第5章_薄壳结构
- 格式:ppt
- 大小:15.19 MB
- 文档页数:93
建筑结构选型——薄壳结构学校:专业班级:指导老师:小组成员:摘要大跨建筑中的壳体结构通常为薄壳结构,即壳体厚度于其中的最小曲率半径之比小于1/20,为薄壁空间结构的一种,它包括球壳、筒壳、双曲扁壳和扭壳等多种形式。
他们的共同特点在于通过发挥结构的空间作用,把垂直于壳体表面的外力分解为壳体面内的薄膜力,再传递给支座,弥补了板、壳等薄壁构件的面外薄弱性质,以比较轻的结构自重和较大的结构刚度及较高的承载能力实现结构的大跨度。
关键词形态分类受力特点应用与发展案例研究正文1 薄壳结构的定义壳,是一种曲面构件,主要承受各种作用产生的中面内的力。
薄壳结构就是曲面的薄壁结构,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都采用钢筋和混凝土。
壳体能充分利用材料强度,同时又能将承重与围护两种功能融合为一。
1.1薄壳结构的特点壳体结构一般是由上下两个几何曲面构成的空间薄壁结构。
两个曲面之问的距离即为壳体的厚度(δ),当δ比壳体其他尺寸(如曲率半径R,跨度等)小得多时,一般要求δ/R≤1/20(鸡蛋壳的δ/R≈1/50)称为薄壳结构。
现代建筑工程中所采用的壳体一般为薄壳结构。
而薄壳结构为双向受力的空间结构,在竖向均布荷载作用下,壳体主要承受曲面内的轴向力(双向法向力)和顺剪力作用,曲面轴力和顺剪力都作用在曲面内,又称为薄膜内力。
而只有在非对称荷载(风,雪等)作用下,壳体才承受较小的弯矩和扭矩。
由于壳体内主要承受以压力为主的薄膜内力,且薄膜内力沿壳体厚度方向均匀分布,所以材料强度能得到充分利用;而且壳体为凸面,处于空间受力状态,各向刚度都较大,因而用薄壳结构能实现以最少之材料构成最坚之结构的理想。
由于壳体强度高、刚度大、用料省、自重轻,覆盖大面积,无需中柱,而且其造型多变,曲线优美,表现力强,因而深受建筑师们的青睐,故多用于大跨度的建筑物,如展览厅、食堂、剧院、天文馆、厂房、飞机库等。
不过,薄壳结构也有其自身的不足之处,由于体形多为曲线,复杂多变,采用现浇结构时,模板制作难度大,会费模费工,施工难度较大;一般壳体既作承重结构又作屋面,由于壳壁太薄,隔热保温效果不好;并且某些壳体(如球壳、扁壳)易产生回声现象,对音响效果要求高的大会堂、体育馆、影剧院等建筑不适宜。
薄壳构造受力特点及天津博物馆案例分析班级:土木N073 学号:2022456791432 姓名:周峰近几年来,建筑师又在蛋壳的启发下,设计了小到自行车棚大到现代化的大型薄壳构造的建筑物。
这种建筑物既结实又节约材料。
我国北京火车站大厅房顶就是承受这种薄壳构造,屋顶那么薄,跨度那么大,整个大厅显得格外宽阔光明,舒适美观。
举世知名的悉尼歌剧院也是一座典型而颖的薄壳建筑。
薄壳构造壳,是一种曲面构件,主要承受各种作用产生的中面内的力。
薄壳构造就是曲面的薄壁构造,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都承受钢筋和混凝土。
壳体能充分利用材料强度,同时又能将承重与围护两种功能融合为一。
实际工程中还可利用对空间曲面的切削与组合,形成造型惊异颖且能适应各种平面的建筑,但较为费工和费模板。
1.筒壳〔柱面薄壳〕:是单向有曲率的薄壳,由壳身、侧边缘构件和横隔组成。
横隔间的距离为壳体的跨度l↓1,侧边构件间距离为壳体的波长l↓2。
当l↓1/l↓2≥1时为长壳,l↓1/l↓22<1为短壳。
2.圆顶薄壳:是正高斯曲率的旋转曲面壳,由壳面与支座环组成,壳面厚度做得很薄,一般为曲率半径的1/600 ,跨度可以很大。
支座环对圆顶壳起箍的作用,并通过它将整个薄壳搁置在支承构件上。
3.双曲扁壳〔微弯平板〕:一抛物线沿另一正交的抛物线平移形成的曲面,其顶点处矢高 f 与底面短边边长之比不应超过1/5。
双曲扁壳由壳身及周边四个横隔组成,横隔为带拉杆的拱或变高度的梁。
适用于掩盖跨度为20 ~50 米的方形或矩形平面〔其长短边之比不宜超过2〕的建筑物。
4.双曲抛物面壳:一竖向抛物线〔母线〕沿另一凸向与之相反的抛物线〔导线〕平行移动所形成的曲面。
此种曲面与水平面截交的曲线为双曲线,故称为双曲抛物面壳。
工程中常见的各种扭壳也为其中一种类型,因薄壳构造简洁制作,稳定性好,简洁适应建筑功能和造型需要,所以应用较为广泛。
蛋壳就是利用了薄壳构造原理,由于这种构造的拱形曲面可以抵消外力的作用,构造更加结实。
薄壳结构班级学号:1101404-25姓名:刘益宁指导老师:彭懿日期:2013.11.20调研建筑:星海音乐厅·悉尼歌剧院·国家大剧院1薄壳结构的定义:壳,是一种曲面构建,主要承受各种作用产生的中面内的力。
薄壳结构就是曲面的薄壁结构,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都采用钢筋和混凝土。
壳体能充分利用材料强度,同时又能将承重与围护两种功能融合为一。
2薄壳结构的特点:壳体结构一般是由上下两个几何曲面构成的空间薄壁结构。
两个曲面之问的距离即为壳体的厚度(δ),当δ比壳体其他尺寸(如曲率半径R,跨度等)小得多时,一般要求δ/R≤1/20(鸡蛋壳的δ/R≈1/50)称为薄壳结构。
现代建筑工程中所采用的壳体一般为薄壳结构。
而薄壳结构为双向受力的空间结构,在竖向均布荷载作用下,壳体主要承受曲面内的轴向力(双向法向力)和顺剪力作用,曲面轴力和顺剪力都作用在曲面内,又称为薄膜内力。
而只有在非对称荷载(风,雪等)作用下,壳体才承受较小的弯矩和扭矩。
由于壳体内主要承受以压力为主的薄膜内力,且薄膜内力沿壳体厚度方向均匀分布,所以材料强度能得到充分利用;而且壳体为凸面,处于空间受力状态,各向刚度都较大,因而用薄壳结构能实现以最少之材料构成最坚之结构的理.想。
由于壳体强度高、刚度大、用料省、自重轻,覆盖大面积,无需中柱,而且其造型多变,曲线优美,表现力强,因而深受建筑师们的青睐,故多用于大跨度的建筑物,如展览厅、食堂、剧院、天文馆、厂房、飞机库等。
不过,薄壳结构也有其自身的不足之处,由于体形多为曲线,复杂多变,采用现浇结构时,模板制作难度大,会费模费工,施工难度较大;一般壳体既作承重结构又作屋面,由于壳壁太薄,隔热保温效果不好;并且某些壳体(如球壳、扁壳易产生回声现象,对音响效果要求高的大会堂、体育馆、影剧院等建筑不适宜。
双曲抛物面案例星海音乐厅星海音乐厅位于广州二沙岛,造型奇特的外观,富于现代感,犹如江边欲飞的一只天鹅,与蓝天碧水浑然一体,形成一道瑰丽的风景线。
薄壳结构姓名:张冲班级:建筑学1101405学号:110104501指导老师:彭懿建筑学上的术语。
壳,是一种曲面构件,主要承受各种作用产生的中面内的力。
薄壳结构就是曲面的薄壁结构,按曲面生成的形式分为筒壳、圆顶薄壳、双曲扁壳和双曲抛物面壳等,材料大都采用钢筋和混凝土。
壳体能充分利用材料强度,同时又能将承重与围护两种功能融合为一。
实际工程中还可利用对空间曲面的切削与组合,形成造型奇特新颖且能适应各种平面的建筑,但较为费工和费模板。
薄壳结构的优点是可以把受到的压力均匀地分散到物体的各个部分,减少受到的压力。
新德里荷花教堂新德里荷花教堂这座大教堂外观十分复杂,造型上由一系列半圆球、圆柱体、圆锥和圆环组成,每一部分在设计中都需要进行单独的结构计算,并绘制出一系列相应的浇铸模板图。
在设计这座建筑物之前,据说,它的设计者走遍了整个印度,研究了过去的巴哈教派的建筑风格,最终依据巴哈教派的教义,依据对于崇高和圣洁的象征,设计了这样一座前无古人的新式教堂。
“大荷花”以现代的构思和技术建造了起来,但它同古代的思想却有着千丝万缕的联系。
它被圣徒们所接受,并成为印度新德里的又一处景观。
“大荷花”共由3层花瓣组成,每层9瓣。
外层处有9个入口,被称为入口瓣;中间层向中部弯曲,覆盖着外厅;而内部的9瓣高高耸起,聚成闭合状,仅在中部稍分开,用玻璃钢屋面覆盖形成采光天窗。
当圣徒们走进中央大厅,一片天光分成9条线奔泻而下,整个大厅沐浴在柔和的光线之中,高高的天花板仿佛与天相接,大厅内气氛静穆高洁,形成一派穆斯林世界。
这座教堂于1987年年底完工,被人们称为20世纪的泰姬陵。
白色的花瓣很像悉尼歌剧院的薄壳,所以也有人称它为“悉尼歌剧院第二”。
北京火车站北京火车站北京站占地面积25万平方米。
总建筑面积8万平方米。
车站布局为纵列式,分为到发场、交接场、调车场。
北京站站舍大楼坐南朝北,东西宽218米,南北最大进深124米,建筑面积71054平方米。
薄壳结构概述薄壳结构是一种在工程和建筑中常见的结构形式,它由一张或多张薄而平面的结构单元组成。
薄壳结构在不同领域由于其优越的性能和美观的外观而得到广泛应用。
本文将介绍薄壳结构的定义、分类、设计原理和应用领域。
定义和分类薄壳结构是由薄板材料制成的,与厚实结构相比,其高度相对较小。
薄壳结构具有较大的自由度,可以采用一系列不同的形状和构造,如圆形、抛物形、双曲形等。
根据结构的形状和材料的不同,薄壳结构可分为以下几类:1.圆形薄壳:由圆盘形状的薄壳构成,常用于天幕结构、舞台盖顶等场合。
2.球面薄壳:由球面形状的薄壳构成,常用于建筑物的顶部、体育场馆等场合。
3.抛物面薄壳:由抛物面形状的薄壳构成,常用于大跨度建筑、教堂拱顶等场合。
4.双曲面薄壳:由双曲面形状的薄壳构成,常用于空中展览中心、会议厅等场合。
设计原理薄壳结构的设计需要考虑以下几个主要原理:1.材料强度:薄壳结构的材料应具备足够的强度以承受外部荷载。
常见的薄壳结构材料包括钢、混凝土和玻璃纤维增强塑料等。
2.几何形态:薄壳结构的几何形态是决定其性能的关键因素,不同的形态会影响结构的刚度和承载能力。
设计师需要根据具体情况选择合适的形态,并进行优化设计。
3.接缝和连接:薄壳结构通常由多个结构单元组成,接缝和连接的设计需要考虑结构的整体性能和稳定性。
合理的接缝和连接设计可以提高结构的抗震和承载能力。
4.荷载分布:薄壳结构的荷载分布是指外部力在结构表面上的分布情况。
合理的荷载分布可以提高结构的承载能力和稳定性。
应用领域薄壳结构由于其独特的设计和美观的外观,在各个领域都得到了广泛的应用。
以下是几个常见的应用领域:1.建筑领域:薄壳结构常用于建筑物的屋顶、门厅、展览馆等部位。
其具有较大的跨度和较小的重量,能够提供开放、透明和自由的空间体验。
2.体育场馆:薄壳结构在体育场馆的设计中得到了广泛应用,例如奥林匹克体育场和溜冰场等。
其特点是能够提供大跨度的无柱空间,满足观众需求,并具有良好的视野和声学性能。
第一章——xx悬挑结构1、梁的分类:①按材料分类:石梁、木梁、钢梁、钢筋混凝土梁、预应力混凝土梁、钢—钢筋混凝土混合梁等②按截面形式分类:石梁的截面一般为矩形;木梁的截面为圆形和矩形;钢梁为工字形、槽形,跨度较大时为箱形;钢筋混凝土梁有扁梁、花篮梁、T型梁、工字梁、空腹梁;较大跨度的梁有双坡薄腹梁、鱼腹梁、空腹梁③按支座约束条件分类:静定梁、超静定梁(根据跨数不同,有单跨静定梁、单跨超静定梁、多跨静定梁、多跨超静定梁)第二章——桁架结构1、桁架结构:①组成杆件:斜腹杆、上弦杆、竖腹杆、下弦杆2、屋架结构形式:①按使用材料的不同,可以分为:木屋架、钢—木组合屋架、钢屋架、轻型钢屋架、钢筋混凝土屋架、预应力混凝土屋架、钢筋混凝土—钢组合屋架等②按屋架外形的不同,有:三角形屋架、梯形屋架、抛物线屋架、折线形屋架、平行弦屋架等③根据结构受力的特点及材料性能的不同,有:桥式屋架、无斜腹杆屋架或刚接桁架、立体桁架3、适用范围:①木屋架:形式有豪式木屋架,一般分三角形和梯形。
三角形屋架的内力分布不均匀,支座处大而跨中小。
一般适用于跨度在18m以内的建筑中。
三角形屋架的坡度大,适用于屋面材料为黏土瓦、水泥瓦及小青瓦等要求排水坡度较大的情况②钢木组合屋架:形式有豪式屋架、芬克式屋架、梯形屋架、下折式屋架。
适用跨度视屋架结构的外形而定,对于三角形屋架,其跨度一般为12~18m,对于梯形、折线形等多边形屋架,跨度可达18~24m③钢屋架:形式有三角形钢屋架、梯形钢屋架、矩形(平行弦)钢屋架。
三角形屋架用于屋面坡度较大的屋盖结构中;梯形屋架用于屋面坡度较小的屋盖中;矩形屋架不宜用于大跨度建筑中,多用于托架或支撑系统。
④轻型屋架:有三角形屋架、。
三角拱屋架、梭形屋架。
三角形屋架和三铰拱屋架用于斜坡屋面,屋面坡度通常取;梭形屋架的屋面坡度较平坦,取;轻型钢屋架适用于跨度<=18,柱距4~6m,设置有起重量<=50kN的中、轻级工作制桥式吊车的工业建筑和跨度<=18m的民用房屋⑤混凝土屋架:有梯形屋架、折线形屋架、拱形屋架、无斜腹杆屋架等。
第五章薄壁空间结构第一节概述一.薄壁空间结构发展简况二.曲面理论相关知识1.基本概念:(1)薄壳:壳体结构一般是由上、下两个几何曲面构成的空间薄壁结构。
当δ不随坐标位置的不同而改变时,称为等厚壳;反之,称为变厚度壳。
两个曲面之间的距离称为壳体的厚度(δ),当δ与壳体的其它尺寸(如曲率半径R,跨度L等)小的多时,一般要求δ/R≤1/20,(鸡蛋壳的δ/R≈1/50)称为薄壳结构。
现代建筑中所采用的壳体一般为薄壳结构。
(2)中曲面:等分壳体各点厚度的几何曲面称为壳体的中曲面。
薄壳结构,可以仅以中曲面的方程描述整个结构的变形及内力。
(3)高斯曲率:曲面上任意一点上的高斯曲率等于该点两主曲率的乘积:K=k1k2=1/R1R2A.正高斯曲率:K=k1k2>0B.负高斯曲率:K=k1k2<0C.零高斯曲率:K=k1k2=0,即其中一个主方向为直线。
(4)矢高、矢率:中曲面覆盖的底面的短边为A,如图示:f/a称为矢率。
矢率很小的壳体称为扁壳,矢率较大着称为陡壳。
在混凝土结构中,f/a≤1/5时,称为扁壳。
三.薄壳结构的内力1.薄壳的内力:如图:对于任意壳体结构,在荷载作用下,壳体的内力可以分为两类――作用于中曲面内的和作用于中曲面外的弯曲内力。
弯曲内力是由于中曲面的曲率和扭率改变而产生的,它包括弯矩、横剪力、扭矩;理想的薄膜没有抵抗弯曲和扭曲的能力,在荷载的作用下只产生正向应力N 和顺剪力;因此,设计中应选取合理的曲面形式,使壳体内的弯曲内力小到足可以忽略的程度。
2.可以忽略弯曲内力的条件:A。
薄壁δ/R≤1/20,并同时满足B.壳体具有均匀、连续变化的曲面;C.壳体上的荷载是均匀连续的;D.壳体的各边界能够沿着曲面的法线方向自由移动,支座只产生阻止曲面沿切线方向位移的反力。
由于壳体主要承受薄膜内力,弯曲内力很小,且薄膜内力沿壳壁是均匀分布的,所以,壳体结构可以充分发挥材料强度,做到壳体薄,自重轻而强度大。