热网水力工况实验供热工程
- 格式:pptx
- 大小:4.53 MB
- 文档页数:11
供热工程试验指导书班级:姓名:学号:湖南工程学院建筑工程系目录一、采暖系统模拟演示试验 (1)二、散热器热工性能试验 (2)三、热网水利工况试验 (3)实验一 采暖系统模拟演示试验一、实验目的:使学生了解常见的热水采暖系统,掌握系统中各部件的作用及联系方式,巩固课堂所学的知识。
二、演示系统简介:采暖系统是由热源、管道和散热器所组成。
热源是生产热能的部分,管道是连接热源和散热器的桥梁。
在图中所示的系统中,由管道将锅炉、水泵和散热器连接起来。
系统工作前,先将水充满给水箱,然后启动水泵,打开阀门B 和C 向系统充水。
充水时不断地开关集气罐放气氛,让系统中的空气从集气罐和膨胀水箱中排出。
系统充满水后,关闭阀门B ,打开阀门A ,在水泵的作用下,水沿着供水干管进入散热器,经回水干管返回水泵吸入口,如此不断循环,将热量散到供暖房间。
4、垂直式单管跨越式系统3、垂直式单管顺流式系统5、双管系统2、水平式单管跨越式系统1、水平式单管顺流式系统集气罐膨胀水箱给水箱锅炉阀门C阀门B阀门A循环水泵三、思考题:1. 膨胀水箱有几根连接管,各起什么作用?每根连接管上是否都可以装阀门?2. 室内热水采暖系统有哪几种连接方式?实验二 散热器的热工性能实验一、 实验目的:1、 通过实验了解散热器热工性能测定方法及低温水散热器热工实验装置的结构;2、 测定散热器的散热量Q ,计算分析散热器的散热量与热媒流量G 和温差T ∆的关系。
二、实验装置:三、实验原理:本实验是在稳定条件下测出散热器的散热量:()p g h Q G C t t =∙- kJ/h式中:G ——热媒流量:kg/h ; p C ——水的比热:4.1868kJ/kg ;g t 、h t ——供回水温度:℃上式计算所的热量除以3.6即可换算成瓦(W )。
由于实验条件所限,在实验中应该尽量减少室内温度波动。
水箱内的热水由循环水泵打入散热器,经电加热并由温控器控制其温度在某一固定温度,传热将一部分热量散入房间,降低温度后的回水通过转子流量计流入低位水箱。
热网水力工况实验报告和英文 800字中文热网水力工况实验的目的是模拟在高温热网系统中热力学和流体力学过程全面地考察温度场、流场和在实验室计算机上所建模型研究热网运动流体与真空交换过程,从而得出热损失大小、温度分布、压力特性、电流偏差特性并可以模拟高温热网系统高效运行情况。
该实验重点检测热网水力工况状况,确定温度及其分布、质量耗散因素、比热容以及传热特性。
实验过程分为准备阶段、初始化阶段、样品加热阶段、热网内部温度测量阶段、热网模拟运行阶段以及实验结果分析阶段。
在实验准备阶段,首先分析选定实验样品,根据样品形状、材料性质及金属烘箱大小等参数,确定烘箱加热温度与温度变化曲线。
然后,在初始化阶段需要确定样品的大小、厚度以及温度计安装位置,修改温度计的温度范围和量程。
样品加热阶段,采用热箱将悬浮温度依次升高,以实现不同的温度梯度、以及温度场波动。
然后是测量阶段,在此时得到样品表面到内部温度分布情况,绘制出实际温度场分布图像,与最初模拟计算出来的温度场图像进行比对验证。
在热网模拟运行阶段,需要反复测量内部温度分布、控制环境温度等参数,然后增加热网流量,观察内部温度分布变化情况,监测温度边界层压力损失,测量实际热力学特性及热损失。
实验结果分析阶段,将运行参数与温度分布曲线进行比对,包括外表面温度与热量蒸发速率、温度场廓线与质量耗散因素,从而判断结构的热稳定性,并记录实验用原始数据进行有效性检验,验证模型准确性。
通过热网水力工况实验,可以获得热网实际运行情况,及时调整热网内部参数使其符合现实需求,保证高效运行。
EnglishThe purpose of the hot-wire hydraulic condition experiment is to comprehensively investigate the temperature field, flow field, and modelstudied on the laboratory computer in the high-temperature hot-wire system, so as to obtain the size of heat loss, temperature distribution, pressurecharacteristics, current deviation characteristics and high-temperature hot-wire System efficient operation situation.In the sample heating stage, the suspended temperature is raised step by step by using a furnace to achieve different temperature gradients and temperature field oscillations.。
热网水力工况实验总结报告姓名:班级:学号:一、实验目的使用热网水力工况模型实验装置进行几种水力工况变化的实验,能直接了解热水网路水压的变化情况,巩固热水网路水力工况计算的基本原理。
掌握水力工况分析方法、验证热水网路水压图和水力工况的理论。
二、实验装置如图1所示。
图1设备简图设备由管道、阀门、流量计、稳压罐、模拟锅炉、水泵等组成,用来模拟由5个用户组成的热水网路。
上半部有高位水箱和安装在一块垂直木版上的12根玻璃管,玻璃管的顶端与大气相通,玻璃管下端用胶管与网路分支点相接,用来测量热网用户连接点处的供水干管的测压管水头(谁压曲线高度)。
每组用户的两支玻璃管间附有标尺以便读出各点压力。
三、实验步骤阀门操作见系统图。
1、平常水压图。
启动水泵缓慢打开阀A和a阀门,水由水泵经锅炉、稳压罐后,一部分进入供水干管、用户、回水管;另一部分进入高位水箱,待系统充满水,打开B阀的同时关闭A阀,保持水箱稳定,调节各阀门,以增加或减少管段的阻力,使各节点之间有适当的压差,待系统稳定后,记录各点的压力和流量,并以此绘正常水压图。
图2 系统图2、关小供水干管中阀门1时的水压图将阀门1关小些,这时热网中总流量将减少,供水干管与回干管的水速降低,单位长度的压力降减少,因此水压图比正常工况时平坦些,在阀门1处压力突然降低,阀门1以前的用户,由于支路水头增加,流量都有所增加,越接近阀门1的用户增加越多,阀1以后各用户的流量将减少,减少的比例相同。
即所谓一致等比失调,记录各点压力、流量。
绘制新水压图与正常的进行比较,并记录各用户流量的变化程度。
3、关闭E 用户时的水压图将阀1恢复原状,各点压力一般不会恢复到原来读数位置,不一定强求符合原来正常水压图。
关闭阀门2,记录新水压图各点的压力、流量。
4、关小阀门3时的水压图将阀门2恢复到原来的位置,把阀门3关小,记录新水压图各点的压力、流量。
5、阀门3恢复到原来的位置打开阀门4,关闭阀门5,观察网路各点的压力变化情况。
河南省高等教育自学考试供热工程实验报告专业:建筑环境与设备工程(独立本科段) 准考证号:010*********姓名:孙姿鑫助考院校:河南科技大学河南科技大学建筑环境与设备工程实验室实验一 热网水力工况实验一、实验目的1.了解不同水力工况下热网水压图的变化情况,巩固热水网路水力工况计算的基本原理。
2.能够绘制各种不同工况下的水压图。
3.了解和掌握热网水力工况分析方法,验证热网水压图和水力工况的理论。
二、实验原理在室外热水网路中,水的流动状态大多处于阻力平方区。
流体的压力降与流量、阻抗的关系如下:流体压降与流量的关系 2SV P =∆ 2V S H H =∆并联管路流量分配关系 3213211:1:1::s s s V V V =水力失调度 正常变V V X =正常变P P ∆∆=正常变H H ∆∆= 式中 P ∆——管网计算管段的压力降,Pa ;H ∆——管网计算管段的水头损失,mH 2O ;V ——网路计算管段的水流量m 3/h ;S ——管路计算管段的阻力数,Pa/(m 3/h)2;H S ——管路计算管段的阻力数,mH2O/(m 3/h)2;变V — 工况变化后各用户的流量m 3/h ;正常V — 正常工况下各用户的流量m 3/h ;变P ∆,变H ∆— 工况变化后各用户资用压力;正常P ∆,正常H ∆— 正常工况下各用户的资用压力;三、实验设备及实验装置1、测压玻璃管2、阀门3、管网(以细水管代替暖气片)4、锅炉(模型)5、循环水泵6、补给水箱7、稳压罐8、膨胀水箱9、转子流量计图1 热网水力工况实验台示意图四、实验步骤1.运行初调节先打开系统中的手动放气阀,然后启动水泵。
待系统充满水,膨胀水箱水位到达所需的定压高度后,关闭阀门L,保持水箱水位稳定。
调节供水干管和各支管(代表用户)的阀门,使各节点之间有适当的压差,待系统稳定后记录各点的压力和流量,并依此绘制正常工况水压图。
2.节流总阀门缓慢关小供干管上的总阀门A,待系统稳定后,记录新工况下各点的压力和水流量,绘制新水压图,并与正常水压图进行比较。
供热管网综合性能试验系统实验项目说明书供热管网综合性能实验台流程图1、一次热网水力工况动态性能试验通过本实验系统可实现一次热网在运行状态下,管网元部件发生调节变化时整个管网的水力工况动态性能的实验。
一级网结构示意图如图1所示图1 二级网结构示意图该试验具体包括以下几个试验内容:a)一级网阀门调节前后管网水力工况动态变化;一次网阀门QF5或者QF7开度减小节流,此时网路的总阻力数将增加,总流量将减少,网路工作曲线如图2所示图2 阀门节流后网路工作曲线由于网路总阻力数变大,阻力特性曲线左移,循环泵扬程增加到Hp’。
不过由于循环泵特性曲线较为平缓,因此该扬程变化值不大。
网路的总流量 。
G s G此时,由于流量减少,供、回水干管的水压线都将变平缓,从热源到用户之间的供、回水压线将变得平缓一些,具体的网路水压图示意图如图3所示。
图3 阀门节流后水压图此时,对于用户而言,相当于本身阻力数未变而总的资用压头减少了,因此用户的流量将减少。
此时根据阀门节流前后,热用户进、出口的P1、P2压力表的实际读数即可绘制出实际的热网运行水压图。
b)一级网循环泵运行台数变化后管网水力工况动态变化;一次网循环泵由设计工况条件下两台并联变为单台运行时,网路工作曲线如图4所示图4 循环泵改变台数后网路工作曲线根据上图可知,单台泵运行时,循环泵的扬程降低,网路的总流量G s G。
此时,由于流量减少,供、回水干管的水压线都将变平缓,从热源到用户之间的供、回水压线都将变得平缓一些,具体的网路水压图示意图如图5所示。
图5 循环泵改变台数后水压图此时,对于用户相当于本身阻力数未变而总的资用压头减少了,因此用户的流量将减少。
此时根据热用户进、出口的P1、P2等压力表的实际读数即可绘制出实际的热网运行水压图。
2、二次热网水力工况动态性能试验通过本实验系统可实现二次热网在运行状态下,管网元部件发生调节变化时整个管网的水力工况动态性能的实验。
二级网结构示意图如图6所示图6 二级网结构示意图该试验具体包括以下几个试验内容:a)二次网初调节前后管网水力工况动态变化;热网未进行初调节时,各热用户的进口阀门TF9、TF12、TF13、F15均处于开度较大的状态,此时由于未调节,热网近端热用户的作用压差很大,其剩余作用压差在用户分支管路上很难全部消除。
热网水力工况实验指导书一、实验目的掌握实验条件下水力工况变化时,水压图的变化情况。
首先从理论上分析水力工况变化时水压图是如何变化的,然后用实验进行验证。
通过实验,对水压图的绘制能有所帮助。
二、实验原理本实验原理即为水压图的形成原理,如图1-1所示。
热水流过某一管段的断面1和断面2时,我们可以列出这两个断面间的伯努力方程:212222211122-∆+++=++H gv Z g P g v Z g P ρρ 式中 P 1、P 2——断面1、2的压力,Pa ;Z 1、Z 2——断面1、2的管中心线离某一基准面0-0的位置高度,m ; v 1、v 2——断面1、2的水流平均速度,m/s ; ρ——水的密度,kg/m 3;g ——自由落体重力加速度,9.81m/s 2; ΔH 1-2——水流经管段1-2的压头损失,mH 2O 。
图1-1 水压图形成原理而在实际供热管路中由于各处流速差别不大,因而gv g v 222221≈,)()(221121Z gPZ g P H +-+=∆-ρρ;即水流经某一管段的压头损失是该管段的测压管水头之差值。
由此关系在供热管网的供、回水管道中由起点开始依此减去压力损失,求出各断面的测压管水头,将这些水头依此连成线即为水压图。
三、实验装置如图1-2所示,该装置是由补水箱、锅筒、循环水泵(补水泵)、定压水箱、测压管、供水干管及其上调节阀、回水干管及其上调节阀、以及表示每一个用户的流量计和调节阀组成。
为了便于观察水压图,测压管采用玻璃管,上部有一支和大气相通的管,定压水箱的高度根据需要可升降,其底部用软管同定压点相连。
图1-2 水压图及水力工况实验装置示意图四、实验步骤1. 准备工作根据需要将定压水箱升到一定高度,并向补水箱中灌入自来水,然后接通电源,打开循环泵,使整个系统的水循环起来,同时打开排气阀,保证系统中不存在气泡,直到动态稳定,整个准备工作就绪。
2. 静水压线关闭电源,当循环水泵停止工作时,观察整个系统的水压曲线,并把读得的测压管压力值记入表1中。
五 热水供热系统的水力工况在热水供热系统运行过程中,往往由于种种原因,使网路的流量分配不符合各热用户要求的计算流量,因而造成各热用户的供热量不符合要求。
热水供热系统中各热用户的实际流量与要求的流量之间的不—致性,称为该热用户的水力失调。
它的水力失调程度可用实际流量与规定流量的比值来衡量,即,x=V s /V g (10-1)式中 X ——水力失调度,V s ——热用户的实际流量, V g ——该热用户的规定流量。
引起热水供热系统水力失调的原因是多方面的。
如开始网路运行时没有很好地进行初调节,热用户的用热量要求发生变化等等。
这些情况是难以避免的。
由于热水供热系统是一个具有许多并联环路的管路系统,各环路之间的水力工况相互影响,系统中任何一个热用户的流量发生变化,必然会引起其它热用户的流量发生变化,也就是在各热用户之间流量重新分配,引起了水力失调。
本章着重阐述热水供热系统水力工况的计算方法,分析热水供热系统水力工况变化的规律和对系统水力失调的影响,并研究改善系统水力失调状况的方法。
掌握这些规律和分析问题的方法,对热水供热系统设计和运行管理都很有指导作用。
例如:在设计中应考虑哪些原则使系统的水力失调程度较小(或使系统的水力稳定性高)和易于进行系统的初调节,在运行中如何掌握系统水力工况变化时,热水网路上各热用户的流量及其压力,压差的变化规律,用户引入口自动调节装置(流量调节器,压力调节器等)的工作参数和波动范围的确定等问题,都必须分析系统的水力工况。
第一节 热水网路水力工况计算的基本原理在室外热水网路中,水的流动状态大多处于阻力平方区。
因此,流体的压降与流量关系服从二次幂规律。
它可用下式表示:△P=R(l+l d )=sV 2 Pa (10-2) 式中 △P ——网路计算管段的压降,Pa ;V ——网路计算管段的水流量,m 3/h ;s ——网路计算管段的阻力数,Pa /(m 3/h)2,它代表管段通过1m 3/h 水流量时的压降; R ——网路计算管段的比摩阻,Pa /m :l 、l d ——网路计算管段的长度和局部阻力当量长度,m 。