解此类问题,只要令分式中分母不等于0,求得字母的值即可.2.下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1 C.m2﹣n D.m2﹣2m+1考点:因式分解的意义.分析:根据多项式特点和公式的结构特征,对各选项分析判断后利用排除法求解.解答:解:A、m2+n不能分解因式,故本选项错误;B、m2﹣m+1不能分解因式,故本选项错误;C、m2﹣n不能分解因式,故本选项错误;D、m2﹣2m+1是完全平方式,故本选项正确.故选D.点评:本题主要考查了因式分解的意义,熟练掌握公式的结构特点是解题的关键.3.一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A.10,10 B.10,12.5 C.11,12.5 D.11,10考点:中位数;加权平均数.分析:根据中位数和平均数的定义结合选项选出正确答案即可.解答:解:这组数据按从小到大的顺序排列为:5,5,10,15,20,故平均数为:=11,中位数为:10.故选D.点评:本题考查了中位数和平均数的知识,属于基础题,解题的关键是熟练掌握其概念.4.下列各式,分解因式正确的是()A.a2+b2=(a+b)2 B.xy+xz+x=x(y+z)C.x2+x3=x3 D.a2﹣2ab+b2=(a﹣b)2考点:因式分解-运用公式法;因式分解-提公因式法.分析:直接利用提取公因式法以及公式法分解因式得出即可.解答:解:A、a2+b2无法分解因式,故此选项错误;B、xy+xz+x=x(y+z+1),故此选项错误;C、x2+x3=x2(1+x),故此选项错误;D、a2﹣2ab+b2=(a﹣b)2,正确.故选:D.点评:此题主要考查了公式法分解因式,熟练应用完全平方公式是解题关键.5.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()班级1班2班3班4班5班6班人数52 60 62 54 58 62A.平均数是58 B.中位数是58 C.极差是40 D.众数是60考点:极差;算术平均数;中位数;众数.分析:分别计算该组数据的众数、平均数、中位数及极差后,选择正确的答案即可.解答:解:A.=(52+60+62+54+58+62)÷6=58;故此选项正确;B.∵6个数据按大小排列后为:52,54,58,60,62,62;∴中位数为:(60+58)÷2=59;故此选项错误;C.极差是62﹣52=10,故此选项错误;D.62出现了2次,最多,∴众数为62,故此选项错误;故选:A.点评:此题主要考查了平均数、众数、中位数及极差的知识,解题时分别计算出众数、中位数、平均数及极差后找到正确的选项即可.6.若m+n=3,则2m2+4mn+2n2﹣6的值为()A.12 B.6 C. 3 D.0考点:完全平方公式.分析:根据完全平方公式的逆用,先整理出完全平方公式的形式,再代入数据计算即可.解答:解:原式=2(m2+2mn+n2)﹣6,=2(m+n)2﹣6,=2×9﹣6,=12.故选A.点评:本题利用了完全平方公式求解:(a±b)2=a2±2ab+b2,要注意把m+n看成一个整体.7.为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x天,由题意列出的方程是()A.B.C.D.考点:由实际问题抽象出分式方程.专题:压轴题.分析:设规定的时间为x天.则甲队单独完成这项工程所需时间是(x+10)天,乙队单独完成这项工程所需时间是(x+40)天.根据甲、乙两队合作,可比规定时间提前14天完成任务,列方程为+=.解答:解:设规定时间为x天,则甲队单独一天完成这项工程的,乙队单独一天完成这项工程的,甲、乙两队合作一天完成这项工程的.则+=.故选B.点评:考查了由实际问题抽象出分式方程.在本题中,等量关系:甲单独做一天的工作量+乙单独做一天的工作量=甲、乙合做一天的工作量.8.(﹣8)2014+(﹣8)2013能被下列数整除的是()A.3 B. 5 C.7 D.9考点:因式分解-提公因式法.分析:直接提取公因式(﹣8)2013,进而得出答案.解答:解:(﹣8)2014+(﹣8)2013=(﹣8)2013×(﹣8+1)=﹣7×(﹣8)2013,则(﹣8)2014+(﹣8)2013能被7整除.故选:C.点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.在一次科技知识竞赛中,两组学生成绩统计如下表,通过计算可知两组的方差为S甲2=172,S乙2=256.下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的共有()分数50 60 70 80 90 100人数甲组2 5 10 13 14 6乙组4 4 16 2 12 12A.2种B.3种C.4种D.5种考点:中位数;算术平均数;众数;方差.专题:图表型.分析:根据中位数、众数、方差、平均数的概念来解答.解答:解:①平均数:甲组:(50×2+60×5+70×10+80×13+90×14+100×6)÷50=80,乙组:(50×4+60×4+70×16+80×2+90×12+100×12)÷50=80,②S甲2=172<S乙2=256,故甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数90>乙组成绩的众数70;④成绩≥80的人数甲组33人比乙组26人多;从中位数来看,甲组成绩80=乙组成绩80,故错误.⑤成绩高于或等于90分的人数乙组24人比甲组20人多,高分段乙组成绩比甲组好.故①②③⑤正确.故选:C.点评:本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数最多的数据叫做众数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.样本方差描述了一组数据围绕平均数波动的大小.10.关于x的分式方程=1,下列说法正确的是()A.方程的解是x=m+5 B.m>﹣5时,方程的解是正数C.m<﹣5时,方程的解为负数D.无法确定考点:分式方程的解.专题:计算题.分析:先按照一般步骤解方程,用含有m的代数式表示x,然后根据x的取值讨论m的范围,即可作出判断.解答:解:方程两边都乘以x﹣5,去分母得:m=x﹣5,解得:x=m+5,∴当x﹣5≠0,把x=m+5代入得:m+5﹣5≠0,即m≠0,方程有解,故选项A错误;当x>0且x≠5,即m+5>0,解得:m>﹣5,则当m>﹣5且m≠0时,方程的解为正数,故选项B错误;当x<0,即m+5<0,解得:m<﹣5,则m<﹣5时,方程的解为负数,故选项C正确;显然选项D错误.故选:C.点评:本题在判断方程的解是正数时,容易忽视m≠0的条件.二、填空题:11.若分式有意义,则实数x的取值范围是x≠.考点:分式有意义的条件.分析:根据分母为零,分式无意义;分母不为零,分式有意义.解答:解:由分式有意义,得5x﹣8≠0.解得x≠,故答案为:x≠.点评:本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义⇔分母为零;分式有意义⇔分母不为零;分式值为零⇔分子为零且分母不为零.12.若x2+4x+4=(x+2)(x+n),则n=2.考点:因式分解的意义.专题:计算题.分析:根据因式分解与整式的乘法是互逆运算,把等式右边展开后根据对应项系数相等列式求解即可.解答:解:∵(x+2)(x+n)=x2+(n+2)x+2n,∴n+2=4,2n=4,解得n=2.点评:本题主要利用因式分解与整式的乘法是互逆运算.13.一段山路400m,一人上山每分钟走50m,下山时每分钟走80m,则他在这段时间内平均速度为每分钟走m.考点:有理数的混合运算.专题:应用题.分析:根据平均速度等于总路程除以总时间,求出即可.解答:解:根据题意得:=(m).则他在这段时间内平均速度为每分钟走m.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.因式分解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1)=(y+1)(y﹣1)(x+1)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取公因式,再利用平方差公式及完全平方公式分解即可.解答:解:原式=(y2﹣1)(x2+2x+1)=(y+1)(y﹣1)(x+1)2.故答案为:(y+1)(y﹣1)(x+1)2点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.化简+的结果为x.考点:分式的加减法.分析:先把两分式化为同分母的分式,再把分母不变,分子相加减即可.解答:解:原式=﹣==x.故答案为:x.点评:本题考查的是分式的加减法,即把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.16.小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图所示,则小明5次成绩的方差S12与小兵5次成绩的方差S22之间的大小关系为S12<S22.(填“>”、“<”、“=”)考点:方差.分析:先从图片中读出小明和小兵的测试数据,分别求出方差后比较大小.也可从图看出来小明的都在8到10之间相对小兵的波动更小.解答:解:小明数据的平均数1=(9+8+10+9+9)=9,方差s12=[(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2+(9﹣9)2]=0.4,小兵数据的平均数2=(7+10+10+8+10)=9,方差s22=[(7﹣9)2+(10﹣9)2+(10﹣9)2+(8﹣9)2+(10﹣9)2]=1.6,∴S12<S22.故答案为:<.点评:本题考查了方差的意义.方差它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.若关于x的分式方程的解为正数,那么字母a的取值范围是a>1且a≠2.考点:分式方程的解.专题:计算题.分析:将a看做已知数求出分式方程的解得到x的值,根据解为正数列出不等式,求出不等式的解集即可得到a的范围.解答:解:分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0且a﹣1﹣1≠0,解得:a>1且a≠2.故答案为:a>1且a≠2.点评:此题考查了分式方程的解,弄清题意是解本题的关键.注意分式方程分母不等于0.18.将边长分别为1、2、3、4…19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为210.考点:规律型:图形的变化类.专题:压轴题.分析:第一个阴影部分的面积等于第二个图形的面积减去第一个图形的面积,第二个阴影部分的面积等于第四个图形的面积减去第三个图形的面积,由此类推,最后一个阴影部分的面积等于最后一个图形的面积减去倒数第二个图形的面积.解答:解:图中阴影部分的面积为:(22﹣1)+(42﹣32)+…+(202﹣192)=(2+1)(2﹣1)+(4+3)(4﹣3)+…+(20+19)(20﹣19)=1+2+3+4+…+19+20=210;故答案为:210.点评:此题考查了图形的变化类,关键是找出每一个阴影部分的面积等于两个正方形面积的差,这样可以将阴影部分的面积看做边长为偶数的正方形的面积减去边长为奇数的正方形的面积.三、解答题:19.(2006•北京)已知2x﹣3=0,求代数式x(x2﹣x)+x2(5﹣x)﹣9的值.考点:因式分解的应用.专题:整体思想.分析:对所求的代数式先进行整理,再利用整体代入法代入求解.解答:解:x(x2﹣x)+x2(5﹣x)﹣9,=x(x2﹣x)+x2(5﹣x)﹣9,=x3﹣x2+5x2﹣x3﹣9,=4x2﹣9,=(2x+3)(2x﹣3).当2x﹣3=0时,原式=(2x+3)(2x﹣3)=0.点评:本题考查了提公因式法分解因式,观察题目,先进行整理再利用整体代入法求解,不要盲目的求出求知数的值再利用代入法求解.20.(2015春•莱城区校级期中)把下列各式分解因式:(1)2a2﹣2ab(2)2x2﹣18(3)﹣3ma3+6ma2﹣3ma.考点:提公因式法与公式法的综合运用.专题:计算题.分析:(1)原式提取2a,即可得到结果;(2)原式提取2,再利用平方差公式分解即可;(3)原式提取﹣3ma,再利用完全平方公式分解即可.解答:解:(1)原式=2a(a﹣b);(2)原式=2(x2﹣9)=2(x+3)(x﹣3);(3)原式=﹣3ma(a2﹣2a+1)=﹣3ma(a﹣1)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21.(2015春•莱城区校级期中)解方程:(1)﹣1=.(2)+=2.考点:解分式方程.专题:计算题.分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)去分母得:x2+2x﹣x2+4=8,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:x﹣5=4x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.22.(2013•乌鲁木齐)先化简:(﹣x+1)÷,然后从﹣1≤x≤2中选一个合适的整数作为x的值代入求值.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.解答:解:原式=(﹣)÷=×=,当x=1时,原式==3.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.(2013•宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表班级平均数方差中位数极差一班168 168 6二班168 3.8(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.考点:方差;加权平均数;中位数;极差;统计量的选择.专题:压轴题.分析:(1)根据方差、中位数及极差的定义进行计算,得出结果后补全表格即可;(2)应选择方差为标准,哪班方差小,选择哪班.解答:解:(1)一班的方差=×[(168﹣168)2+(167﹣168)2+(170﹣168)2+…+(170﹣168)2]=3.2;二班的极差为171﹣165=6;二班的中位数为168;补全表格如下:班级平均数方差中位数极差一班168 3.2 168 6二班168 3.8 168 6(2)选择方差做标准,∵一班方差<二班方差,∴一班可能被选取.点评:本题考查了方差、极差及中位数的知识,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.24.(2005•泰州)春兰集团对应聘者甲、乙、丙进行面试,并从专业知识、工作经验、仪表形象三方面给应聘者打分,每一方面满分20分,最后的打分制成条形统计图(如图).(1)利用图中提供的信息,在专业知识方面3人得分的极差是多少?在工作经验方面3人得分的众数是多少?在仪表形象方面谁最有优势?(2)如果专业知识、工作经验、仪表形象三个方面的重要性之比为10:7:3,那么作为人事主管,你应该录用哪一位应聘者为什么?(3)在(2)的条件下,你对落聘者有何建议?考点:加权平均数;条形统计图;众数;极差.专题:图表型.分析:运用极差、众数、平均数的定义并结合条形统计图来分析和解决题目.解答:解:(1)专业知识方面3人得分极差是18﹣14=4分,工作经验方面3人得分的众数是15,在仪表形象方面丙最有优势;(2)甲得分:14×0.5+17×0.35+12×0.15=14.75分;乙得分:18×0.5+15×0.35+11×0.15=15.9分;丙得分:16×0.5+15×0.35+14×0.15=15.35分,∴应录用乙;(3)对甲而言,应加强专业知识的学习,同时要注意自己的仪表形象.对丙而言,三方面都要努力.重点在工作经验和仪表形象.点评:本题考查了从统计图中获取信息的能力和计算加权平均数的能力.25.(2013•贺州)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?考点:分式方程的应用;二元一次方程的应用.分析:(1)首先设足球单价为x元,则篮球单价为(x+40)元,根据题意可得等量关系:1500元购进的篮球个数=900元购进的足球个数,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,根据题意可得篮球的单价×篮球的个数m+足球的单价×足球的个数n=1000,再求出整数解即可.解答:解:(1)设足球单价为x元,则篮球单价为(x+40)元,由题意得:=,解得:x=60,经检验:x=60是原分式方程的解,则x+40=100,答:篮球和足球的单价各是100元,60元;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,由题意得:100m+60n=1000,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买篮球7个,购买足球5个;②购买篮球4个,购买足球10个;③购买篮球1个,购买足球15个.点评:此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.。
师大附校 2023-2024 学年第二学期初二年级期中试卷数 学注意事项:1.答卷前,考生务必将自己的姓名、考生号、座位号涂写在答题卡上.本试卷满分100分,考试时间90分钟.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,考生只需将答题卡交回,试题请自行保留.一、选择题(本题共8小题,1-6题,每题2分;7-8题,每题3分,共18分)1.下列二次根式中,最简二次根式是( )ABCD2.满足下列条件的三角形中,不能判断三角形为直角三角形的是( )A .三角形三边长为7,24,25B .三角形的三内角度数之比为C .在中,D .三角形的三边之比为3.下列不能表示是的函数的是( )A. B .C .D .4可以表示为( )AB .C .D .ab 5.已知一次函数,则下列说法正确的是( )A .y 随x 的增大而增大B .图象经过第一、二、四象限C .该函数图象一定过点,3:4:5ABC A B C=+∠∠∠y x 21y x =+a b ==2a b 112y x =--()1,0-()0,2-D .当时,6.甲、乙二人约好同时出发,沿同一路线去自贡恐龙博物馆参加科普活动.下图是甲、乙二人走的图象,表示的是行走时间(单位:分),表示的是与学校的距离(单位:米),最后两人都到达了目的地;根据图中提供的信息,下面有四个推断:①甲、乙二人第一次相遇后,停留了10分钟;②甲先到达目的地;③甲停留10分钟之后提高了行走速度;④甲行走的平均速度要比乙行走的平均速度快.所有正确的推断的序号是( )A .①②B .①②③C .①③④D .①②④7.下列说法:四边相等的四边形一定是菱形顺次连接矩形各边中点形成的四边形一定是正方形对角线相等的四边形一定是矩形经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有 个.A .4B .3C .2D .18.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且,EF ⊥AB ,垂足为F ,则EF的长为2x >-0y <x y ①②③④()BAE 22.5°∠=A .1BC .D .二、填空题(本大题共8小题,每题3分,共24分)9.函数的取值范围是 .10.已知直线与直线平行,且过点(8,2),则一次函数的表达式是 .11.如图,在中,点D ,点E 分别是,的中点,点F 是上一点,且,若,,则的长为 .12.平面直角坐标系中,点A ,B ,C ,D 的位置如图所示,当且时,A ,B ,C ,D 四点中,一定不在一次函数图象上的点为 .13.如图,将长,宽的矩形纸片折叠,使点A 与C 重合,则的长等 .14.在平面直角坐标系xOy 中,一次函数与的图象如图所示,若它们的交点的横坐标为2,则下列结论中所有正确的序号有 .①直线与轴所夹锐角等于;②;③关于的不等式的解集是;④.4-4y =x y kx b =+1y x =-+ABC AB AC DE =90AFC ∠︒12BC =8AC =DF xOy 0k >0b <y kx b =+16cm 8cm ABCD EC cm 1y kx b =+2y x m =+2y x m =+x 45︒0k b +>x kx b x m +<+2x <0mk >15.一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y (升)与时间x (分钟)之间的函数关系如图所示,则图中a 的值为 .16.如图,正方形的边长为,为上的一点,,为上的一点,,为上一个动点,则的最小值为 .三、解答题(本大题共6小题,共58分)17.计算:(1).(2).(3)先化简,再求值:,其中.18.若实数x ,y,则以x ,y 的值为两边长的等腰三角形的周长ABCD 4E BC 1BE =F AB 2AF =P AC PF PE ++(2771)+--22282242a a a a a a a +-⎛⎫-÷ ⎪--+⎝⎭2a =0=是 .19.如图,的对角线AC ,BD 相交于点O ,过点O 作,分别交AB ,DC 于点E 、F ,连接AF 、CE .(1)若,求EF 的长;(2)判断四边形AECF 的形状,并说明理由.20.如图,在一条东西走向河的一侧有一村庄C ,河边原有两个取水点A ,B ,其中,由于某种原因,由C 到A 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点 H ,(A ,H ,B 在一条直线上),并修一条路.测得千米, 千米, 千米.(1)问是否为从村庄C 到河边的最近路?请通过计算加以说明.(2)求原来的路线的长.21.郑州外国语中学为迎接40周年校庆,决定委托设计公司制作、两种纪念章,已知制作3个种纪念章比制作2个种纪念章多花140元,制作4个种纪念章与制作5个种纪念章所需钱数相同.(1)求,两种纪念章每个的价格;(2)设计公司也给出了优惠方案,种纪念章打九折.若学校打算制作,两种纪念章共300个,且种纪念章的个数不多于种纪念章个数的一半,则学校最少要花费多少钱?22.如图,四边形为矩形,,分别与,交于点,,为的中点.ABCD Y EF AC ⊥32OE =AB AC =CH 5CB =4CH =3HB =CH AC A B A B A B A B A A B B A ABCD CN AC ⊥AN BD CD E F E AN(1)求证:四边形为正方形;(2)若,求的值.23.直线与轴交于,与轴交于,直线与轴交于与直线交于,过作轴于.(1)点坐标为 ;点坐标为 .(2)求直线的函数解析式.(3)是线段上一动点,点从原点开始,每秒一个单位长度的速度向运动(与、不重合),过作轴的垂线,分别与直线、交于、,设的长为,点运动的时间为,求出与之间的函数关系式(写出自变量的取值范围)(4)在()的条件下,当为何值时,以、、、为顶点的四边形是平行四边形(直接写出结果)参考答案与解析1.A ABCD 3AF NF =AN DN6y x =-+x A y B CD y ()02C ,AB D D DE x ⊥()30E ,A D CD P OA P O A P O A P x AB CD M N MN S P t S t .3t M N E D .【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、被开方数不含分母;被开方数不含能开得尽方的因数或因式是最简二次根式,故A 符合题意;B,被开方数含能开得尽方的因数或因式,不是最简二次根式,故B 不符合题意;CC 不符合题意;D不是最简二次根式,故D 不符合题意;故选A .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.B【分析】本题考查了勾股定理逆定理、三角形内角和定理,根据勾股定理逆定理、三角形内角和定理逐项判断即可得出答案,熟练掌握勾股定理逆定理、三角形内角和定理是解此题的关键.【详解】解:,该三角形为直角三角形,故A 不符合题意;三角形的三内角度数之比为,这个三角形三个角的度数为:,,,该三角形不是直角三角形,故B 符合题意;,,,该三角形为直角三角形,故C 不符合题意;三角形的三边之比为,设三角形的三边长为,,2227244957662525+=+== ∴ 3:4:5∴318045345⨯︒=︒++418060345⨯︒=︒++518075345⨯︒=︒++∴ A B C =+∠∠∠180A B C ∠+∠+∠=︒90A ∴∠=︒∴ ∴a ))22222223a a a a +=+==该三角形为直角三角形,故D 不符合题意;故选:B .3.C【分析】根据函数的定义(给定一个值都有唯一确定的值与它对应),对选项逐个判断即可.【详解】解:根据函数的定义(给定一个值都有唯一确定的值与它对应),对选项逐个判断,A :观察列表数据发现,符合函数的定义,不符合题意;B :观察x 与y 的等式发现,符合函数的定义,不符合题意;C :观察函数图像发现,不符合函数的定义,符合题意;D :观察函数图像发现,符合函数的定义,不符合题意;故选:C .【点睛】此题主要考查了函数的定义,涉及到了函数的表示方法(解析法,图像法和列表法),熟练掌握函数的基础知识是解题的关键.4.C【详解】,.故选C.5.D【分析】本题考查一次函数的性质,根据一次函数的性质逐项分析判断即可.【详解】解:A、∵,∴y随x 的增大而减小,故此选项错误,不符合题意;B 、一次函数的图象经过第二、三、四象限,故此选项错误,不符合题意;C 、当时,,当时,,即该函数图象不过点,,故此选项错误,不符合题意;D 、当时,,又y 随x 的增大而减小,∴当时,,故此选项正确,符合题意,故选:D .6.D∴x y x y a b ==22a b ==102k =-<112y x =--=1x -12y =-0x =1y =-()1,0-()0,2-2x =-0y =2x >-0y <【分析】根据一次函数和图象的性质对各选项进行判断即可.【详解】解:①甲、乙二人第一次相遇后,停留了20﹣10=10分钟,说法正确;②甲在35分时到达,乙在40分时到达,所以甲先到达的目的地,说法正确;③甲在前10分钟,走了750米,前10分钟的速度为米/分钟,甲在停留10分钟之后走了分钟,走了米,所以20~35分钟的速度为米/分钟,所以甲在停留10分钟之后减慢了速度,故说法错误;④甲行走的平均速度要比乙行走的平均速度快,说法正确;故选:D .【点睛】本题考查了从函数图像获取信息,掌握数形结合的思想是解题的关键.7.C 【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选:C .8.C【详解】解:在正方形ABCD 中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°-∠BAE=90°-22.5°=67.5°.在△ADE 中,∠AED=180°-45°-67.5°=67.5°,∴∠DAE=∠ADE .∴AD=DE=4.∵正方形的边长为4,∴BD=∴BE=BD -DE=.∵EF ⊥AB ,∠ABD=45°,∴△BEF 是等腰直角三角形.∴=故选:C .9.【分析】根据被开方式是非负数列式求解即可.【详解】解:依题意,得,解得:,7507520=(3520)15-=1500750750-=7505015=44)-4-2x ≥20x -≥2x ≥故答案为.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.10.【分析】根据两条直线平行,则k 值相等可求得k ,再由直线过已知点,把此点坐标代入即可求得b ,从而可得所求函数解析式.【详解】∵直线与直线平行∴∴∵直线过点(8,2)∴∴∴所求的函数解析式为故答案为:【点睛】本题考查了待定系数法求一次函数解析式,关键是掌握两直线平行k 值相等的性质.11.2【分析】根据三角形中线定理求出,再根据直角三角形的性质求出,再进行计算即可.【详解】解:∵点D 、E 分别是、的中点,是的中线,,,,在中,,点E 是的中点,,,,2x ≥10y x =-+y kx b =+1y x =-+1k =-y x b=-+y x b =-+82b -+=10b =10y x =-+10y x =-+DE EF AB AC DE ∴ABC 1=2DE BC ∴12BC = =6DE ∴Rt AFC =90AFC ∠︒AC 8AC =1==42EF AC ∴==64=2DF DE EF ∴--故答案为:2.【点睛】本题考查了三角形中线定理和直角三角形的性质,熟练掌握三角形的中线平行于第三边,且等于第三边的一半是解题的关键.12.D【分析】根据一次函数的图象和性质即可进行判断【详解】解:∵且,∴一次函数的图象过一、三、四象限,∴点D 一定不在一次函数的图象上故答案为:D【点睛】本题考查了一次函数的图象和性质,熟练掌握相关知识是解题的关键.13.【分析】本题考查勾股定理、折叠的性质等知识点.熟练掌握折叠的性质,由勾股定理求出的长是解题的关键.由折叠性质可知:,,设,用含x 的式子表示,在中,由勾股定理得出方程,即可求出.【详解】解∶由折叠性质可知:,,设,则,∵在中,,∴,解得∶,∴.故答案为:.14.①②④【分析】结合一次函数的性质、一次函数与不等式的关系,根据图象观察,得出结论.本题考查了一次函数与不等式(组的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.【详解】解:由知:直线与坐标轴的截距相等,所以,直线与轴所夹锐角等于,故①的结论正确;0k >0b <y kx b =+y kx b =+10CE DE D E '=90D D '∠=∠=︒CE x =D E 'Rt CED ' CE DE D E '=90D D '∠=∠=︒CE x =()16cm DE D E x ==-'Rt CED ' 222D E CD CE ''+=()222168x x -+=10x =10cm CE =10)2y x m =+2y x m =+x 45︒由图知:当时,函数图象对应的点在轴的上方,因此故②的结论正确;由图知:当时,函数图象对应的点都在的图象下方,因此关于的不等式的解集是,故③的结论不正确;由图知:,,因此,故④的结论正确;答案为:①②④.15.【分析】根据函数图像,结合题意分析分别求得进水速度和出水速度,即可求解.【详解】解:依题意,3分钟进水30升,则进水速度为升/分钟,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完直至容器中的水全部排完,则排水速度为升/分钟,,解得.故答案为:.【点睛】本题考查了函数图象问题,从函数图象获取信息是解题的关键.16【分析】本题考查正方形性质,轴对称性质,矩形的判定和性质,两点之间线段最短,掌握正方形性质,轴对称性质,两点之间线段最短是解题关键.作点F 关于对称点,根据正方形是轴对称图形,是一条对称轴,可得点F 关于的对称点在线段上,连接,P 为上的一个动点,,则,的最小值为的长即可.【详解】解:作点F 关于对称点,∵正方形是轴对称图形,是一条对称轴,∴点F 关于的对称点在线段上,连接,∵P 为上的一个动点,∴,则,1x =1y x 0k b +>2x >1y 2y x kx b x m +<+2x >0k <0m <0mk >29330103= 810201283⨯-=-∴20812a -=293a =293AC F 'ABCD AC AC AD EF 'AC PF PF '=PF PE PF PE EF ''+=+≥PF PE +EF 'AC F 'ABCD AC AC AD EF 'AC PF PF '=PF PE PF PE EF ''+=+≥的最小值为的长,∵,,∴,过点E 作于点G ,则,∵四边形为正方形,∴,∴,∴四边形为矩形,∴,,∴,∴.17.(1)(2)(3)【分析】本题考查了二次根式的化简,分式的化简求值,熟知相关计算法则是解题的关键.(1)利用二次根式的化简,计算每一项,再加减,即可解答;(2)先利用完全平方公式和平方差公式进行计算,再加减,即可解答;(3)先利用分式的化简法则化简,再代入求值,即可解答.【详解】(1)解:原式PFPE +EF '4AB =2AF =2AF AF '==EG AD ⊥90AGE ∠=︒ABCD 90BAG ABE ∠=∠=︒90BAG ABE AGE ∠=∠=∠=︒ABEG 4EG AB ==1AG BE ==211GF AF AG ''=-=-=EF =='245-1a =(2)解:原式;(3)解:,当.18.15【分析】根据绝对值与二次根式的非负性即可求出x 与y 的值.由于没有说明x 与y 是腰长还是底边长,故需要分类讨论.【详解】因为实数x ,y,所以,解得∶,,因为x ,y 的值是等腰三角形的两边长,所以等腰三角形的三边可能是:3,3,6或3,6,6,又因为3+3=6, 所以等腰三角形三边是:3,6,6,所以等腰三角形的周长是15,故答案为:15.2=2=()4948451=---+146=-+45=-22282242a a a a a a a +-⎛⎫-÷ ⎪--+⎝⎭()()()()()22(2)822222a a a a a a a a a ⎡⎤-+=-÷⎢⎥-++-+⎢⎥⎣⎦()()()24482222a a a a a a a a ++-+=⋅+--()()()2442222a a a a a a a -++=⋅+--()()()2(2)2222a a a a a a -+=⋅+--1a=2a ====0=30,60x y -=-=3x =6y =【点睛】本题主要考查绝对值和二次根式的非负性和三角形三边关系,等腰三角形的性质.19.(1)3;(2)菱形,理由见解析【分析】(1)只要证明即可得到结果;(2)先判断四边形AECF 是平行四边形,再根据对角线互相垂直且平分证明是菱形,即可得到结论;【详解】(1)∵四边形ABCD 是平行四边形,AC 、BD 是对角线,∴,OA=OC ,又∵,∴,在△AOE 和△COF 中,,∴.∴FO=EO ,又∵,∴.故EF 的长为3.(2)由(1)可得,,四边形ABCD 是平行四边形,∴,FC ∥AE ,∴四边形AECF 是平行四边形,又,OE=OF ,OA=OC ,∴平行四边形AECF 是菱形.【点睛】本题主要考查了特殊平行四边形的性质应用,准确运用全等三角形的性质及菱形的判定是解题的关键.20.(1)是,见解析(2)千米【分析】(1)先根据勾股定理逆定理证得是直角三角形,然后根据点到直线的距离中,AOE COF ≅ EAO FCO ∠=∠EF AC ⊥AOE COF ∠=∠E A O FC O OA O C A O E C O F ⎧∠=∠⎪=⎨⎪∠=∠⎩()△△A OE C OF A S A ≅32OE =32232E F OE ==⨯=AOE COF ≅ FC A E =EF AC ⊥256CHB垂线段最短即可解答;(2)设,则AH =x -3,在中,利用勾股定理求解即可.【详解】(1)∵,∴∴∴是从村庄C 到河边的最近路(2),则在中∴解得: ∴原来的路线的长为千米【点睛】本题主要考查了勾股定理的应用,点到直线的最短距离,灵活应用勾股定理的逆定理和定理是解题的关键.21.(1)每个种纪念章的价格为100元,每个种纪念章的价格为80元(2)最少花费26000元【分析】本题考查二元一次方程组、一元一次不等式和一次函数的实际应用:(1)设每个A 种奖品的价格为x 元,每个B 种奖品价格为y 元,根据题意可列出关于x ,y 的二元一次方程组,解出x ,y 的值即可;(2)设购买A 种奖品a 个,则购买B 种奖品个,根据B 种奖品的个数不多于A 种奖品个数的一半,即可列出关于a 的一元一次不等式,从而可求出a 的取值范围.设购买奖品的总花费为w 元,根据题意可求出w 与a 的关系式,最后由一次函数的性质即得出答案.【详解】(1)解:设每个种纪念章的价格为元,每个种纪念章价格为元,根据题意,得:,AC x =Rt ACH 22224325CH HB +=+=22525CB ==222CH HB CB +=90CHB ∠=︒CH AB AC x ==3AH x =-Rt ACH 222CH AH AC +=22234x x -+=()256x =AC 256x =A B ()300a -A x B y 3214045x y x y-=⎧⎨=⎩解得:,答:每个种纪念章的价格为100元,每个种纪念章的价格为80元;(2)解:设购买种奖品个,则购买种奖品个,根据题意,得:,解得:.设购买奖品的总花费为元,根据题意,得:,,随着的增大而增大.当时,取得最小值,.答:该公司最少花费26000元.22.(1)见解析(2)【分析】本题考查了正方形的判定,平行四边形的判定和性质,全等三角形的判定和性质,正确作出辅助线,熟练运用相关性质是解题的关键.(1)证明是三角形的中位线,即可得到,即可解答;(2)连接,证明,得到,再证明四边形为平行四边形,最后利用直角三角形斜边上的高等于斜边的一半,即可解答.【详解】(1)解:设与交于点.由矩形,得.为的中点,,,,四边形为正方形;(2)解:连接,,10080x y =⎧⎨=⎩A B A a B ()300a -13002a a -≤200a ≥w ()1000.9803001024000w a a a =⨯+-=+100> w ∴a ∴200a =w min 10202400026000W =⨯+=2AN DN=OE ACN 90AOE ∠=︒CE ()AAS DEF CNF ≌DE CN =DECN AC BD O ABCD AO OC =E AN OE CN ∴∥CN AC ⊥ OE AC ∴⊥∴ABCD CE CN BD ∥,.,,,,.,四边形为平行四边形,.,为的中点,,,.23.(1) ,;(2);(3);(4)的值为或.【分析】()分别把代入,代入即可求解;()利用待定系散法可求得直线的函数解析式;()用可分别表示出的坐标,则可表示出与之间的关系式;()由条件可知,利用平行四边形的性质可知,由()的关系式可得到关于的方程,解方程即可求得的值;本题考查了待定系数法求一次函数解析式,坐标与图形,平行四边形的性质,掌握一次函数EDF FCN ∴∠=∠DEF CNF ∠=∠AE EN = 3AF NF =EF NF ∴=()AAS DEF CNF ∴ ≌DE CN ∴=DB CN ∥ ∴DECN DN CE ∴=AC CN ⊥ E AN 2AN EC ∴=2AN DN ∴=2AN DN∴=()6,0()3,3123=+y x 44(03)344(36)3t t S t t ⎧-+<≤⎪⎪=⎨⎪-<<⎪⎩t 3421410y =6y x =-+3x =6y x =-+2CD 3t M N 、S t 4MN DE ∥MN DE =3t t的图象和性质是解题的关键.【详解】(1)解:当时,,解得,点,过作轴于,把代入中可得,,故答案为:,;(2)解:∵直线与轴相交于,可设直线解析式为,把点坐标代入中可得,,解得,直线的函数解析式为;(3)解:由题意可知,把代入中可得,,把代入,可得,,∴,点在线段上,且,,当时,,此时,当时,,此时,0y =06x =-+6x =∴()6,0A D DE x ⊥()3,0E 3x =6y x =-+3y =()3,3D ∴()6,0()3,3CD y ()0,2∴CD ()20y kx k =+≠D 2y kx =+332k =+13k =∴CD 123=+y x OP t =x t =6y x =-+(),6M t t ∴-+x t =123=+y x 123y t =+1,23N t t ⎛⎫∴+ ⎪⎝⎭1462433MN t t t ⎛⎫=-+-+=-+ ⎪⎝⎭P OA ()6,0A 06t ∴<<03t <≤4403t -+≥443S t =-+36t <<4403t -+<443S t =-综上可得,;(4)解:由题意可知,,以,,,为顶点的四边形是平行四边形,,,解得或,即当的值为或时,以,,,为顶点的四边形是平行四边形.44(03)344(36)3t t S t t ⎧-+<≤⎪⎪=⎨⎪-<<⎪⎩MN DE ∥ M N E D 3MN DE ∴==4433t ∴-+=3t 4=214t =t 34214M N E D。
重庆一中初2024届23-24学年度下期阶段性消化作业九数学试题2024.4(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卷上,不得在试卷上直接作答;2.作答前认真阅读答题卷上的注意事项;3.作图(包括作辅助线)请一律用2B铅笔完成;4.考试结束,由监考人员将试题和答题卷一并收回.参考公式:抛物线的顶点坐标为,对称轴为.一、选择题(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 在8,,0,这四个数中,绝对值最大的数是()A. 8B.C. 0D.【答案】D【解析】【分析】本题主要考查了绝对值,熟知正数和0的绝对值是它的本身,负数的绝对值是它的相反数是解题的关键.分别求出四个数的绝对值即可得到答案.【详解】解:,,,,∴四个数中,绝对值最大的数是,故选:D.2. 如图所示的几何体,其主视图是()A. B.C. D.【答案】D()20y ax bx c a=++≠24,24b ac ba a⎛⎫-- ⎪⎝⎭2bxa=-5-32-5-32-88=55-=00=3232-=32-【解析】【分析】本题考查判断几何体的三视图.掌握主视图是从正面看得到的图形,左视图是从左面看得到的图形,俯视图是从上面看得到的图形是解题关键.根据主视图是从正面看得到的图形解答即可.【详解】解:该几何体的主视图如图所示,故选:D .3. 如图,已知,下列结论正确的是( )A. B. C. D. 【答案】B【解析】【分析】根据两直线平行,内错角相等得出答案.【详解】解:(两直线平行,内错角相等.)故选B .【点睛】本题考查平行线的性质,其中准确找到平行线形成的内错角是解题的关键.4. 如图,与位似,点为位似中心,已知,的面积为3,则的面积为( )A. 12B. 9C. 8D. 6【答案】A【解析】【分析】本题考查了位似图形的性质,熟练掌握位似三角形的面积之比等于位似比的平方是解题的关键.根AB CD 14∠=∠12∠=∠23∠∠=34∠∠=∥ AB CD12∴∠=∠ABC DEF O :1:2OA OD =ABC DEF据位似比等于三角形的相似比,结合相似三角形的性质:面积之比等于相似比的平方计算即可.【详解】解:∵与位似,点为位似中心,已知,∴,又的面积为3,∴的面积为,故选:A .5. 反比例函数的图象一定经过的点是( )A. B. C. D. 【答案】B【解析】【分析】本题考查的是反比例函数图象上点的坐标特点,根据对各选项进行逐一判断即可.【详解】解:反比例函数中,A 、,此点不在函数图象上,故本选项不符合题意;B 、,此点在函数图象上,故本选项符合题意;C 、,此点不在函数图象上,故本选项不符合题意;D 、,此点不在函数图象上,故本选项不符合题意;故选:B .6. 估计)A. 2和3之间B. 3和4之间 C. 5和6之间 D. 6和7之间【答案】C【解析】【分析】本题主要考查了二次根式乘法计算,无理数的估算, 先求出,再估算出的范围即可得到答案.【详解】解:,的ABCDEF O :1:2OA OD=21124ABC DEF S S ⎛⎫==⎪⎝⎭ ABC DEF 3412⨯=8y x =-()1,8()1,8-()2,4()4,2--=k xy 8y x=-8k =-1888⨯=≠- ∴()188-⨯=- ∴2488⨯=≠- ∴()()4288-⨯-=≠- ∴(5-(52-=-2-(52=-∵,∴,∴,故选:C .7. 如图,下列图形均是由完全相同的小圆点按照一定规律所组成的,第①个图形中一共有5个小圆点,第②个图形中一共有8个小圆点,第③个图形中一共有11个小圆点,,按此规律排列下去,第⑧个图形中小圆点的个数是( )A. 20B. 23C. 24D. 26【答案】D【解析】【分析】本题考查了规律型—图形的变化类,正确分析得出变化规律是解题的关键.根据图形得出第n 个图形有个圆点,然后进行计算即可.【详解】解:第①个图形中一共有个小圆点,第②个图形中一共有个小圆点,第③个图形中一共有个小圆点,第④个图形中一共有个小圆点,……,∴第n 个图形一共有个小圆点,当时,第⑧个图形中小圆点的个数是,故选:D .8. 如图,是的直径,是的切线,连接交于点,连接,.若,的长为( )495064<<78<<526<-<⋅⋅⋅()32n +5530=+⨯8531=+⨯11532=+⨯14533=+⨯()()53132n n +-=+8n =38226⨯+=AB O BC O AC O D OD BD 60C ∠=︒OD =CDA. B. 1 C. D. 【答案】B【解析】【分析】本题主要考查了切线的性质,解直角三角形,直径所对的圆周角是直角,先由直径所对的圆周角是直角和切线的性质得到,,进而得到,解直角三角形求出的长即可得到答案.【详解】解:∵是的直径∴,,∵是的切线,∴,∴,∴,∴,故选:B .9. 如图,在正方形中,线段为对角线,点分别为边和上的点且,连接,过点作交于点,点为边上一点,连接且.若,则( )A. B. C. D. 90ADB ∠=︒90ABC ∠=︒30A ∠=︒AC AD ,OD =AB O 2AB OD ==90ADB ∠=︒BC O 90ABC ∠=︒30A ∠=︒4cos 3cos AB AC AD AB A A===⋅=,1CD =ABCD BD E F 、BC CD BE CF =EF E EG BC ⊥BD G H AD GH GH EF =FEC α∠=HGD ∠=2α902α︒-45α︒-α【答案】C【解析】【分析】如图:延长与交于点,连接,过作交于,证明四边形为矩形,四边形为正方形,四边形为平行四边形,再证明,从而进一步可得答案.【详解】解:如图:延长与交于点,连接,过作交于,∵四边形为正方形,∴,,,∵,∴,,而,∴,∴四边形为矩形,∴,,∵,,∴,而,∴,∵,∴四边形为正方形,∴,∵,,∴四边形为平行四边形,,∴,∵,EG AD Q GF G GK EF ∥CD K GECF QGFD GEFK Rt Rt GHQ GKF ≌EG AD Q GF G GK EF ∥CD K ABCD 45ADB CDB DBC ∠=∠=∠=︒90ADC C ABC ∠=∠=∠=︒AD BC ∥EG BC ⊥GE BE =GE CF ∥BE CF =GE CF =GECF 90GFC GFK ∠=︒=∠GF CE ∥AD BC ∥GE BC ⊥GQ AD ⊥45ADB CDB DBC ∠=∠=∠=︒GQ GF =90GQD QDF DFG ∠=∠=∠=︒QGFD 45QGD FGD ∠=∠=︒GE KF ∥EF GK ∥GEFK KGF GFE ∠=∠GK EF =GF CE ∥∴,∴,∵,,,∴,∴,∴.故选C【点睛】本题考查的是正方形的性质,矩形的判定与性质,平行四边形的判定与性质,全等三角形的判定与性质,角平分线的性质,作出合适的辅助线是解本题的关键.10. 在多项式(其中)中,对相邻的两个字母间添加绝对值符号,对相邻的两个或者三个字母间添加括号,每一次操作必须同时添加一个绝对值符号和一个括号,且添加绝对值符号和添加括号时不能有相同字母,然后进行去绝对值和去括号运算,称此为“双添操作”.例如:,,.下列说法:①不存在“双添操作”,使其运算结果与原多项式相等;②存在“双添操作”,使其运算结果与原多项式之和为0;③所有的“双添操作”共有6种不同运算结果.其中正确的个数是( )A. 0B. 1C. 2D. 3【答案】C【解析】【分析】本题考查新定义题型,根据新定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较,主要考查去括号法则、绝对值计算,整式的加减和分类讨论思想的应用;列举出所有可能,然后化简计算并判断即可.【详解】解:∵,∴,,,,,∴所有“双添操作”如下:,,GFE FEC α∠=∠=KGF α∠=GQ GF =GH EF GK ==90GQH GFK ∠=∠=︒Rt Rt GHQ GKF ≌QGH KGF α∠=∠=45HGD α∠=︒-a b c d e ---++0a b c d e >>>>>()a b c d e a b c d e ---++=-+--+()a b c d e a b c d e ---++=-++--⋅⋅⋅0a b c d e >>>>>0a b ->0b c ->0c d +<0d e +<0c d e ++<()a b c d e a b c d e ---++=-+--+()a b c d e a b c d e ---++=-+---,,,,,∴不存在“双添操作”,使其运算结果与原多项式相等,故①正确;∵每一种结果中a 的符号与原式中a 的符号相同,∴不存在“双添操作”,使其运算结果与原多项式之和0,故②错误;观察上面所有运算结果可知,第二个和第五个结果相等,其余都不相等,∴所有的“双添操作”共有6种不同运算结果,故③正确,故选:C .二、填空题(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:___.【答案】10.【解析】【分析】直接根据零指数幂以及负整数指数幂的运算法则化简各数即可.【详解】解:1+9=10.故答案为:10.【点睛】本题主要考查了零指数幂以及负整数指数幂,熟练掌握运算法则是解答此题的关键.12. 据《光明日报》报道:截至2020年5月31日,全国参与新冠肺炎疫情防控的志愿者约为8810000,将数据8810000科学记数法表示为________.【答案】8.81×106【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:8810000=8.81×106,故答案:8.81×106.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为为为()a b c d e a b c d e ---++=--+++()a b c d e a b c d e ---++=-++++()a b c d e a b c d e ---++=-+---()a b c d e a b c d e ---++=--+--()a b c d e a b c d e ---++=-++--021( 3.14)()3π--+=021( 3.14)()3π--+=整数,表示时关键要正确确定a 的值以及n 的值.13. 一个不透明的盒子中放有2个白球,2个黑球,这些球除了颜色外形状、大小均相同,从盒子中随机摸出两个球,则同时摸到一个白球和一个黑球的概率是______.【答案】【解析】【分析】本题考查的是用列表法或画树状图法求概率,画树状图法分析所有等可能的结果,然后根据概率公式求出该事件的概率.【详解】解:画树状图,如下:一共有12种等可能结果,其中同时摸到一个白球和一个黑球的结果有8种,∴同时摸到一个白球和一个黑球的概率是,故答案为:.14. 若关于x 的一元二次方程x 2﹣4x +m =0没有实数根,则m 的取值范围是_____.【答案】m >4【解析】【分析】根据根的判别式即可求出答案.【详解】解:由题意可知:△<0,∴,∴m >4故答案为m >4【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式.15. 如图,在矩形中,,,连接,以点为圆心,为半径作弧交于点,连接.则图中阴影部分的面积为______.2382123=23()2=441640m m ∆--=<﹣ABCD 2AB =BC =AC C CD BC E AE【答案】【解析】【分析】本题主要考查了求不规则图形面积,解直角三角形,矩形的性质,先由矩形的性质得到,再解直角三角形得到,据此根据进行求解即可.【详解】解:∵四边形是矩形,∴,∴,∴,∴,故答案为:.16. 如图,在中,,于点.以为斜边在的同侧作,连接,与交于点.若,,,则线段的长为______.【答案】【解析】23π+290AB CD B BCD ====︒,∠∠30ACB ∠=︒2ACE DCE ECF S S S S =+-△阴影扇形扇形ABCD 290AB CD B BCD ====︒,∠∠tan AB ACB BC ∠==30ACB ∠=︒2ACE DCE ECFS S S S =+-△阴影扇形扇形2219023022222360360ππ⨯⨯⨯⨯=⨯⨯+-⨯23π=+23π+ABC AB AC =AD BC ⊥D BC ABC Rt BFC △AF CF AD E 6BC =AE BD =2EAF BCF ∠=∠AC【分析】连接,根据等腰三角形三线合一和直角三角形斜边中线的性质得到,则,证明,则,,证明,由勾股定理求出,继而求出.【详解】解:连接,∵于点D ,∴,即点D 为的中点,∵以为斜边作,∴,∴,∴,设,则,∴,∴,∵,∴,∵∴,又∵,∴∴,,∴,∴DF 132DF BD CD BC ====CFD BCF ∠=∠()ASA AEF DBF ≌3AF DF ==BFD AFE ∠=∠90AFD ∠=︒AD AC DF ,=⊥AB AC AD BC 132BD CD BC ===BC BC Rt BCF 90BFC ∠=︒132DF BD CD BC ====CFD BCF ∠=∠BCF x ∠=22,FAE BCF x ∠=∠=CFD x ∠=2BDF CFD BCF x ∠=∠+∠=BDF FAE ∠=∠90BCF CED BCF CBF ∠+∠=∠+∠=︒CED CBF ∠=∠CED AEF∠=∠CBF AEF ∠=∠AE BD =()ASA AEF DBF ≌3AF DF ==BFD AFE ∠=∠90AFE CFD BFD CFD BFC ∠+∠=∠+∠=∠=︒90AFD ∠=︒∴,在中,故答案为:【点睛】此题考查了全等三角形的判定和性质、直角三角形的性质、等腰三角形的判定和性质、勾股定理等知识,证明是解题的关键.17. 若关于的一元一次不等式组有解且至多有五个整数解,且使关于的分式方程有整数解,则所有满足条件的整数的值之和是______.【答案】17【解析】【分析】本题主要考查了根据分式方程解的情况求参数,根据不等式组的解集情况求参数,先解不等式组,然后根据不等式组有解且至多有五个整数解求出;再解分式方程得到是整数,据此求出符合题意的a 的值即可得到答案.【详解】解:解不等式①得:,解不等式②得:,∵不等式组有解且至多有五个整数解,∴,∴;去分母得:,∴,AD ==Rt ACD AC ==()ASA AEF DBF ≌x 221314x x a x +⎧-≥⎪⎪⎨-⎪>⎪⎩y 16622ay y y+=--a 510a <≤46y a =-221314x x a x +⎧-≥⎪⎪⎨-⎪>⎪⎩①②1x ≥4x a <-146a <-≤510a <≤16622ay y y+=--()1662ay y -=-()64a y -=∵分式方程有整数解,∴,即,∴是整数,∴或或,解得或或或或,∴符合题意的a 的值有10、7,∴所有满足条件的整数的值之和是,故答案为:17.18. 一个四位自然数,各个数位上的数字均不为零,它的十位数字等于个位数字与千位数字之差,则称这个四位数为“简约数”.将“简约数”的千位数字去掉得到一个三位数,再将这个三位数与原“简约数”的千位数字的2倍求和,记作.若,(,,,,,且,,,,均为整数)都是“简约数”,其中能被11整除,则______.在此条件下,能被7整除,则满足条件的值的和为______.【答案】①. 3 ②. 10741【解析】【分析】本题主要考查了列代数式、整除等知识点,掌握分类讨论思想是关键.确定s 各个数位的值,再根据定义计算出,然后根据能被11整除即可求解;根据定义计算出,然后根据能被7整除即可求解.【详解】解:∵,∴s 的个位数是p ,十位数是x ,百位数是2,千位数是x ,∵s 是“简约数”,∴,∴,∵,∴∴,16622ay y y+=--60a -≠6a ≠46y a =-64a -=±62a -=-61a -=±10a =2a =4a =7a =5a =a 10717+=n abcd =n n bcd n ()F n 1010200s x p =++100020010t x y z q =+++14y ≤≤1x ≤z p 9q ≤x y z p q ()F s x =()()F s F t +t ()F s ()F s ()F t ()F t 1010200s x p =++x p x =-2p x =9p ≤4.5x ≤()()2001022200141982113111823F s x x x x x x x =+++=+=+++=+++∴,∵能被11整除,,且x 是整数,∴是整数,∴;∴,∵是“简约数”,∴,∴,∴,∴,∵,,,,且,,,均为整数,∴,∴,∵能被7整除,∴是整数,∴,,此时;,,此时(舍去);,,此时;,,此时∴满足条件的值的和为,故答案为:3,10741.三、解答题(本大题共8个小题,20题8分,其余各题每题10分,共78分),解题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.()23181111F s x x +=++()F s 1x ≤2311x +3x =()242F s =100020010300020010t x y z q y z q =+++=+++3z q =-()()20010620010362001124F t y z q y q q y q =+++=+-++=+-()()()2001121872831441F s F t y q y q y q +=++=+++++()()441283177F s F t y q y q +++=+++14y ≤≤1x ≤z 9q ≤x y z q 139q ≤-≤49q ≤≤()()F s F t +4417y q ++1y =4q =3214t =2y =3q =3403t =3y =9q =3669t =4y =8q =3858t =t 32143669385810741++=19. 计算:(1),(2).【答案】(1)(2)【解析】【分析】本题主要考查了分式的混合计算,整式的混合计算:(1)先根据单项式乘以多项式的计算法则和完全平方公式去括号,然后合并同类项即可得到答案;(2)先把小括号内的式子通分,再把除法变成乘法后约分化简即可得到答案.小问1详解】解:;【小问2详解】解:.20. 学习了菱形后,小美进行了拓展性研究,她发现:菱形对角线将菱形分成四个三角形,在其中一组相对三角形中,作一组对应锐角的角平分线与所对的对角线相交,那么以这两个交点为端点的线段被菱形另一条对角线垂直平分.她的解决思路是:通过证明对应三角形全等得出结论.请根据她的思路完成以下作图与填空:【()()242x x y x y ++-283111m m m m m -⎛⎫+-÷ ⎪--⎝⎭2254x y +3m m+()()242x x y x y ++-2224444x xy x xy y =++-+2254x y =+283111m m m m m -⎛⎫+-÷ ⎪--⎝⎭2218311m m m m m ---=÷--()()()33113m m m m m m +--=⋅--3m m +=用直尺和圆规,作的角平分线交于点(只保留作图痕迹)已知:如图,四边形是菱形,是对角线,交于点,平分,平分.求证:,.四边形是菱形 ,, .平分 _①_.平分 . _②_.在与中 _③_.又 .小美再进一步研究发现:分别连接这两个交点与菱形另一对角线的两个端点所形成的四边形是_④_.【答案】作图见解析,,,,菱形【解析】【分析】本题考查了复杂作图,菱形的性质与判断,全等三角形的判定与性质等知识,先根据作角平分线的作法作出,利用角平分线的定义,菱形的性质,全等三角形的判定与性质逐步分析,完成①②③,然后利用菱形的判定完成④即可.【详解】解:如图,即为所求,四边形是菱形,,, ,,.平分CBO ∠OA F ABCD AC BD 、O DE ADO ∠BF CBO ∠OF OE =BD EF ⊥ ABCD AC BD ∴⊥OB OD =BC AD ∥CBO ADO ∠∠∴=BF CBO ∠∴12CBO =∠DE ADO ∠12EDO ADO ∴∠=∠∴BFO V DEO FBO EDO BO DO BOF DOE ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BFO DEO ∴ ≌∴BD AC ⊥ BD EF ∴⊥OBF ∠OBF EDO ∠=∠OE OF =BF BF ABCD AC BD ∴⊥OB OD =BC AD ∥AO CO =CBO ADO ∠∠∴=BF CBO∠.平分. .在与中 ,.又.连接,,∵,,∴四边形是平行四边形,∵,∴平行四边形是菱形,故答案为:,,,菱形.21. 为了全面了解中学生环境适应能力的情况,某学校对七、八年级进行了一次环境适应能力测评问卷调查,并随机从这两个年级中各抽取20名学生的测评成绩(满分100分,成绩得分用表示,成绩均为整数,单位:分)进行整理、描述和分析.将学生的适应能力分为等级:卓越适应能力,等级:高级适应能力,等级:中级适应能力,等级:初级适应能力四个等级,测评成绩分别是::,:,:,:.下面给出部分信息:七年级学生测评成绩为:68,70,74,76,81,82,82,82,82,84,84,86,88,92,94,96,97,98,100,100八年级等级的学生测评成绩为:84,86,84,82,88,84,86,88,84∴12OBF CBO ∠=∠DE ADO ∠12EDO ADO ∴∠=∠∴OBF EDO ∠=∠BFO V DEO FBO EDO BO DO BOF DOE ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA BFO DEO ∴ ≌∴OE OF =BD AC ⊥ BD EF ∴⊥BE DF OE OF =AO CO =BEDF BD EF ∴⊥BEDF OBF ∠OBF EDO ∠=∠OE OF =x A B C D A 90100x ≤≤B 8090x ≤<C 7080x ≤<D 6070x ≤<B七、八年级学生测评成绩统计表年级平均数中位数众数方差七年级85.88494八年级85.884102八年级学生测评成绩扇形统计根据以上信息,回答下列问题:(1)填空:______,______,______;(2)根据以上数据,你认为哪个年级的学生环境适应能力更好?请说明理由(写出一条理由即可);(3)对于等级的学生需要教师通过沟通和鼓励积极地适应环境的变化,而等级的学生也要关注成长过程中适应能力的变化.若该校七年级有740人,八年级有680人,请你结合数据,估计两个年级中需要教师沟通和鼓励的学生共有多少人?【答案】(1)84,82,15(2)七年级的学生环境适应能力更好,理由见解析(答案不唯一)(3)318人【解析】【分析】本题考查中位数、众数、平均数以及扇形统计图,掌握中位数、众数的计算方法是正确解答的前提.(1)先求七年级成绩众数,再分别求出八年级各个等级的人数,即可求出结论;(2)根据方差可判断七年级的学生普法知识测试成绩更好;(3)利用样本估计总体即可求出结论.【小问1详解】解:七年级学生测评成绩为:68,70,74,76,81,82,82,82,82,84,b a =a b =m =C D 、A B 、84,86,88,92,94,96,97,98,100,100,其中82出现次数最多,∴,∵八年级A 组有人,B 组有9人,∴八年级中位数落在B 组,又八年级等级的学生测评成绩为:82,84,84,84,84,86,86,88,88,∴中位数,∴,故答案为:84,82,15;【小问2详解】解:七年级的学生环境适应能力更好,理由:∵七八年级学生测试成绩的平均数相同,从方差来看,七年级的方差94小于八年级的方差102,∴七年级的学生环境适应能力更好;【小问3详解】解:,∴估计两个年级中需要教师沟通和鼓励的学生共有318人.22. 重庆市重点改造提升工程江南立交一期工程在建中,甲、乙工程队承建了该项目中的一段2350米的道路施工任务.计划甲工程队单独施工5天后,剩下的施工任务由甲、乙工程队合作2天完成.已知甲工程队每天的施工量比乙工程队每天的施工量多94米.(1)甲、乙两工程队每天计划各施工多少米?(2)在实际施工中,甲工程队先单独施工了若干天后,被调往其它工程项目,剩下的施工任务由乙工程队单独完成,甲、乙工程队共用11天完成了该项目,若这段道路施工任务的总施工费用是万元,已知乙工程队的总施工费用为12万元,甲工程队每天的施工费用是乙工程队每天施工费用的倍.则甲工程队每天的施工费用是多少万元?【答案】(1)甲工程队每天的施工量为282米,则乙工程队每天的施工量为188米(2)甲工程队每天的施工费用是万元【解析】【分析】本题主要考查了一元一次方程和分式方程的应用,解题的关键是根据等量关系,列出方程,解方程即可.82b =2030%6⨯=B 8484842a +==9%130%10%15%20m =---=()474068010%15%31820⨯+⨯+=19.5532.5(1)设甲工程队每天的施工量为x 米,则乙工程队每天的施工量为米,根据等量关系列出方程,解方程即可;(2)设乙工程队每天施工费用为y万元,则乙工程队每天施工费用为万元,根据等量关系列出方程,解方程即可.【小问1详解】解:设甲工程队每天的施工量为x 米,则乙工程队每天的施工量为米,根据题意得:,解得:,(米),答:甲工程队每天的施工量为282米,则乙工程队每天的施工量为188米;【小问2详解】解:设乙工程队每天施工费用为y 万元,则乙工程队每天施工费用为万元,根据题意得:,解得:,(万元),答:甲工程队每天的施工费用是万元.23. 如图,在中,,,.点是的中点,动点从点出发,沿折线运动,到达点停止运动,设点运动的路程为,的面积为.(1)请直接写出关于的函数表达式并注明自变量的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;()94x -53y ()94x -()()522942350x x ++-=282x =28294188-=53y 1219.5121153y y -+=1.5y =515253..⨯= 2.5Rt ABC △90ABC ∠=︒8AB =6BC =D AC P A A B C →→C P x PDC △y y x x(3)结合函数图象,直接写出时的取值范围.【答案】(1) (2)见解析 (3)【解析】【分析】本题主要考查了解直角三角形,勾股定理,动点问题的函数图象:(1)先利用勾股定理求出,则,,再分点P 在和上两种情况,过点P 作于E ,解直角三角形求出,进而根据三角形面积计算公式求解即可;(2)根据(1)所求画出对应的函数图象,进而写出对应的函数图象性质即可;(3)根据(2)所求进行求解即可.【小问1详解】解:∵在中,,,,∴,∴,,∵点是的中点,∴;当,即点P 在上时,过点P 作于E ,由题意得:,∴,∴;当,即点P 在上时,过点P 作于E ,8y ≥x ()()3082282814x x y x x ⎧≤≤⎪=⎨⎪-<≤⎩16103x ≤≤10AC =3sin 5A =4sin 5C =AB BC PE AC ⊥PE Rt ABC △90ABC ∠=︒8AB =6BC =10AC ==3sin 5BC A AC ==4sin 5AB C AC ==D AC 152CD AC ==08x ≤≤AB PE AC ⊥AP x =3sin 5PE AP A x =⋅=1322y CD PE x =⋅=814x <≤BC PE AC ⊥∴∴,∴;综上所述,;【小问2详解】解:如图所示,即为所求;由函数图象可知,当时,y 有最大值12;【小问3详解】解:当时,,由函数图象可知,当时,.24. 现有港口和四座小岛,一批物资需要从港口运往小岛.甲、乙两艘货船均可完成此次运输工作,甲货船运输路线为,乙货船的运输路线为.已知小岛在港口的东北方向50海里处,小岛在小岛的北偏东方向上,小岛在港口的北偏东方向上,小岛在港口的正东方向,小岛、均在小岛的正北方向上,且两岛相距30海里.,)6814CP x x =+-=-()4sin 145PE AP C x =⋅=-12822y CD PE x =⋅=-()()3082282814x x y x x ⎧≤≤⎪=⎨⎪-<≤⎩8x =382x =163x =8y ≥16103x ≤≤D A B C E 、、、D A D E A →→D B A →→E D A E 30︒B D 60︒C D A B C B C 、 1.41≈1.73≈ 2.45≈(1)求小岛与小岛之间的距离.(结果保留整数)(2)若甲、乙两艘货船的运费分别为13元/海里和11元/海里,请计算说明选择哪艘货船更划算?【答案】(1)33海里 (2)选择乙船更划算【解析】【分析】本题考查了解直角三角形的应用,解题的关键是:(1)过E 作于F ,并反向延长,作于H ,先判断四边形是矩形,,,,得出,,然后在、中,利用锐角三角函数求出、、、,进而求出,在中,利用锐角三角函数求出、即可;(2)利用(1)中所求数据,分别求出甲、乙船的路费,进而求出对应的费用,然后比较即可.【小问1详解】解:如图,过E 作于F ,并反向延长,作于H ,根据题意,得,,,,海里,海里,∴四边形是矩形,,,,∴,,在中,海里,A E EFCD ⊥EH AC ⊥EFCH 45EDF ∠=︒45BDC ∠=︒60AEH ∠=︒EH FC =EF HC =Rt DEF △Rt BCD EF DF CD BD CF Rt AEH △AE AH EFCD ⊥EH AC ⊥45MDE ∠=︒60MDB ∠=︒30NEA ∠=︒90MDC ∠=︒50DE =30BC =EFCH 45EDF ∠=︒45BDC ∠=︒60AEH ∠=︒EH FC =EF HC =Rt DEF△sin 50sin 45HC EF DE EDF ==⋅∠=⨯︒=海里,在中,海里,海里,∴海里,在中,海里,海里,答:小岛与小岛之间的距离为33海里;【小问2详解】解:由(1)知海里,∴甲船的路程为海里,乙船的路程为海里,∴甲船的费用为元,乙船的费用为元,∵,∴选择乙船更划算.25. 如图1,抛物线与轴交于两点,与轴交于点.已知,抛物线的对称轴为:.(1)求抛物线的表达式;(2)点为对称轴左侧,第三象限抛物线上一动点,点为抛物线的顶点,过点作直线交对称轴于点,连接的最大值以及此时点的坐标;(3)如图2,在(2)成立的情况下,连接,将抛物线沿着射线单位得抛物线.点是抛物线的顶点,点是抛物线与轴的交点,直线与轴交于点,cos 50cos 45DF DE EDF =⋅∠=⨯︒=Rt BCD 30tan tan 30BC DC BDC ===∠︒3060sin sin 30BC BD BDC ===∠︒(EH FC DC DF ==-=Rt AEH △33cos EH AE AEH ===≈∠((tan tan 6090AH EH AEH =⋅∠=-⨯︒=-A E (60AB AH HC BC =+-=-+503383DE AE +≈+=606094DB AB +=+-+≈83131079⨯=94111034⨯=10791034>212y ax x c =++x A B 、y C ()2,0B l =1x -P D P PQ BC ∥l Q QD QD -P AC 212y ax x c =++AC y 'E y 'H y 'y PE y F过抛物线上一点(不与点重合)作轴于点,直线交于点,连接.若点关于直线的对称点恰好落在轴上,请直接写出点的横坐标.【答案】(1) (2的最大值为,此时点P 的坐标为 (3或【解析】【分析】(1)先根据对称轴计算公式求出,再把代入抛物线解析式中进行求解即可;(2)先求出,得到,则;如图所示,过点P 作于E ,设与x 轴交于F ,由平行线的性质可得,则是等腰直角三角形,可得;求出顶点D 的坐标为;设,则,,,进而得到,据此利用二次函数的性质求解即可;(3)先求出,进而求出,则可求出,进而求出,利用待定系数法求出直线解析式为,则;再分,当点G 在点E 右侧时,当点G 在点H 和点E 之间时,当点G 在x 轴下方且在点H 右侧时,当点G 在点H 左侧且在x 轴上方时,四则情况,设,则 ,表示出,通过证明,进而建立方程求解即可.【小问1详解】解:∵抛物线的对称轴为直线,∴,∴,y 'G H GM x ⊥M GM PE 、N FG N FG N 'y G 211242y x x =+-QD -1534⎛⎫-- ⎪⎝⎭,+14a =()2,0B ()02C -,2OC OB ==45OBC ∠=︒PE QD ⊥PQ 45QPE CBF ==︒∠∠PQE V PE QE PQ ==914⎛⎫-- ⎪⎝⎭,211242P m m m ⎛⎫+- ⎪⎝⎭,1PE QE m ==--2111424ED m m =++2113424QD QE DE m m =+=--222PE m==--()21314QD m -=-++()40A -,AC ==()2113144y x =--'1314E ⎛⎫- ⎪⎝⎭,PE 11124y x =--1104F ⎛⎫- ⎪⎝⎭,211342G m m m ⎛⎫-- ⎪⎝⎭,11124N m m ⎛⎫-- ⎪⎝⎭,GN FN ,GN FN =212y ax x c =++=1x -1212a -=-14a =∴,把代入中得,解得,∴抛物线解析式为;【小问2详解】解:在中,当时,,∴,∴,∴,如图所示,过点P 作于E ,设与x 轴交于F ,∵,,∴,∴,∴是等腰直角三角形,∴;∵抛物线解析式为,∴顶点D 的坐标为;设,∴,,∴,21142y x x c =++()2,0B 21142y x x c =++21122042c ⨯+⨯+=2c =-211242y x x =+-211242y x x =+-0x ==2y -()02C -,2OC OB ==45OBC ∠=︒PE QD ⊥PQ PQ BC ∥PE AB 180QPE PFB PFB CBF +=︒=+∠∠∠∠45QPE CBF ==︒∠∠PQE V PE QE PQ ==()221119214244y x x x =+-=+-914⎛⎫-- ⎪⎝⎭,211242P m m m ⎛⎫+- ⎪⎝⎭,1PE QE m ==--221191112424424ED m m m m ⎛⎫=+---=++ ⎪⎝⎭221111131424424QD QE DE m m m m m =+=++--=--222PE m ==--211322424QD m m m -=---++,∵,∴当有最大值,此时点P 的坐标为; 【小问3详解】解:在中,当时,解得或,∴,∴,∴,∴将抛物线沿着射线相当于将抛物线向右移动2个单位长度,向下移动1个单位长度得到抛物线,∴,∴,设直线解析式为,∴,∴,2135424m m =---()21314m =-++104-<3m =-QD -1534⎛⎫-- ⎪⎝⎭,211242y x x =+-2112042y x x =+-=4x =-2x =()40A -,4OA =AC ==211242y x x =+-AC y '()221119214244y x x x =+-=+-y '()()221911312114444y x x =+---=--'1314E ⎛⎫- ⎪⎝⎭,PE y k x b ''=+534134k b k b ''''⎧-+=-⎪⎪⎨⎪+=-⎪⎩12114k b ⎧=-⎪⎪⎨'=-'⎪⎪⎩∴直线解析式为,在中,当时,,∴;如图所示,当点G 在点E 右侧时,设,则 ,交于T ,∴,,∵轴,∴,∴,由轴对称的性质可得,∴,∴,∴,∴,即,解得或,∴点G;如图所示,当点G 在点H 和点E 之间时,同理有,PE 11124y x =--11124y x =--0x =114y =-1104F ⎛⎫- ⎪⎝⎭,211342G m m m ⎛⎫-- ⎪⎝⎭,11124N m m ⎛⎫-- ⎪⎝⎭,FG NN ',21144GN m =-FN ==GN x ⊥GN FN '∥TFN TGN TN F TNG ''==∠∠,∠∠FN FN N T NT ''==,()AAS TFN TGN ' ≌GN FN '=GN FN =21144m -=210m --=m =+m =-FN NG =此时,,∴,即,解得(舍去),∴点G 的横坐标为如图所示,当点G 在x 轴下方且在点H 左侧时,同理有,此时,,∴,即,解得或,∴点G如图所示,当点G 点H 左侧且在x 轴上方时,同理有,此时,,∴,即,在21144GN m =-+FN =21144m -+=210m +-=m =+m =-+FN NG =21144GN m =-+FN =21144m -+=210m --=m =-m =+FN NG =21144GN m =-FN =21144m -=210m +-=解得或(舍去),∴点G 的横坐标为;综上所述,点G或.【点睛】本题主要考查了二次函数综合,一次函数与几何综合,轴对称的性质,全等三角形的性质与判定,勾股定理,等腰直角三角形的性质与判定等等,解(2)的关键在于推出是等腰直角三角形,解(3)的关键在于证明.26.如图,在中,点是边上一动点,连接.(1)如图1,点是边上一点,连接,若,平分,.当,时,求线段的长度;(2)如图2,,当且时,将线段绕着点逆时针旋转到,使,连接,过点作于点,点为边中点.连接并延长交的延长线于点,且交于点.若,求证:;(3)如图3,当,时,将线段绕着点顺时针旋转到,是边上一点且,连接、.为直线上一动点,当点、、在同一直线上时,将沿直线翻折到同一平面的,连接、.当最小时,直接写出的面积.【答案】(1)m =m =++PQE V GN FN =ABC D AB CD E BC DE 90BAC ∠=︒CD ACB ∠DB DE =2AD =3DE =BE 90BAC ∠<︒AB AC =CD AB ⊥AC C EC ACD BCE ∠=∠BE E EF CD ⊥F G BC FG BE H FH CE K 90CBE FCG ∠+∠=︒2AB BE EH -=90BAC ∠=︒6AB AC ==CD C 90︒CE F AC 13AF AC =BF EF M BC B F E EFC FM E FC ''△DE 'DC 'AE 'E DC ''△。
2023年部编版九年级数学下册期中考试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .43.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.已知二次函数242y x x =-+,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是( )A .有最大值﹣1,有最小值﹣2B .有最大值0,有最小值﹣1C .有最大值7,有最小值﹣1D .有最大值7,有最小值﹣27.如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .B .C .D .8.如图,AB 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°10.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGH S S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:124503⨯+=_____. 2.分解因式:ab 2﹣4ab+4a=________.3.抛物线23(1)8y x =-+的顶点坐标为____________.4.(2017启正单元考)如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若FG =4,ED =8,求EB +DC =________.5.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O )20米的A 处,则小明的影子AM 长为__________米.6.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为___________cm .三、解答题(本大题共6小题,共72分)1.解方程:24111x x x -=--2.先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-.3.如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C 两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=若存在,求点Q 的坐标;若不存在,请说明理由.4.如图,▱ABCD 的对角线AC ,BD 相交于点O .E ,F 是AC 上的两点,并且AE=CF ,连接DE ,BF .(1)求证:△DOE ≌△BOF ;(2)若BD=EF ,连接DE ,BF .判断四边形EBFD 的形状,并说明理由.5.某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.6.某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、C5、B6、D7、C8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2、a (b ﹣2)2.3、(1,8)4、125、56、15.三、解答题(本大题共6小题,共72分)1、3x =2、13、(1)抛物线的解析式21722y x x =-++;(2)PD PA +;(3)点Q 的坐标:1(0,2Q 、2(0,2Q .4、(2)略;(2)四边形EBFD 是矩形.理由略.5、(1)样本容量为50;(2)平均数为14(岁);中位数为14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为720人.6、(1)购买一台电子白板需9000元,一台台式电脑需3000元;(2)购买电子白板6台,台式电脑18台最省钱.。
九年级下期期中数学试卷2024.04一、选择题(每小题3分,共30分)1.实数a ,b ,c ,d 在数轴上对应点的位置如图所示,这四个数中绝对值最大的是( )A .aB .bC .cD .d2.2023年10月,第三届“一带一路”国际合作高峰论坛在北京举行,本次高峰论坛达 成合作远超上届,预计未来5年,中国货物贸易进出口额有望累计超过32万亿美元.其 中“32万亿”用科学记数法表示为( )A .32×1012B .3.2×1014C .32×1013D .3.2×10133.如图,将一直角梯形纸片绕虚线旋转一周形成一个几何体,则该几何体的俯视图( )A BC D4.计算1x ―1―2x 2―1的结果等于( )A .-1B .x -1C .1x +1D .2x 2―15.一束光线射向两块平行玻璃板,在玻璃板表面会发生反射和折射,光路如图所示,已知AB //DE , 若∠ABC =80°, 则∠1的度数为( )A .40°B .50°C .60°D .70°6.四边形ABCD 是平行四边形,下列结论中错误的是( )A .当∠ABC =90°时,□ABCD 是矩形B .当AB =BC 时,□ABCD 是菱形C .当AC ⊥BD 时,□ABCD 是菱形D .当AC =BD 时,□ABCD 是正方形7.若点A (x 1,-2),B (x 2,1),C (x 3,2)都在反比例函数y =-2x 的图象上,则x 1,x 2,x 3的大小关系是( )A .x 3<x 2<x 1B .x 2<x 1<x 3C .x 1<x 3<x 2D .x 2<x 3<x 18.如图,AB 是ʘO 的直径,∠BAC =50°,则∠D =( )A .40°B .20°C .80°D .50°9.对于实数a,b,定义运算“★”:a★b={a2―b(a≤b)b2―a(a>b),已知关于x的方程x★(x-2)=m恰好有两个不相等的实数根,则m的取值范围是( )A.m<-94B.m>-94C.m<74D.m>7410.如图(1),在△ABC中,BA=BC=5,AC=6.动点P从点A出发,先沿AC运动到点D,再从点D沿直线运动到点B.设点P运动的路程为x,△ABP的面积为y,图(2)是点P运动时y与x的函数关系图象,则m的值为( )图(1)图(2)A.2B.2.5C.3D.4二、填空题(每小题3分,共15分)11.列代数式 .12.已知关于x、y的方程组{2x+y=2a+1x+2y=a―1的解满足x-y=4,则a的值为.13.中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分.若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是.14.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点B、C在第一象限内,且∠ABC=60°,AB=4.若菱形OABC的顶点C在矩形ODBE的边OE上,则点E的坐标为.(第14题) (第15题)15.如图,在等边三角形ABC中,AB=2,AD为BC边上的高,以AD为边在AD右侧作△ADE,使AE=AD,当点E恰好落在△ABC的中位线所在的直线上时,DE的长为.三、解答题(本大题共8小题,满分75分)16.(10分)计算:(1)(―1)0+(―2)―1+cos60°(2)化简:(x+2y)(-x+2y)+(x―2y)217.(9分)国家大力提倡节能减排和环保,近年来纯电动汽车普及率越来越高,纯电动汽车的续航里程是人们购买时参考的重要指标,某汽车杂志为了解M,N两款纯电动汽车的实际续航里程,各随机抽取了10辆进行了续航里程实测,并将测试的结果(续航里程用x公里(1公里=1千米)表示,分成4组:A.300≤x<350;B.350≤x<400;C.400≤x<450;Dx≥450)进行整理、描述和分析,下面给出了部分信息:a.10辆M款纯电动汽车的实际续航里程:330 375 435 410 410 470 380 365 365 410b.10辆N款纯电动汽车的实际续航里程条形统计图(不完整):c.10辆N款纯电动汽车的实际续航里程在C组中的数据是:402,425,410,425,d 两款纯电动汽车的实际续航里程统计表:根据以上信息,解答下列问题.(1)表格中的a=,b=(2)根据上述数据,你认为M款和N款纯电动汽车中,哪款的实际续航里程更长? 请说明理由(写出一条即可).(3)小王看中了售价一样的甲、乙两款纯电动汽车,根据汽车杂志发布的数据对这两款车的四项性能进行了打分(百分制),如下表:续航里程、百公里加速、百公里能耗、智能化水平四项性能在小王心中所占比例是4:2:1:3,你认为小王选择哪款车更合适?请说明理由.18.(9分)如图,在正方形网格中,△ABC的顶点均在格点上,请仅用无刻度直尺完成下列作图(保留作图痕迹)(1)在图1中,作△ABC关于点O对称的图形△A1B1C.(2)在图2中,作出将△ABC绕点A逆时针旋转90°,再向左平移2个单位长度后的图形△A2B2C2.(3)在图3中,找一格点P,连接PB,使∠PBC=45°19.(9分)如图,小周通过定滑轮O拉动静止在水平地面上的高为0.5米的长方体重物,开始时与重物相连的绳子和水平面的夹角为37°,拉动一段距离后,绳子与水平面的夹角为53°,绳子的自由端(用手拉的一端)竖直向下移动了1.5米(绳子伸缩不计),求定滑轮O到地面的距离(结果精确到1米,参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0,75)20. (9分)甲公司将员工的午餐外包给某家餐饮公司,该餐饮公司根据每天甲公司员工团购订餐的数量,给出以下优惠方案:(1)某天甲公司有40人团购订餐,且订A套餐的人数不少于25人.若按方案一结算的总费用恰为1060元,求这天订A套餐和B套餐的人数分别有多少人.(2)某天甲公司有60人团购订餐,其中订B套餐的人数大于订A套餐人数的2倍,设其中有x人订A套餐,按方案一结算的总费用为y1元,按方案二结算的总费用为y2元.①分别求y1,y2与x之间的函数关系式.②若按方案二结算较合算,则x的值为21. (9分)小明在玩一个直径为60cm的塑料圆环玩具,我们将其看成⨀O,在水平地面上有一个坡角为60°的斜坡AB.(1)如图(1),当塑料圆环⨀O与水平地面的接触点C距离斜坡AB的底端A点103cm时,塑料圆环与斜坡AB是否相切?为什么?(2)如图(2),小明将塑料圆环⊙O滚到了斜坡A B上,设⨀O与斜坡AB的接触点为D,当点D距离水平地面20cm ( 即DE=20cm)时,塑料圆环的最低点距离水平地面多高?22.(10分)在数学实践活动课上,小明在白纸上画了一条形状与抛物线y=-x²相同的抛物线L,并在一张透明胶片上画了一个平面直角坐标系,在坐标系中画了线段DE( 点D,E 的坐标分别为(2,4),(5,4)).小明将胶片覆盖在白纸上,使抛物线L的对称轴与直线x=2重合,抛物线L与y轴交于点C(0,-2),如图,(1)求此时抛物线L的表达式.(2)保持纸片不动,将胶片先向左平移1个单位长度,再向下平移m个单位长度.①平移后,抛物线L的顶点坐标为 (用含m代数式表示)②若平移后,抛物线L与线段DE有且只有一个交点,求m的取值范围.23.(10分)综合与实践综合与实践课上,数学兴趣小组对图形中两条互相垂直的线段间的数量关系进行了探究.(1)操作判断①如图(1),在正方形ABCD中,点E,F,G,H分别在边AB,CD,AD,BC上,且EF⊥GH,若EF=5,则GH的长为②如图(2),在矩形ABCD中 ,BC=2AB,点E,F,G,H分别在边AB,CD,AD, BC上,且EF ⊥GH,若EF=8,则GH的长为(2)迁移探究如图(3),在Rt△ABC中,∠BAC=90°,AB=AC,点D,E分别在边AC,BC上,且AE⊥BD,试证明ABAD =BEEC(3)拓展应用如图(4),在矩形ABCD中,AB=6,BC=10,BE平分∠ABC交AD于点E,点F为AE上一点,AG ⊥BF交BE于点H,交矩形ABCD的边于点G,当F为A E的三等分点时,请直接写出A G的长.九年级下期期中数学试卷参考答案2024.04一、选择题(每小题3分,共30分)1.A2.D3.B4.C5.B6.D7.D8.A9.B 10.C二、填空题(每小题3分,共15分)11.2m +3n 12.2 13.16 14.(3,33) 15.3或3三、解答题(本大题共8个小题,满分75分)16.(1)解:原式=1-12+12=1(2)解:原式=4y 2-x 2+x 2-4xy +4y 2=8y 2-4xy17.(1)410 406(2)N 款的实际续航里程更长.理由:∵N 款的平均数较大.∴N 款实际续航里程更长.(3)选择甲款车.理由:甲款车综合得分为82×410+90×210+85×110+100×310=89.3(分)乙款车综合得分为80×410+100×210+90×110+90×310=88(分)∵89.3>88 ∴选择甲款车更合适.18.解:(1)如图1所示,△A ₁B ₁C ₁即为所求.(2)如图2所示,△A ₂B ₂C ₂即为所求.(3)如图3所示,点P 即为所求.19.解:如图由题意得OA -OB =1.5m ,设OB =x 米,则OA =(x +1.5)米在Rt △AOC 中,∠ACO =90°,∠OAC =37°∴sin 37°=OC OA ∴OC =OA ·sin 37°≈0.6(x +1.5)=(0.6x +0.9)米在Rt △OBC 中,∠BCO=90°,∠OBC=53°∴∠BOC =90°-53°=37° ∴cos 37°=OC OB∴OC =OB ·cos 37°≈0.8x (米)∴0.6x +0.9=0.8x x =4.5∴OC=0.8×4.5=3.6(米)∴3.6+0.5≈4(米)答:定滑轮O到地面的距离约为4米.20.解:设这天订A套餐的人数有a人,订B套餐的人数有b人.∵a+b=40,a≥25,∴b≤15.根据题意,得{a+b=40,30×0.9a+25b=1060.解得{a=30,b=10.答:这天订A套餐和B套餐的人数分别有30人,10人.(2)①由题意可知,60-x>2x,解得x<20,则y1=30x+25×0.8(60-x)=10x+1200.若60人均订B套餐,则优惠前的总费用为1500元,超过1000元,从而可知y2=30x+25(60-x)-220=5x+1280.②17,18或19解法提示:由题意可知,y1>y2,∴10x+1200>5x+1280,解得x>16, ∴16<x<20,∴x的值为17,18或19.21.解:(1)相切.理由:如图(1),连接OC,过点O作AB的垂线,垂足为P,连接OA.∵⊙O与水平地面相切于点C,∴OC⊥CA,∵tan∠OAC=OCAC =30103=3,∴∠OAC=60°,∴∠OAP=180°-60°×2=60°=∠OAC.又OA=OA,∠OCA=∠OPA,∴△OCA≌△OPA,∴OP=OC,即OP是⊙O的半径,∴塑料圆环⊙O与斜坡AB相切.(2)如图(2),过点O向水平地面作垂线,垂足为点G.与⊙O交于点F,则FG即为所求.连接OD并延长,与水平地面交于点M.∵⊙O与斜坡AB相切于点D,∴OM⊥AB,∵∠BAM=60°,∠AMD=30°.又∵DE⊥AM,∴DM =2DE =40.∵DE⊥AM,OG⊥AM,∴DE//OG,∴△DEM∽△OGM,∴DEOG =DMOM,即20OG=4070,∴OG=35.22.解:(1)∵抛物线L的对称轴与直线x=2重合,∴抛物线L的顶点横坐标为2∵抛物线L与y=-x2的形状相同.∴设解析式为y=-(x-2)2+h,把C(0,-2)代入得,-2=-4+h,∴h=2∴y=-(x-2)2+2(2)①(3,2+m)②第一种情况:当抛物线L的顶点落在线段DE上时,如图(1)则2+m=4,解得m=2.第二种情况:当抛物线L经过点D时,如图(2),此时抛物线L与线段DE有两个点,将D(2,4)代入y=-(x-3)2+2+m,得4=-1+2+m,解得m=3.第三种情况:当抛物线L经过点E时,如图(3),此时抛物线L与线段DE只有一个交点,将E(5,4)代入y=-(x-3)2+2+m,得4=-4+2+m,解得m=6.分析可知,当m=2或3<m≤6时,抛物线L与线段DE有且只有一个交点.23.解:(1)①5 ②4(2)证明:如图(3),过点C作CF⊥AC交AE的延长线于点F.∵∠F+∠FAC=90°=∠ADB+∠FAC∴∠F=∠ADB又∵∠BAD=∠ACF=90°,BA=AC∴△ABD≌△CAF,∴AD=CF,易得AB∥CF,∴△ABE∽△FCE,∴ABCF =BEEC. 又∵CF=AD,∴ABAD=BEEC.(3)10103或313。
部编版九年级数学下册期中考试卷【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱4.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变7.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°8.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,5,8OC cm CD cm ==,则AE =( )A .8cmB .5cmC .3cmD .2cm9.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 出发,以2cm/s 的速度沿AB 方向运动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC →CB 方向运动到点B .设△APQ 的面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算12的结果是__________.2.分解因式:a 2b+4ab+4b=_______.3.已知x ,y 满足方程组x 2y 5x 2y 3-=⎧+=-⎨⎩,则22x 4y -的值为__________. 4.如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为__________.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC=60°,AB=2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为__________.(结果保留π)三、解答题(本大题共6小题,共72分)1.解分式方程:22x 1x 4x 2+=--2.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.4.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.5.某区域为响应“绿水青山就是金山银山”的号召,加强了绿化建设.为了解该区域群众对绿化建设的满意程度,某中学数学兴趣小组在该区域的甲、乙两个片区进行了调查,得到如下不完整统计图.请结合图中信息,解决下列问题:(1)此次调查中接受调查的人数为多少人,其中“非常满意”的人数为多少人;(2)兴趣小组准备从“不满意”的4位群众中随机选择2位进行回访,已知这4位群众中有2位来自甲片区,另2位来自乙片区,请用画树状图或列表的方法求出选择的群众来自甲片区的概率.6.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、A4、C5、B6、D7、D8、A9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2、b (a+2)23、-154、5、)6、23π 三、解答题(本大题共6小题,共72分)1、x 3=-2、(1)y=﹣x 2﹣2x+3;(2)抛物线与y 轴的交点为:(0,3);与x 轴的交点为:(﹣3,0),(1,0);(3)15.3、答案略4、(1)抛物线解析式为213222y x x =-++;(2)点D 的坐标为(3,2)或(-5,-18);(3)当t=85时,有S 1-S 2有最大值,最大值为165. 5、(1)50,18;(2)选择的市民均来自甲区的概率为16.6、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。
2023-2024学年九年级下学期期中数学试题一、选择题(共6小题,满分18分,每小题3分)1.()A.B.2C.-2D.2.下列说法正确的是()A.为了解初中生课外体育活动时间,位采用全面调查B.某彩票中奖率为,则买100张一定有1张中奖C.“同位角相等”是个真命题D.甲组数据方差为0.01,乙组数据方差为0.13,则甲组数据比乙组数据稳定3.如图,,则下列结论错误的是()A.B.C.D.4.江西茶文化源远流长,其历史可追溯到两千年前的秦汉时期.如图,是江西名茶中一种装茶的罐子及抽象出的立体图形,则其俯视图为()5.如图,在开面直角坐标系xOy中,以原点为位似中心,把线段AB放大后得到线段CD.若点,则点的对应点的坐标是()A.B.C.D.6.抛物线的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是直线.下列结论:①;②;③;④方程有两个不相等的实数根;⑤若点在该拋物线上,则.其中正确的个数有()A.2个B.3个C.4个D.5个二.填空题(共6小题,满分18分,每小题3分)7.分解因式:______.8.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为______.9.已知是一元二次方程的一个解,则的值是______.10.为陶冶孩子情操,磨炼孩子意志,某父母鼓励自己的两个孩子利用寒假时间练好中国字,哥哥寒假要写8000字,弟弟寒假要写6000字,哥哥每天比弟弟多写100字,哥哥和弟弟完成各自任务的天数相同,设哥哥每天写x字,则可列方程为______.11.小明将两把完全相同的长方形直尺如图放置在上,两把直尺的接触点为,边OA与其中一把直尺边缘的交点为,点C、P在这把直尺上的刻度读数分别是2、5,则OC的长度是______.12.已知四边形ABCD为菱形,其边长为,点在菱形的边AD、CD及对角线AC 上运动,当时,则DP的长为______.三.解答题(共5小题,满分30分,每小题6分)13.(1)计算:(2)如图,在中,分別是AB,BC的中点,连接DE,求证:。
九年级(下)期中数学试卷一、选择题(本题共10个小题,每小题3分,满分30分.下面每小题给出的四个选项中,只有一个是正确的.)1.﹣的相反数是()A.﹣ B.C.﹣3 D.32.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.3.某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣84.如图,与∠1是同旁内角的是()A.∠2 B.∠3 C.∠4 D.∠55.抛物线y=2x2﹣2x+1与x轴的交点个数是()A.0 B.1 C.2 D.36.下列计算正确的是()A.3a+4b=7ab B.(ab3)3=ab6C.(a+2)2=a2+4 D.x12÷x6=x67.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分8.如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5 B.7 C.9 D.119.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A. B.C.D.10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8 B.10 C.12 D.14二、填空题(本题共6个小题,每小题3分,共18分.)11.若在实数范围内有意义,则x的取值范围是.12.不等式组的解集是.13.反比例函数y=,在每一象限内,y随x的增大而减小,则m的取值范围.14.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为cm2.15.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是.16.⊙O的半径为1,弦AB=,弦AC=,则∠BAC度数为.三、解答题(本题共9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤.)17.(9分)解方程:x2﹣8x﹣9=0.18.(9分)先化简,再求值:(1+)÷,其中a是小于3的正整数.19.(10分)已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)相交于A和B两点,且A点坐标为(1,3),B点的横坐标为﹣3.(1)求反比例函数和一次函数的解析式;(2)根据图象直接写出使得y1>y2时,x的取值范围.20.(10分)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C 处,则小明的行走速度是多少?21.(12分)中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图1、图2补充完整;(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).22.(12分)某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:购买学校购买型号及数量(个)购买支出款项(元)A B甲38622乙54402(1)求A、B两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,求A种型号的篮球最少能采购多少个?23.(12分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.(1)利用尺规,以AB为直径作⊙O,交BC于点D;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求证:AC2=CD•CB.24.(14分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做等邻边四边形.(1)如图1,四边形ABCD中,AC平分∠BAD,∠B=∠D.求证:四边形ABCD 为等邻边四边形.(2)如图2,Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB′的方向平移,得到△A′B′C′,连接AA′、BC′,若平移后的四边形ABC′A′是等邻边四边形,且满足BC′=AB,求平移的距离.(3)如图3,在等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC和BD 为四边形对角线,△BCD为等边三角形,试探究AC和AB的数量关系.25.(14分)如图,抛物线的顶点坐标为C(0,8),并且经过A(8,0),点P 是抛物线上点A,C间的一个动点(含端点),过点P作直线y=8的垂线,垂足为点F,点D,E的坐标分别为(0,6),(4,0),连接PD,PE,DE.(1)求抛物线的解析式;(2)猜想并探究:对于任意一点P,PD与PF的差是否为固定值?如果是,请求出此定值;如果不是,请说明理由;(3)求:①当△PDE的周长最小时的点P坐标;②使△PDE的面积为整数的点P 的个数.参考答案与试题解析一、选择题(本题共10个小题,每小题3分,满分30分.下面每小题给出的四个选项中,只有一个是正确的.)1.﹣的相反数是()A.﹣ B.C.﹣3 D.3【解答】解:﹣的相反数是.故选:B.2.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.【解答】解:如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是,故选D3.某种细胞的直径是0.00000095米,将0.00000095米用科学记数法表示为()A.9.5×10﹣7B.9.5×10﹣8C.0.95×10﹣7D.95×10﹣8【解答】解:0.00000095=9.5×10﹣7,故选:A.4.如图,与∠1是同旁内角的是()A.∠2 B.∠3 C.∠4 D.∠5【解答】解:A、∠1和∠2是对顶角,不是同旁内角,故本选项错误;B、∠1和∠3是同位角,不是同旁内角,故本选项错误;C、∠1和∠4是内错角,不是同旁内角,故本选项错误;D、∠1和∠5是同旁内角,故本选项正确;故选D.5.抛物线y=2x2﹣2x+1与x轴的交点个数是()A.0 B.1 C.2 D.3【解答】解:根据题意得△=(2)2﹣4×2×1=0,所以抛物线与x轴只有一个交点.故选B.6.下列计算正确的是()A.3a+4b=7ab B.(ab3)3=ab6C.(a+2)2=a2+4 D.x12÷x6=x6【解答】解:A、3a+4b,无法计算,故此选项错误;B、(ab3)3=a3b9,故此选项错误;C、(a+2)2=a2+4a+4,故此选项错误;D、x12÷x6=x6,故此选项正确.故选:D.7.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【解答】解:由加权平均数的公式可知===86,故选D.8.如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5 B.7 C.9 D.11【解答】解:由题意可得,OA=13,∠ONA=90°,AB=24,∴AN=12,∴ON=,故选A.9.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A. B.C.D.【解答】解:在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a <0,b<0,故选项A错误;在B中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b<0,故选项B错误;在C中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b<0,故选项C错误;在D中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,故选项D正确;故选D.10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8 B.10 C.12 D.14【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=6,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=6,同理可证:DE=DC=6,∵EF=AF+DE﹣AD=2,即6+6﹣AD=2,解得:AD=10;故选:B.二、填空题(本题共6个小题,每小题3分,共18分.)11.若在实数范围内有意义,则x的取值范围是x≥﹣2.【解答】解:∵二次根式在实数范围内有意义,∴被开方数x+2为非负数,∴x+2≥0,解得:x≥﹣2.故答案为:x≥﹣2.12.不等式组的解集是﹣1<x<5.【解答】解:,解①得x>﹣1,解②得x<5.则不等式组的解集是﹣1<x<5.故答案是:﹣1<x<5.13.反比例函数y=,在每一象限内,y随x的增大而减小,则m的取值范围m>3.【解答】解:∵反比例函数y=,在每一象限内,y随x的增大而减小,∴m﹣3>0,解得m>3.故答案为:m>3.14.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为4πcm2.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为3cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2.故答案为:4π.15.已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是2.【解答】解:过M作M N′⊥OB于N′,交OC于P,则MN′的长度等于PM+PN的最小值,即MN′的长度等于点P到点M与到边OA的距离之和的最小值,∵∠ON′M=90°,OM=4,∴MN′=OM•sin60°=2,∴点P到点M与到边OA的距离之和的最小值为2.16.⊙O的半径为1,弦AB=,弦AC=,则∠BAC度数为75°或15°.【解答】解:有两种情况:①如图1所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=,AF=CF=,cos∠OAE==,cos∠OAF==,∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;②如图2所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=,AF=CF=,cos∠OAE═=,cos∠OAF==,∴∠OAE=30°,∠OAF=45°,∴∠BAC=45°﹣30°=15°;故答案为:75°或15°.三、解答题(本题共9个小题,共102分,解答要求写出文字说明,证明过程或计算步骤.)17.(9分)解方程:x2﹣8x﹣9=0.【解答】解:(x+1)(x﹣9)=0,x+1=0或x﹣9=0,所以x1=﹣1,x2=9.18.(9分)先化简,再求值:(1+)÷,其中a是小于3的正整数.【解答】解:原式=•=a+2,∵a是小于3的正整数,∴a=1或a=2,∵a﹣2≠0,∴a=1,当a=1时,原式=1+2=3.19.(10分)已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)相交于A和B两点,且A点坐标为(1,3),B点的横坐标为﹣3.(1)求反比例函数和一次函数的解析式;(2)根据图象直接写出使得y1>y2时,x的取值范围.【解答】解:(1)把点A(1,3)代入y2=,得到m=3,∵B点的横坐标为﹣3,∴点B坐标(﹣3,﹣1),把A(1,3),B(﹣3,﹣1)代入y1=kx+b得到解得,∴y1=x+2,y2=.(2)由图象可知y1>y2时,x>1或﹣3<x<0.20.(10分)如图,天星山山脚下西端A处与东端B处相距800(1+)米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端的坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C 处,则小明的行走速度是多少?【解答】解:过点C作CD⊥AB于点D,设AD=x米,小明的行走速度是a米/秒,∵∠A=45°,CD⊥AB,∴AD=CD=x米,∴AC=x.在Rt△BCD中,∵∠B=30°,∴BC===2x,∵小军的行走速度为米/秒.若小明与小军同时到达山顶C处,∴=,解得a=1米/秒.答:小明的行走速度是1米/秒.21.(12分)中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图1、图2补充完整;(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).【解答】解:(1)100÷50%=200,所以调查的总人数为200名;故答案为200;(2)B类人数=200×25%=50(名);D类人数=200﹣100﹣50﹣40=10(名);C类所占百分比=×100%=20%,D类所占百分比=×100%=5%,如图:(3)画树状图为:共有12种等可能的结果数,其中两名学生为同一类型的结果数为4,所以这两名学生为同一类型的概率==.22.(12分)某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:购买学校购买型号及数量(个)购买支出款项(元)A B甲38622乙54402(1)求A、B两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,求A种型号的篮球最少能采购多少个?【解答】解:(1)设A型号篮球的价格为x元、B型号的篮球的价格为y元,由题意得,,解得:.答:A种型号的篮球销售单价为26元,B种型号的篮球销售单价为68元.(2)设最少买A型号篮球m个,则买B型号篮球球(20﹣m)个,由题意得,26m+68(20﹣m)≤1000,解得:m≥8,∵m为整数,∴m最小取9.∴最少购买9个A型号篮球.答:若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,A种型号的篮球最少能采购9个.23.(12分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.(1)利用尺规,以AB为直径作⊙O,交BC于点D;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求证:AC2=CD•CB.【解答】(1)解:如图,(2)证明:连接AD,如图,∵AB是直径,∴∠ADB=90°,∴∠ADB=∠CAB,∵∠C=∠C,∴△CAD∽△CBA,∴CA:CB=CD:CA,∴AC2=CD•CB.24.(14分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做等邻边四边形.(1)如图1,四边形ABCD中,AC平分∠BAD,∠B=∠D.求证:四边形ABCD 为等邻边四边形.(2)如图2,Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB′的方向平移,得到△A′B′C′,连接AA′、BC′,若平移后的四边形ABC′A′是等邻边四边形,且满足B C′=AB,求平移的距离.(3)如图3,在等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC和BD 为四边形对角线,△BCD为等边三角形,试探究AC和AB的数量关系.【解答】解:(1)∵∠BAC=∠DAC,∠B=∠D,AC=AC,∴△ABC≌△ADC,∴AB=AD,∴四边形ABCD是等邻边四边形.(2)如图2,延长C′B′交AB于点D,∵△A′B′C′由△ABC平移得到,∴A′B′∥AB,∠A′B′C′=∠ABC=90°,C′B′=CB=1,∴B′D⊥AB,∵BB′平分∠ABC,∴∠B′BD=45°,即B′D=BD设B′D=BD=x,∴C′D=1+x,∵BC′=AB=2,∴Rt△BDC′中,x2+(1+x)2=4,解得x1=,x2=(不合题意,舍去),∴等腰Rt△BB′D中,BB′=x=,∴平移的距离为,(3)AC=AB,理由:如图3,过A作AE⊥AB,且AE=AB,连接ED,EB,∵AE⊥AB,∴∠EAD+∠BAD=90°,又∵∠BAD+∠BCD=90°,△BCD为等边三角形,∴∠EAD=∠DCB=60°,∵AE=AB,AB=AD,∴AE=AD,∴△AED为等边三角形,∴AD=ED,∠EDA=∠BDC=60°∴∠BDE=∠CDA,∵ED=AD,BD=CD,∴△BDE≌△CDA,∴AC=BE∵AE=BE,∠BAE=90°,∴BE=AB,∴AC=AB.25.(14分)如图,抛物线的顶点坐标为C(0,8),并且经过A(8,0),点P 是抛物线上点A,C间的一个动点(含端点),过点P作直线y=8的垂线,垂足为点F,点D,E的坐标分别为(0,6),(4,0),连接PD,PE,DE.(1)求抛物线的解析式;(2)猜想并探究:对于任意一点P,PD与PF的差是否为固定值?如果是,请求出此定值;如果不是,请说明理由;(3)求:①当△PDE的周长最小时的点P坐标;②使△PDE的面积为整数的点P 的个数.【解答】解:(1)设抛物线的解析式为y=ax2+8.∵经过点A(8,0),∴64a+8=0,解得a=﹣.抛物线的解析式为:y=﹣x2+8.(2)PD与PF的差是定值.理由如下:设P(a,﹣a2+8),则F(a,8),∵D(0,6),∴PD===a2+2,PF=8﹣()=.∴PD﹣PF=2.(3)①当点P运动时,DE大小不变,则PE与PD的和最小时,△PDE的周长最小,∵PD﹣PF=2,∴PD=PF+2,∴PE+PD=PE+PF+2,∴当P、E、F三点共线时,PE+PF最小,此时点P,E的横坐标都为4,∵将x=4代入y=﹣x2+8,得y=6,∴P(4,6),此时△PDE的周长最小.②如图1所示:过点P做PH⊥x轴,垂足为H.设P(a ,﹣a2+8)∴PH=﹣a2+8,EH=a﹣4,OH=aS△DPE=S梯形PHOD﹣S△PHE﹣S△DOE =a (﹣a2+8+6)﹣(+8)(a﹣4)﹣×4×6=﹣a2+3a+4=﹣(a﹣6)2+13.∵点P是抛物线上点A,C间的一个动点(含端点),∴0≤a≤8,∴当a=6时,S△DPE 取最大值为13.当a=0时,S△DPE取最小值为4.即4≤S△DPE≤13,其中,当S△DPE=12时,有两个点P.∴共有11个令S△DPE为整数的点.21。
2023年部编版九年级数学下册期中考试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为( )A .±1B .1-C .1D .27.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.如图,在ABC ∆中,2AC =,4BC =,D 为BC 边上的一点,且CAD B ∠=∠.若ADC ∆的面积为a ,则ABD ∆的面积为( )A .2aB .52aC .3aD .72a 9.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.9的算术平方根是__________.2.因式分解:3269a a a -+=_________.3.若代数式1﹣8x 与9x ﹣3的值互为相反数,则x =__________.4.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的根为________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.4.如图,AB为⊙O的直径,C为⊙O上一点,∠ABC的平分线交⊙O于点D,DE ⊥BC于点E.(1)试判断DE与⊙O的位置关系,并说明理由;(2)过点D作DF⊥AB于点F,若BE=33,DF=3,求图中阴影部分的面积.485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、D5、B6、B7、A8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、3.2、2(3)a a -3、24、1-或35、40°6、2.5×10-6三、解答题(本大题共6小题,共72分)1、x=12、22m m-+ 1.3、(1)略;(2)3.4、(1)DE 与⊙O 相切,理由略;(2)阴影部分的面积为25、(1)50、30%.(2)补图见解析;(3)35.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。
九年级数学下册期中考试卷(附答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .502.下列说法中正确的是 ( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.关于x 的不等式2(1)40x a x ><-⎧⎨-⎩的解集为x >3,那么a 的取值范围为( ) A .a >3 B .a <3 C .a ≥3 D .a ≤36.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤27.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.如图,在▱ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若△CED 的周长为6,则▱ABCD 的周长为( )A .6B .12C .18D .24二、填空题(本大题共6小题,每小题3分,共18分)1.计算:3816-+=_____.2.因式分解:2()4()a a b a b ---=_______.3.函数132y x x =--+中自变量x 的取值范围是__________. 4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为__________.5.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是________.6.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .4.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?5.益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:品种 A B原来的运45 25费现在的运30 20费(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、B5、D6、C7、A8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、()()()22a b a a -+-3、23x -<≤4、72°5、﹣3<x <16、5三、解答题(本大题共6小题,共72分)1、4x =2、3.3、(1)略(2)略4、(1) 1.8(015)2.49(15)x x x x >≤≤⎧⎨-⎩(2)该用户二、三月份的用水量各是12m 3、28m 3 5、(1)每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件,(2)产品件数增加后,每次运费最少需要1120元.6、(1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.。
九年级数学试题(满分150分) 2013.5.17 一、选择题(本大题共有8小题,每小题3分,共24分) 1. 的相反数是( )A 、 6B 、-6C 、D 、 2. “一方有难,八方支援”,截止27日22:00,中国移动为四川雅安发生7.0级地震累计发送免费应急公益短信2922.3万条,这个数用科学记数法表示为 ( )A 、2.9223×万B 、2.9223×万C 、2.9223×万D 、2.9223×万 3.下列计算正确的是( )A 、B 、C 、D 、4. 下列图形中既是轴对称图形又是中心对称图形的是 ( ) A、正六边形 B、正五边形 C、平行四边形 D、等腰三角形5. 如下右图是一个由多个相同小正方体堆积而成的几何体的俯视图.图中所示数字为该位主视图...是(6. 函数的自变量x的取值范围在数轴上表示为 ( )7.已知为矩形的对角线,则图中与一定不相等.....的是( )A .B .C .D .8. 如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90°点A 的坐标 为(1,2).将△AOB 绕点A 逆时针旋转90°,点O 的对应点C 恰好落 在双曲线 (x >0)上,则k 的值为( ) A .2 B .3 C .4 D .6二、填空题(本大题共10个小题;每小题3分,共30分.把答案写在题中横线上)6-6161-510410310210632a a a =⋅633a a a =+628a a a =÷632)(a a =-y =AC ABCD 1∠2∠xky =ABCD5题图B C1 2B A DC B A C1 2 D1 2B A DCA 、B 、C 、D 、9.把温度计显示的零上5℃用+5℃表示,那么零下2℃应表示为____ _℃。
10. 如果,那么的算术平方根是 . 11. 分解因式a 3-a = _____12. 已知一组数据为8,4,6,5,7,则这组数据的方差..是____________. 13. 当时,代数式的值为 . 14. 分别以梯形ABCD 的上底AD 、下底BC 的长为直径作⊙、⊙,若两圆的圆心距等于这个梯形的中位线长,则这两个圆的位置关系是____________.15. 小明用下图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是cm ,那么这个的圆锥的高是 cm .16. 如图,Rt △ABC 中,∠B =90°,AB =6cm ,AC =10cm ,将△ABC 折叠,使点C 与A 重合,得折痕DE ,则△ABE 的周长等于________cm. (第16题图) (第17题图)17. 如图,A 、B 、C 三点在正方形网格线的交点处,则tan 的值为 . 18. 若x 是不等于1的实数,我们把称为x 的差倒数,如2的差倒数是; 的差倒数为,现已知,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则_______________.三、解答题(本大题共10个小题,共96分.解答应写出文字说明、证明过程或推演步骤。
如果觉得有的题目有困难,那么把自己能写出的解答写出一部分也可以。
)19、(本小题满分10分) (1)计算: (2)解方程:20、(本小题满分8分) 先化简,再求值:,其中x 满足.2180a -=a 12s t =+222s st t -+1O 2O 6πBAC ∠x -111211-=-1-21)1(11=--311-=x =2013x ︒-++-45sin 2)231(210x x x --=+-2132135222x x x x -⎛⎫÷+- ⎪--⎝⎭022=-x x OB A第15题 5cm21.(本小题满分8分)吸烟有害健康!为配合“禁烟”行动,某校组织同学们在我区某社区开展了“你支持哪种戒烟方式”的问卷调查,征求居民意见,并将调查结果整理后制成了如下统计图:根据统计图解答:(1) 同学们一共随机调查了多少人? (2) 请你把统计图补充完整;(3)假定该社区有1万人,请估计该地区支持“警示戒烟”这种方式大约有多少人?22. (本小题满分8分)如图,在△ABD 和ACE 中,AB=AD ,AC=AE , ∠BAD=∠CAE ,连接BC 、DE 相交于点F ,BC 与AD 相交于点G 。
(1)试判断线段BC 、DE 的数量关系,并说明理由;(2)如果∠ABC=∠CBD ,那么线段FD 是线段FG 和 FB 的比例中项吗?为什么?23.(本小题满分8分)江都世纪影城同时放映三部不同的电影,分别记为A 、B 、C . (1)若王老师从中随机选择一部观看,则恰好是电影A 的概率是 ;(2)若小聪从中随机选择一部观看,小芳也从中随机选择一部观看,请用画树状图或列表格的方法求至少有一人在看A 电影的概率.24.(本小题满分10分)如图所示,A 、B 两城市相距100km. 现计划在这两座城市间修筑一条高速公路(即线段AB ),经测量,森林保护中心P 在A 城市的北偏东30°和B 城市的北偏西45°的方向上. 已知森林保护区的范围在以P 点为圆心,50km 为半径的圆形区域内. 请问:计划修筑的这条高速公路会不会穿越保护区. 为什么?(参考数据:,)25. (本小题满分10分))已知:如图,在⊿ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,过点D 作于点E .(1)请说明DE 是⊙O 的切线; (2)若,AB =8,求DE 的长.732.13≈414.12≈D E A C ⊥30B ∠=(第21题图)A (A ´) C (C ´) DB 图① 26. (本小题满分10分)如图1,将底面为正方形的两个完全相同......的长方体放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm 3/s ,直至水面与长方体顶面平齐为止.水槽内的水深h (cm )与注水时间 t (s )的函数关系如图2所示.根据图象完成下列问题: (1)一个长方体的体积是_____________ cm 3; (2)求图2中线段AB 对应的函数关系式; (3)求注水速度v 和圆柱形水槽的底面积S .27.(本小题满分12分)如图,在直角坐标系中,抛物线过点A (-1,0)、B (3,0)且与y 轴交与点C ,点D 为抛物线对称轴x=l 上一动点.(1)求抛物线的解析式;(2)求当AD+CD 最小时点D 的坐标;(3)有这样的点D 能使△ACD 为直角三角形吗?若能,求出点D 若不能请说明理由。
28.(本题12分) 小明在玩一副三角板时发现:含45°角的直角三角板的斜边可与含30°角的 直角三角板的较长直角边完全重合(如图①).即△C´DA ´的顶点A ´、C ´分别与△BAC 的顶点A 、C 重合.其中AB ..=.2.,现在,他让△C´DA ´固定不动, 将△BAC 通过变换使斜边BC 经过△C´DA ´的直角顶点D .(1)求A ’D 的长度(2)如图②,将△BAC 绕点C 按顺时针方向旋转角度α(0°<α<180°),使BC 边经过点D ,则α= °.(3)如图③,将△BAC 绕点A 按逆时针方向旋转,使BC 边经过点D .求点C 走过的路线长。
(4)如图④,将△BAC 沿射线A ´C ´方向平移m 个单位长度,使BC 边经过点D ,求m的值.九年级数学试题答案c x ax y ++=22BDA ´A DBC (C ´)A (A ´)C ´ C一、选择题(本题共8小题,每小题3分,共24分,每小题仅有一个答案正确)二、填空题(本大题共10小题,每小题3分,共30分,把答案填在题目中的横线上)9. 10.3 11. 12.2 13.14 .外切 15. 4 16. 14 17.5 18.4 三、解答题19、(1)计算 解:原式=0 …………………………… 5分(2)解:两边同时乘以(x-2)得 1+3(x-2)=x-1∴x=2 …………………………… (4分)检验:当x=2时,x-2=0,∴ x=2是原方程增根 ,原方程无解 ……………… (5分)20、(本小题满分8分)解:原式= …………… (5分) 由 得 x=0或x=2, 其中x=2舍去 ……………… (7分) 当x=0时,原式= ……………………………… (8分)21.解:(1)﹪=300 (人)答: 共随机调查了300人 ……………………………… 2分(2) 药物戒烟: 300×15﹪=45(人)警示戒烟: 300-120-30-45=105(人)图如下:……………… 6分(3)10000× =3500(人)答:估计该地区支持“警示戒烟”这种方式大约3500人 ………………8分22.………………1分2-)1)1(-+a a a 41=-+-211231)3)(3(223254232+=-+-⋅--=---÷--x x x x x x x x x x 022=-x x 311030÷300105………………4分 ………………5分………………8分 23、解:(1) ………………………………………………………………2分(2)解法一:(树状图):………………………………………………………………………..6分P (至少一人看A )=……………………………………………..8分 解法二:(列表法)24、解: 作PD ⊥AB 于点D ……………… 1分 设PD=x在R t △PDB 中,∠PBD=45°∴BD=PD=x ……………… 3分 ∵AB=100∴AD=100-x在R t △PDA 中,∠APD=30° ∴tan ∠APD= 即tan30°=25、解:(1)连接OD ,AD .∵AB 是⊙O 的直径,∴. ……………………1分 3195PD AD xx-10090A D B ∠=小聪 小芳 结果 A B C (A,B) (A,C)A (A,A)BBC(B,B) (B,C)A(B,A) C BC(C,B) (C,C)A(C,A)DB又∵AB =AC ,∴BD =CD . ……………………………2分 ∵OA =OB ,∴OD 是△ABC 的中位线. ……………………3分 ∴OD //AC ,∴. …………………4分 ∴DE 是⊙O 的切线. ……………………………5分 (2)连接AD∵AB 是⊙O 的直径,∴. ………………6分∴. ………………8分 又∵AB =AC ,∴CD =BD =,. ……9分 ∴……………………………10分26、解:(1)体积:20×20×25=1000 cm 3 ………………2分(2)设线段AB :y=kx+b 代入A(10,20) B(35,45)得 y=x+10 …………………………6分(3) 解得答:注水速度v 为200 cm 3/s ,圆柱形水槽的底面积S 为600 cm 2 ……10分 27、解(1)抛物线解析式为: … …………3分 (2)A 的对称点B ,连结BC 交对称轴于D抛物线的对称轴为:直线x=1 … …………4分 求出直线BC 解析式 … …………6分 当x=1时,y=2∴D(1,2) … …………7分 (3)能 … …………8分当.∠ACD=90°时由相似求出点D (1, ) … …………9分 当.∠CAD=90°时由相似求出点D(1, ) … …… 10分当.∠CDA=90°时,设D (1,m ) 由相似得方程整理得 解得m=1或m=2∴D(1,2) 或 D(1,1) 综上所述,D(1, )、D(1, )、D(1,2) 或 D(1,1) … …… 12分28、解:(1)如图①R t △ABC 中,∠ACB=30°,AB= 2 ∴AC=90O D ED E C ∠=∠=90A D B ∠=c o s B D A B B =⋅=430C B ∠=∠=1232D E C D ==⎩⎨⎧-⋅-=-⋅⨯-=)2045()400()1035(20)2025(10S V S V ⎩⎨⎧==600200S V 322++-=x x y 3+-=x y 3832-231m m -=0232=+-m m 3832-6A C ´BDDB A ´A DBC (C ´)A (A ´)A ´C ´CC图④图③图②HHR t △A ´D C ´中,∠A ´C ´D=45°,AC=∴A ’D= … …………3分(2)如图②,α=∠A´C´A =45°-30°=15° ………………………………5分 (3)如图③,过点A 作AH ⊥BC .垂足为H .根据旋转可得:旋转角∠CA C´=∠BAH .易证:在Rt △ABC 中,∵AH ⊥BC ,∴∠C =∠BAH .∴∠CA C´=∠C =30°∴点C 走过路线长……………………………8分 (4)如图④,过点D 作DH ⊥AC ,垂足为H .由DH =12 A ´C ´=62,△DHC ∽△BAC ,可得C H =322.所以m 的值为322-62.…………………………………………………12分63ππ36618030=⋅⋅。