机械原理 连杆机构
- 格式:ppt
- 大小:1.93 MB
- 文档页数:68
机械原理平面连杆机构及设计平面连杆机构是一种最为基本的机械结构,由于其结构简单、运动可靠等特点,被广泛应用于各种机械设备中。
本文将对平面连杆机构进行介绍,并探讨其设计原理。
平面连杆机构是由至少一个定点和至少三个连杆组成的机构。
定点为固定参考点,连杆是由铰链连接的刚性杆件。
连杆可以分为连杆和曲柄,连杆连接在定点上,曲柄则旋转。
平面连杆机构的运动由这些连杆的位置和相互连接方式决定。
平面连杆机构的设计原理基于以下几个方面:1.运动分析:在设计平面连杆机构之前,首先需要进行运动分析,确定所需的运动类型。
运动类型可以是旋转、平移、摆动、滑动等。
通过运动分析,可以确定连杆的长度和相互连接的方式。
2.运动性能:平面连杆机构的优点是运动可靠,但运动性能也是需要考虑的重要因素。
例如,设计中需要考虑速度、加速度、力和力矩等参数,以满足机构的运动要求。
3.静力学分析:平面连杆机构在工作过程中可能会受到外力的作用,因此需要进行静力学分析。
静力学分析可以确定机构的力矩和应力,从而确定设计的合理性。
4.运动合成:在进行平面连杆机构的设计过程中,需要进行连杆的运动合成。
运动合成是指通过选择适当的连杆长度和连接方式,实现所需的运动类型。
5.运动分解:运动分解是指将合成的运动分解为各个连杆的运动。
通过运动分解,可以确定每个连杆的运动规律,从而进行设计。
当以上原理得到了充分的了解和运用后,可以进行平面连杆机构的具体设计。
具体的设计包括以下几个步骤:1.确定所需的运动类型:根据机械设备的需求,确定所需的运动类型,例如旋转、平移、摆动等。
2.运动分析:对机构进行运动分析,确定连杆的位置和连接方式。
根据机构的运动要求和外力作用,确定连杆的长度。
3.动力学分析:进行动力学分析,确定机构运动时的力学参数,如速度、加速度、力和力矩等。
4.运动合成与分解:根据所需的运动类型,进行运动合成和分解,确定连杆的运动规律。
5.结构设计:根据上述分析和计算结果,进行结构设计。
机械原理第8章连杆机构及其传动特点●考纲●1.铰链四杆机构的基本类型,演化和应用●2.曲柄存在条件、行程速比系数、传动角、压力角、死点●2.图解法设计四杆机构●笔记●8.1连杆机构及其传动特点●连杆机构的共同特点是其主动件的运动都要经过一个不与机架直接相连的称之为连杆(coupler)的中间构件,才能传动至从动件,故而称其为连杆机构(linkage mechanism)。
●连杆机构的传动特点●连杆机构具有以下一些传动特点:●1)连杆机构中的运动副一般均为低副(故又称其为低副机构,lower pairmechanism)。
其运动副元素为面接触,压强较小,承载能力较大,润滑好,磨损小,加工制造容易,且连杆机构中的低副一般是几何封闭,对保证工作的可靠性较为有利。
●2)在连杆机构中,在主动件的运动规律不变的条件下,可用改变各构件的相对长度来使从动件得到不同的运动规律。
●3)在连杆机构中,连杆上各点的轨迹是各种不同形状的曲线(称为连杆曲线,coupler-point curve),其形状随着各构件相对长度的改变而改变,故连杆曲线的形式多样,可用来满足一些特定工作的需要。
●此外连杆机构还可以很方便的达到改变运动的传递方向,扩大行程,实现增力和远距离传动等目的。
●连杆机构也存在如下一些缺点:●1)由于连杆机构的运动必须经过中间构件进行传递,因而传动路线较长,易产生较的误差累积,同时也使机械效率降低。
●2)在连杆机构运动中,连杆及滑块所产生的惯性力难以用一般平衡方法加以消除而连杆机构不宜用于高速运动。
●8.2平面四杆机构的基本类型及应用●1.铰链四杆机构的类型及应用●(1)铰链四杆运动链周转副存在的条件平面饺链四杆机构中曲柄存在的前提是其运动副中必有周转副存在●转动副为周转副的条件是:●1)最短杆长度+最长杆长度≤其他两杆长度之和 (杆长条件)l_{min}+l_{max}≤l_i+l_j●2)组成该周转副的两杆中必有一个为最短杆(最短杆两端最易产生周转副)●此外,为了使四个杆能够装配成封闭的运动链,最长杆长度必须小于其他三个杆长度之和●I_{max} < l _{m in}+l_i+ l_j●(2)较链四杆机构的基本类型●满足杆长条件l_{min}+l_{max}≤l_i+l_j●1).l_{min}+l_{max}<l_i+l_j●①最短杆为连架杆,曲柄摇杆机构●②最短杆为机架,双曲柄机构●③最短杆为连杆,双摇杆机构●2).l_{min}+l_{max}=l_i+l_j●①两两相邻杆长度相等,泛菱形结构●长杆为机架,曲柄摇杆机构●短杆为机架,双曲柄机构●两相邻杆重叠时,一二杆机构●②两两相对杆长度相等时,双曲柄机构●两两相对杆平行,平行四边形结构●平行四边形结构三个特点●①两曲柄以相同角速度同向转动;●②连杆作平动;●③连杆上的任一点的轨迹均是以曲柄长度为半径的圆。
机械原理连杆机构的应用1. 引言机械原理是工程学中的一门基础课程,它研究的是机械工程中各种机械部件运动与力学性能的基本原理和方法。
连杆机构是机械原理中的一个重要内容,它由多个刚体连接而成,用于将旋转运动转化为直线运动或者将直线运动转化为旋转运动。
本文将探讨连杆机构的应用领域及其在一些具体行业中的运用。
2. 连杆机构的基本原理连杆机构由连杆和连杆的连接副构成,常见的连杆有曲柄、摇杆、滑块等。
连杆机构的运动特点主要包括以下几个方面: - 连杆的长度和角度决定了机构的运动轨迹; - 连杆可以传递和转换动力; - 连杆的长度和角度对机构的性能和运动速度有影响; - 通过改变连杆的连接方式和结构,可以实现不同的运动规律和功能。
3. 连杆机构的应用领域连杆机构作为一种基本的运动转换机构,在工程学中有广泛的应用。
以下是一些常见的应用领域:3.1 汽车工业连杆机构在汽车工业中起着关键作用,主要应用于发动机和悬挂系统。
在发动机中,连杆机构将活塞的上下运动转化为曲轴的旋转运动,从而驱动汽车前进。
而在悬挂系统中,连杆机构用于连接车轮和车身,通过调节连杆的长度和角度来实现车身的稳定性和操控性。
3.2 机械制造在机械制造领域,连杆机构常常用于实现复杂的运动转换和工艺操作。
例如,在机床加工中,连杆机构能够将旋转运动转化为直线运动,实现工件的切削加工。
此外,连杆机构还被广泛运用于起重机械、输送设备等工程机械的设计和制造过程中。
3.3 机器人领域机器人是现代工业生产中不可或缺的一部分,而连杆机构在机器人的运动机构中占有很重要的地位。
机器人的各种关节和手臂动作都是通过引入连杆机构实现的,使得机器人能够具备多自由度的灵活运动,从而适应不同的工作环境和任务。
3.4 传输系统连杆机构在传输系统中也有广泛的应用。
比如,在工业生产中,连杆机构可以用来传输物料,实现物料的输送、分拣和定位等功能。
此外,连杆机构还可以应用于流水线装配系统、飞行器起落架等领域。
机械原理——⼏种著名的连杆机构
连杆机构机械的组成部分中的⼀类,指由若⼲(两个以上)有确定相对运动的构件⽤低副(转动副或移动副)联接组成的机构。
连杆在是⼏种有哪些应⽤呢,我们⼀起来看以下吧。
1. ⽡特连杆,⽡特连杆是由⽡特发明的,没错就是那个特别流弊改良了蒸汽机的⽡特。
在⽡特连杆中,移动的中点⾃由度被限制,只得做近似直线运动。
最早是⽤在⽡特蒸汽轮机上的,后来也⽤做汽车的悬架结构中了。
2. Jansen 连杆是由Jansen发明的,⽤于模拟平稳⾏⾛,Jansen利⽤这种连杆制造了著名的海滩巨兽,这种连杆兼具美学价值和技术优势,通过简单的旋转输⼊就可模仿⽣物⾏⾛运动,这种连杆已经⽤于⾏⾛机器⼈和步态分析。
3. 切⽐雪夫连杆机构经常被⽤于模拟机器⼈的⾏⾛。
4. 波塞利连杆机构
波塞利连杆是第⼀个真正把旋转运动转化为绝对直线运动的平⾯连杆机构,。
机械原理与设计平面连杆机构引言连杆机构是机械工程中非常重要的一类机构,广泛应用于各种机械装置中。
平面连杆机构是其中最简单、常见的一种连杆机构。
本文将介绍机械原理与设计平面连杆机构的基本概念、工作原理及设计要点。
一、连杆机构的基本概念连杆机构是指由刚性杆件连接而成的机械系统,它具有一定的自由度和特定的运动特性。
平面连杆机构是指所有杆件均在同一平面内运动的连杆机构。
平面连杆机构由连杆、铰链和主动副组成。
连杆:连杆是连接其他杆件的刚性杆件,具有一定的长度和形状。
铰链:铰链是连接连杆的关节,它允许连杆相对旋转,保持一定的约束。
主动副:主动副是指能够驱动整个机构运动的关节,通常由电机或气动装置驱动。
二、平面连杆机构的工作原理平面连杆机构的工作原理是利用连杆的长度、角度和铰链的位置来实现特定的运动。
在平面连杆机构中,主要有以下几种常见的运动形式:1.顺序运动:当主动副驱动时,各个连杆按照一定的顺序依次运动。
这种运动形式常见于内燃机的活塞连杆机构。
2.并联运动:当多个连杆同时受到主动副驱动时,它们以同步的方式进行运动。
这种运动形式可以用来实现机械手臂等装置的运动。
3.逆运动:当主动副驱动时,连杆和铰链的位置发生变化,使机构实现逆向运动。
这种运动形式常见于一些特殊装置的设计。
平面连杆机构的工作原理和运动形式可以通过机械原理的分析和运动学的计算来实现。
其中,机械原理用来推导连杆运动的基本方程,而运动学则用来分析连杆机构的运动特性和运动关系。
三、平面连杆机构的设计要点在设计平面连杆机构时,需要考虑以下几个要点:1.运动要求:根据具体的工作要求,确定机构需要实现的运动形式和工作速度等指标。
2.运动范围:根据工作空间和杆件的长度等约束条件,确定连杆机构的运动范围。
3.结构强度:根据承载力和杆件的材料等因素,设计连杆机构的结构强度和刚度,以确保机构的正常工作。
4.运动平稳性:通过运动学计算和动力学分析,确定机构的运动是否平稳,以及如何减小振动和冲击力。