2 7.1.2 复数的几何意义
- 格式:doc
- 大小:327.50 KB
- 文档页数:10
【人教A版】高中数学必修第二册第七章7.1.2 复数的几何意义教学设计(教师独具内容)课程标准:理解复数的几何意义.教学重点:复数的几何意义、复数的模的概念及共轭复数的概念.教学难点:复数的几何意义的理解与应用.核心素养:1.通过复数、复平面内的点、复平面内的向量之间的对应关系培养直观想象素养.2.通过求复数的模及求一个复数的共轭复数培养数学运算素养.共轭复数的性质(1)两个共轭复数的对应点关于实轴对称.(2)实数的共轭复数是它本身,即z=z-⇔z∈R.利用这个性质,可以证明一个复数是实数.(3)z z-=|z|2=|z-|2∈R.z与z-互为实数化因式.1.判一判(正确的打“√”,错误的打“×”)(1)在复平面内,对应于实数的点都在实轴上.( )(2)在复平面内,虚轴上的点所对应的复数都是纯虚数.( )(3)复数的模一定是正实数.( )(4)两个复数互为共轭复数是它们的模相等的必要条件.( )2.做一做(1)若OZ→=(0,-3),则OZ→对应的复数为____.(2)复数z=1-4i位于复平面上的第____象限.(3)复数3i的模是____.(4)复数5+6i的共轭复数是____.题型一复数与复平面内的点例1 在复平面内,若复数z=(m2-m-2)+(m2-3m+2)i对应点(1)在虚轴上;(2)在第二象限;(3)在直线y=x上,分别求实数m的取值范围. [跟踪训练1] 实数m取什么值时,复数z=(m2+5m+6)+(m2-2m-15)i.(1)对应的点在x轴上方;(2)对应的点在直线y=-x上.题型二复数与复平面内的向量例2 已知平行四边形OABC的三个顶点O,A,C对应的复数分别为0,3+2i,-2+4i,试求:(1)AO→表示的复数;(2)CA→表示的复数;(3)点B对应的复数. [跟踪训练2] (1)复数4+3i与-2-5i分别表示向量OA→与OB→,则向量AB→表示的复数是____.(2)在复平面内的长方形ABCD的四个顶点中,点A,B,C对应的复数分别是2+3i,3+2i,-2-3i,求点D对应的复数.题型三复数的模例3 设z∈C,则满足条件|z|=|3+4i|的复数z在复平面内对应的点Z的集合是什么图形?[跟踪训练3] 设z∈C,且满足下列条件,在复平面内,复数z对应的点Z 的集合是什么图形?(1)1<|z|<2;(2)|z-i|<1.1.已知a∈R,且0<a<1,i为虚数单位,则复数z=a+(a-1)i在复平面内所对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.(多选)若复数z=(a2-2a)+(a2-a-2)i对应的点Z在虚轴上,则a的值可以是( )A.0 B.1C.2 D.33.若复数z1=2+b i与复数z2=a-4i互为共轭复数,则a=____,b=____.4.已知复数z=3+a i,且|z|<5,则实数a的取值范围是____.5.如果复数z=(m2+m-1)+(4m2-8m+3)i(m∈R)对应的点在第一象限,求实数m的取值范围.一、选择题1.复数z1=1+3i和z2=1-3i在复平面内的对应点关于( )A.实轴对称B.一、三象限的角平分线对称C.虚轴对称D.二、四象限的角平分线对称2.当23<m<1时,复数z=(3m-2)+(m-1)i的共轭复数在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.复数z1=a+2i,z2=-2+i,如果|z1|<|z2|,则实数a的取值范围是( ) A.-1<a<1 B.a>1C.a>0 D.a<-1或a>04.(多选)若|4+25i|+x+(3-2x)i=3+(y+5)i(i为虚数单位),其中x,y是实数,则( )A.x=3 B.y=4C.x+y i=-3+4i D.|x+y i|=55.已知复数z满足|z|2-2|z|-3=0,则复数z对应点的轨迹是( )A.1个圆B.线段C.2个点D.2个圆二、填空题6.i为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i,则z-2=____.7.已知复数(2k2-3k-2)+(k2-k)i在复平面内对应的点在第二象限,则实数k的取值范围是____.8.已知复数z1=-1+2i,z2=1-i,z3=3-2i,它们所对应的点分别是A,B,C,若OC→=xOA→+yOB→(x,y∈R),则x+y的值是____.三、解答题9.已知复数z=(1+2m)+(3+m)i(m∈R).(1)若m=1,且|z-|=|x+(x-1)i|,求实数x的值;(2)当m为何值时,|z-|最小?并求|z-|的最小值.1.在复平面上,复数i,1,4+2i对应的点分别是A,B,C,求平行四边形的ABCD的点D对应的复数.2.已知x为实数,复数z=x-2+(x+2)i.(1)当x为何值对,复数z的模最小?(2)当复数z的模最小时,复数z在复平面内对应的点Z位于函数y=-mx+n的图象上,其中mn>0,求1m+1n的最小值及取得最小值时m,n的值.7.1.2 复数的几何意义(教师独具内容)课程标准:理解复数的几何意义.教学重点:复数的几何意义、复数的模的概念及共轭复数的概念.教学难点:复数的几何意义的理解与应用.核心素养:1.通过复数、复平面内的点、复平面内的向量之间的对应关系培养直观想象素养.2.通过求复数的模及求一个复数的共轭复数培养数学运算素养.共轭复数的性质(1)两个共轭复数的对应点关于实轴对称.(2)实数的共轭复数是它本身,即z=z-⇔z∈R.利用这个性质,可以证明一个复数是实数.(3)z z-=|z|2=|z-|2∈R.z与z-互为实数化因式.1.判一判(正确的打“√”,错误的打“×”)(1)在复平面内,对应于实数的点都在实轴上.( )(2)在复平面内,虚轴上的点所对应的复数都是纯虚数.( )(3)复数的模一定是正实数.( )(4)两个复数互为共轭复数是它们的模相等的必要条件.( )答案(1)√(2)×(3)×(4)×2.做一做(1)若OZ→=(0,-3),则OZ→对应的复数为____.(2)复数z=1-4i位于复平面上的第____象限.(3)复数3i的模是____.(4)复数5+6i的共轭复数是____.答案(1)-3i (2)四(3) 3 (4)5-6i题型一复数与复平面内的点例1 在复平面内,若复数z=(m2-m-2)+(m2-3m+2)i对应点(1)在虚轴上;(2)在第二象限;(3)在直线y =x 上,分别求实数m 的取值范围.[解] 复数z =(m 2-m -2)+(m 2-3m +2)i 的实部为m 2-m -2,虚部为m 2-3m +2.(1)由题意得m 2-m -2=0,解得m =2或m =-1. (2)由题意得⎩⎨⎧m 2-m -2<0,m 2-3m +2>0,∴⎩⎨⎧-1<m <2,m >2或m <1,∴-1<m <1.(3)由已知得m 2-m -2=m 2-3m +2,∴m =2.复数集与复平面内所有的点组成的集合之间存在着一一对应关系.每一个复数都对应着一个有序实数对,复数的实部对应着有序实数对的横坐标,而虚部则对应着有序实数对的纵坐标,只要在复平面内找到这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值.[跟踪训练1] 实数m 取什么值时,复数z =(m 2+5m +6)+(m 2-2m -15)i. (1)对应的点在x 轴上方; (2)对应的点在直线y =-x 上. 解 (1)由题意得m 2-2m -15>0, 解得m <-3或m >5,所以当m <-3或m >5时,复数z 对应的点在x 轴上方.(2)由题意,得m 2-2m -15=-(m 2+5m +6),整理,得2m 2+3m -9=0,解得m =32或m =-3.所以当m =32或m =-3时,复数z 对应的点在直线y =-x 上.题型二 复数与复平面内的向量例2 已知平行四边形OABC 的三个顶点O ,A ,C 对应的复数分别为0,3+2i ,-2+4i ,试求:(1)AO →表示的复数;(2)CA →表示的复数;(3)点B 对应的复数.[解] 由题意得O 为原点,OA →=(3,2),OC →=(-2,4). (1)∵AO →=-OA →=-(3,2)=(-3,-2)∴AO →表示的复数为-3-2i.(2)∵CA →=OA →-OC →=(3,2)-(-2,4)=(5,-2), ∴CA →表示的复数为5-2i.(3)∵OB →=OA →+OC →=(3,2)+(-2,4)=(1,6), ∴OB →表示的复数为1+6i ,即点B 对应的复数为1+6i.复数与平面向量一一对应是复数的另一种几何意义,利用这种几何意义,复数问题可以转化为平面向量来解决,平面向量问题也可以用复数方法来求解.[跟踪训练2] (1)复数4+3i 与-2-5i 分别表示向量OA →与OB →,则向量AB →表示的复数是____.(2)在复平面内的长方形ABCD 的四个顶点中,点A ,B ,C 对应的复数分别是2+3i,3+2i ,-2-3i ,求点D 对应的复数.答案 (1)-6-8i (2)见解析解析 (1)因为复数4+3i 与-2-5i 分别表示向量OA →与OB →,所以OA →=(4,3),OB →=(-2,-5),又AB →=OB →-OA →=(-2,-5)-(4,3)=(-6,-8),所以向量AB →表示的复数是-6-8i.(2)记O 为复平面的原点,由题意得OA →=(2,3),OB →=(3,2),OC →=(-2,-3). 设OD →=(x ,y ),则AD →=(x -2,y -3),BC →=(-5,-5). 由题知,AD →=BC →,所以⎩⎨⎧x -2=-5,y -3=-5,即⎩⎨⎧x =-3,y =-2,故点D 对应的复数为-3-2i. 题型三 复数的模例3 设z ∈C ,则满足条件|z |=|3+4i|的复数z 在复平面内对应的点Z 的集合是什么图形?[解] 由|z |=|3+4i|得|z |=5.这表明向量OZ →的长度等于5,即点Z 到原点的距离等于5.因此满足条件的点Z的集合是以原点O为圆心,以5为半径的圆.巧用复数的模的几何意义解题(1)复平面内|z|的意义我们知道,在实数集中,实数a的绝对值,即|a|是表示实数a的点与原点O 间的距离.那么在复数集中,类似地,有|z|是表示复数z的点Z到坐标原点间的距离.也就是向量OZ→的模,|z|=|OZ→|.(2)复平面内任意两点间的距离设复平面内任意两点P,Q所对应的复数分别为z1,z2,则|PQ|=|z2-z1|.运用以上性质,可以通过数形结合的方法解决有关问题.[跟踪训练3] 设z∈C,且满足下列条件,在复平面内,复数z对应的点Z 的集合是什么图形?(1)1<|z|<2;(2)|z-i|<1.解(1)根据复数模的几何意义可知,复数z对应的点Z的集合是以原点O为圆心,1和2为半径的两圆所夹的圆环,不包括圆环的边界.(2)根据模的几何意义,|z-i|=1表示复数z对应的点到复数i对应的点(0,1)的距离为1.∴满足|z-i|<1的点Z的集合为以(0,1)为圆心,1为半径的圆内的部分(不含圆的边界).1.已知a∈R,且0<a<1,i为虚数单位,则复数z=a+(a-1)i在复平面内所对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限答案 D解析∵0<a<1,∴a>0且a-1<0,故复数z=a+(a-1)i在复平面内所对应的点(a ,a -1)位于第四象限.故选D.2.(多选)若复数z =(a 2-2a )+(a 2-a -2)i 对应的点Z 在虚轴上,则a 的值可以是( )A .0B .1C .2D .3答案 AC解析 由点Z 在虚轴上可知,点Z 对应的复数是纯虚数和0,∴a 2-2a =0,解得a =2或a =0.故选AC.3.若复数z 1=2+b i 与复数z 2=a -4i 互为共轭复数,则a =____,b =____. 答案 2 4解析 因为z 1与z 2互为共轭复数,所以a =2,b =4.4.已知复数z =3+a i ,且|z |<5,则实数a 的取值范围是____. 答案 -4<a <4解析 |z |=32+a 2<5,解得-4<a <4.5.如果复数z =(m 2+m -1)+(4m 2-8m +3)i(m ∈R )对应的点在第一象限,求实数m 的取值范围.解 因为复数z 对应的点在第一象限, 所以⎩⎨⎧m 2+m -1>0,4m 2-8m +3>0,解得m <-1-52或m >32.所以实数m 的取值范围为⎝ ⎛⎭⎪⎫-∞,-1-52∪⎝ ⎛⎭⎪⎫32,+∞.一、选择题1.复数z 1=1+3i 和z 2=1-3i 在复平面内的对应点关于( ) A .实轴对称B .一、三象限的角平分线对称C .虚轴对称D .二、四象限的角平分线对称 答案 A解析 复数z 1=1+3i 在复平面内的对应点为Z 1(1,3),复数z 2=1-3i 在复平面内的对应点为Z 2(1,-3),点Z 1与Z 2关于实轴对称.2.当23<m <1时,复数z =(3m -2)+(m -1)i 的共轭复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 ∵23<m <1,∴2<3m <3,∴0<3m -2<1且-13<m -1<0,∴复数z 在复平面内对应的点位于第四象限.∵一对共轭复数在复平面内对应的点关于实轴对称,∴复数z 的共轭复数在复平面内对应的点位于第一象限.故选A .3.复数z 1=a +2i ,z 2=-2+i ,如果|z 1|<|z 2|,则实数a 的取值范围是( ) A .-1<a <1 B .a >1 C .a >0 D .a <-1或a >0答案 A解析 依题意有a 2+22<-22+12,解得-1<a <1.4.(多选)若|4+25i|+x +(3-2x )i =3+(y +5)i(i 为虚数单位),其中x ,y 是实数,则( )A .x =3B .y =4C .x +y i =-3+4iD .|x +y i|=5答案 BCD解析 由已知,得6+x +(3-2x )i =3+(y +5)i , 所以⎩⎨⎧x +6=3,3-2x =y +5,解得⎩⎨⎧x =-3,y =4,所以|x +y i|=|-3+4i|=5,故选BCD.5.已知复数z 满足|z |2-2|z |-3=0,则复数z 对应点的轨迹是( ) A .1个圆B .线段C .2个点D .2个圆答案 A解析 由题意可知(|z |-3)(|z |+1)=0,即|z |=3或|z |=-1.∵|z |≥0,∴|z |=3.∴复数z 对应的轨迹是1个圆.二、填空题6.i 为虚数单位,设复数z 1,z 2在复平面内对应的点关于原点对称,若z 1=2-3i ,则z -2=____.答案 -2-3i解析 复数z 1=2-3i 对应的点为(2,-3),则z 2对应的点为(-2,3).所以z 2=-2+3i ,z -2=-2-3i.7.已知复数(2k 2-3k -2)+(k 2-k )i 在复平面内对应的点在第二象限,则实数k 的取值范围是____.答案 -12<k <0或1<k <2解析 根据题意,有⎩⎨⎧2k 2-3k -2<0,k 2-k >0,即⎩⎨⎧-12<k <2,k <0或k >1,所以实数k 的取值范围是-12<k <0或1<k <2.8.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-2i ,它们所对应的点分别是A ,B ,C ,若OC →=xOA→+yOB →(x ,y ∈R ),则x +y 的值是____.答案 5解析 由已知,得OA →=(-1,2),OB →=(1,-1),OC →=(3,-2),∴xOA →+yOB →=x (-1,2)+y (1,-1)=(-x +y,2x -y ).由OC →=xOA→+yOB →, 可得⎩⎨⎧-x +y =3,2x -y =-2,解得⎩⎨⎧x =1,y =4,∴x +y =5.三、解答题9.已知复数z =(1+2m )+(3+m )i(m ∈R ).(1)若m =1,且|z -|=|x +(x -1)i|,求实数x 的值;(2)当m 为何值时,|z -|最小?并求|z -|的最小值. 解 (1)由m =1,得z =3+4i ,z -=3-4i , 则由|z -|=|x +(x -1)i|, 得32+-42=x 2+x -12,整理得x 2-x -12=0,解得x =4或x =-3. (2)|z -|=1+2m2+[-3+m]2=5m 2+10m +10=5m +12+5≥ 5,当且仅当m =-1时,|z -|取得最小值,最小值为 5.1.在复平面上,复数i,1,4+2i 对应的点分别是A ,B ,C ,求平行四边形的ABCD 的点D 对应的复数.解 解法一:由已知条件得点A (0,1),B (1,0),C (4,2), 则AC 的中点E ⎝⎛⎭⎪⎫2,32,由平行四边形的性质知点E 也是边BD 的中点,设D (x ,y ),则⎩⎪⎨⎪⎧x +12=2,y +02=32,解得⎩⎨⎧x =3,y =3,即D (3,3),∴点D 对应的复数为3+3i.解法二:由已知得向量OA →=(0,1),OB →=(1,0),OC →=(4,2),其中O 为坐标原点.∴BA →=(-1,1),BC →=(3,2), ∴BD →=BA →+BC →=(2,3),∴OD →=OB →+BD →=(3,3),即点D 对应的复数为3+3i. 2.已知x 为实数,复数z =x -2+(x +2)i. (1)当x 为何值对,复数z 的模最小?(2)当复数z 的模最小时,复数z 在复平面内对应的点Z 位于函数y =-mx +n的图象上,其中mn>0,求1m+1n的最小值及取得最小值时m,n的值.解(1)|z|=x-22+x+22=2x2+8≥22,当且仅当x=0时,复数z的模最小,为2 2.(2)当复数z的模最小时,Z(-2,2).又点Z位于函数y=-mx+n的图象上,所以2m+n=2.又mn>0,所以1m+1n=⎝⎛⎭⎪⎫1m+1n⎝⎛⎭⎪⎫m+n2=32+mn+n2m≥32+2,当且仅当n2=2m2,2m+n=2时等号成立.所以m=2-2,n=22-2.所以1m+1n的最小值为32+2,此时m=2-2,n=22-2.。
复数的几何意义一、复数的几何意义1、复数的几何表示:bi a z +=与复平面内的点)(b ,a Z 之间是一一对应的,即任何复数bi a z +=都可以用复平面内的点)(b ,a Z 来表示。
2、复数的向量表示:直角坐标系内的点)(b ,a Z 与始点在原点的向量)(b ,a OZ =是一一对应的,因此,复数bi a z +=也与向量)(b ,a OZ =一一对应,其中复数0对应零向量,任何复数bi a z +=可以表示为复平面内以原点O 为起点的向量OZ ,我们把这种表示像是叫做复数的向量表示法。
复数z=a+bi ↔复平面内的点Z (a ,b )↔平面向量OZ 3、复数的模的几何意义复数z=a+bi 在复平面上对应的点Z(a,b)到原点的距离. 即 |Z |=|a+bi |=22b a +4、复数的加法与减法的几何意义加法的几何意义 减法的几何意义)ZZ 2Z1yz 1z 2≠0时, z 1+z 2对应的向量是以OZ 1、OZ 2、为邻边的平行四边形OZ 1ZZ 2的对角线OZ , z 2-z 1对应的向量是Z 1Z 2 5、 复数乘法与除法的几何意义z 1=r 1(cos θ1+i sin θ1) z 2=r 2(cos θ2+i sin θ2)①乘法:z=z 1· z 2=r 1·r 2 [cos(θ1+θ2)+i sin(θ1+θ2)]如图:其对应的向量分别为oz oz oz 12→→→显然积对应的辐角是θ1+θ2 < 1 > 若θ2 > 0 则由oz 1→逆时针旋转θ2角模变为oz 1→的r 2倍所得向量便是积z 1·z 2=z 的向量oz →。
< 2 >若θ2< 0 则由向量oz 1→顺时针旋转θ2角模变为r 1·r 2所得向量便是积z 1·z 2=z 的向量oz →。
为此,若已知复数z 1的辐角为α,z 2的辐角为β求α+β时便可求出z 1·z 2=z a z 对应的辐角就是α+β这样便可将求“角”的问题转化为求“复数的积”的运算。
第七章 7.1 7.1.2A 级——基础过关练1.(2019年北京海淀区二模)已知复数z 在复平面上对应的点为(1,-1),则( ) A .z =-1+i B .z =1+i C .z +i 是实数D .z +i 是纯虚数【答案】C 【解析】∵复数z 在复平面上对应的点为(1,-1),∴z =1-i.∴z +i =1-i +i =1,即z +i 是实数.故选C .2.已知0<a <2,复数z =a -i(i 是虚数单位),则|z |的取值范围是( ) A .(1,3) B .(1,5) C .(1,3)D .(1,5)【答案】B 【解析】|z |2=a 2+1,∵0<a <2,0<a 2<4⇒1<a 2+1<5,∴1<|z |< 5.故选B . 3.(2019年陕西三模)在复平面内,表示复数z =5a +(6-a 2)i 的点在第二象限,则实数a 满足( )A .-6<a <0B .a <-6C .0<a <6D .-6<a <6【答案】A【解析】∵z =5a +(6-a 2)i对应的点在第二象限,∴⎩⎪⎨⎪⎧5a <0,6-a 2>0,解得-6<a <0.故选A .4.复平面内,向量OA →表示的复数为1+i ,将OA →向右平移一个单位后得到向量O ′A ′→,则向量O ′A ′→与点A ′对应的复数分别为( )A .1+i,1+iB .2+i,2+iC .1+i,2+iD .2+i,1+i【答案】C 【解析】向量OA →向右平移一个单位后起点O ′(1,0),∵OA ′→=OO ′→+O ′A ′→=OO ′→+OA →=(1,0)+(1,1)=(2,1),∴点A ′对应复数2+i.又O ′A ′→=OA →,∴O ′A ′→对应复数为1+i.故选C .5.(2020年宜宾模拟)已知i 是虚数单位,复数m +1+(2-m )i 在复平面内对应的点在第二象限,则实数m 的取值范围是( )A .(-∞,-1)B .(-1,2)C .(2,+∞)D .(-∞,-1)∪(2,+∞)【答案】A 【解析】∵复数m +1+(2-m )i 在复平面内对应的点在第二象限,∴⎩⎪⎨⎪⎧m +1<0,2-m >0,解得m <-1.∴实数m 的取值范围是(-∞,-1).故选A . 6.(2020年重庆月考)已知实数m ,n 满足m -2i =n (2+i),则在复平面内,复数z =m +n i 所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】∵m -2i =n (2+i),∴m -2i =2n +n i.∴⎩⎪⎨⎪⎧ m =2n ,n =-2,解得⎩⎪⎨⎪⎧m =-4,n =-2.∴复数z =m +n i =-4-2i.∴复数z =m +n i 所对应的点位于第三象限.故选C .7.i 为虚数单位,设复数z 1,z 2在复平面内对应的点关于原点对称,若z 1=2-3i ,则z 2的共轭复数为________.【答案】-2-3i 【解析】∵z 1=2-3i ,∴z 1对应的点为(2,-3),关于原点的对称点为(-2,3).∴z 2=-2+3i.z 2的共轭复数为-2-3i.8.已知复数z =1-2m i(m ∈R ),且|z |≤2,则实数m 的取值范围是________. 【答案】⎣⎡⎦⎤-32,32 【解析】|z |=1+4m 2≤2,解得-32≤m ≤32. 9.实数m 分别取什么数值时,复数z =(m 2+5m +6)+(m 2-2m -15)i 满足下列条件? (1)对应点在x 轴上方; (2)对应点在直线y =-x -5上.解:(1)由m 2-2m -15>0,得当m <-3或m >5时,z 的对应点在x 轴上方. (2)由(m 2+5m +6)+(m 2-2m -15)+5=0,得当m =-3-414或m =-3+414,z 的对应点在直线y =-x -5=0上.10.已知O 为坐标原点,OZ 1→对应的复数为-3+4i ,OZ 2→对应的复数为2a +i(a ∈R ).若OZ 1→与OZ 2→共线,求a 的值.解:因为OZ 1→对应的复数为-3+4i ,OZ 2→对应的复数为2a +i ,所以OZ 1→=(-3,4),OZ 2→=(2a,1).因为OZ 1→与OZ 2→共线,所以-3×1-4×2a =0,解得a =-38,即a 的值为-38.B 级——能力提升练11.(2020年合肥月考)设复数z 满足|z -1|=|z -i|(i 为虚数单位),z 在复平面内对应的点为(x ,y ),则( )A .y =-xB .y =xC .(x -1)2+(y -1)2=1D .(x +1)2+(y +1)2=1【答案】B 【解析】由z 在复平面内对应的点为(x ,y ),且|z -1|=|z -i|,得|x -1+y i|=|x +(y -1)i|,∴(x -1)2+y 2=x 2+(y -1)2,整理得y =x .故选B .12.已知复数z 满足|z |=2,则|z +3-4i|的最小值是( ) A .5 B .2 C .7D .3【答案】D 【解析】|z |=2表示复数z 在以原点为圆心,以2为半径的圆上,而|z +3-4i|表示圆上的点到(-3,4)这一点的距离,故|z +3-4i|的最小值为(-3)2+42-2=3.13.(多选)下列命题中,正确的是( ) A .复数的模是非负实数B .复数等于零的充要条件是它的模等于零C .两个复数模相等是这两个复数相等的必要条件D .复数z 1>z 2的充要条件是|z 1|>|z 2|【答案】ABC 【解析】①任意复数z =a +b i(a ,b ∈R )的模|z |=a 2+b 2≥0总成立,故A 正确;②由复数相等的条件z =0⇔⎩⎪⎨⎪⎧a =0,b =0⇔|z |=0,故B 正确;③设z 1=a 1+b 1i ,z 2=a 2+b 2i(a 1,b 1,a 2,b 2∈R ),若z 1=z 2,则有a 1=a 2,b 1=b 2,所以|z 1|=|z 2|,故C 正确;④虚部不全为零的两个复数不能比较大小,但任意两个复数的模总能比较大小,故D 错.14.设A ,B 为锐角三角形的两个内角,则复数z =(cos B -tan A )+itan B 对应的点位于复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B 【解析】因为A ,B 为锐角三角形的两个内角,所以A +B >π2,即A >π2-B ,sin A >cos B ,cos B -tan A =cos B -sin Acos A <cos B -sin A <0.又tan B >0,所以点(cos B -tan A ,tan B )在第二象限.故选B .15.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-2i ,它们所对应的点分别是A ,B ,C ,若OC →=xOA →+yOB →(x ,y ∈R ),则x +y 的值是________.【答案】5 【解析】由复数的几何意义可知,OC →=xOA →+yOB →,即3-2i =x (-1+2i)+y (1-i),∴3-2i =(y -x )+(2x -y )i.由复数相等可得⎩⎪⎨⎪⎧ y -x =3,2x -y =-2,解得⎩⎪⎨⎪⎧x =1,y =4.∴x +y=5.16.已知两向量a ,b 对应的复数分别是z 1=-3,z 2=-12+m i(m ∈R ),且a ,b 的夹角为60°,求m 的值.解:因为a ,b 对应的复数分别为z 1=-3,z 2=-12+m i(m ∈R ),所以a =(-3,0),b =⎝⎛⎭⎫-12,m .又a ,b 的夹角为60°, 所以cos 60°=(-3,0)·⎝⎛⎭⎫-12,m (-3)2+02·⎝⎛⎭⎫-122+m 2,即12=32314+m 2,解得m =±32.17.已知复数z 对应的向量为OZ →(O 为坐标原点),OZ →与实轴正方向的夹角为120°,且复数z 的模为2,求复数z .解:根据题意可画图形如图所示,设点Z 的坐标为(a ,b ),∵|OZ →|=|z |=2,∠xOZ =120°,∴a =-1,b =±3,即点Z 的坐标为(-1,3)或(-1,-3).∴z =-1+3i 或z =-1-3i.C 级——探索创新练18.已知t 为实数,复数z =(t 2+t -2)+(t 2+3t +2)i. (1)当t 为何值时,复数z 为纯虚数?(2)当t =0时,复数z 在复平面内对应的点Z 落在直线y =-mx +n 上,其中mn >0,求1m +1n的最小值及取得最值时的m 和n 值. 解:(1)复数z 为纯虚数,∴⎩⎪⎨⎪⎧t 2+t -2=0,t 2+3t +2≠0,解得t =1.(2)当t =0时,点Z (-2,2),复数z 在复平面内对应的点Z 落在直线y =-mx +n 上,∴2m +n =2,∵mn >0,∴1m +1n =⎝⎛⎭⎫1m +1n ⎝⎛⎭⎫m +n 2=32+m n +n 2m ≥32+2,当且仅当n 2=2m 2等号成立. 又2m +n =2,∴m =2-2,n =22-2.。
7.1.2 复数的几何意义(练习)(60分钟120分)知识点1复数与复平面内点的关系1.(5分)复数z=-1+2i所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限B解析:由复数的几何意义知z=-1+2i对应复平面中的点为(-1,2),而(-1,2)是第二象限中的点,故选B.2.(5分)复数z1=1+3i和z2=1-3i在复平面内的对应点关于() A.实轴对称B.一、三象限的平分线对称C.虚轴对称D.二、四象限的平分线对称A解析:复数z1=1+3i在复平面内的对应点为Z1(1,3),复数z2=1-3i在复平面内的对应点为Z2(1,-3),点Z1与Z2关于实轴对称,故选A.3.(5分)已知复数z=(a2-2a)+(a2-a-2)i(a∈R)对应的点在虚轴上,则()A.a≠2或a≠1B.a≠2且a≠1C.a=0D.a=2或a=0D解析:由题意,得a2-2a=0,解得a=0或a=2.故选D.4.(5分)已知复数z=12i2,则复数z在复平面上对应的点在()A.直线y=-12x上B.直线y=12x上C .直线x =-12上 D .直线y =-12上C 解析:∵z =12i 2=-12,∴z 对应的点在直线x =-12上,C 正确. 知识点2 复数与复平面内向量的关系5.(5分)在复平面内,O 为原点,向量OA →对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为点B ,则向量OB →对应的复数为( )A .-2-iB .-2+iC .1+2iD .-1+2iB 解析:因为复数-1+2i 对应的点为A (-1,2),点A 关于直线y =-x 的对称点为B (-2,1),所以OB →对应的复数为-2+i.6.(5分)与x 轴同方向的单位向量e 1,与y 轴同方向的单位向量e 2,它们对应的复数分别是( )A .e 1对应实数1,e 2对应虚数iB .e 1对应虚数i ,e 2对应虚数iC .e 1对应实数1,e 2对应虚数-iD .e 1对应实数1或-1,e 2对应虚数i 或-iA 解析:e 1=(1,0),e 2=(0,1).因此e 1对应实数1,e 2对应虚数i. 7.(5分)在△ABC 中,AB →,AC →对应的复数分别为-1+2i ,-2-3i ,则BC →对应的复数为 .-1-5i 解析:因为AB →,AC →对应的复数分别为-1+2i ,-2-3i ,所以AB →=(-1,2),AC →=(-2,-3).又BC →=AC →-AB →=(-2,-3)-(-1,2)=(-1,-5),所以BC →对应的复数为-1-5i.知识点3 复数的模及应用8.(5分)下列四个式子中,正确的是( ) A .z =|z | B .|2+3i|>|1-4i|C .|2-i|>2i 2D .i 2>|-i|C 解析:A 中z 是复数,|z |是实数,二者不一定相等,错误;B 中|2+3i|=13<|1-4i|=17,错误;C 中|2-i|=5>2i 2=-2,正确;D 中i 2=-1<|-i|=1,错误.9.(5分)已知复数z 的实部为1,且|z |=2,则复数z 的虚部是( ) A .- 3 B .3i C .±3iD .±3D 解析:设复数z 的虚部为b (b ∈R ,b ≠0),∵|z |=2,实部为1,∴1+b 2=4,∴b =±3,选D.10.(5分)已知复数z =x -2+y i(x ,y ∈R )的模是22,则点(x ,y )的轨迹方程是 .(x -2)2+y 2=8 解析:由题意得(x -2)2+y 2=2 2,即(x -2)2+y 2=8. 11.(5分)复数z =-5-12i 在复平面内对应的点到原点的距离为 . 13 解析:复数z =-5-12i 在复平面内对应点Z (-5,-12).所以点Z 与原点O 的距离为|OZ →|=(-5)2+(-12)2=13.12.(5分)已知复数z =x +1+(y -1)i(x ,y ∈R )在复平面内的对应点位于第二象限,则点(x ,y )所构成的平面区域是( )A 解析:由题意,得⎩⎨⎧ x +1<0,y -1>0,即⎩⎨⎧x <-1,y >1,故点(x ,y )所构成的平面区域为A 项中的阴影部分.13.(5分)在复平面内,复数z =sin 2+icos 2对应的点位于( ) A .第一象限B .第二象限提升篇C .第三象限D .第四象限D 解析:∵sin 2>0,cos 2<0,∴复数z 对应的点(sin 2,cos 2)在第四象限.故选D.14.(5分)如果复数z 满足条件z +|z |=2+i ,那么z =( ) A .-34+i B .34-i C .-34-iD .34+iD 解析:设z =a +b i(a ,b ∈R ).由复数相等的充要条件,得⎩⎨⎧a +a 2+b 2=2,b =1,解得⎩⎪⎨⎪⎧a =34,b =1,即z =34+i.15.(5分)已知复数z 对应的向量为OZ →(O 为坐标原点),OZ →与实轴正向的夹角为120°,且复数z 的模为2,则复数z 为( )A .1+3iB .2C .(-1,3)D .-1+3iD 解析:设复数z 对应的点为(x ,y ),则x =|z |·cos 120°=2×⎝ ⎛⎭⎪⎫-12=-1,y =|z |·sin 120°=2×32=3,∴复数z 对应的点为(-1,3),∴z =-1+3i.16.(5分)i 为虚数单位,设复数z 1,z 2在复平面内对应的点关于原点对称,若z 1=2-3i ,则z 2= .-2+3i 解析:复数z 1=2-3i 对应的点为(2,-3),则z 2对应的点为(-2,3).所以z 2=-2+3i.17.(5分)复数4+3i 与-2-5i 分别表示向量OA →与OB →,则向量AB →表示的复数是 .-6-8i 解析:因为复数4+3i 与-2-5i 分别表示向量OA →与OB →,所以OA →=(4,3),OB →=(-2,-5).又AB →=OB →-OA →=(-2,-5)-(4,3)=(-6,-8),所以向量AB →表示的复数是-6-8i.18.(5分)已知3-4i =x +y i(x ,y ∈R ),则|1-5i|,|x -y i|,|y +2i|的大小关系为 .|y +2i|<|x -y i|<|1-5i| 解析:由3-4i =x +y i(x ,y ∈R ),得x =3,y =-4.而|1-5i|=1+52=26,|x -y i|=|3+4i|=32+42=5,|y +2i|=|-4+2i|=(-4)2+22=20.∵20<5<26,∴|y +2i|<|x -y i|<|1-5i|. 19.(5分)若z 为纯虚数,且|z -1|=|-1+i|,则z = .±i 解析:设z =a i(a ∈R 且a ≠0),∴|z -1|=|a i -1|=a 2+1.∵|-1+i|=2,∴a 2+1=2,∴a =±1,∴z =±i.20.(12分)实数x 分别取什么值时,复数z =x 2+x -6+(x 2-2x -15)i 对应的点Z 在:(1)第三象限? (2)第四象限?(3)直线 x -y -3=0上?解:(1)当实数x 满足⎩⎨⎧x 2+x -6<0,x 2-2x -15<0,即-3<x <2时,点Z 在第三象限.(2)当实数x 满足⎩⎨⎧x 2+x -6>0,x 2-2x -15<0,即2<x <5时,点Z 在第四象限.(3)当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即x =-2时,点Z 在直线x -y -3=0上.21.(13分)已知O 为坐标原点,OZ 1→对应的复数为-3+4i ,OZ 2→对应的复数为2a +i(a ∈R ).若OZ 1→与OZ 2→共线,求a 的值.解:因为OZ 1→对应的复数为-3+4i ,OZ 2→对应的复数为2a +i ,所以OZ 1→=(-3,4),OZ 2→=(2a,1).因为OZ 1→与OZ 2→共线,所以存在实数k 使OZ 2→=kOZ 1→,即(2a,1)=k (-3,4)=(-3k,4k ),所以⎩⎨⎧2a =-3k ,1=4k ,所以⎩⎪⎨⎪⎧k =14,a =-38.即a 的值为-38.。
7.1.2 复数的几何意义
考点 学习目标 核心素养 复平面 了解复平面的概念
数学抽象 复数的几何意义 理解复数、复平面内的点、复平面内的向量之间的对应关系
直观想象 复数的模 掌握复数的模的概念,会求复数的模 数学运算 共轭复数
掌握共轭复数的概念,并会求一个复数的共轭复数
数学运算
问题导学
预习教材P70-P72的内容,思考以下问题: 1.复平面是如何定义的?
2.复数与复平面内的点及向量的关系如何?复数的模是实数还是虚数? 3.复数z =a +b i 的共轭复数是什么?
1.复平面
建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.
2.复数的两种几何意义
(1)复数z =a +b i(a ,b ∈R )←――→一一对应
复平面内的点Z (a ,b ).
(2)复数z =a +b i(a ,b ∈R ) ←――→一一对应平面向量OZ →.
■名师点拨
(1)复平面内的点Z 的坐标是(a ,b ),而不是(a ,b i).也就是说,复平面内的虚轴上的单位长度是1,而不是i.
(2)当a =0,b ≠0时,a +b i =0+b i =b i 是纯虚数,所以虚轴上的点(0,b )(b ≠0)都表示纯虚数.
(3)复数z =a +b i(a ,b ∈R )中的z ,书写时应小写;复平面内的点Z (a ,b )中的Z ,书写时应大写.
3.复数的模
复数z =a +b i(a ,b ∈R )对应的向量为OZ →,则OZ →
的模叫做复数z 的模或绝对值,记作|z |或|a
+b i|,即|z |=|a +b i|=a 2+b 2.
■名师点拨
如果b =0,那么z =a +b i 是一个实数a ,它的模等于|a |(a 的绝对值). 4.共轭复数
(1)一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数. (2)虚部不等于0的两个共轭复数也叫做共轭虚数.
(3)复数z 的共轭复数用z -表示,即如果z =a +b i ,那么z -
=a -b i . ■名师点拨
复数z =a +b i 在复平面内对应的点为(a ,b ),复数z -
=a -b i 在复平面内对应的点为(a ,-b ),所以两个互为共轭复数的复数,它们所对应的点关于x 轴对称.
判断(正确的打“√”,错误的打“×”) (1)原点是实轴和虚轴的交点.( )
(2)实轴上的点表示实数,虚轴上的点表示纯虚数.( ) (3)若|z 1|=|z 2|,则z 1=z 2.( )
(4)若z 1与z 2互为共轭复数,则|z 1|=|z 2|.( ) 答案:(1)√ (2)× (3)× (4)√
复数1-2i 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
答案:D
复数z =1+3i 的模等于( ) A .2 B .4 C.10 D .2 2 答案:C
复数z =-2+5i 的共轭复数z -
=________. 答案:-2-5i
复数与复平面内的点
已知复数z =(a 2-1)+(2a -1)i ,其中a ∈R .当复数z 在复平面内对应的点Z 满足下
列条件时,求a 的值(或取值范围).
(1)在实轴上;
(2)在第三象限.
【解】 (1)若z 对应的点在实轴上,则有 2a -1=0,解得a =1
2
.
(2)若z 对应的点在第三象限,则有
⎩⎨⎧a 2-1<0,2a -1<0,
解得-1<a <1
2
. 故a 的取值范围是⎝
⎛⎭⎫-1,12.
[变条件]本例中复数z 不变,若点Z 在抛物线y 2=4x 上,求a 的值.
解:若z 对应的点(a 2-1,2a -1)在抛物线y 2=4x 上,则有(2a -1)2=4(a 2-1),即4a 2-4a +1=4a 2-4,解得a =5
4
.
利用复数与点的对应解题的步骤
(1)找对应关系:复数的几何表示法即复数z =a +b i(a ,b ∈R )可以用复平面内的点Z (a ,b )来表示,是解决此类问题的根据.
(2)列出方程:此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.
在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i(m ∈R )的对应点在虚
轴上和实轴负半轴上,分别求复数z .
解:(1)若复数z 的对应点在虚轴上,则m 2-m -2=0, 所以m =-1或m =2, 所以z =6i 或z =0.
(2)若复数z 的对应点在实轴负半轴上,
则⎩
⎨⎧m 2-m -2<0,m 2-3m +2=0,所以m =1,所以z =-2.
复数与复平面内的向量
在复平面内,复数i ,1,4+2i 对应的点分别是A ,B ,C .求平行四边形ABCD 的顶
点D 所对应的复数.
【解】 法一:由复数的几何意义得A (0,1),B (1,0),C (4,2),则AC 的中点为⎝⎛⎭⎫2,32,由平行四边形的性质知该点也是BD 的中点,设D (x ,y ),则⎩⎪⎨⎪⎧x +1
2=2,y +02=32,所以⎩⎨⎧x =3,
y =3,
即点D 的
坐标为(3,3),所以点D 对应的复数为3+3i.
法二:由已知得OA →=(0,1),OB →=(1,0),OC →
=(4,2), 所以BA →=(-1,1),BC →
=(3,2),
所以BD →=BA →+BC →=(2,3),所以OD →=OB →+BD →
=(3,3), 即点D 对应的复数为3+3i.
复数与平面向量的对应关系
(1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数,反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.
(2)解决复数与平面向量一一对应的问题时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.
1.已知平面直角坐标系中O 是原点,向量OA →,OB →
对应的复数分别为2-3i ,-3+2i ,那么向量BA →
对应的复数是( )
A .-5+5i
B .5-5i
C .5+5i
D .-5-5i
解析:选B.向量OA →,OB →
对应的复数分别记作z 1=2-3i ,z 2=-3+2i ,根据复数与复平面内的点一一对应,可得向量OA →=(2,-3),OB →
=(-3,2).
由向量减法的坐标运算可得向量BA →=OA →-OB →
=(2+3,-3-2)=(5,-5), 根据复数与复平面内的点一一对应,可得向量BA →
对应的复数是5-5i.
2.在复平面内,O 为原点,向量OA →
表示的复数为-1+2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB →
表示的复数为( )。