用555定时器设计一个多谐振荡器
- 格式:doc
- 大小:144.00 KB
- 文档页数:4
多谐振荡器的工作原理
多谐振荡器是能产生矩形波的一种自激振荡器电路,由于矩形波中除基波外还含有丰富的高次谐波,故称为多谐振荡器。
多谐振荡器没有稳态,只有两个暂稳态,在自身因素的作用下,电路就在两个暂稳态之间来回转换,故又称它为无稳态电路。
由555定时器构成的多谐振荡器如图1所示,R1,R2和C是外接定时元件,电路中将高电平触发端(6脚)和低电平触发端(2脚)并接后接到R2和C的连接处,将放电端(7脚)接到R1,R2的连接处。
由于接通电源瞬间,电容C来不及充电,电容器两端电压uc为低电平,小于(1/3)Vcc,故高电平触发端与低电平触发端均为低电平,输出uo为高电平,放电管VT截止。
这时,电源经R1,R2对电容C 充电,使电压uc按指数规律上升,当uc上升到(2/3)Vcc时,输出uo为低电平,放电管VT导通,把uc从(1/3)Vcc 上升到(2/3)Vcc这段时间内电路的状态称为第一暂稳态,其维持时间TPH的长短与电容的充电时间有关。
充电时间常数T充=(R1+R2)C。
由于放电管VT导通,电容C通过电阻R2和放电管放电,电路进人第二暂稳态.其维持时间TPL的长短与电容的放电时间有关,放电时间常数T放=R2C0随着C的放电,uc下降,当uc下降到(1/3)Vcc 时,输出uo。
为高电平,放电管VT截止,Vcc再次对电容c充电,电路又翻转到第一暂稳态。
不难理解,接通电源后,电路就在两个暂稳态之间来回翻转,则输出可得矩形波。
电路一旦起振后,uc电压总是在(1/3~2/3)Vcc 之间变化。
图1(b)所示为工作波形。
555。
555定时器产生正弦波电路
555定时器本身无法直接产生正弦波,但可以通过一些电路设计实现这一目标。
以下是使用555定时器产生正弦波的一种方法:
1.由555定时器组成的多谐振荡器产生方波。
当电容C1被充电时,2和6引脚的电压都上升,此时二极管D1导通,接通+12V电源后,电容C1被充电,Vc上升,当Vc上升到2Vcc/3时,触发器被复位,同时放电BJT T导通,此时输出电平Vo为低电平,电容C1通过R2和T放电,使Vc下降。
当Vc下降到Vcc/3时,触发器又被置位,Vo翻转为高电平。
2.然后,通过积分电路将方波转化为三角波。
3.最后,使用另一个积分器将三角波进一步转化为正弦波。
请注意,这种方法产生的正弦波可能并不完美,可能需要进行一些调整和优化以达到所需的效果。
同时,电路的具体设计和元件参数的选择也会影响到最终产生的正弦波的质量。
555多谐振荡器电路原理一、引言555多谐振荡器是一种常用的电子电路,具有产生多种频率的信号的功能。
本文将介绍555多谐振荡器的工作原理、电路结构和应用。
二、工作原理555多谐振荡器的工作原理基于555集成电路的特性。
555集成电路是一种定时器,具有多种工作模式,其中一种就是多谐振荡器。
555多谐振荡器的核心是一个RC网络和比较器。
RC网络由一个电阻R和一个电容C组成,用于控制振荡器的频率。
比较器用于比较电容充放电过程中的电压,从而产生方波输出。
当电路通电时,电容开始充电,并且与电阻R组成的RC网络形成一个延迟回路。
当电容充电到一定电压时,比较器检测到电压达到阈值,并将电容放电。
在电容放电过程中,电压下降到低于阈值后,比较器再次将电容充电,如此往复,形成一个周期性的方波输出。
三、电路结构555多谐振荡器的电路结构相对简单,只需要一个555集成电路、若干个电阻和电容以及适当的连接线即可。
具体而言,电路的核心是555集成电路,电阻和电容用于控制振荡器的频率。
除此之外,还可以通过添加电阻和电容来调节输出波形的占空比。
四、应用555多谐振荡器具有广泛的应用场景。
以下是几个常见的应用案例:1. 闪光灯:将555多谐振荡器的方波输出接入LED灯,即可实现可调节频率的闪光灯电路。
2. 声音发生器:通过将555多谐振荡器的方波输出接入扬声器,可以产生不同频率的声音信号。
3. 脉冲计时器:将555多谐振荡器的方波输出接入计数电路,可以实现精确的脉冲计时功能。
4. 脉冲宽度调制:通过调节555多谐振荡器的频率和占空比,可以实现脉冲宽度调制功能,广泛应用于通信和控制领域。
五、总结本文对555多谐振荡器的工作原理、电路结构和应用进行了介绍。
555多谐振荡器是一种功能强大的电子电路,可以产生多种频率的信号,具有广泛的应用前景。
希望本文能为读者提供对555多谐振荡器的基本了解,并为相关领域的应用提供参考。
思考题与习题6-1选择题(1) TTL单定时器型号的最后几位数字为( A )。
A.555B.556C.7555D.7556(2)用555定时器组成施密特触发器,当输入控制端CO外接10V电压时,回差电压为(B )。
A.3.33VB.5VC.6.66VD.10V(3)555定时器可以组成(ABC )。
A.多谐振荡器B.单稳态触发器C.施密特触发器D.JK触发器(4)若图6-43中为TTL门电路微分型单稳态触发器,对R1和R的选择应使稳态时:( B)图6-43A.与非门G1、G2都导通(低电平输出);B.G1导通,G2截止;C.G1截止,G2导通;D.G1、G2都截止。
(5)如图6-44所示单稳态电路的输出脉冲宽度为t WO=4μs,恢复时间tre=1μs,则输出信号的最高频率为(C)。
图6-44A.fmax=250kHz;B.fmax≥1MHz;C.fmax≤200kHz。
(6)多谐振荡器可产生( B )。
A.正弦波B.矩形脉冲C.三角波D.锯齿波(7)石英晶体多谐振荡器的突出优点是(C)。
A.速度高B.电路简单C.振荡频率稳定D.输出波形边沿陡峭(8)能将正弦波变成同频率方波的电路为(B)。
A.稳态触发器B.施密特触发器C.双稳态触发器D.无稳态触发器(9)能把2 kHz 正弦波转换成 2 kHz 矩形波的电路是(B)。
A.多谐振荡器B.施密特触发器C.单稳态触发器D.二进制计数器(10)能把三角波转换为矩形脉冲信号的电路为(D)。
A.多谐振荡器B.DACC. ADCD.施密特触发器(11)为方便地构成单稳态触发器,应采用(C)。
A.DACB.ADCC.施密特触发器D.JK 触发器(12)用来鉴别脉冲信号幅度时,应采用(D)。
A.稳态触发器B.双稳态触发器C.多谐振荡器D.施密特触发器(13)输入为2 kHz 矩形脉冲信号时,欲得到500 Hz矩形脉冲信号输出,应采用(D)。
A.多谐振荡器B.施密特触发器C.单稳态触发器D.二进制计数器(14)脉冲整形电路有(BC )。
555多谐振荡电路
555多谐振荡电路是一种经典的多谐振荡电路。
它由三个主要元件组成:555定时器、电阻和电容。
多谐振荡电路是一种非线性电路,可以产生多个频率的波形。
在此文章中,我们将详细介绍555多谐振荡
电路的原理、使用和应用。
555多谐振荡电路的原理
多谐振荡电路可以通过改变某些元件的值来产生不同的频率。
555
多谐振荡电路是一种简单而灵活的电路,它可以根据输入的电压而改
变频率。
当电压变化时,它会引起电容和电阻的变化,从而改变芯片
内部的比较器阈值。
当阈值和触发器的状态发生变化时,就会产生一
个周期性的方波输出,其振荡频率取决于电容和电阻的数值。
使用和应用
555多谐振荡电路可以用于许多不同的应用,包括音频信号发生器、模拟时钟、脉冲宽度调制和步进驱动器。
在音频信号发生器中,可以
通过调整电容和电阻的值来产生不同的频率,从而产生不同音调的声音。
在模拟时钟中,可以使用555多谐振荡电路来替代基于石英晶体
的时钟,这种电路可以产生准确的振荡信号,从而保持时间的准确度。
在脉冲宽度调制中,可以使用555多谐振荡电路来产生一个可调节的
方波输出,该方波输出的周期可以被调整以产生特定比例的宽度和占
空比。
总结
555多谐振荡电路是一种灵活且实用的电路。
它可以根据电容和电阻的不同数值而产生不同的频率。
这种电路广泛用于音频信号发生器,模拟时钟,脉冲宽度调制和步进驱动器等应用中。
除了以上应用外,
此电路还可以用作基底发生器等,所以在电路设计领域中,555多谐振荡电路是一种常用的电路。
用555定时器组成多谐振荡器一、电路结构多谐振荡器是无稳态电路,两个暂稳态不断地交替。
图1为用SG555组成的多谐振荡器电路图。
利用放电管V作为一个受控电子开关,使电容充电、放电而转变UC 上升或下降。
令UC=TH=TR ,则交替置0,置1。
R1,R2和C为定时元件。
图1 用555定时器组成多谐振荡器二、工作原理1,接通电源Vcc后,Vcc经电阻R1,R2对电容C充电,其电压UC 由0按指数规律上升,当UC≥2/3Vcc时,电压比较器C1和C2的输出分别为:UC1=0,UC2=1基本RS触发器被置0,Q=0,Q=1,输出U0跃到低电平UOL于此同时,放电管V导通,电容C经电阻R2、放电管V 放电电路进入暂稳态。
2,随着电容C的放电,UC随之下降。
当UC下降到UC ≤2/3Vcc ,则电压比较器C1和C2的输出为UC1=1,UC2=0基本RS触发器被置1,Q=1,Q=0,输出U0由低电平UOL跃到高电平UOH同时,因Q=0,放电管V截止,电源Vcc又经电阻R1,R2对电容C充电。
电路又返回到前一个暂稳态。
3,这样,电容C上的电压UC将在2/3 Vcc 和1/3Vcc之间来回放电和充电,从而使电路产生了振荡,输出矩形脉冲。
三、输出波形图2 多谐振荡器的工作波形多谐振荡器的振荡周期T为:T=tw1+tw2tww1为电容C上的电压由1/3 Vcc下降到2/3 Vcc 所需要的时间,充电回路的时间常数为(R1+R2)Ctww1可用下式估算tw1=(R1+R2)CLn2≈0.7(R1+R2)Ctw2 为电容C上的电压由2/3 Vcc下降到1/3 Vcc所需的时间,放电回路的时间常数为R2C,tw2可用下式估算tw2=R2CLn2=0.7R2C所以,多谐振荡的振荡周期T为T=tw1+tw2≈0.7(R1+R2)C振荡频率为:f=1/T=1/0.7(R1+2R2)C四、占空比可调的多谐振荡器图3 用555定时器组成占空比可调的多谐振荡器在放电管V截止时,电源Vcc经R1和VD1对电容C充电;当V导通时,C经VD2 ,R2和放电管V放电。
10.12 555定时器应用举例10.12.1 单稳态触发器1.不可重复触发单稳态触发器由555构成的单稳态触发器及工作波形如图10.12.1所示。
平时vI≥1/3V CC,电源接通瞬间,电路有一个稳定的过程,即电源通过电阻R向电容C充电,当v C上升到2/3V CC时,基本RS触发器复位,vO 为低电平,放电管T导通,电容放电,电路进入稳定状态,如图t1前所示。
若触发器输入端施加触发信号(v1<1/3V CC),触发器发生翻转,电路进入暂稳态,v O输出高电平,且管T截止,此后电容C充电至vC=2/3V CC时,电路又发生翻转,v O为低电平,T导通,电容C放电,电路恢复至稳态。
图10.12.1 由555定时器构成的单稳态触发器555定时器构成的单稳态触发器如果忽略T的饱和压降,则vC从零电平上升到2/3V CC的时间,即为输出电压v O的脉宽t W。
这种电路产生的脉冲宽度可从几个微秒到数分钟,精度可达0.1%。
通常R的取值在几百欧姆至几兆欧姆之间,电容取值为几百皮法到几百微法。
由图10.12.1可知,如果在电路的暂稳态持续时间内,加入新的触发脉冲,如图10.12.1(b)中的虚线所示,则该脉冲不起作用,电路为不可重复触发单稳。
2.可重复触发单稳态触发器由555定时器构成的可重复触发单稳电路如图10.12.2所示。
图10.12.2 由555定时器构成的可重复触发单稳态电路当v1输入负向脉冲后,电路进入暂稳态,555定时器内的管T断开,同时外接的管T导通,电容C放电。
输入脉冲撤除后,外接的管T也断开,电容C 充电,在v C未充到2/3V CC 之前,电路处于暂稳态。
如果在此期间,又加入新的触发脉冲,外接的管T又导通,电容C 再次放电,输出仍然维持在暂稳态。
只有在触发器脉冲撤除后且在输出脉宽t W时间间隔内没有新的触发脉冲,电路才返回稳定状态。
这种电路可作为失落脉冲检出电路,对机器的转速或人体的心律进行监视,当机器转速降到一定限度或人体的心律不齐时就发出警报信号。