中考特训卷第四章统计与概率单元检测卷
- 格式:docx
- 大小:238.16 KB
- 文档页数:15
第四章 统计与概率 单元检测卷(时间:120分钟 总分:120分)一、选择题(每小题3分,共30分)1.下列调查中,最适宜采用全面调查(普查)的是( D )A .调查一批灯泡的使用寿命B .调查新安江流域水质情况C .调查浙江卫视某栏目的收视率D .调查全班同学的身高2.一次中考考试中考生人数为5万名,从中抽取2000名考生的中考成绩进行分析,在这个问题中样本指的是( B )A .2000B .2000名考生的中考成绩C .5万名考生的中考成绩D .2000名考生3.已知10个数据:63,65,67,69,66,64,65,67,66,68,对这些数据编制频数分布表,那么数据在64.5~67.5之间的频率为( B )A .0.5B .0.6C .5D .64.某文艺汇演中,10位评委对节目A 的评分为a 1,a 2,…,a 10,去掉其中一个最高分和一个最低分得到一组新数据b 1,b 2,…,b 8,这两组数据一定相同的是( B )A .平均数B .中位数C .众数D .方差 5.在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( D )A .14B .13C .37D .476.对甲、乙、丙、丁四个机器人进行射击测试,每个机器人10次射击成绩的平均数均是9.5环,方差分别为S 2甲 =0.52,S 2乙 =0.79,S 2丙 =0.59,S 2丁 =0.8,则成绩最稳定的是( A ) A .甲 B .乙 C .丙 D .丁7.某校七年级开展“阳光体育”活动,对爱好乒乓球、足球、篮球、羽毛球的学生人数进行统计,得到如图所示的扇形统计图.若爱好羽毛球的人数是爱好足球的人数的4倍,若爱好乒乓球的人数是21人,则下列正确的是( D )A .被调查的学生人数为80人B .喜欢篮球的人数为16人C .喜欢羽毛球的人数为30人D .喜欢足球的扇形的圆心角为36°8.某校组织社团活动,小明和小刚从“数学社团”、“航模社团”、“文艺社团”三个社团中,随机选择一个社团参加活动,两人恰好选择同一个社团的概率是( A )A .13B .23C .19D .299.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5 m ,宽为4 m 的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了如图②所示的折线统计图,由此他估计不规则图案的面积大约为( B )A.6 m2B.7 m2C.8 m2D.9 m210.10个人去钓鱼,共钓到3条鱼,假设每个人钓到鱼的可能性相同,那么这3条鱼由同一个人钓到的概率是( C )A.130B.310C.1100D.1 1000二、填空题(每小题4分,共24分)11.一个容量为40的样本的最大值为35,最小值为10,若取组距为4,则应该分的组数为__7__.12.已知数据x1,x2,…,x n的平均数是2,方差是3,则一组新数据x1+8,x2+8,…,x n+8的平均数是__10__,方差是__3__.13.某学校五个绿化小组一天植树的棵数如下:10,12,11,10,8,那么这组数据的中位数是__10__.14.某公司欲招聘一名员工,对甲进行了笔试和面试,其笔试和面试的成绩分别为80分和90分,若按笔试成绩占40%,面试成绩占60%计算综合成绩,则甲的综合成绩为__86__分.15.在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为__1____.16.甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a,b,则a能被b整除的概率为__718__.三、解答题(共66分)17.(6分) 有A,B两组卡片,卡片上除数字外完全相同,A组有三张,分别标有数字1,2,-3.B组有二张,分别标有数字-1,2.小明闭眼从A组中随机抽出一张,记录其标有的数字为x,再从B组中随机抽出一张,记录其标有的数字为y,这样就确定点P的一个坐标为(x,y).(1)用列表或画树状图的方法写出点P的所有可能坐标;(2)求点P落在第一象限的概率.解:(1)画树状图为:共有6种等可能的结果数,它们是(1,-1),(1,2),(2,-1),(2,2),(-3,-1),(-3,2);(2)P 点在第一象限的结果有2种,所以点P 落在第一象限的概率=26 =13.18.(8分)某校开展以“我们都是追梦人”为主题的校园文化节活动,活动分为球类、书画、乐器、诵读四项内容,要求每位学生参加其中的一项.校学生会为了解各项报名情况,随机抽取了部分学生进行调查,并对调查结果进行了统计,绘制了如下统计图(均不完整):请解答以下问题:(1)图1中,“书画”这一项的人数是________. (2)图2中,“乐器“这一项的百分比是________,“球类”这一项所对应的扇形的圆心角度数是________.(3)若该校共有2200名学生,请估计该校参加“诵读”这一项的学生约有多少人. 解:(1)30人; (2)10%,108°; (3)880人.19. (8分) 某校八(1)班开展男生、女生垫排球比赛活动,每队各派5名同学参加,如表是男生队和女生队5名同学的比赛数据(单位:个):1号 2号 3号 4号 5号 男生队 100 98 110 89 103 女生队881009512097(1)计算两队的平均成绩;(2)从成绩稳定性角度考虑,哪队成绩稍好,请说明理由. 解:(1)x 男=100+98+110+89+1035 =100(个),x 女=88+100+95+120+975=100(个);(2)S 2男 =46.8;S 2女 =115.6,∵46.8<115.6,即S 2甲 <S 2女 ,∴男生的成绩更稳定,男生队成绩稍好. 20.(10分) 为了解某校八年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成了不完整的频数分布表和频数分布直方图.请根据频数分布所提供的信息,完成下列问题: (1)求表中a ,b 的值;(2)请将下列频数分布直方图补充完整;(3)该校八年级共有1200名学生,估计该年级立定跳远成绩在2.0≤x <2.8范围内的学生有多少人?学生立定跳远测试成绩频数分布表分组频数 频数 1.2≤x <1.6 a 1.6≤x <2.0 12 2.0≤x <2.4 b 2.4≤x <2.810解:(1)a =8,b =20;(2)由(1)知,b =20,补全频数分布直方图略;(3)1200×20+1050 =720(人),估计该年级立定跳远成绩在2.0≤x <2.8范围内的学生有720人.21.(10分)一个不透明的口袋中装有6个红球、9个黄球、3个白球,这些球除颜色外其他均相同.从中任意摸出一个球.(1)求摸到的球是白球的概率;(2)如果要使摸到白球的概率为14 ,需要在这个口袋中再放入多少个白球?解:(1)P (摸到白球)=318 =16;(2)设需要在这个口袋中再放入x 个白球,得:3+x 18+x =14,解得:x =2.22.(12分) 在抗击新型冠状病毒疫情期间,各学校在推迟开学时间的同时开展“停课不停学“的教学模式,针对远程网络教学,某学校为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.(1)本次调查的人数有________人? (2)请补全条形图;(3)“在线答疑”在扇形图中的圆心角度数为________.(4)小明和小强都参加了远程网络教学活动,请求出小明和小强选择同一种学习方式的概率为________.解:(1)25÷25%=100(人);(2)在线答题的人数有:100-25-40-15=20(人),补全条形图略;(3)360°×20100=72°;(4)记四种学习方式:在线阅读、在线听课、在线答疑、在线讨论,分别为A ,B ,C ,D ,则可画树状图如下:小明和小强选择同一种学习方式的概率是416 =14.23.(12分) 密码锁有三个转轮,每个转轮上有十个数字:0,1,2,…,9.小黄同学是9月份中旬出生,用生日“月份+日期”设置密码:9××小张同学要破解其密码:(1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是________.(2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率;(3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的所有可能个数.解:(1)1或2;(2)所有可能的密码是:911,912,913,914,915,916,917,918,919,920;能被3整除的有912,915,918,;密码数能被3整除的概率310.(3)小张同学是6月份出生,6月份只有30天,∴第一个转轮设置的数字是6,第二个转轮设置的数字可能是0,1,2,3;第三个转轮设置的数字可能,0,1,2,…9(第二个转轮设置的数字是0时,第三个转轮的数字不能是0;第二个转轮设置的数字是3时,第三个转轮的数字只能是0;)∴一共有9+10+10+1=30,∴小张生日设置的密码的所有可能个数为30种.(也可以直接根据6月份只有30天,有30个不同的数字,得出设置的密码的所有可能个数为30种)。
第四章 统计与概率检测题【本检测题满分:120分,时间:120分钟】一、 选择题(每小题3分,共30分)1.某校开展形式多样的“阳光体育”活动,七(3)班同学积极响应,全班参与,晶晶绘制了该班同学参加体育项目情况的扇形统计图(如图所示),由图可知参加人数最多的体育项目是( )A .排球B .乒乓球C .篮球D .跳绳2.2012年12月份,某市总工会组织该市各单位参加“迎新春长跑活动”,将报名的男运动员分成3组:青年组、中年组、老年组,各组人数所占比例如图所示,已知青年组有120人,则中年组与老年组人数分别是( )A. 30,10B. 60,20C. 50,30D.60,10 3. 如图是杭州市区人口的统计图,则根据统计图得出的下列判断,正确的是( ) 、A.其中有3个区的人口数都低于40万 B.只有1个区的人口数超过百万C.上城区与下城区的人口数之和超过江干区的人口数D.杭州市区的人口数已超过600万第3题图 第4题图第1题图老年人10%青年人60%中年人30%第2题图10203040506070809012345678某班学生1~8月课外阅读数量折线统计图3670585842287583本数月份123456784.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图所示的折线统计图,下列说法正确的是( ) A.极差是47 B.众数是42 C.中位数是58D.每月阅读数量超过40的有4个月5.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第二局的输者是( )A.甲B.乙C.丙D.不能确定 6. 要反映台州某一周每天的最高气温的变化趋势,宜采用( ) A .条形统计图 B .扇形统计图 C .折线统计图 D .频数分布直方图7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( ) A.54 B.53C.52 D.51 8. 从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是,摸到红球的概率是,则( ) A.B.C.D.9.在一张边长为的正方形纸上做扎针随机试验,纸上有一个半径为的圆形阴影区域,则针头扎在阴影区域内的概率为( ) A .B .C .D .10.做重复试验:抛掷同一枚啤酒瓶盖次,经过统计得“凸面向上”的频率约为,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为( )二、 填空题(每小题3分,共24分)11.小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为 .12.我市初中毕业男生体育测试项目有四项,其中“立定跳远”“1 000米跑肺活量测试”为必测项目,另外从“引体向上”或“推铅球”中选一项测试. 小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试项目的概率是.13. 如图所示,A 是正方体小木块(质地均匀)的一个顶点,将木块随机投掷在水平桌面上,则稳定后A 与桌面接触的概率是 . 14.小芳掷一枚硬币次,有次正面向上,当她掷第次时,正面向上的概率为______.15.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.16.下表为某乡村100名居民的年龄分布情况:年龄 0~10 10~20 20~30 30~40 40~50 50~60 60~70 70~80 80~90 人数8 10 12 12 14 19 1375如果老人以60岁为标准,那么该村老人所占的比例约是________%. 17.如图所示,在两个同心圆中,三条直径把大圆分成六等份, 若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部 分的概率是_________.18.一个口袋里有25个球,其中红球、黑球、黄球若干个, 从口袋中随机摸出一球记下其颜色,再把它放回口袋中 摇匀,重复上述过程,共试验200次,其中有120次摸 到黄球,由此估计袋中的黄球约有_____个.三、解答题(共66分)第17题图19.(8分)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质 量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未 给出).请你根据图中提供的信息,解答下列问题: (1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数; (3)请估计该市这一年(365天)达到优和良的总天数.20.(8分)学习成为商城人的时尚,义乌市新图书馆的启用,吸引了大批读者.有关部门统计了2011年10月至2012年3月期间到市图书馆的读者的职业分布情况,统计图如下:(1)在统计的这段时间内,共有 万人到市图书馆阅读,其中商人所占百分比是 ,并将条形统计图补充完整;(2)若今年4月到市图书馆的读者共28 000名,估计其中约有多少名 职工? 21(8分)如图所示,有一个转盘被分成4个相同的扇形,颜色分为红、 绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率:(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色. 22.(8分)有形状、大小和质地都相同的四张卡片,正面分别写有和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A ,B ,C ,D 表示).红 红 黄 绿第21题图第19题图第20题图(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜;若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利?为什么?23.(8分)在一个不透明的盒子里,装有三个分别写有数字的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树状图的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于10.24.(8分)“学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:A.打扫街道卫生;B.慰问孤寡老人;C.到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容.(1)若随机选一个年级的学生代表和一项活动内容,请你用画树状图法表示所有可能出现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率.25.(8分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,一共做了60次试验,试验的结果如下:朝上的点数 1 2 3 4 5 6出现的次数7 9 6 8 20 10(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么?26.(10分)小明和小刚做摸纸牌游戏.如图所示,有两组相同的纸牌,每组两张,牌面数字分别是2和3,将两组牌背面朝上,洗匀后从每组牌中各摸出一张,称为一次游戏.当两张牌的牌面数字之积为奇数,小明得2分,否则小刚得1分.这个游戏对双方公平吗?请说明理由.第四章统计与概率检测题参考答案1.C 解析:由扇形统计图可知篮球所占的百分比最大,故参加人数最多的体育项目是篮球.2.B 解析:总人数为120÷60%=200.中年组人数为200×30%=60,老年组人数为200×10%=20. 故选B .3.D 解析:只有上城区人口数低于40万,故A 选项错误; 萧山区、余杭区两个区的人口数超过100万,故B 选项错误; 上城区与下城区的人口数之和低于江干区的人口数,故C 选项错误; 杭州市区的人口数已超过600万,故D 选项正确. 故选D .4.C 解析:最大值是83,最小值是28,故极差为83-28=55,故A 选项不正确; 8个数据中出现次数最多的是58,即众数是58,故B 选项不正确;8个数据从小到大排列为28,36,42,58,58,70,75,83,所以中位数为58,故C 选项正确; 每月阅读数量超过40的有6个月,故D 选项不正确. 5. C 解析:设总共赛了局,则有,说明甲、乙、丙三人共赛了5局.而丙当了3次裁判,说明丙赛了两局,则丙和甲,丙和乙各赛了一局,那么 甲和乙赛了3局.甲和乙同赛不可能出现在任何相邻的两局中,则甲、乙两人比赛在第一、三、五局中,第三局丙当裁判,则第二局中丙输了.6.C 解析:要反映最高气温的变化趋势,用折线统计图较直观. 7.B 解析:把三名男生分别记为,,,两名女生分别记为,. 产生的所有结果为,共10个.选出的恰为一男一女的结果有,,共6个.所以选出的恰为一男一女的概率是.531068.B 解析:因为袋中只有红球,故摸到白球是不可能事件,摸到红球是必然事件, 所以.9.C 解析:正方形的面积为, 圆形阴影区域的面积为, 针头扎在阴影区域内的概率为.10.D 解析:在大量重复试验下,随机事件发生的频率可以作为概率的估计值,因此抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为.11.144° 解析:由条形统计图可知最喜爱打篮球的学生有20人,共有50人,所占的百分比是40%,所以转化为扇形统计图后,最喜爱打篮球的人数所在扇形区域的圆心角的度数为144°.12.14解析:分别用A ,B 代表“引体向上”与“推铅球”,画树状图如图所示.∵ 共有8种等可能的结果,小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试项目的有2种情况, 第12题答图 ∴ 小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试项目的概率是2184. 13. 21解析:将木块随机投掷在水平桌面上,正方体的六个面都可能与桌面接触,因为A 是正方体小木块三个面的交点,所以当这三个面中的任一面与桌面接触时,A 都与桌面接触.所以P (A 与桌面接触)= =21. 14.21 解析:掷一枚硬币正面向上的概率为21,概率是个固定值,不随试验次数的变化而变化.15.45解析:在圆、等腰三角形、矩形、菱形、正方形5种图形中,只有等腰三角形不是中心对称图形,所以抽到有中心对称图案的卡片的概率是45.16.25 解析:∵ 60岁以上的老人共有,∴ 该村老人所占的比例约是.17.21解析:由图可知阴影部分的面积是大圆面积的一半,所以豆子落在阴影部分的概率是21. 18.15 解析:∵ 口袋里有25个球,试验200次,其中有120次摸到黄球, ∴ 摸到黄球的频率为,∴ 袋中的黄球约有.19.解:(1)∵ 扇形统计图中空气质量为良所占比例为64%, 条形统计图中空气质量为良的天数为32,∴ 被抽取的总天数为32÷64%=50.(2)轻微污染天数是50﹣32﹣8﹣3﹣1﹣1=5, 扇形统计图中表示优的扇形的圆心角度数是836057.650⨯︒=︒, 条形统计图如图所示. 第19题答图 (3)∵ 样本中优和良的天数分别为8,32, ∴ 这一年(365天)达到优和良的总天数约为83236529250+⨯=. 20.解:(1)4÷25%=16, 2÷16×100%=12.5%. 条形统计图如图所示 (2)职工约有28(名).21.解:转一次转盘,可能结果有4种:红、红、绿、黄,并且各种结果发生的可能性相等. (1)(指针指向绿色)14; (2)(指针指向红色或黄色)34; (3)(指针不指向红色)12. 22.解:(1)列表如下:第二次 第一次ABCDA(A,B)(A,C)(A,D)B (B,A ) (B,C) (B,D)C (C,A ) (C,B) (C,D) D(D,A )(D,B)(D,C)第20题答图所有情况有12种:.(2)游戏不公平.这个规则对小强有利.理由如下: ∵61122=,=651210=,,∴ 这个规则对小强有利. 23.解:树状图如下:(1)13; (2)49. 24.解:(1)画树状图如下:(2)九年级学生代表到社区进行义务文艺演出的概率为2163P ==. 25.解:(1)“3点朝上”的频率是101606=;“5点朝上”的频率是316020=.(2)小颖的说法是错误的.因为“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大, 只有当试验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近. 小红的说法也是错误的.因为事件的发生具有随机性,所以“6点朝上”的次数不一定是100次.26.分析:本题考查了概率的计算与实际应用,利用列表法或树状图法列出两张牌的牌面数字之积的所有等可能结果,利用概率计算公式可求两张牌的牌面数字之积为奇数的概率. 解:第一张牌面上的数字积2 3第二张牌面上的数字2 4 63 6 9∴ P(积为奇数)=,P(积为偶数)=.∴ 小明得分:×2=(分),小刚得分:×1=(分).∵ ≠,∴ 这个游戏对双方不公平.点拨:判断游戏的公平性,关键是计算每个事件的概率,如果概率相等就公平,否则就不公平.本文为《中学教材全解》配套习题,提供给老师和学生无偿使用。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第四章统计与概率单元检测卷(时间:120分钟总分:120分)一、选择题(每小题3分,共30分)1.下列调查适合采用抽样调查的是( B )A.某公司招聘人员,对应聘人员进行面试B.调查一批节能灯泡的使用寿命C.为保证火箭的成功发射,对其零部件进行检查D.对乘坐某次航班的乘客进行安全检查2.一组数据-2,1,1,0,2,1.这组数据的众数和中位数分别是( C )A.-2,0B.1,0C.1,1D.2,13.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( B )A.40,37B.40,39C.39,40D.40,384.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是( D )A.3个都是黑球B.2个黑球1个白球C.2个白球1个黑球D.至少有1个黑球5.某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是( B )A.平均数B.中位数C.方差D.极差6.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为( C )A.27B.23C.22D.187.下列说法正确的是( A )A.若甲、乙两组数据的平均数相同,S2甲=0.1,S2乙=0.04,则乙组数据较稳定B.如果明天降水的概率是50%,那么明天有半天都在降雨C.了解全国中学生的节水意识应选用普查方式D.早上的太阳从西方升起是必然事件8.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( D )A .23B .12C .13D .149.随着时代的进步,人们对PM 2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM 2.5的值y 1(ug /m 3)随时间t(h )的变化如图所示,设y 2表示0时到t 时PM 2.5的值的极差(即0时到t 时PM 2.5的最大值与最小值的差),则y 2与t 的函数关系大致是( B )10.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( A )A .1325B .1225C .425D .12二、填空题(每小题4分,共24分)11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是 13. 12.样本数据-2,0,3,4,-1的中位数是 0 .13.一个袋中装有m 个红球,10个黄球,n 个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是 m +n =10 .14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约 90 千克.15.某机床生产一种零件,在6月6日至9日这4天中出现次品的数量如下表:日期6月6日6月7日6月8日6月9日次品数量(个)102a 若出现次品数量的唯一众数为1,则数据1,0,2,a的方差等于1 2.16.取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m,则数字m使分式方程xx-1-1=m(x-1)(x+2)无解的概率为1 5.三、解答题(共66分)17.(6分)如果一组数据3,2,2,4,x的平均数为3.(1)求x的值;(2)求这组数据的众数.解:(1)由题意知,数据3,2,2,4,x的平均数为3,则(3+2+2+4+x)=3×5,∴x=4;(2)这组数据中2和4均出现了2次,并列最多,所以众数为2和4.18.(8分)一个口袋中放有290个涂有红、黑、白三种色的质地相同的小球,若红球个数是黑球个数的2倍多3个,从袋中任取一个球是白球的概率是1 10.(1)求袋中红球的个数;(2)求从袋中任取一个球是黑球的概率.解:(1)白球的个数为:290×110=29(个),设黑球的个数为x个,则2x+3+x=290-29,解得:x=86,则2x+3=172,答:袋中红球的个数为172个;(2)由(1)得:从袋中任取一个球是黑球的概率为:86 290=43 145.19.(8分)陈老师对他所教的九(1)、九(2)两个班级的学生进行了一次检测,批阅后对最后一道试题的得分情况进行了归类统计(各类别的得分如下表),并绘制了如图所示的每班各类别得分人数的条形统计图(不完整).各类别的得分表得分类别0A:没有作答1B:解答但没有正确3C:只得到一个正确答案6D:得到两个正确答案,解答完全正确已知两个班一共有50%的学生得到两个正确答案,解答完全正确,九(1)班学生这道试题的平均得分为3.78分.请解决如下问题:(1)九(2)班学生得分的中位数是;(2)九(1)班学生中这道试题作答情况属于B 类和C 类的人数各是多少?解:(1)由条形图可知九(2)班一共有学生:3+6+12+27=48人,将48个数据按从小到大的顺序排列,第24、25个数据都在D 类,所以中位数是6分;(2)两个班一共有学生:(22+27)÷50%=98(人),九(1)班有学生:98-48=50(人).设九(1)班学生中这道试题作答情况属于B 类和C 类的人数各是x 人、y 人.由题意,得⎩⎨⎧5+x +y +22=50,0×5+x +3y +6×22=3.78×50,解得⎩⎨⎧x =6,y =17.答:九(1)班学生中这道试题作答情况属于B 类和C 类的人数各是6人、17人.20.(10分)为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为A ,B ,C ,D ,E ,F ,G ,H ,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.(1)求8名学生中至少有三类垃圾投放正确的概率;(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.解:(1)8名学生中至少有三类垃圾投放正确的概率为58; (2)列表如下:21.(10分)我市某中学为庆祝“世界读书日”,响应”书香校园”的号召,开展了“阅读伴我成长”的读书活动.为了解学生在此次活动中的读书情况,从全校学生中随机抽取一部分学生进行调查,将收集到的数据整理并绘制成如图所示不完整的折线统计图和扇形统计图.(1)随机抽取学生共 名,2本所在扇形的圆心角度数是 度,并补全折线统计图;(2)根据调查情况,学校决定在读书数量为1本和4本的学生中任选两名学生进行交流,请用树状图或列表法求这两名学生读书数量均为4本的概率.解:(1)16÷32%=50,所以随机抽取学生共50名,2本所在扇形的圆心角度数=360°×3050=216°;4本的人数为50-2-16-30=2(人),补全折线统计图略;(2)画树状图为:(用1,4分别表示读书数量为1本和4本的学生)共有12种等可能的结果数,其中这两名学生读书数量均为4本的结果数为2,所以这两名学生读书数量均为4本的概率=212=16.22.(12分)某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生,要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整的统计图表:根据统计图表的信息,解答下列问题:(1)直接写出本次调查的样本容量和表中a,b,c 的值;(2)将折线图补充完整;(3)该校现有2000名学生,估计该校参加音乐兴趣班的学生有多少人?解:(1)本次调查的样本容量10÷10%=100(人),b=100-10-30-20=40(人),a=30÷100=30%,c=20÷100=20%;(2)折线图补充略:(3)估计该校参加音乐兴趣班的学生2000×20%=400(人).23.(12分)某中学为了提高学生的综合素质,成立了以下社团:A.机器人,B.围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.解:(1)∴A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷36360=200(人);(2)C项目对应人数为:200-20-80-40=60(人);补图略;(3)1000×60200=300(人);(4)共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)=212=16.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
九年级数学(下)单元评估试卷第四 章统计与概率 (总分: 100 分;时间: 分)姓名学号成绩一、 精心选一选,相信自己的判断!(每题3 分,共 30 分)题号 12345678910答案1 、以下事件中确立事件是()。
A. 掷一个六个面分别标有 1~6 的数字的均匀骰子,骰子停止转动后偶数点向上。
B.从一副扑克牌中随意抽出一张,花色是红桃。
C. 随意选择一个电视频道,正在播放动画片。
D. 在同年出生的 367 名学生中,起码有两人的诞辰相同。
2、要认识全市中学生身高在某一范围内学生所占的比率,需知道相应的()A. 均匀数B.方差C.众数 D.频次散布3、在统计中,样本的方差能够近似地反应整体的( ) A. 均匀状态 B.颠簸大小C.散布规律D.最大值和最小值4、为了判断甲、乙两个小组学生英语口语测试成绩哪一组比较齐整,往常需要知道两构成绩的A. 均匀数B. 方差C. 众数D. 频次散布5、一个口袋中有 3 个红球, 4 个蓝球, 5 个黄球,抽取一个球是红球的概率是( )。
A.1 1 1 1B.4C.D.3566 、掷两枚均匀的六个面分别标有1、 2、3、 4、 5、6 的数字的骰子,同时出现向上的数 字为 6 的概率是()。
1 1 1 1 A.B.C.D.6123637 、两道单项选择题都含有 A 、 B 、 C 、D 四个选项,瞎猜这两道题,起码猜对一道题的概率是( )。
A.1 1 1 5B.4C.D.81688 、转动右图的转盘两次,两次所指数字1之积为奇数,则 A 胜,偶数则 B 胜,则 A 胜 6 2的概率为()。
5341 B.1 1 3A.C.D.42349、以下图是甲、乙两校男、女学生占全校人数的百分比,比较两校女生人数()。
女生 40%女生 40%男生 60%男生 60% A.甲校多于乙校 B.乙校多于甲校C.甲、乙两校相同多D.不可以确立甲校乙校10 、从写有编号1~100 的卡片中,抽出一张卡片,卡片上的数字既是3的倍数又是 4 的倍数的概率是()。
北师大版九年级(下)中考题单元试卷:第4章统计与概率(04)一、选择题(共1小题)1.某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240B.120C.80D.40二、填空题(共1小题)2.为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):选择意向所占百分比文学鉴赏a科学实验35%音乐舞蹈b手工编织10%其他c根据统计图表中的信息,解答下列问题:(1)求本次调查的学生总人数及a,b,c的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.三、解答题(共28小题)3.某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了如图两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“篮球”所对应的圆心角的度数;(3)该校共有2500名学生,请估计全校学生喜欢足球运动的人数.4.某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请补全条形统计图;(2)求出图1中表示文学类书籍的扇形圆心角度数;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?5.某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为,图①中m的值为(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.6.课题小组从某市20000名九年级男生中,随机抽取了1000名进行50米跑测试,并根据测试结果绘制了如下尚不完整的统计图表.等级人数/名优秀a良好b及格150不及格50解答下列问题:(1)a=,b=;(2)补全条形统计图;(3)试估计这20000名九年级男生中50米跑达到良好和优秀等级的总人数.7.某中学号召学生利用假期开展社会实践活动,开学初学校随机地通过问卷形式进行了调查,其中将学生参加社会实践活动的天数,绘制了下列两幅不完整的统计图:请根据图中提供的信息,完成下列问题(填入结果和补全图形):(1)问卷调查的学生总数为人;(2)扇形统计图中a的值为;(3)补全条形统计图;(4)该校共有1500人,请你估计“活动时间不少于5天”的大约有人;(5)如果从全校1500名学生中任意抽取一位学生准备作交流发言,则被抽到的学生,恰好也参加了问卷调查的概率是.8.某校体育社团在校内开展“最喜欢的体育项目(四项选一项)”调查,对九年级学生随机抽样,并将收集的数据绘制成如图两幅不完整的统计图,请结合统计图解答下列问题:(1)求本次抽样人数有多少人?(2)补全条形统计图;(3)该校九年级共有600名学生,估计九年级最喜欢跳绳项目的学生有多少人?9.某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)求本次调查的学生人数;(2)请将两个统计图补充完整,并求出新闻节目在扇形统计图中所占圆心角的度数;(3)若该中学有2000名学生,请估计该校喜爱电视剧节目的人数.10.清明期间,某校师生组成200个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为2至5棵,活动结束后,校方随机抽查了其中50个小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(1)请把条形统计图补充完整,并算出扇形统计图中,植树量为“5棵树”的圆心角是°.(2)请你帮学校估算此次活动共种多少棵树.11.阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为万人次;(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.12.某商场经理对某一品牌旅游鞋近一个月的销售情况进行统计后,绘制了如下统计表与条形图:尺码(码)数量(双)百分比(%)36603037301538a b39402040c541105(1)写出表中a,b,c的值;(2)补全条形图;(3)商场经理准备购进同一品牌的旅游鞋1500双,请根据市场实际情况估计他应该购进38码的鞋多少双?13.随着人民生活水平不断提高,我市“初中生带手机”现象也越来越多,为了了解家长对此现象的态度,某校数学课外活动小组随机调查了若干名学生家长,并将调查结果进行统计,得出如下所示的条形统计图和扇形统计图.问:(1)这次调查的学生家长总人数为.(2)请补全条形统计图,并求出持“很赞同”态度的学生家长占被调查总人数的百分比.(3)求扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数.14.为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.15.为倡导“低碳出行”,环保部门对某城市居民日常出行使用交通方式的情况进行了问卷调查,将调查结果整理后,绘制了如下不完整的统计图,其中“骑自行车、电动车”所在扇形的圆心角是162°.请根据以上信息解答下列问题:(1)本次调查共收回多少张问卷?(2)补全条形统计图,在扇形统计图中,“其他”对应扇形的圆心角是度;(3)若该城市有32万居民,通过计算估计该城市日常出行“骑自行车、电动车”和“坐公交车”的共有多少人?16.某中学初二年级抽取部分学生进行跳绳测试.并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟跳100~109次的为中等;每分钟跳110~119次的为良好;每分钟跳120次及以上的为优秀.测试结果整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)参加这次跳绳测试的共有人;(2)补全条形统计图;(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是;(4)如果该校初二年级的总人数是480人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.17.某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:(1)本次接收随机抽样调查的男生人数为人,扇形统计图中“良好”所对应的圆心角的度数为;(2)补全条形统计图中“优秀”的空缺部分;(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数.18.随着互联网、移动终端的迅速发展,数字化阅读越来越普及,公交、地铁上的“低头族”越来越多.某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(问卷调查表如图1所示)并将调查结果绘制成图2和图3所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次接受调查的总人数是人.(2)请将条形统计图补充完整.(3)在扇形统计图中,观点E的百分比是,表示观点B的扇形的圆心角度数为度.(4)假如你是该研究机构的一名成员,请根据以上调查结果,就人们如何对待数字化阅读提出你的建议.19.小明随机调查了若干市民租用公共自行车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是多少?(2)试求表示A组的扇形圆心角的度数,并补全条形统计图.(3)如果骑自行车的平均速度为12km/h,请估算,在租用公共自行车的市民中,骑车路程不超过6km的人数所占的百分比.20.在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:(1)图1中“统计与概率”所在扇形的圆心角为度;(2)图2、3中的a=,b=;(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?21.某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)22.2015年是中国人民抗日战争暨世界反法西斯战争胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A、B、C、D四类,其中A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”;D类表示“不太了解”,调查的数据经整理后形成尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次抽样调查中,一共抽查了名学生;(2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D类部分所对应扇形的圆心角的度数为°;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?23.近年来,随着创建“生态文明城市”活动的开展,我市的社会知名度越来越高,吸引了很多外地游客,某旅行社对5月份本社接待外地游客来我市各景点旅游的人数作了一次抽样调查,并将调查结果绘制成如下两幅不完整的统计图表:游客人数统计表景点频数(人数)频率黔灵山公园1160.29小车河湿地公园0.25南江大峡谷840.21花溪公园640.16观山湖公园360.09(1)此次共调查人,并补全条形统计图;(2)由上表提供的数据可以制成扇形统计图,求“南江大峡谷”所对的圆心角的度数;(3)该旅行社预计7月份接待来我市的游客有2500人,根据以上信息,请你估计去黔灵山公园的游客大约有多少人?24.某社区为了解居民对足球、篮球、排球、羽毛球和乒乓球这五种球类运动项目的喜爱情况,在社区开展了“我最喜爱的球类运动项目”的随机调查(每位被调查者必须且只能选择最喜爱的一种球类运动项目),并将调查结果进行了统计,绘制成了如图所示的两幅不完整的统计图:(1)求本次被调查的人数;(2)将上面的两幅统计图补充完整;(3)若该社区喜爱这五种球类运动项目的人数大约有4000人,请你估计该社区喜爱羽毛球运动项目的人数.25.某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)707809011008(1)在图①中,“80分”所在扇形的圆心角度数为;(2)请你将图②补充完整;(3)求乙校成绩的平均分;(4)经计算知S甲2=135,S乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.26.某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为人,被调查学生的课外阅读时间的中位数是小时,众数是小时;(2)请你补全条形统计图;(3)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是;(4)若全校九年级共有学生700人,估计九年级一周课外阅读时间为6小时的学生有多少人?27.雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数;(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?组别雾霾天气的主要成因百分比A工业污染45%B汽车尾气排放mC炉烟气排放15%D其他(滥砍滥伐等)n28.2015年5月,某校组织了以“德润书香”为主题的电子小报制作比赛,评分结果只有60,70,80,90,100五种,现从中随机抽取部分作品,对其份数和成绩进行整理,制成如下两幅不完整的统计图:根据以上信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共900份,比赛成绩达到90分以上(含90分)的为优秀作品,据此估计该校参赛作品中,优秀作品有多少份?29.2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度,小明为了解市政府调整水价方案的社会反响,随机访问了自己居住小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.小明发现每月每户的用水量在5m3﹣35m3之间,有8户居民对用水价格调价涨幅抱无所谓,不会考虑用水方式的改变,根据小明绘制的图表和发现的信息,完成下列问题:(1)n=,小明调查了户居民,并补全图1;(2)每月每户用水量的中位数和众数分别落在什么范围?(3)如果小明所在小区有1800户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少.30.某教研机构为了了解初中生课外阅读名著的现状,随机抽取了某校50名初中生进行调查,依据相关数据绘制成了以下不完整的统计图,请根据图中信息解答下列问题:类别重视一般不重视人数a15b (1)求表格中a,b的值;(2)请补全统计图;(3)若某校共有初中生2000名,请估计该校“重视课外阅读名著”的初中生人数.北师大版九年级(下)中考题单元试卷:第4章统计与概率(04)参考答案一、选择题(共1小题)1.D;二、填空题(共1小题)2.;三、解答题(共28小题)3.;4.;5.25;28;6.200;600;7.200;25%;1125;;8.;9.;10.72;11.40;12.;13.200;14.10000;4500;36000;15.9°;16.50;72°;17.40;162°;18.5000;4%;18;19.;20.36;60;14;21.200;22.200;36;23.400;24.;25.54°;26.50;4;5;144°;27.;28.;29.210;96;30.;。
福清市2020年中考数学总复习单元测试(4)----统计与概率一.选择题(本题共10小题,每小题4分,共40分)1.下列调查中,调查方式最适合普查(全面调查)的是()A.对全国初中学生视力情况的调查B.对2020年央视春节联欢晚会收视率的调查C.对一批飞机零部件的合格情况的调查D.对我市居民节水意识的调查2.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8mC.9.8m,9.7m D.9.8m,9.9m3.尺码/码36 37 38 39 40数量/双15 28 13 9 5 商场经理最关注这组数据的()A.众数B.平均数C.中位数D.方差4.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高组别(cm)x<160 160≤x<170 170≤x<180 x≥180 人数 5 38 42 15A.0.85 B.0.57 C.0.42 D.0.155.跳远比赛中,所有19位参赛者的成绩互不相同,在已知自己成绩的情况下,要想知道自己是否进入前10名,只需要知道所有参赛者成绩的()A.平均数B.众数C.中位数D.方差6.下列样本用以统计某路口在学校放学时不同时段的车流量,其中,合适的样本是()A.抽取两天作为一个样本B.以全年每一天为样本C.选取每周周日作为样本D.从春、夏、秋、冬每个季节中各选两周作为样本7.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球8.□ABCD中,AC、BD是两条对角线,现从以下关系①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC中随机取出一个作为条件,即可推出平行四边形ABCD是菱形的概率为()A.14B.12C.34D.19.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为()A.14B.13C.12D.2310.某家庭记录了去年12个月的月用水量如表,m 取1≤m ≤3的整数,用水量x /吨 3 4 5 6 7 频数1254-mm下列关于用水量的统计量不会发生变化的统计量是( ) A .平均数、中位数 B .众数、中位数 C .平均数、方差D .众数、方差二.填空题(本题共8小题,每小题4分,共32分)11.要反映我市某一周每天的最高气温的变化趋势,宜采用______统计图.12.一个样本容量为80的抽样数据中,其最大值为157,最小值为76,若确定组距为10,则这80个数据应分成________组.13.从甲、乙、丙三人中选一人参加环保知识抢答赛,经过两轮初赛,他们的平均成绩都是89,方差分别是S 甲2=2.83,S 乙2=1.71,S 丙2=3.52,则适合参加决赛的选手是_______. 14.已知一组数据8,3,m ,2的众数为3,则这组数据的极差是________.15.在一个不透明的袋子中装有6个白球和若干个红球,这些球除颜色外无其他差别.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有________个.16.一只蚂蚁在如图所示的正方形地砖上爬行,蚂蚁停留在阴影部分的概率为_______. 17. 小明五次数学考试成绩如下:84、88、89、91、x (x 为整数).已知这组数据的平均数等于众数,则这组数据的中位数是________. 18.如图,是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内 的数字之和为4的概率是________.三.解答题:(本题共7小题,共78分)19.(10)15((2)你认为上面哪个统计量较好地反映该公司所有员工的月工资状况。
九年级数学统计与概率单元测试(含答案)北师版九下《第4章统计与概率》单元测试一、选择题:(每小题3分,共18分) 1.将100个数据分成8个组,如下表:组号 1 2 3 4] 5 6] 7 8 频数 11 14 12 13 13 x 12 10] 则第六组的频数为() A.12 B.13 C.14 D.15 2.10位评委给一名歌手打分如下:9.73,9.66,9.83,9.89,9.76,9.86,9.79,9.85,9.68,9.74,若去掉一个最高分和一个最低分,这名歌手的最后得分是() A.9.79 B.9.78 C.9.77 D.9.76 3.某班50名学生期末考试数学成绩(单位:分)的频率分布条形图如图所示,其中数据不在分点上,对图中提供的信息作出如下的判断:(1)成绩在49.5分~59.5分段的人数与89.5分~100分段的人数相等;(2)成绩在79.5~89.5分段的人数占30%;(3)成绩在79.5分以上的学生有20人;(4)本次考试成绩的中位数落在69.5~79.5分段内,其中正确的判断有() A.4个 B.3个 C.2个 D.1个 (第3题) (第4题) 4.如图是九年级(2)班同学的一次体检中每分钟心跳次数的频数分布条形图(次数均为整数).已知该班只有5位同学的心跳每分钟75次,请观察图,指出下列说法中错误的是() A.数据75落在第2小组 B.第4小组的频率为0.1 C.心跳为每分钟75次的人数占该班体检人数的 ; D.数据75一定是中位数[来 5.在转盘游戏的活动中,小颖根据试验数据绘制出如图所示的扇形统计图,则每转动一次转盘所获购物券金额的平均数是() A.22.5元 B.42.5元 C.元 D.以上都不对 (第5题) (第9题) 6.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是() A. B. C. D.二、填空题(每小题4分,共24分) 7.某鞋厂为了了解初中学生穿鞋的鞋号情况,对某中学九(1)班的20名男生所穿鞋号统计如下:鞋号 23.5 24 24.5 25 25.5 26 人数 3 4 4 7 1 1 那么这20名男生鞋号数据的平均数是,中位数是,在平均数、中位数和众数中,鞋厂最感兴趣的是. 8.某班50名学生在适应性考试中,分数段在90~100分的频率为0.1,则该班在这个分数段的学生有人. 9.某班联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上(转盘被均匀等分为四个区域,如图所示),转盘可以自由转动.参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品,则获得钢笔的概率为. 10.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命跟踪调查,结果如下(单位:年):甲:3,4,5,6,8,8,8,10 乙:4,6,6,6,8,9,12,13 丙:3,3,4,8,8,10,11,12 三个厂家在广告中都称自己产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数、众数、中位数中的哪一个:甲:,乙:,丙. 11.一个质地均匀的六面体骰子,六个面上的数字分别为1,2,3,3,4,5,投掷一次,向上的面出现数字3的概率是. 12.有四张不透明的卡片分别为,除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为.三、解答题(本大题共58分) 13.(本题14分)2003年我国遭受到非典型肺炎传染性疾病(SARS)的巨大灾难,全国人民万众一心,众志成城,抗击“非典”,如图5是根据某校七、八、九年级学生“献爱心,抗非典”自愿捐款活动学生捐款情况制成的条形图和七、八、九年级学生人数扇形分布图.(1)该校七、八、九年级平均每人捐款多少元?(2)若该校共有1 450名学生,试问九年级学生共捐款多少元? 14.(本题14分)改革开放以来,我国国民经济保持良好发展势头,国民生产总值持续较快增长,下表是1998年~2002年国民生产总值统计表.年份 1998[ 1999 2000 2001 2002 国民生产总值/亿元 78345 82067 89442 95933 102398 小明根据上表绘制出条形统计图如图:你认为小明绘制的这个统计图会引起人们错误的感觉吗?如果会,你认为应该怎样改?15.(本题15分)改革开放以来,我国国民经济保持良好发展势头,国民生产总值持续较快增长,如图是1998年~2002年国民生产总值统计图.(1)从图中可看出1999年国民生产总值是多少?(2)已知2002年国内生产总值比2000年增加12 956亿元,2001 年比2000 年增加6 491亿元,求2002年国民生产总值比2001年增长的百分率(结果保留两个有效数字).16.(本题15分)如图a,某同学用仪器测量校园内的一棵树AB的高度,测得了三组数据,制成了仪器到树的距离BD,测量仪器的高CD的数据情况的条形统计图(如图b(1)所示)和仰角情况的折线统计图(如图b(2)所示). (a) (b) 请你利用两个统计图提供的信息,完成以下任务:(1)把统计图中的相关数据填入相应的表中;仪器与树之间距离BD的长测量仪器的高CD 仰角的度数(2)根据测得的样本平均数计算出树高AB(精确到0.1m).17.(做对可得附加分20分)(1)设计一个用样本估计总体的实际问题并解答.(2)利用扑克牌设计一个对双方都公平的游戏并解释公平理由.参考答案一、1~6.DBADAA 二、7. 24.55,24.5,众数 8. 5 9.25% 10.众数,平均数,中位数 11. 12.三、13.(1)6.45元;(2)2 192.4元. 14.会引起人们错误的感觉,为了更直观、清楚地反映国民生产总值的增长情况,纵轴上的数值应从0开始. 15.(1)82 067亿元;(2)2002年国民生产总值比2001年增长6.7%. 16.(1)第一行依次填:19.97,19.70,20.51;第二行依次填:1.21,1.23,1.22;第三行依次填:29°40′,30°,30°20′;(2)由(1)可得,.在Rt△AEC中,tan30°=,CE=BD,所以 AE=×20.06≈11.57,即AB=AE+CD=11.57+1.22≈12.8m.。
北师大版九年级(下)中考题单元试卷:第4章统计与概率(06)一、填空题(共2小题)1.小明从市环境监测网随机查阅了若干天的空气质量数据作为样本进行统计,分别绘制了如图的条形统计图和扇形统计图,根据图中提供的信息,可知扇形统计图中表示空气质量为优的扇形的圆心角的度数为.2.如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了场.二、解答题(共28小题)3.2014年世界杯足球赛于北京时间6月13日2时在巴西开幕,某媒体足球栏目从参加世界杯球队中选出五支传统强队:意大利队、德国队、西班牙队、巴西队、阿根廷队,对哪支球队最有可能获得冠军进行了问卷调查.为了使调查结果有效,每位被调查者只能填写一份问卷,在问卷中必须选择这五支球队中的一队作为调查结果,这样的问卷才能成为有效问卷.从收集到的4800份有效问卷中随机抽取部分问卷进行了统计,绘制了统计图表的一部分如下:球队名称百分比意大利17%德国a西班牙10%巴西38%阿根廷b根据统计图表提供的信息,解答下列问题:(1)a=,b=;(2)根据以上信息,请直接在答题卡中补全条形统计图;(3)根据抽样调查结果,请你估计在提供有效问卷的这4800人中有多少人预测德国队最有可能获得冠军.4.海南有丰富的旅游产品.某校九年级(1)班的同学就部分旅游产品的喜爱情况对游客随机调查,要求游客在列举的旅游产品中选出喜爱的产品,且只能选一项.以下是同学们整理的不完整的统计图:根据以上信息完成下列问题:(1)请将条形统计图补充完整;(2)随机调查的游客有人;在扇形统计图中,A部分所占的圆心角是度;(3)请根据调查结果估计在1500名游客中喜爱攀锦的约有人.5.君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?6.近年来,各地“广场舞”噪音干扰的问题倍受关注.相关人员对本地区15~65岁年龄段的市民进行了随机调查,并制作了如下相应的统计图.市民对“广场舞”噪音干扰的态度有以下五种:A.没影响B.影响不大C.有影响,建议做无声运动D.影响很大,建议取缔E.不关心这个问题根据以上信息解答下列问题:(1)根据统计图填空:m=,A区域所对应的扇形圆心角为度;(2)在此次调查中,“不关心这个问题”的有25人,请问一共调查了多少人?(3)将条形统计图补充完整;(4)若本地共有14万市民,依据此次调查结果估计本地市民中会有多少人给出建议?7.某市体育中考共设跳绳、立定跳远、仰卧起坐三个项目,要求毎位学生必须且只需选考其中一项,该市东风中学初三(2)班学生选考三个项目的人数分布的条形统计图和扇形统计图如图所示.(1)求该班的学生人数;(2)若该校初三年级有1000人,估计该年级选考立定跳远的人数.8.近几年我市加大中职教育投入力度,取得了良好的社会效果.某校随机调查了九年级m 名学生的升学意向,并根据调查结果绘制出如下不完整的统计图表:升学意向人数百分比省级示范高中1525%市级示范高中1525%一般高中9n职业高中其他35%合计m100%请你根据图表中提供的信息解答下列问题:(1)表中m的值为,n的值为;(2)补全条形统计图;(3)若该校九年级有学生500名,估计该校大约有多少名毕业生的升学意向是职业高中?9.空气质量的优劣直接影响着人们的身体健康.天水市某校兴趣小组,于2014年5月某一周,对天水市区的空气质量指数(AQI)进行监测,监测结果如图.请你回答下列问题:(1)这一周空气质量指数的极差、众数分别是多少?(2)当0≤AQI≤50时,空气质量为优.这一周空气质量为优的频率是多少?(3)根据以上信息,谈谈你对天水市区空气质量的看法.10.某校学生会为了解本校学生每天做作业所用时间情况,采用问卷的方式对一部分学生进行调查,在确定调查对象时,大家提出以下几种方案:(A)对各班班长进行调查;(B)对某班的全体学生进行调查;(C)从全校每班随机抽取5名学生进行调查.在问卷调查时,每位被调查的学生都选择了问卷中适合自己的一个时间,学生会收集到的数据整理后绘制成如图所示的条形统计图.(1)为了使收集到的数据具有代表性,学生会在确定调查对象时选择了方案(填A、B或C);(2)被调查的学生每天做作业所用时间的众数为小时;(3)根据以上统计结果,估计该校800名学生中每天做作业用1.5小时的人数.11.某校为了了解本校九年级学生的视力情况(视力情况分为:不近视,轻度近视,中度近视,重度近视),随机对九年级的部分学生进行了抽样调查,将调查结果进行整理后,绘制了如下不完整的统计图,其中不近视与重度近视人数的和是中度近视人数的2倍.请你根据以上信息解答下列问题:(1)求本次调查的学生人数;(2)补全条形统计图,在扇形统计图中,“不近视”对应扇形的圆心角度数是度;(3)若该校九年级学生有1050人,请你估计该校九年级近视(包括轻度近视,中度近视,重度近视)的学生大约有多少人.12.为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:A.只愿意就读普通高中;B.只愿意就读中等职业技术学校;C.就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图如下,请根据相关信息,解答下列问题:(1)本次活动共调查了多少名学生?(2)补全图一,并求出图二中B区域的圆心角的度数;(3)若该校八、九年级学生共有2800名,请估计该校学生只愿意就读中等职业技术学校的概率.13.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.14.某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),对调查结果进行统计后,绘制了如下不完整的两个统计图.根据以上统计图提供的信息,回答下列问题:(1)此次调查抽取的学生人数为a=人,其中选择“绘画”的学生人数占抽样人数的百分比为b=;(2)补全条形统计图;(3)若该校有2000名学生,请估计全校选择“绘画”的学生大约有多少人?15.为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.16.州教育局为了解我州八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据检测了两幅统计图,下面给出了两幅不完整的统计图(如图)请根据图中提供的信息,回答下列问题:(1)a=%,并写出该扇形所对圆心角的度数为,请补全条形图.(2)在这次抽样调查中,众数和中位数分别是多少?(3)如果该县共有八年级学生2000人,请你估计“活动时间不少于7天”的学生人数大约有多少人?17.学了统计知识后,小刚就本班同学上学“喜欢的出行方式”进行了一次调查.图(1)和图(2)是他根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数;(2)如果全年级共600名同学,请估算全年级步行上学的学生人数;(3)若由3名“喜欢乘车”的学生,1名“喜欢步行”的学生,1名“喜欢骑车”的学生组队参加一项活动,欲从中选出2人担任组长(不分正副),列出所有可能的情况,并求出2人都是“喜欢乘车”的学生的概率.18.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如图:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).19.从全校1200名学生中随机选取一部分学生进行调查,调查情况:A、上网时间≤1小时;B、1小时<上网时间≤4小时;C、4小时<上网时间≤7小时;D、上网时间>7小时.统计结果制成了如图统计图:(1)参加调查的学生有人;(2)请将条形统计图补全;(3)请估计全校上网不超过7小时的学生人数.20.如图,是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.(1)计算这些车的平均速度;(2)车速的众数是多少?(3)车速的中位数是多少?21.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,α=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?22.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为;(2)条形统计图中存在错误的是(填A、B、C中的一个),并在图中加以改正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?23.课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,王老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)王老师一共调查了多少名同学?(2)C类女生有名,D类男生有名,将上面条形统计图补充完整;(3)为了共同进步,王老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.24.2011年5月,我市某中学举行了“中国梦•校园好少年”演讲比赛活动,根据学生的成绩划分为A,B,C,D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加演讲比赛的学生共有人,并把条形图补充完整;(2)扇形统计图中,m=,n=;C等级对应扇形的圆心角为度;(3)学校欲从获A等级的学生中随机选取2人,参加市举办的演讲比赛,请利用列表法或树状图法,求获A等级的小明参加市比赛的概率.25.山东省第二十三届运动会将于2014年在济宁举行.下图是某大学未制作完整的三个年级省运会志愿者的统计图,请你根据图中所给信息解答下列问题:(1)请你求出三年级有多少名省运会志愿者,并将两幅统计图补充完整;(2)要求从一年级、三年级志愿者中各推荐一名队长候选人,二年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是二年级志愿者的概率是多少?26.我市民营经济持续发展,2013年城镇民营企业就业人数突破20万.为了解城镇民营企业员工每月的收入状况,统计局对全市城镇民营企业员工2013年月平均收入随机抽样调查,将抽样的数据按“2000元以内”、“2000元~4000元”、“4000元~6000元”和“6000元以上”分为四组,进行整理,分别用A,B,C,D表示,得到下列两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)本次抽样调查的员工有人,在扇形统计图中x的值为,表示“月平均收入在2000元以内”的部分所对应扇形的圆心角的度数是;(2)将不完整的条形图补充完整,并估计我市2013年城镇民营企业20万员工中,每月的收入在“2000元~4000元”的约多少人?(3)统计局根据抽样数据计算得到,2013年我市城镇民营企业员工月平均收入为4872元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?27.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.28.阳光中学组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A:特别熟悉,B:有所了解,C:不知道),在该社区随机抽取了100名居民进行问卷调查,将调查结果制成如图所示的统计图,根据统计图解答下列问题:(1)若该社区有居民900人,是估计对消防知识“特别熟悉”的居民人数;(2)该社区的管理人员有男、女各2名,若从中选2名参加消防知识培训,试用列表或画树状图的方法,求恰好选中一男一女的概率.29.“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为人;开私家车的人数m=;扇形统计图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?30.某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.北师大版九年级(下)中考题单元试卷:第4章统计与概率(06)参考答案一、填空题(共2小题)1.108°;2.22;二、解答题(共28小题)3.30%;5%;4.400;72;420;5.;6.32;72;7.;8.60;15%;9.;10.C;1.5;11.144;12.;13.;14.100;40%;15.;16.10;36°;17.;18.;19.200;20.;21.50;24;72;22.200;C;23.3;1;24.40;10;40;144;25.;26.500;14;21.6°;27.;28.;29.80;20;72;30.144°;。
北师大版九年级数学下册单元检测第4章-统计与概率(2)附答案一、单项选择题1、下列说法正确的是()A 一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B 某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C 天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨D 抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等2、为筹备班级的初中毕业联欢会, 班长对全班同学爱吃哪几种水果作民意调查, 从而最终决定买什么水果。
下列调查数据中最值得关注的是( )A 平均数B 中位数C 众数D 方差3、某超市购进了一批不同价格的皮鞋,下表是该超市在近几年统计的平均数据。
要使该超市销售皮鞋收入最大,该超市应多购()的皮鞋。
A、160元B、140元C、120元D、100元4、观察市统计局公布的“十五”时期重庆市农村居民人均收入每年比上一年增长率的统计图,下列说法正确的是()A 2003年农村居民人均收入低于2002年B 农村居民人均收入比上年增长率低于9%的有2年C 农村居民人均收入最多时2004年D 农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加.5在一次科技知识竞赛中,两组学生成绩统计如下表,下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均为80,但成绩≥80的人数甲组比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好。
其中正确的共有().A 2种B 3种C 4种D 5种6、下列事件中,是确定事件的是()A.明年元旦海门会下雨 B.成人会骑摩托车C.地球总是绕着太阳转 D.去北京要乘火车7、由梅州到广州的某一次列车,运行途中停靠的车站依次是:梅州——兴宁——华城——河源——惠州——东莞——广州,那么要为这次列车制作的火车票有()A 6种B 12种C 21种D 42种8、下列事件是确定事件的为()A 太平洋中的水常年不干B 男生比女生高,C 计算机随机产生的两位数是偶数D 星期天是晴天9、现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线上的概率为()10、一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是()二、填空题11、小刚中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;•②洗菜3分钟;③准备面条及佐料2分钟;④用锅把水烧开7分钟;⑤用烧开的水煮面条和菜要3分钟,以上各道工序,除④外,一次只能进行一道工序,小刚要将面条煮好,最少用________分钟.12、已知数据:1,2,1,0,-1,-2,0,-1,这组数据的方差为_________.13、在一节综合实践课上,六名同学做手工的数量(单位:件)分别是:5,7,3,6,6,4;则这组数据的中位数为______件;14、一射击运动员在一次射击练习中打出的成绩是(单位:环):7,8,9,8,6,8,10,7,这组数据的众数是_________环.15、五张标有1、2、3、4、5的卡片,除数字外其它没有任何区别。
2024年中考数学专项复习训练:统计与概率一、选择题(每题3分,共18分)1. (2023•株洲)数据12、15、18、17、10、19的中位数为( )A.14B.15C.16D.172. (2023秋•昌图县期末)小明对本班同学阅读兴趣进行调查统计后,欲通过统计图来反映同学感兴趣的各类图书所占百分比,最适合的统计图是( )A.条形统计图B.折线统计图C.扇形统计图D.频数直方图3. (2023·湖北十堰·统考中考真题)某校男子足球队的年龄分布如下表则这些队员年龄的众数和中位数分别是( )A.8,15B.8,14C.15,14D.15,154. (2023·湖北随州·统考中考真题)小明同学连续5次测验的成绩分别为:97,97,99,101,106(单位:分),则这组数据的众数和平均数分别为( )A.97和99B.97和100C.99和100D.97和1015. (2023•潍坊)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是( )A.平均数是144B.众数是141C.中位数是144.5D.方差是5.46. (2023七上·岷县开学考)为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1 min仰卧起坐次数,并绘制如图所示的频数分布直方图,请根据图中的信息,计算仰卧起坐次数在∽次的百分比是( )A.40%B.30%C.20%D.10%二、填空题(每题3分,共30分)7. (2023秋•法库县期末)已知一组数据从小到大依次为﹣2,0,4,x,6,8,其中位数为5.则众数为.8. (2023·湖北黄冈·统考二模)期中考试结束后,老师统计了全班40人的数学成绩,这40个数据共分为6组,第1至第4组的频数分别为10,5,7,6,第5组的频率为0.1,那么第6组的频率是______.9. (2023·湖北武汉·统考中考真题)某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是_________.10. (2023•衢州)某班五个兴趣小组的人数分别为4,4,5,x,6.已知这组数据的平均数是5,则这组数据的中位数是.11. (2023•武汉)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.12. (2023广西贺州)某老师对九年级1班55名学生的数学成绩进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩在80分及以上的学生有______名.13. (2023•苏州)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.14. (2023•天津)不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.15. (2023浙江)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ.两次摸球的所有可能的结果如表,则两次摸出的球都是红球的概率是.16. (2023九上·长沙期中)农科院计划为某地选择合适的水果玉米种子,通过实验,甲、乙、丙、丁四种水果玉米种子每亩平均产量都是1500kg,方差分别为S2甲=0.02,S2乙=0.02,S2 =0.03,S2丁=0.01,则这四种水果玉米种子产量最稳定的是.(填“甲”“乙”丙“丙”“丁”)三、解答题(第17—20题每题10分,第21题12分,共52分)17. (2023秋•大东区期末)某公司想招聘一名新职员,对甲、乙、丙三名应试者进行了面试、笔试和才艺三个方面的量化考核,他们的各项得分(百分制,单位:分)如表所示:(1)请通过计算三项得分的平均分,从低到高确定应聘者的排名顺序;(2)公司规定:面试、笔试、才艺得分分别不得低于80分、80分、70分,并按照50%、40%,10%的比例计入个人总分,请你确定谁会被录用?并说明理由.18. (2023•玄武区一模)某班有甲、乙两名同学报名参加100米跑步比赛,他们在赛前进行了10次训练.将两人的10次训练成绩分别绘制成如图统计图.(1)根据统计图把下列表格补充完整:(2)从两个不同角度评价甲、乙两名同学的训练成绩.19. (2023•铜仁市)某校计划组织学生参加学校书法、摄影、篮球、乒乓球四个课外兴趣小组,要求每人必须参加并且只能选择其中的一个小组,为了了解学生对四个课外小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的两幅不完整的统计图,请你根据给出的信息解答下列问题:(1)求该校参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=,n=;(3)若该校共有2000名学生,试估计该校选择“乒乓球”课外兴趣小组的学生有多少人?20. (2023•营口)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)李老师被分配到“洗手监督岗”的概率为;(2)用列表法或面树状图法,求李老师和王老师被分配到同一个监督岗的概率.21. (2023•陕西)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?22. (2023•苏州)为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是.(填“方案一”、“方案二”或“方案三”) (2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.。
统计与概率一、选择题(每题6分,共42分)1.下列说法中错误的是( )A.“多边形的外角和等于360°”是一个必然事件B.1,2,3,4C.一组数据的方差越小,这组数据的稳定性就越差D.要了解某种灯管的使用寿命,一般采用抽样调查2.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查,在这次调查中,样本是( )A.500名学生B.所抽取的50名学生对“世界读书日”的知晓情况C.50名学生D.每一名学生对“世界读书日”的知晓情况3.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是( )C.1.70,1.65 D.3,44.甲、乙两人在相同的条件下各射靶10次,经过计算,甲、乙射击成绩的平均数都是8环,,正确的是( )A.甲、乙的众数相同B.甲的成绩比乙稳定C.乙的成绩波动较大D.甲、乙射中的总环数相同5.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是( ) A.12 B.16 C.13 D.236.小兰和小谭分别用掷A ,B 两枚骰子的方法来确定点P (x ,y )的位置,她们规定:小兰掷得的点数为x ,小谭掷得的点数为y ,那么,她们各掷一次所确定的点P 落在已知直线y =-2x +6上的概率为( ) A.16 B.118 C.112 D.197.为积极响应某某市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生成绩进行统计,绘制成如下两幅不完整的统计图表,根据图表信息,以下说法不正确...的是( )图D4-1A .样本容量是200B .D 等所在扇形的圆心角为15°C .样本中C 等所占百分比是10%D .估计全校学生成绩为A 等的大约有900人 二、填空题(每题6分,共18分)8.一个不透明的盒子里有n 个除颜色外其他都相同的小球,其中有6个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么可以推算出n 大约是________.9.有6X 背面完全相同的卡片,每X 正面分别画有三角形、平行四边形、矩形、正方形、梯形和圆,现将其全部正面朝下搅匀并从中任取一X 卡片,抽中正面画的图形是中心对称图形的概率为________.10.在中小学生“人人会乐器”演奏比赛中,某班10名学生成绩统计如图D4-2所示,则这10名学生成绩的中位数是________分,众数是________分.图D4-2三、解答题(共40分)11.(20分)如图D4-3是根据全国人力资源和社会保障部公布的相关数据绘制的统计图的一部分,请你根据图某某息解答下列问题:(%)(2)2013年全国普通高校毕业生人数约是多少万人?(结果取整数)(3)补全折线统计图和条形统计图.图D4-312.(20分)某校在推进新课改的过程中,开设的体育选修课有A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球.学生可根据自己的爱好选修一门.学校李老师对某班全体同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图D4-4).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.图D4-4 参考答案1.C 2.B 3.C 4.A5.C [解析] 向上一面的数字小于3的有1,2,故其概率为26=13.6.B 7.B8.20 9.23 10.90 9011.解:(1)(749-727)÷%. %.%)≈699(万人).答:2013年全国普通高校毕业人数约是699万人. (3)图略.12.解:(1)12÷24%=50,所以该班的总人数为50人.“E ”对应的人数为50×10%=5(人),“A ”对应的人数为50-7-12-9-5=17(人). 补全频数分布直方图如图所示:(2)选出的2人情况列表如下:所以,选出的2人恰好1人选修篮球,1人选修足球的概率P (AB )=412=13.或画树状图如下:可见,P (AB )=412=13.。
北师大版九年级(下)中考题单元试卷:第4章统计与概率(11)一、选择题(共3小题)1.如图是某地2月18日到23日PM2.5浓度和空气质量指数AQI的统计图(当AQI不大于100时称空气质量为“优良”).由图可得下列说法:①18日的PM2.5浓度最低;②这六天中PM2.5浓度的中位数是112μg/m3;③这六天中有4天空气质量为“优良”;④空气质量指数AQI与PM2.5浓度有关.其中正确的是()A.①②③B.①②④C.①③④D.②③④2.下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()A.4:00气温最低B.6:00气温为24℃C.14:00气温最高D.气温是30℃的时刻为16:003.为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()A.9B.10C.12D.15二、解答题(共27小题)4.某运动品牌店对第一季度A、B两款运动鞋的销售情况进行统计.两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的,则一月份B款运动鞋销售了多少双?(2)第一节度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)综合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.5.我国是世界上严重缺水的国家之一,全国总用水量逐年上升,全国总用水量可分为农业用水量、工业用水量和生活用水量三部分.为了合理利用水资源,我国连续多年对水资源的利用情况进行跟踪调查,将所得数据进行处理,绘制了2008年全国总用水量分布情况扇形统计图和2004﹣2008年全国生活用水量折线统计图的一部分如下(A指农业用水量;B指工业用水量;C指生活用水量):(1)2007年全国生活用水量比2004年增加了16%,则2004年全国生活用水量为亿m3,2008年全国生活用水量比2004年增加了20%,则2008年全国生活用水量为亿m3;(2)根据以上信息,请直接在答题卡上补全折线统计图;(3)根据以上信息2008年全国总水量为亿;(4)我国2008年水资源总量约为2.75×104亿m3,根据国外的经验,一个国家当年的全国总用水量超过这个国家年水资源总量的20%,就有可能发生“水危机”.依据这个标准,2008年我国是否属于可能发生“水危机”的行列?并说明理由.6.交通指数是交通拥堵指数的简称,是综合反映道路畅通或拥堵的概念.其指数在100以内为畅通,200以上为严重拥堵,从某市交通指挥中心选取了5月1日至14日的交通状况,依据交通指数数据绘制的折线统计图如图所示,某人随机选取了5月1日至14日的某一天到达该市.(1)请结合折线图分别找出交通为畅通和严重拥堵的天数;(2)求此人到达当天的交通为严重拥堵的概率;(3)由图判断从哪天开始连续三天的交通指数方差最大?(直接判断,不要求计算)7.嘉兴市2010~2014年社会消费品零售总额及增速统计图如下:请根据图中信息,解答下列问题:(1)求嘉兴市2010~2014年社会消费品零售总额增速这组数据的中位数.(2)求嘉兴市近三年(2012~2014年)的社会消费品零售总额这组数据的平均数.(3)用适当的方法预测嘉兴市2015年社会消费品零售总额(只要求列出算式,不必计算出结果).8.某市团委在2015年3月初组成了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事件数的统计情况如图所示:(1)这6个学雷锋小组在2015年3月份共做好事多少件?(2)补全条形统计图;(3)请估计该市300个学雷锋小组在2015年3月份共做好事多少件?9.舟山市2010﹣2014年社会消费品零售总额及增速统计图如图:请根据图中信息,解答下列问题:(1)求舟山市2010﹣2014年社会消费品零售总额增速这组数据的中位数.(2)求舟山市2010﹣2014年社会消费品零售总额这组数据的平均数.(3)用适当的方法预测舟山市2015年社会消费品零售总额(只要求列式说明,不必计算出结果).10.为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项)根据统计图提供的信息解决下列问题:(1)求图②中“科技类”所在扇形的圆心角α的度数(2)该市2012年抽取的学生中,参加体育类与理财类社团的学生共有多少人?(3)该市2014年共有50000名学生,请你估计该市2014年参加社团的学生人数.11.如图是银川市6月1日至15日的空气质量指数趋势折线统计图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染.某人随机选择6月1日至6月14日中的某一天到达银川,共停留2天.(1)求此人到达当天空气质量优良的天数;(2)求此人在银川停留2天期间只有一天空气质量是重度污染的概率;(3)由折线统计图判断从哪天开始连续三天的空气质量指数方差最大(只写结论).12.现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,某市为了解学生的视力变化情况,从全市九年级随机抽取了1500名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.解答下列问题:(1)图中D所在扇形的圆心角度数为;(2)若2015年全市共有30000名九年级学生,请你估计视力在4.9以下的学生约有多少名?(3)根据扇形统计图信息,你觉得中学生应该如何保护视力?13.某商场统计了今年1~5月A,B两种品牌冰箱的销售情况,并将获得的数据绘制成折线统计图(1)分别求该商场这段时间内A,B两种品牌冰箱月销售量的中位数和方差;(2)根据计算结果,比较该商场1~5月这两种品牌冰箱月销售量的稳定性.14.一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A(不喜欢)、B (一般)、C(比较喜欢)、D(非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为人;(2)图①中,a=,C等级所占的圆心角的度数为度;(3)请直接在答题卡中补全条形统计图.15.“宜居长沙”是我们的共同愿景,空气质量倍受人们的关注.我市某空气质量检测站点检测了该区域每天的空气质量情况,统计了2013年1月份至4月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图,请根据图中信息,解答下列问题:(1)统计图共统计了天空气质量情况.(2)请将条形统计图补充完整,并计算空气质量为“优”所在扇形圆心角度数.(3)从小源所在班级的40名同学中,随机选取一名同学去该空气质量监测点参观,则恰好选到小源的概率是多少?16.某校开展以感恩教育为主题的艺术活动,举办了四个项目的比赛,它们分别是演讲、唱歌、书法、绘画.要求每位同学必须参加,且限报一项活动.以九年级(1)班为样本进行统计,并将统计结果绘成如图1、图2所示的两幅统计图.请你结合图示所给出的信息解答下列问题.(1)求出参加绘画比赛的学生人数占全班总人数的百分比?(2)求出扇形统计图中参加书法比赛的学生所在扇形圆心角的度数?(3)若该校九年级学生有600人,请你估计这次艺术活动中,参加演讲和唱歌的学生各有多少人?17.为迎接十二运,某校开设了A:篮球,B:毽球,C:跳绳,D:健美操四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的同学必须选择而且只能在4中体育活动中选择一种).将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共查了名学生:(2)请补全两幅统计图:(3)若有3名最喜欢毽球运动的学生,1名最喜欢跳绳运动的学生组队外出参加一次联谊互活动,欲从中选出2人担任组长(不分正副),求两人均是最喜欢毽球运动的学生的概率.18.第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分.(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为平方千米;(2)第九届园博会会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八界园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日均接待游客量和单日最多接待游客量中的某个量近似成正比例关系.根据小娜的发现,请估计,将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).第七届至第十届园博会游客量和停车位数量统计表:日接待游客量(万人次)单日最多接待游客量(万人次)停车位数量(个)第七届0.86约3000第八届 2.38.2约4000第九届8(预计)20(预计)约10500第十届 1.9(预计)7.4(预计)约19.为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2).(1)请根据所给信息在图(1)中将表示“乒乓球”项目的图形补充完整;(2)扇形统计图(2)中表示”足球”项目扇形的圆心角度数为.20.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml 的矿泉水,会后对所发矿泉水喝的情况进行统计,大致可分为四种:A、全部喝完;B、喝剩约;C、喝剩约一半;D开瓶但基本未喝.同学们根据统计结果绘制成如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D所在扇形的圆心角是多少度?并补全条形统计图;(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升?(计算结果请保留整数)(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶?(可使用科学记算器)21.为配合我市创建省级文明城市,某校对八年级各班文明行为劝导志愿者人数进行了统计,各班统计人数有6名、5名、4名、3名、2名、1名共计六种情况,并制作如下两幅不完整的统计图.(1)求该年级平均每班有多少文明行为劝导志愿者?并将条形图补充完整;(2)该校决定本周开展主题实践活动,从八年级只有2名文明行为劝导志愿者的班级中任选两名,请用列表或画树状图的方法,求出所选文明行为劝导志愿者有两名来自同一班级的概率.22.某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整).请根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)通过计算补全条形统计图;(3)在扇形统计图中,“公交车”部分所对应的圆心角是多少度?(4)若全校有1600名学生,估计该校乘坐私家车上学的学生约有多少名?23.网络购物发展十分迅速,某企业有4000名职工,从中随机抽取350人,按年龄分布和对网上购物所持态度情况进行了调查,并将调查结果绘成了条形图1和扇形图2.(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?(2)如果把对网络购物所持态度中的“经常(购物)”和“偶尔(购物)”统称为“参与购物”,那么这次接受调查的职工中“参与网购”的人数是多少?(3)这次调查中,“25﹣35”岁年龄段的职工“从不(网购)”的有22人,它占“25﹣35”岁年龄段接受调查人数的百分之几?(4)请估计该企业“从不(网购)”的人数是多少?24.某校对九年级全体学生进行了一次学业水平测试,成绩评定分为A,B,C,D四个等级(A,B,C,D分别代表优秀、良好、合格、不合格)该校从九年级学生中随机抽取了一部分学生的成绩,绘制成以下不完整的统计图.请你根据统计图提供的信息解答下列问题;(1)本次调查中,一共抽取了名学生的成绩;(2)将上面的条形统计图补充完整,写出扇形统计图中等级C的百分比.(3)若等级D的5名学生的成绩(单位:分)分别是55、48、57、51、55.则这5个数据的中位数是分,众数是分.(4)如果该校九年级共有500名学生,试估计在这次测试中成绩达到优秀的人数.25.某中学组织部分优秀学生分别去北京、上海、天津、重庆四个城市进行夏令营活动,学校购买了前往四个城市的车票,如图是未制作完整的车票种类和数量的条形统计图,请你根据统计图回答下列问题:(1)若前往天津的车票占全部车票的30%,则前往天津的车票数是多少张?并请补全统计图.(2)若学校采取随机抽取的方式分发车票,每人抽取一张(所有的车票的形状、大小、质地完全相同),那么张明抽到前往上海的车票的概率是多少?26.游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的2000名学生中作了抽样调查.请根据下面两个不完整的统计图回答以下问题:(1)这次抽样调查中,共调查了名学生;(2)补全两个统计图;(3)根据抽样调查的结果,估算该校2000名学生中大约有多少人“一定会下河游泳”?27.以下是根据《2012年大连市环境状况公报》中有关海水浴场环境质量和市区空气质量级别的数据制作的统计图表的一部分(2012年共366天).大连市2012年海水浴场环境质量监测结果统计表,监测时段:2012年7月至9月浴场名称优(%)良(%)差(%)浴场125750浴场230700浴场330700浴场440600浴场550500浴场630700浴场710900浴场8105040根据以上信息,解答下列问题:(1)2012年7月至9月被监测的8个海水浴场环境质量最好的是(填浴场名称),海水浴场环境质量为优的数据的众数为%,海水浴场环境质量为良的数据的中位数为%;(2)2012年大连市区空气质量达到优的天数为天,占全年(366)天的百分比约为(精确到0.1%);(3)求2012年大连市区空气质量为良的天数(按四舍五入,精确到个位).28.某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1﹣8这8个整数,现提供统计图的部分信息如图,请解答下列问题:(1)根据统计图,求这50名工人加工出的合格品数的中位数;(2)写出这50名工人加工出的合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.29.为了把巴城建成省级文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老张某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),对闯红灯的人数制作了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)问这一天上午7:00~12:00这一时间段共有多少人闯红灯?(2)请你把条形统计图补充完整,并求出扇形统计图中9~10点,10~11点所对应的圆心角的度数.(3)求这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数.30.某校九年级有1200名学生,在体育考试前随机抽取部分学生进行体能测试,成绩分别记为A、B、C、D共四个等级,其中A级和B级成绩为“优”,将测试结果绘制成如下条形统计图和扇形统计图.(1)求抽取参加体能测试的学生人数.(2)估计该校九年级全体学生参加体能测试成绩为“优”的学生共有多少人?北师大版九年级(下)中考题单元试卷:第4章统计与概率(11)参考答案一、选择题(共3小题)1.C;2.D;3.C;二、解答题(共27小题)4.;5.625;750;5000;6.;7.;8.;9.;10.;11.;12.54°;13.;14.200;35;126;15.100;16.;17.200;18.0.03;3.7×103;19.72°;20.;21.;22.;23.;24.50;30%;55;55;25.;26.400;27.浴场5;30;70;129;35.2%;28.;29.;30.;。
初三数学《统计与概率》单元测试卷及答案《统计与概率》单元测试卷及答案一、选择题(每小题3分,共30分)1.以下调查中,适宜全面调查的是( ).调查某批次汽车的抗撞击能力B .调查某班学生的身高情况C .调查春节联欢晚会的收视率D .调查沈阳市居民日平均用水量2.下列事件中,属于必定事件的是().三角形的外心到三边的距离相等B .三角形的内心到三边的距离相等C .任意画一个三角形,其外角和是180°D .三角形三条高交点一定在形内3.下列事件是随机事件的是( ).2022年2月,ZG将首次承办冬奥会B .正八边形的每个外角的度数等于45°C .明年清明节会下雨D .在只装了白球的盒子中,摸出黑色的球4.某校为了解全校1000名学生的视力情况,从中随机抽取了100名学生进行视力测查,在这个问题中,下列说法错误的是().样本是100名学生的视力情况B. 总体是1000名学生的视力情况C. 个体是每名学生的视力情况D. 样本容量是100名5.小明同学制作了5张材质和外观完全一样的卡片,每张卡片正面写着一位数学家的名字,分别是祖冲之、刘徽、张衡、杨辉、徐光启.将这5张卡片背面朝上洗匀后随机抽取一张,则抽到祖冲之的概率是().51B.52C.53D.546.某校七年级某同学6次数学小测验的成绩分别为80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( ) .95分,95分B .95分,90分C .90分,95分D .95分,85分7.在△BC 和△′B ′C ′中,有下列条件:①B ′B ′=BC B ′C ′;②BC B ′C ′=C′C ′;③∠=∠′;④∠C =∠C ′.从四个中任取两个条件组成一组,能推断△BC ∽△′B ′C ′的概率是( ).21 B .31C .41D .以上都不对8.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm) 185 180 185 180 方差3.6 3.6 7.4 8.1应该选择( ).甲B .乙C .丙D .丁9.某班在一次课外小组活动中,抽测了五个课外活动小组活动的时间,得到五个各不相同的数据.在统计时,出现了一处错误:将最低的时间写得更低了,则计算结果不受影响的是( ) .平均数B .中位数C .方差D .极差10.如图,抛物线y =x 2+bx +c (≠0)的对称轴为x =﹣1,与x 轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则下列结论:①b 2﹣4c >0;②2 =b ;③点(﹣27,y 1)、(﹣23,y 2)、(45,y 3)是该抛物线上的点,则y 1<y 2<y 3;④3b +2c <0;⑤t (t +b )≤﹣b (t 为任意实数).从五个结论中任取一个,则正确结论的概率是().51B.52C.53D.54二、填空题(每小题4分,共24分)11.在一次招聘考试中,其中某位考生笔试、口试、面试三轮测试得分分别为92分、85分、90分,综合成绩笔试占40%,口试占40%,面试占20%,则该考生的综合成绩为分.第10题第16题EB12.小华同学用0-9中的数字给门锁设置了六位开门密码,但他把最后一位数字忘记了,小明只输入一次密码就能打开门的概率是 .若出现次品数量的唯一众数为1,则数据1,0,2,的方差等于 .14.若等腰△BC 的边长为一元二次方程x 2﹣7x +10=0的根,则△BC 为等腰三角形的概率为 .15.某中学随机调查了部分九年级学生的年龄,并画出了这些学生的年龄分布统计图(如图),那么,从该校九年级中任抽一名学生,抽到学生的年龄所占比例最大的概率是 .16.如图,在四边形BCD 中,D ∥BC ,∠BC =90°.若沿对角线C 折叠四边形BCD ,点D 恰与B 边上的点E 重合,且∠BCE =15°,连结DE ,交C 于H ,连接BH .下列结论:①△CDE 为等边三角形;②△BHE ∽△DC ;③∠BHC =∠BCD ;④EH =2BE ;⑤四边形BCHE的面积=△DC 的面积,从这5个结论中任取一个,正确结论的概率是 .三、解答下列各题(17题8分,18题10分,共18分)17.下图中形状、大小和质地都相同的四张卡片,正面分别写有、B 、C 、D和一个式子,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.请用树状图或列表的方法求出抽取的两张卡片组成的是二元一次方程组的概率是多少.第15题18.小华参加社会实践活动. 对行人是否走斑马线作了调查,上周末,小华对1000名过往行人作了问卷调查,问题是:你是否自觉走斑马线. 供选择的答案是:、是;B 、否;C 、有时. 他将得到的数据通过处理后,画出了扇形统计图,请你根据这个扇形图回答下列问题:(1)不走斑马线的人被调查者有多少人;(2)哪种情况最为普遍;它的百分比是多少;(3)根据这个调查结果,请简要的写出你的感想或建议.四、(每题10分,共20分)19.在3×3的方格纸中,点B C D E F 、、、、、分别位于如图所示的小正方形的顶点上.(1)从D E F 、、、四点中任意取一点,以所取的这一点及点B C 、为顶点画三角形,求所画三角形是直角三角形的概率;(2)从D E F 、、、四点中先后任意取两个不同一的点,所取的这两点及B C 、为顶点画四边形,求所画四边形是平行四边形的概率.(用树状图或列表法求解).C 28% B 11.2%第18题第19题20.某校课外活动小组的小华想了解全校同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱情况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面的统计图:根据图中所给信息,回答下列问题:(1)小华共抽取了多少名同学;(2)求出图中的和b的值;(3)并求出条形统计图中新闻、娱乐的人数.五、(每题10分,共20分)21.小华参加答题通关活动,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小华都不会,不过小华还有一个“求助”没有用(使用“求助”可以去掉其中一题的一个错误选项).(1)如果小华第一题不使用“求助”,那么小华答对第一道题的概率是;(2)如果小华将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率;(3)从概率的角度分析,你认为小华在第几题使用“求助”.第20题22.为开展学校的体育活动,某校八年级一班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与,各活动小组人数分布情况的扇形图和条形图如下:(1)求该班学生人数;(2)请你补上条形图的空缺部分;(3)求跳绳人数所占扇形圆心角的大小.六、(每题12分,共24分)23.小华、小明两人用如图所示的两个分格均匀的转盘、B 做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相加,如果和是奇数,则小华获胜;如果和是偶数,则小明获胜.请你解决下列问题:(1)用列表格或画树状图的方法表示游戏所有可能出现的结果;(2)求小华、小明两人获胜的概率,你认为是否公平.篮球足球25% 跳绳乒乓球90°16 12 8 4足球篮球乒乓球跳绳项目 B4564 57 6第22题第23题24.某市教育局为了解该市学生对待学习的态度情况,对该市部分学校的七年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1) 此次抽样调查中,共调查了多少名学生;(2)此次抽查中,对学习感兴趣有多少名;(3)将图①补充完整;(4)根据抽样调查结果,请你估量该区近2000名初中生中大约有多少名学生对学习不感兴趣;对这些学生,说说你的观点.第24题七、(本题满分14分)25.某校举办数学闯关比赛,经选拔后有50名学生参加决赛,这50名学生同时作答50道选择题,若每答对一题得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组50≤x<60 6第2组60≤x<70 8第3组70≤x<80 14第4组80≤x<90第5组90≤x<100 10请结合图表完成下列各题:(1)求出表中的值,并指出条形统计图没画出的两组人数;(2)若测试成绩不低于90分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名女同学,现将这10名同学平均分成两组进行对抗练习,且4名女同学每组分两人,求小丽与小华两名女同学能分在同一组的概率.参考答案一、1.B 2.B 3.C 4.D 5. 6. 7. 8. 9.B 10.D 二、11.88.8 12.10113.21 14.43 15.45% 16.53三、17.解:列表共有12种可能性,每一种出现的可能性都是相同的,满足题意得有8种则组成的是二元一次方程组的概率是P=2118.解:(1)1000×11.2%=112答:不走斑马线的人被调查者有112人(2)走斑马线的人最普遍1-11.2%-28%=60.8%则走斑马线的人最普遍,为60.8%. (3)略四、19.解:(1)、D 、E 和BC 都能组成直角三角形共有四种可能.则组成直角三角形的概率为:P=43(2)列表共有12种等可能情况,分别是:DBC EBC FBC DBC DEBC DFBC EBC EDBC EFBC FBC FDBC FEBC ,每一种都是等可能的其中能画出平行四边形有4种则P (组成平行四边形)=3120.解:(1)45÷30%=150则小华共抽取了150名同学(2)30÷150=20% b=201-6%-8%-30%-20%=36% =36(3)新闻:150×8%=12 150×36%=54则条形统计图中新闻、娱乐的人数分别为12人和54人五、21.解:(1)31(2)设,B,C表示第一道单选题的3个选项,,b,c表示剩下的第二道单选题的3个选项,画树状图得:即共有9种等可能的结果,小明顺利通关的只有1种情况,则小明顺利通关的概率为:91;(3)P(第一题有求助,并通关)=21×41=81由(2)知P(第二题有求助,并通关)= 91则建议小明在第一题使用“求助”.22.解:(1)12÷36090=48则该班学生48人(2)48-16-12-8=12(人)如图所示(3)488×360=60则跳绳人数所占扇形圆心角的大小为60°161284足球篮球乒乓球跳绳项目(2)由(1)知共有12种可能性奇数有6种,偶数也有6种70到80的有14人;80到90的有12人(2)5010×100%=20%则优秀率为20%(3)设小丽为,小华为B ,另两位女同学为C 和D 则所有可能性为:B(CD) C(BD) D(BC)3种可能性都是等可能出现的,其中只有1种,小丽和小华为同一组即:P (小丽和小华在同一组)=31.。
第四章《统计与概率》自我测试[时间:90分钟分值:100分]一、选择题(每小题3分,满分30分)1.(2019·南京)为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生2.(2019·南充)学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:品牌甲乙丙丁销售量(瓶)12321343建议学校商店进货数量最多的品牌是()A.甲品牌B.乙品牌C.丙品牌D.丁品牌3.(2019·聊城)下列事件属于必然事件是()A.在1个标准大气压下,水加热到100℃沸腾;B.明天我市最高气温为56℃C.中秋节晚上能看到月亮;D.下雨后有彩虹4.(2019·成都)为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图,根据图中提供的信息,这50人一周的体育锻炼的时间的众数和中位数分别是()A.6小时、6小时B.6小时、4小时;C.4小时、4小时D.4小时、6小时5.(2019·铜仁)某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:尺码(cm)23.52424.52525.5销售量(双)1225 1则这11双鞋的尺码组成的一组数据中,众数和中位数分别是()A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.56.(2019·舟山)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) A .极差是47 B .众数是42C .中位数是58D .每月阅读数量超过40的有4个月7.(2019·常德)在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是( ) A .李东夺冠的可能性较小 B .李东和他的对手比赛10局时,他一定会赢8局 C .李东夺冠的可能性较大 D .李东肯定会赢8.(2019·鸡西)某工厂为了选拔1名车工参加直径为5 mm 精密零件的加工技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为 x -甲、x -乙,方差依次为S 甲2、S 乙2,则下列关系中完全正确的是( )甲 5.05 5.02 5 4.96 4.97 乙55.0154.975.02A.x -甲<x -乙, S 甲2<S 乙2B.x -甲=x -乙, S 甲2<S 乙2 C.x -甲=x -乙, S 甲2>S 乙2 D.x -甲>x -乙, S 甲2>S 乙29.(2019·枣庄)在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14,则原来盒中有白色棋子( )A .8颗B .6颗C .4颗D .2颗10.(2019·临沂)如图,A 、B 是数轴上的两点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于...2的概率是( )A.12B.23C.34D.45答案 D二、填空题(每小题3分,满分30分)11.(2019·扬州)数学老师布置10道选择题作业,批阅后得到如下统计表,根据表中数据可知,这45名学生答对题数组成的样本的中位数是________题.答对题数(题)78910人数(人)41816712.(2019·菏泽)在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的平均数是____________.13.(2019·南充)某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,估计该厂这一万件产品中不.合格品约为________件.14.(2019·成都)某校在“爱护地球·绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:植树数量(棵)456810人数(人)302225158则这100名同学平均每人植树__________棵;若该校共有1000名学生,请根据以上调查结果估计该校学生的植树总数是__________棵.15.(2019·怀化)在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50元的,右边扇形统计图反映了不同捐款的人数比例,那么这个班的学生平均每人捐款_________元.16.(2019·绍兴)为备战2019年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是__________(选填“甲”或“乙”).17.(2019·台州)袋子中装有2个黑球和3个白球,这些球的形状、大小、质地等完全相同.随机地从袋子中摸出一个球是白球的概率是________.18.(2019·德州)在4张卡片上分别写有1~4的整数,随机抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是____________.19.(2019·烟台)在如图所示的矩形纸片上作随机扎针实验,则针头扎在阴影区域的概率为__________.20.(2019·黄石)为响应“红歌唱响中国”活动,某乡镇举行了一场“红歌”歌咏比赛,组委会规定:任何一名参赛选手的成绩x满足:60≤x<100,赛后整理所有参赛选手的成绩如下表:分数段频数频率60≤x<70300.1570≤x<80m 0.4580≤x<9060n90≤x<100200.1根据表中提供的信息得到n=___________.三、解答题(每小题8分,满分40分)21.(2019·金华)王大伯几年前承办了甲、乙两片荒山,各栽100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?22.(2019·广州)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图如图,根据图中信息回答下列问题:(1)求a的值;(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少1人的上网时间在8~10小时.23.(2019·义乌)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:50分;B:49-45分;C:44-40分;D:39-30分;E:29-0分)统计如下:学业考试体育成绩(分数段)统计表分数段人数(人)频率A 480.2B a 0.25C 840.35D 36bE 120.05根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为_______,b的值为_________,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内?________(填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?24.(2019·河南)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选).在随机调查了该市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m=________;(2)该市支持选项B的司机大约有多少人?(3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?25.(2019·黄石)2019年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦,也在国内掀起一股网球热.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷.要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题.小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座;如果摸出的是白球,小明去听讲座.(1)爸爸说这个办法不公平,请你用概率的知识解释原因;(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利?说明理由.参考答案一、选择题(每小题3分,满分30分)1.(2019·南京)为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生答案 D解析选取的样本要具有代表性.2.(2019·南充)学校商店在一段时间内销售了四种饮料共100瓶,各种饮料的销售量如下表:品牌甲乙丙丁销售量(瓶)12321343建议学校商店进货数量最多的品牌是()A.甲品牌B.乙品牌C.丙品牌D.丁品牌答案 D解析丁品牌的销售量43瓶是最多的.3.(2019·聊城)下列事件属于必然事件是()A.在1个标准大气压下,水加热到100℃沸腾;B.明天我市最高气温为56℃C.中秋节晚上能看到月亮;D.下雨后有彩虹答案 A解析据物理常识,在1个标准大气压下,水加热到100℃沸腾,是必然事件.4.(2019·成都)为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图,根据图中提供的信息,这50人一周的体育锻炼的时间的众数和中位数分别是()A.6小时、6小时B.6小时、4小时;C.4小时、4小时D.4小时、6小时答案 A解析从条形统计图中,可获得信息:一周的体育锻炼时间为6小时的这个数据出现次数最多,为20次,所以众数是6;50个数据中,第25、26个数据都是6,所以中位数是6. 5.(2019·铜仁)某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:尺码(cm) 23.5 24 24.5 25 25.5 销售量(双)12251则这11双鞋的尺码组成的一组数据中,众数和中位数分别是( ) A .25,25 B .24.5,25 C .25,24.5 D .24.5,24.5 答案 A解析 25是出现次数最多的数据,所以众数是25;第6个数据是25,所以中位数是25. 6.(2019·舟山)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) A .极差是47 B .众数是42C .中位数是58D .每月阅读数量超过40的有4个月答案 C解析 将所得到的数据按从小到大的顺序排列28、36、42、58、58、70、75、83,可知第4、第5个数据都是58,所以中位数是(58+58)÷2=58.7.(2019·常德)在某校艺体节的乒乓球比赛中,李东同学顺利进入总决赛,且个人技艺高超,有同学预测“李东夺冠的可能性是80%”,对该同学的说法理解正确的是( ) A .李东夺冠的可能性较小 B .李东和他的对手比赛10局时,他一定会赢8局 C .李东夺冠的可能性较大 D .李东肯定会赢 答案 C解析 李东夺冠的可能性是80%,指李东夺冠的概率是80%,夺冠的可能性较大. 8.(2019·鸡西)某工厂为了选拔1名车工参加直径为5 mm 精密零件的加工技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为 x -甲、x -乙,方差依次为S 甲2、S 乙2,则下列关系中完全正确的是( )甲 5.05 5.02 5 4.96 4.97 乙55.0154.975.02A.x -甲<x -乙, S 甲2<S 乙2B.x -甲=x -乙, S 甲2<S 乙2C.x -甲=x -乙, S 甲2>S 乙2D.x -甲>x -乙, S 甲2>S 乙2 答案 C解析 计算得x -甲=5,x -乙=5,S 甲2=0.00108,S 乙2=0.00028, 所以x -甲=x -乙,S 甲2>S 乙2.9.(2019·枣庄)在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是14,则原来盒中有白色棋子( )A .8颗B .6颗C .4颗D .2颗 答案 C解析 据题意,得⎩⎨⎧x x +y =25,x x +y +6=14,解之,得⎩⎪⎨⎪⎧x =4y =6.,经检验符合所列方程组的条件.10.(2019·临沂)如图,A 、B 是数轴上的两点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于...2的概率是( )A.12B.23C.34D.45答案 D解析 线段AB 的长=|-3-2|=5,到点-1的距离等于2的两点之间的线段长是4, 所以概率是45.二、填空题(每小题3分,满分30分)11.(2019·扬州)数学老师布置10道选择题作业,批阅后得到如下统计表,根据表中数据可知,这45名学生答对题数组成的样本的中位数是________题.答对题数(题) 7 8 9 10 人数(人)418167答案 9解析 从小到大排列45个数据,第23个数据是9,所以中位数是9.12.(2019·菏泽)在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的平均数是____________. 答案 8.375解析 平均数x -=18×(7×2+10+9×3+8×2)=8.375.13.(2019·南充)某灯具厂从1万件同批次产品中随机抽取 了100件进行质检,发现其中有5件不合格,估计该厂这一万件产品中不.合格品约为________件. 答案 500解析 估计不合格品有5100×10000=500(件).14.(2019·成都)某校在“爱护地球·绿化祖国”的创建活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理如下表:植树数量(棵) 4 5 6 8 10 人数(人)302225158则这100名同学平均每人植树 __________棵;若该校共有1000名学生,请根据以上调查结果估计该校学生的植树总数是__________棵.答案 5.8;5800解析 平均数x -=1100×(4×30+5×22+6×25+8×15+10×8)=5.8(棵);总数是1000×5.8=5800(棵).15.(2019·怀化)在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50元的,右边扇形统计图反映了不同捐款的人数比例,那么这个班的学生平均每人捐款_________元.答案 16解析 捐5元,10元,20元,50元的学生数分别是40×60%=24(人),40×10%=4(人),40×10%=4(人),40×20%=8(人),所以平均数x -=140×(5×24+10×4+20×4+50×8)=16(元).16.(2019·绍兴)为备战2019年4月11日在绍兴举行的第三届全国皮划艇马拉松赛,甲、乙运动员进行了艰苦的训练,他们在相同条件下各10次划艇成绩的平均数相同,方差分别为0.23,0.20,则成绩较为稳定的是__________(选填“甲”或“乙”). 答案 乙解析 因为S 甲2=0.23>S 乙2=0.20,所以乙的成绩较为稳定.17.(2019·台州)袋子中装有2个黑球和3个白球,这些球的形状、大小、质地等完全相同.随机地从袋子中摸出一个球是白球的概率是________.答案 35解析 袋子中共有2+3=5个球,摸出一个球是白球的概率是35.18.(2019·德州)在4张卡片上分别写有1~4的整数,随机抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是____________. 答案 12解析 树状图如下:总共有12种情况,第二次取出的数字能够整除第一次取出的数字的概率是816=12.19.(2019·烟台)在如图所示的矩形纸片上作随机扎针实验,则针头扎在阴影区域的概率为__________.答案 14解析 根据矩形是中心对称图形,可知阴影部分面积之和是整个矩形面积的14,所以概率是14.20.(2019·黄石)为响应“红歌唱响中国”活动,某乡镇举行了一场“红歌”歌咏比赛,组委会规定:任何一名参赛选手的成绩x 满足:60≤x <100,赛后整理所有参赛选手的成绩如下表:分数段 频数 频率 60≤x <70 30 0.15 70≤x <80 m 0.45 80≤x <90 60 n 90≤x <100200.1根据表中提供的信息得到n =___________. 答案 0.3解析 各分数段的频率之和为1,所以n =1-0.15-0.45-0.1=0.3.三、解答题(每小题8分,满分40分)21.(2019·金华)王大伯几年前承办了甲、乙两片荒山,各栽100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和; (2)试通过计算说明,哪个山上的杨梅产量较稳定?解 (1)甲山上4棵树的产量分别为:50千克、36千克、40千克、34千克,所以甲山产量的样本平均数为:x -甲=50+36+40+344=40(千克);乙山上4棵树的产量分别为:36千克、40千克、48千克、36千克,所以乙山产量的样本平均数为:x -乙=36+40+48+364=40(千克);甲、乙两山杨梅的产量总和为:2×100×98%×40=7840(千克). (2)S 甲2=14[ ()50-402+()36-402+()40-402+ ]()34-402=38(千克2 ),S 乙2=14[ ()36-402+()40-402+()48-402+ ]()36-402=24(千克2),∴S 甲2>S 乙2.∴乙山上的杨梅产量较稳定.22.(2019·广州)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图如图,根据图中信息回答下列问题: (1)求a 的值;(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少1人的上网时间在8~10小时.解(1)a=50-6-25-3-2=14.(2)设上网时间为6~8小时的三个学生为A1、A2、A3,上网时间为8~10小时的2名学生为B1、B2,则共有A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2,B1B2共10种可能,其中至少1人上网时间在8~10小时的共有7种可能,故P(至少1人的上网时间在8~10小时)=710.23.(2019·义乌)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:50分;B:49-45分;C:44-40分;D:39-30分;E:29-0分)统计如下:学业考试体育成绩(分数段)统计表分数段人数(人)频率A 480.2B a 0.25C 840.35D 36bE 120.05根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为_______,b的值为_________,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内?________(填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?解 (1)60,0.15. (补图略) (2)C(3)(0.2+0.25+0.35)×10440=8352(名).答:该市九年级考生中体育成绩为优秀的学生人数约有8352名.24.(2019·河南)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如下的调查问卷(单选).在随机调查了该市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m =________; (2)该市支持选项B 的司机大约有多少人?(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?解 (1)C 选项的频数为90,正确补全条形统计图略;20. (2)支持选项B 的人数大约为:5000×23%=1150. (3)小李被选中的概率P =1001150=223.25.(2019·黄石)2019年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦,也在国内掀起一股网球热.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷.要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题.小明想到一个办法:他拿出一个装有质地、大小相同的2x 个红球与3x 个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座;如果摸出的是白球,小明去听讲座. (1)爸爸说这个办法不公平,请你用概率的知识解释原因;(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利?说明理由.解(1)∵红球有2x个,白球有3x个,∴P(红球)=2x2x+3x=25,P(白球)=3x2x+3x=35,∴P(红球)< P(白球),∴这个办法不公平.(2)取出3个白球后,红球有2x个,白球有(3x-3)个,∴P(红球)=2x5x-3,P(白球)=3x-35x-3,x为正整数,∴P(红球)-P(白球) =3-x5x-3.①当x<3时,则P(红球)> P(白球),∴对妹妹有利;②当x=3时,则P(红球)=P(白球),∴对妹妹、小明是公平的;③当x>3时,则P(红球)< P(白球),∴对小明有利.。
第四章统计与概率单元检测卷(时间:120分钟总分:120分)一、选择题(每小题3分,共30分)1.下列调查适合采用抽样调查的是( B )A.某公司招聘人员,对应聘人员进行面试B.调查一批节能灯泡的使用寿命C.为保证火箭的成功发射,对其零部件进行检查D.对乘坐某次航班的乘客进行安全检查2.一组数据-2,1,1,0,2,1.这组数据的众数和中位数分别是( C )A.-2,0B.1,0C.1,1D.2,13.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( B )A.40,37B.40,39C.39,40D.40,384.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是( D )A.3个都是黑球B.2个黑球1个白球C.2个白球1个黑球D.至少有1个黑球5.某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是( B )A .平均数B .中位数C .方差D .极差6.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为( C )A .27B .23C .22D .187.下列说法正确的是( A )A .若甲、乙两组数据的平均数相同,S 2甲=0.1,S 2乙=0.04,则乙组数据较稳定B .如果明天降水的概率是50%,那么明天有半天都在降雨C .了解全国中学生的节水意识应选用普查方式D .早上的太阳从西方升起是必然事件8.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( D )A .23B .12C .13D .149.随着时代的进步,人们对PM2.5(空气中直径小于等于2.5微米的颗粒)的关注日益密切.某市一天中PM2.5的值y1(ug/m3)随时间t(h)的变化如图所示,设y2表示0时到t时PM2.5的值的极差(即0时到t时PM2.5的最大值与最小值的差),则y2与t的函数关系大致是( B )10.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( A )A .1325B .1225C .425D .12二、填空题(每小题4分,共24分) 11.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是 13. 12.样本数据-2,0,3,4,-1的中位数是 0 .13.一个袋中装有m 个红球,10个黄球,n 个白球,每个球除颜色外都相同,任意摸出一个球,摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是 m +n =10 .14.小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约90千克.15.某机床生产一种零件,在6月6日至9日这4天中出现次品的数量如下表:若出现次品数量的唯一众数为1,则数据1,0,2,a的方差等于1 2.16.取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m,则数字m使分式方程xx-1-1=m(x-1)(x+2)无解的概率为15.三、解答题(共66分)17.(6分)如果一组数据3,2,2,4,x的平均数为3.(1)求x的值;(2)求这组数据的众数.解:(1)由题意知,数据3,2,2,4,x的平均数为3,则(3+2+2+4+x)=3×5,∴x=4;(2)这组数据中2和4均出现了2次,并列最多,所以众数为2和4.18.(8分)一个口袋中放有290个涂有红、黑、白三种色的质地相同的小球,若红球个数是黑球个数的2倍多3个,从袋中任取一个球是白球的概率是1 10.(1)求袋中红球的个数;(2)求从袋中任取一个球是黑球的概率.解:(1)白球的个数为:290×110=29(个),设黑球的个数为x个,则2x+3+x=290-29,解得:x=86,则2x+3=172,答:袋中红球的个数为172个;(2)由(1)得:从袋中任取一个球是黑球的概率为:86 290=43 145.19.(8分)陈老师对他所教的九(1)、九(2)两个班级的学生进行了一次检测,批阅后对最后一道试题的得分情况进行了归类统计(各类别的得分如下表),并绘制了如图所示的每班各类别得分人数的条形统计图(不完整).各类别的得分表已知两个班一共有50%的学生得到两个正确答案,解答完全正确,九(1)班学生这道试题的平均得分为3.78分.请解决如下问题:(1)九(2)班学生得分的中位数是 ;(2)九(1)班学生中这道试题作答情况属于B 类和C 类的人数各是多少?解:(1)由条形图可知九(2)班一共有学生:3+6+12+27=48人,将48个数据按从小到大的顺序排列,第24、25个数据都在D 类,所以中位数是6分;(2)两个班一共有学生:(22+27)÷50%=98(人),九(1)班有学生:98-48=50(人).设九(1)班学生中这道试题作答情况属于B 类和C 类的人数各是x 人、y 人.由题意,得⎩⎨⎧5+x +y +22=50,0×5+x +3y +6×22=3.78×50,解得⎩⎨⎧x =6,y =17.答:九(1)班学生中这道试题作答情况属于B 类和C 类的人数各是6人、17人.20.(10分)为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为A ,B ,C ,D ,E ,F ,G ,H ,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.(1)求8名学生中至少有三类垃圾投放正确的概率;(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.解:(1)8名学生中至少有三类垃圾投放正确的概率为58; (2)列表如下:21.(10分)我市某中学为庆祝“世界读书日”,响应”书香校园”的号召,开展了“阅读伴我成长”的读书活动.为了解学生在此次活动中的读书情况,从全校学生中随机抽取一部分学生进行调查,将收集到的数据整理并绘制成如图所示不完整的折线统计图和扇形统计图.(1)随机抽取学生共名,2本所在扇形的圆心角度数是度,并补全折线统计图;(2)根据调查情况,学校决定在读书数量为1本和4本的学生中任选两名学生进行交流,请用树状图或列表法求这两名学生读书数量均为4本的概率.解:(1)16÷32%=50,所以随机抽取学生共50名,2本所在扇形的圆心角度数=360°×3050=216°;4本的人数为50-2-16-30=2(人),补全折线统计图略;(2)画树状图为:(用1,4分别表示读书数量为1本和4本的学生)共有12种等可能的结果数,其中这两名学生读书数量均为4本的结果数为2,所以这两名学生读书数量均为4本的概率=212=16.22.(12分)某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生,要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整的统计图表:根据统计图表的信息,解答下列问题:(1)直接写出本次调查的样本容量和表中a,b,c 的值;(2)将折线图补充完整;(3)该校现有2000名学生,估计该校参加音乐兴趣班的学生有多少人?解:(1)本次调查的样本容量10÷10%=100(人),b=100-10-30-20=40(人),a=30÷100=30%,c=20÷100=20%;(2)折线图补充略:(3)估计该校参加音乐兴趣班的学生2000×20%=400(人).23.(12分)某中学为了提高学生的综合素质,成立了以下社团:A.机器人,B.围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.解:(1)∴A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷36360=200(人);(2)C项目对应人数为:200-20-80-40=60(人);补图略;(3)1000×60200=300(人);(4)共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)=212=16.。