移项
ax-cx=d-b
合并同类项
(a-c)x=d-b
系数化为1
练习:解下列方程:
(1) 5x-7=2x-10;
解:移项,得
(2) -0.3x+3=9+1.2x.
解:移项,得
5x-2x=10+7,
合并同类项,得
-0.3x-1.2x=9-3,
3x=-3,
-1.5x=6,
系数化为1, 得
系数化为1,得
x=-1.
5.2
解一元一次方程
.
学习目标
1.理解移项的意义,掌握移项的方法.
2.学会运用移项解形如“ax+b=cx+d”的一元一次方
程.
3.通过分析实际问题中的数量关系,建立方程解决问
题,进一步认识方程模型的重要性.
目录
01 情 境 导 入
02 新 知 初 探
03 当 堂 达 标
04 课 堂 小 结
PART 01
情境导入
情境导入
把一些图书分给某班学生阅读,若每人分3本,则余20本;若每人分4本,则
还缺25本.这个班有多少学生?
解:设这个班有x名学生,
那么每人分3本时,图书总数是
每人分4本时,图书总数是
则可列方程
3x+20
=
3x+20
4;
你能解这个方程吗?显
然解这个方程的第一步
不是合并同类项,因为
1. 通过移项将下列方程变形,正确的是(
)
C
A. 由5x-7=2,得5x=2-7
B. 由6x-3=x+4,得3-6x=4+x
C. 由8-x=x-5,得-x-x=-5+8
D. 由x+9=3x-1,得3x-x=-1+9