当前位置:文档之家› 水电解制氢作业指导书

水电解制氢作业指导书

水电解制氢作业指导书
水电解制氢作业指导书

水电解制氢作业指导书ZDQ-120/1.5

编制:生产技术部

审批:

编号:DMZG/JL-52

河北东明中硅科技有限公司

2011年2月30日

第一章概述

1 设备的用途

ZQD系列水电解制氢装置是中国船舶重工集团公司第七一八研究所研制成功的自动化操作的制氢设备,其主要技术指标达到或超过世界先进水平,适用于化工、冶金、电子、航天等各种用氢量大、对氢气质量要求高的部门。

2 工作原理

水电解制氢的工作原理是由浸没在电解液中的一对电极,中间隔以防止气体渗透的隔膜而构成的电解池,当通以一定的直流电时,水发生分解,在阴极折出氢气,阳极析出氧气。其反应式如下:

阴极:2H2O+2e→H2↑+2OHˉ

阳极:2OHˉ-2e→H2O+1/2O2↑

总体反应:2H2O→2H2↑+O2↑

3 装置构成

水电解制氢装置由电解槽(1001)、气液处理器(1000)、水碱箱系统(1300)、整流系统、控制系统及其它辅助系统等组成。

注:供货范围根据用户具体的合同要求而定。

3.1电解槽(1001)

电解槽为压滤式双极性结构,是制氢装置中的主体设备。电解槽由若干个电解小室组成,每个电解小室由阴极、阳极、隔膜、绝缘垫片及电解液构成。端极板上部设有氢、氧气液出口管,用于导出氢、氧气体,下部设有碱液进口,用于补充电解液;中间正极框为正极,两端极板为负极。整流系统向电解槽提供直流电,水分子在电极上发生电化学反应,分解成氢气和氧气。KOH(或NaOH)在水中的作用在于增加水的电导,本身不参加反应,理论上是不消耗的。

3.2气液处理器(1000)

气液处理器由氢气分离器1002、氧气分离器1003、氢气洗涤器1001、氧气洗涤器1005、氢侧换热器1006、氧侧换热器1007、碱液过滤器1009、碱液循环泵1M11及各类阀门、一次仪表、管路等组成,主要用来分离来自电解槽的氢气与碱液的混合物及氧气与碱液的混合物,经过冷却、分离、洗涤、除雾获取纯净的氢气和氧气。装置除在控制室设有集中显示的仪表外,还装有压力、液位、温度等现场仪表,用来显示设备运行的各主要参数,保证设备安全运行。

3.3水碱箱系统(1300)

水碱箱系统由水箱1301、碱箱1311、加水泵1M21及阀门等组成。水箱用来存储原料水,碱箱用来配制储存碱液。装置运行中,通过加水泵向系统中注入原料水,有时也通过加水泵向系统中适当补充碱液。

3.4 整流系统

整流系统由整流变压器1024和整流柜1022组成。整流变压器用来将高压电转变为适合于可控硅工作的电压,初级绕组接高压电、次级绕组接整流柜。整流柜用来将交流电转变为直流电,通过铜排为电解槽提供直流电。

3.5 控制系统

控制系统包括控制柜1020和上位机。

控制柜由PLC、二次仪表、安全栅、声光报警器及操作按钮、开关等构成。可实现对装置各种参数的自动检测、调节、故障报警与联锁、自动开机与停机等功能。

上位机可实现对装置各参数的监控和记录等功能,并可对设备进行远程操作。

4 主要技术参数及运行条件

4.1 主要技术参数见表1.1

4.2 运行条件见表1.2

4.3 调试配件条件见表1.3

表1.3 调试配备条件

2)V2O5用量为电解液重量的2‰。

第二章工艺流程及自控系统

1 工艺流程简介

制氢装置的工艺部分由氢、氧气体分离洗涤系统、电解液循环系统、原料水补充系统、补碱系统、退碱系统、冷却水系统、排污系统和氮气吹扫系统等九部分构成。

1.1 氢、氧气体系统

电解槽(1001)电解电解液产生的氢气同碱液一起通过极框上的出气孔流过氢气道,从左右端极框流出,首先进入氢气冷却器1006;冷却后的氢气、碱液混合物进入氢气分离器1002,在重力作用下进行气液分离;气液分离后含微量碱液的氢气进入氢气洗涤器1004,通过充分的洗涤和进一步的冷却,再经其顶部捕滴器除去液滴后成为含水量小于4g/m3、含碱量小于1 mg/m3的氢气;经氢气薄膜调节阀LV1001、气动三通球阀QS1030进入氢气纯化装置(或氢缓冲罐)或防空。

氧气处理过程与上述过程基本相同。

1.2 电解液循环系统

氢气分离器1002、氧气分离器1003中的电解液通过容器底部的连通管汇集,在碱液过滤器1009中过滤掉碱液中的固体杂质,由碱液循环泵1M11驱动电解液,经过流量开关(FIS1001)打回电解槽(1001),形成电解液循环系统。

1.3 原料水补充系统

原料水通过加水泵1M21,经单向阀H1040、球阀Q1040注入氢气洗涤器1004,或者经单向阀H1041、球阀Q1041注入氧气洗涤器1005,以补充电解所消耗的水。

注意事项:为防止单向阀失效而导致氢、氧串气,只能向一侧补水。当向氢侧补水时必须关闭球阀Q1041;向氧侧补水时,关闭球阀Q1040.

1.4 补碱系统

在制氢设备运行过程中,氢、氧气会带走少量碱液,经过一段时间的运行后,系统中碱液浓度会有所降低。所以应及时向制氢系统补充碱液。配置好的碱液存放在碱箱1311中,通过加水泵1M21经单向阀H1042、球阀Q1042注入碱液循环系统中。

注意事项:补碱前先打开球阀Q1344、Q1042,同时关闭球阀Q1040、Q1041后开启加水泵。

1.5 退碱系统

设备长期停车或检修时,需要将系统内的碱液排空。电解槽1001内的碱液可经球阀Q1074、碱液循环泵1M11、Q1072、Q1076、Q1371回到碱箱1311中;气液处理器1000内的碱液经循环泵1M11、Q1072、Q1076、Q1371回到碱箱1311中。

1.6冷却水系统

冷却水经球阀Q1077分二路进入制氢系统:一路通过球阀Q1050进入氢气洗涤器1004、氧气洗涤器1005中,冷却洗涤后的氢、氧气;另一路经薄膜调节阀TV1001冷却循环碱液,使电解槽1001的工作温度保持在规定范围内,冷却水量由气动调节阀TV1001控制。

1.7排污系统

制氢设备原料水箱1301、碱箱1311、碱液过滤器1009等均设有排污阀,以备清洗、维修之用;电解槽废水可通过球阀Q1044排出;

1.8氮气吹扫系统

在氢气分离器1002、氧气分离器1003上部设有充氮口,用于制氢装置开机前和停车后的氮气吹扫。氮气经球阀Q1022一路经单向阀H1020、球阀Q1023,另一路经单向阀H1021、球阀H1024吹扫气液处理器,在吹扫时可通过调节球阀Q1023、Q1024的开度大小使氢侧与氧侧液位保持水平。

注意事项:当吹扫完毕,必须将球阀Q1022、Q1023、Q1024关闭,同时打开放气阀J1012以防碱液回流造成危险。

2 控制系统简介

自控系统由压力调节系统、液位调节系统、温度调节系统、水箱液位控制系统、产量调节系统、显示报警软联锁系统及硬联锁系统构成。

2.1控制柜(1020)

制氢设备控制柜由西门子PLC、触摸屏、仪表、安全珊、继电器、指示灯及操作按钮等构成。可实现对设备参数的自动检测、调节、故障报警与联锁保护、一停机等功能

2.2压力调节系统

压力调节系统由压力变送器PT1001、安全栅、PLC、电气转换器PY1001及压力调节阀PV1001构成,其中压力变送器PT1001、压力调节阀PV1001安装于制氢设备气液处理器内,PLC、安全栅和电气转换器PY1001安装于制氢控制柜内。

压力变送器PT1001将测到的设备压力信号经安全栅送入PLC模拟量输入模块,PLC将输入值与设定压力值进行比较,经过PID运算后通过模拟量输出模块输出的4-20mA信号,输出信号经电气转换器PY1001转换为0.3-1.3 bar气信号调节压力调节阀PV1001的开度,从而使系统工作压力保持稳定。

2.3液位调节系统

液位调节系统由液位变送器LT1003,氧液位变送器LT1001,安全栅,PLC,电气转换器LY1001及压力调节阀LVVV1001安装于制氢设备气液处理器内,PIC,安全栅及电气转换器LY1001安装于制氢控制柜内。

氢液位变送器LT1003和氧液位变送器LT1001测得的系统氢、氧液位信号经安全栅送入PLC 的模拟量输入模块,PLC将氢液位信号作为给定,氧液位信号调节信号,两信号经PLC比较及PID运算后,通过模拟量输出模块输出4~20mA信号,输出信号经电气转换器LY1001转换为气信号调节液位调节阀LV1001的开度,从而使系统氢氧液位保持平衡。同时PLC还根据氢液位信号控制加水泵的起停,以补充设备电解所消耗的水。设备启动后,但压力高于0.5MPa,且氢侧液位值低于加水泵启动设定值时,PLC自动向配电柜加水泵控制回路输出闭合触点信号,启动加水泵,向设备内补水;如果设备停车或氢侧液位值高于加水泵停止设定

值时,PLC输出触点断开,自动停止加水泵运行。

2.4温度调节系统

温度调节系统由安装在氧侧电解槽出口测温元件铂电阻TE 1 0 01、温度变送器TT 1 00 1、P L C、电气转换器TY 1 0 01及冷却水调节阀TV 1 00 1构成,其中铂电阻TE l 0 0 1及温度调节阀T V 1 0 0 1安装于制氢设备气液处理器内,PL C、温度变送器TT 1 0 0 1、电气转换器T Y100 1安装于制氢控制柜内。

电解槽碱液出口的温度铂电阻T E 1 0 0 1经温度变送器TT 1 00 1转换为4—2 0mA 信号送入P L C的模拟量输入模块,P L C自动与设定温度进行比较并经过PID运算后,经模拟量输出模块输出4—2 0mA信号经电气转换器TY 1 0 0 1转换为0.2—1.2 b a r的气信号调节冷却水调节阀T V l 0 0 l的开度,从而使电解槽工作温度保持稳定。

2.5电流调节系统

电流调节系统由安装于制氢控制柜内的输入端电压变送器E T l 5 0 1、电流ET 1 5 0 l、P L C、输出端电压变送器E T15 0 2组成。整流柜输出的直流电压和电流信号分别经过电压变送器E T 1 5 0 1、电流变送器I T 1 5 0 1送入PL C的模拟量输入模块,P L C 分别将电压值和电流值与电压、电流设定值进行比较并通过模拟量输出模块输出4—2 0mA 调节信号,该信号经电压变送器E T 1 5 0 2转变成0—10 V的电压给定信号送给整

流柜触发板,以调节整流柜直流输出,达到电流调节目的。

2.6显示报警及软联锁系统

显示报警及软联锁系统用于备工艺参数的显示。当相应参数超上限或下限时,发出声、光报警信号提示操作者进行处理。一些关键性的工艺参数(如系统压力、氢氧液位、系统温度及碱液流量等)一旦未及时处理,参数超上上限或下下限时,执行软联锁停机动作。

装置的工艺参数又可分为模拟量和开关量两大类,对于模拟量参数其系统通常

由变送器、安全栅、P L C组成。变送器安装于现场,安全栅及PL C安装于控制柜内(如

变送器安装于非防爆间内则可取消安全栅)。对于开关量参数其系统通常由压力开

关、开关量输入安全栅、P L C组成。压力开关安装于现场,安全栅及P L C安装于控制

柜内(如压力开关安装于非防爆间内则可取消安全栅)。

报警执行动作:声光报警

软联锁执行动作:1.停整流柜1 0 2 2 2.停加水泵1 M 2 1 3.阀Q S 1 0 3 0切换至氢气放空状态 4.压力调节阀P V 100 1开启7 0%迅速卸压5.温度调节阀T V 1

00 1开启

1 0 0%降温 6.声光报警

2.7硬联锁系统

装置设置了电接点压力表P I S 1 0 0 2硬联锁触点,一旦设备压力变送器信号有误软联锁失效,设备超压达到电接点压力表P S 1 0 0 2设定值,触点闭合并通过安全栅直接联锁整流柜1 0 2 2,停止整流柜直流电流输出,同时整流柜作为整流柜综合故障报警信号送入制氢控制柜中的PL C,P L C控制设备软联锁停车卸压,从而保障装置的安全运行。

硬联锁执行动作:1.停整流柜1 0 2 2 2.停加水泵1 M 2 1 3.阀Q S1 0 3 0切换至氢气放空状态 4.压力调节阀P V I 0 0 1.开启7 0%迅速卸压 5.温度调节阀TV I 0 0 1开启1 0 0%降温6.声光报警

2.8人机界面’

控制信号采集、计算、比较、输出主要由P L C和外围控制电路来完成。上位监控机(简称上位机),与P L C组成MP I网络。上位机可对所有P L C进行通讯,从而实现对全套系统运行参数、工艺流程进行监控,同时操作人员可以通过上位机发布操作命令,达到人工干预的目的,更好的控制设备的运行。

第三章安装

1制氢站

1.1制氢站的要求

制氢站一般包括以下房间。

制氢工艺间:安装电解槽、气液处理器、氢纯化装置。

水碱箱系统间:安装水箱、碱箱、加水泵。

控制室:安装控制柜、配电柜、计算机监控系统。

整流室:安装整流柜。

整流变压器室:安装整流变压器。

1.2制氢间的要求

制氢间应为单层不可燃材料建筑。制氢间应设置必要的泄压面积,门窗及轻质墙体可作为泄压面积,泄压面积应布置合理,并应靠近爆炸部位,不应面对人员集中的地方和交通要道。

制氢间门窗向外开。制氢间应设数个通风孔,通风孔直径不小于.2 0 0mm,外设防雨帽,下缘与顶棚平齐并设置拉线活门,以利于冬季保温。

2设备安装要求

2.1整流变压器交流供电为l 0 k V,所需容量见表1.2。控制柜电源为3 8 0 V,5 0 H z,三相四线制。

2.2设备所需仪表气为无油、无水、干净的氮气或压缩空气,其含油量小于5 m g/m3,露点比环境温度低1 0℃,用量、压力见表1.2。

2.3冷却水水温不高于3 2℃,用量见表1.2,压力不低于0.3MP a。

2.4去离子水电阻率≥1×1 05S.c m。氯离子含量≤2 mg/L,干残渣≤1 m g/L。2.5电解槽安装在5 0mm高的混凝土底座上,一端用地脚螺栓固定,另一端置于光滑的钢板上。气液处理器安装在1 0 0mm高的混凝土底座上,四只地脚螺栓固定。

2.6气液处理器应设置独立地线,截面积不少于1 6 0mm2。,至少有两点引出地面与气液处理器相连。气液处理器接地电阻不大于4Ω。

2.7电解间内的氢、氧管道均应采用架空敷设,其它管道及电缆可采用地沟敷设。氢、氧气体管道不应穿过控制室、电源室等非防爆房间。氢气管道与其它管道共同敷设分层布置时,氢气管道应布置在最上、最外层。

2.8氢气放空管路尾端应安装阻火器,管口应高于房顶,并做防雨考虑。

2.9按流程图连接管线,弯管半径不小于管子直径的2.5倍。

2.1 0全套装置安装完毕后需进行1.5 MP a气密性试验。各容器、管道、阀门的连接

处无泄漏方为合格。

注意事项:设备之间管道焊接连接时应采用氩弧焊,每一道焊缝的焊渣必须清

理干净,以防止有损坏泵、堵塞电解槽内部通道及内部短路、使单向阀失灵等情况

发生。

第四章装置的调试与开机

1准备工作

制氢系统首次开机或闲置很久后重新使用时,应做如下准备工作:

检查电源、气源、冷却水源是否正常。

将水、碱箱清洗干净后启动纯水装置注入去离子水。

随后进入以下操作步骤:

注:以下每一步骤开始前,均假设所有阀门处于关闭状态。

1.1清洗容器及电解槽

将控制柜上循环泵转换按钮置于“手动”位置。打开球阀Q 1 3 7 0、Q 1 0 7 5、Q 1 0 7 2、

Q 1 0 7 3,打开手动放空球阀Q 1 0 3 0、Q 1 0 3 3,缓慢打开截止阀J 1 01 0排气、打开循环泵1 M 11的排气阀排气,在配电柜上手动开启碱液循环泵将去离子水打入系统至气液分

离器中部,停碱液循环泵,关闭球阀Q 1 3 7 0、Q 1 0 7 5。打开球阀Q 1 0 7 0、Q 1 0 7 1,缓慢打开截止阀J1 O 1 O排气、循环泵1 M 11排气阀排气至流出清水没有气泡,反复操作2次,在配电柜上手动开启循环泵,使去离子水在系统内循环,清洗容器及电解槽1~2小时后停循环泵,打开碱液过滤器下部排污阀Q 1 0 5 1将污水排出。电解槽内部污水由阀门Q 1 0 4 4排出。将上述过程反复做2~3次后系统冲洗完毕。关闭所有阀门。

注意事项:在开启循环泵之前所有管道必须冲洗干净,管道内部不能有焊渣等固体物。开启时先将调节流量的球阀Q 1 0 7 2开启7~1 0度,观察泵的指针是否在绿区及是否有流量,正常后方可把阀门开启到适当的角度。

1.2配制电解液

去离子水贮存于碱箱1 3 1 1中,打开球阀Q 1 3 7 0、Q 1 3 7 1、Q 1 0 7 5、Q 1 0 7 6、Q 1 0 7 2,打开碱液循环泵1 M 11排气阀排气至流出清水没有气泡,反复操作2次,开唐泵,使去离子水循环起来。将氢氧化钾(分析纯)缓慢加入碱箱1 3 1 1中,待氢氧化钾全部溶解后,在溶液中加入0.2%五氧化二钒(稀碱运行时不添加五氧化二钒),继续循环,使之全部溶解,待碱液温度降至5 0℃,可将配制好的碱液打入制氢系统中。在碱液配制时或配制完毕没有打入系统之前一定要装上碱箱盖以防止空气中的二氧化碳污染碱液。

注意事项:K0 H溶液或NaOH溶液为强腐蚀性液体,对人体具有伤害作用,操作

者应配备橡胶手套、口罩及护目镜等防护用品,如碱液溅至皮肤或其它部位应及时

清洗,清洗可采用硼酸溶液或流动的清水。

1.3充灌电解液

将装置上所有阀门置于关闭状态,将控制柜上循环泵转换按钮置于“手动”位

置。打开球阀Q 1 3 7 0、Q 1 0 7 5、Q l 0 7 2、Q 1 0 7 3,打开手动放空球阀Q l 0 3 0、Q1 0 3 3,缓慢打开截止阀J1010排气、打开循环泵1 M 11排气阀排气,手动开启碱液循环泵将碱液打入系统至气液分离器中部,停泵。关闭球阀Q 1 3 7 0、Q 1 0 7 5。打开球阀Q107 0、Q 1 0 7 l,缓慢打开截止阀J l 0 l 0排气、打开循环泵1 M 11排气阀排气至流出碱液没有气泡,反复操作2次,再次开启循环泵使碱液充分混合。将气液处理器上的去离子水进口法兰拆开,开启加水泵对管道进行反复冲洗,然后停泵,重新上紧法兰,开启加水泵将氢、氧气洗涤器充满并观测溢流管是否正常,最后停泵。

1.4电解液的取样和测量

缓慢开启截止阀J10 1 0,取约4 5 0m l碱液至量筒中,关闭截止阀J10 1 0。将测量范围为1~1.5的比重计插入量筒,使其自然悬浮(不得贴靠筒壁),待其稳定后读出比重数值,依照附表将其转换成浓度。如配置浓度过低,则可通过计算得出所差的碱液,依据前述方法配置相应的碱液打入系统;如配置浓度过高,则可将系统内的碱液部分放回碱箱,然后向系统内补充相应数量的去离子水以稀释碱液。

注意事项:观测比重计读数时须使眼睛与液面位于同一水平面上,同时记录碱液温度,正确换算出碱液浓度;为防止碱液飞溅,开启截止阀J1 0 1 0时应缓慢,同时取样者应佩戴胶皮手套等防护用品,如碱液溅至皮肤或其它部位,应及时清洗,清洗可采用硼酸溶液或流动的清水。

1.5整流装置的检查

1.6控制系统查线和仪表检查

因为设备经过长途运输,应在安装完毕后检查设备内部接线是否牢固可靠。首先依照设备外接线图检查电源及与现场各仪表间的联线是否正确;然后接通电源,检查各显示仪表和显示值是否正常,在监控界面中检查给定值设置各仪表、控制参数。

1.7检查控制柜仪表气源。

调整制氢控制柜内空气过滤减压阀压力顶部的设定旋钮,使向柜内电磁阀供气的过滤减压阀P N 1输出压力为0.4 M P a,向柜内电气转换器供气的过滤减压阀P N 2输出压力为O.1 4 M P a。检查气动管路.是否有泄漏现象。

2调试

1检查全套装置的供电、供水、供气是否正常。

2检查气液处理器的接地电阻应符合第三章第2.6项要求

3接通控制柜电源

4接通计算机(上位机)电源

依次接通显示器电源、计算机(上位机)电源和打印机电源。

5调整参数设定值。

6安装于现场的一次仪表(各种变送器、压力开关等)在装置出厂前已经调校完毕,并出具仪表校验单,调试时可直接,使用。对于有相应校验设备和能力的用户,也可在调试前对上述一次仪表进行再一次校验。

7对于二次部分的模拟量参数,可使用电流发生器或校准仪提供4—2 0mA标准信号按照控制柜外接线图接入相应端子,观察该通道显示是否正常,改变输入信号使之达到报警或联锁值,试验报警及联锁动作是否正常,并进行相应的调整。对于开关量参数则通过模拟触点的通断,观察相应的报警或联锁动作是否正常。

8检查分析仪一次表中的干燥剂,硼酸片及稳流瓶中的水是否加好,干燥剂如变成粉红色则需更新,硼酸片受潮变粘也要更换。

3装置的开机与停机

供应高低压交流电源,配电柜、控制柜、整流柜上电,供应冷却水、压缩气源,上位机通电,打开上位机监控平台,启动监控软件,进入监控画面。

3.1开机

3.1.1开机前的准备

3.1.1.1检查各阀门的状态

关闭系统所有阀门,开启压力表前截止阀J10 2 0、J1 0 2 1;开启氢侧球阀Q 1 0 3 1、Q 1 0 3 2、氧侧球阀Q 1 0 3 4;开启冷却水路球阀Q 1 0 7 7、Q 1 0 78.Q 1 0 5 0。开启阀门Q 1 0 7 0、Q 1 0 7 1、 Q 1 0 7 2、 Q 1 0 7 3。

3.1.1.2充氮置换

在氢气分离器1 0 0 2、氧气分离器1 0 0 3上部设有充氮管口,用于制氢装置开机前和停车后的氮气吹扫。氮气经球阀Q 1 0 2 2一路经单向阀H 1 0 2 0、球阀Q 1 0 2 3,另一路经单向阀H 1 0 2 1、球阀Q 1 0 2 4进入气液处理器,在吹扫时可通过调节球阀Q 1 0 2 3、Q l 0 2 4的开度大小使氢侧与氧侧液位保持水平。利用上位监控平台将系统压力设定为0.2~0.3MP a,待压力升至设定值后,将系统压力设定为0 MP a进行泄压。按照上述过程将系统用氮气置换2~3次,测量含氧量小于2%后充氮置换过程结束。

注意事项:当吹扫完毕,必须将球阀Q 1 0 2 2、Q 1 0 2 3、Q 1 02 4关闭,同时打开放气阀J1 0 1 2以防碱液回流造成危险。

3.1.2开机过程

缓慢打开排气阀J10 1 0排气至流出碱液没有气泡,反复操作2次,打开循环泵1 M 11的排气阀排气至流出碱液没有气泡,将球阀Q 1 0 7 2微开。在配电柜上手动开启循环泵,

循环泵指针位于绿区表示循环泵正常,同时将球阀Q l 0 7 2缓慢打开,观测碱液流量是否逐渐增大且不剧烈摆动,如果碱液流量不增大,表明气体还没排干净,应迅速停循环泵,继续排气,重复上述过程至正常。将循环泵开启切换至自动。

在配电柜上将加水泵调整为自动,将球阀Q 1 0 4 0或Q 1 0 4 1打开。,注意只能打开

其中一阀门,防止单向阀失效造成串气危险。

3.1.2.1再次检查配电柜上循环泵、加水泵运行状态,默认为自动状态。检查整流柜运行状态,默认为自动状态。检查整流桓给定的是否是零,将控制柜上循环泵和整流柜“手动/自动”选择方式置于相应位置,在上位机监控.界面或控制柜触摸屏界面中设定设备运行压力.(0.5 M P a)。控制柜上循环泵选择方式分为手动/自动方式,手动方式可在控制柜面板上直接操作,自动方式从上位机或触摸屏上启动P L C即可启动循环泵,首次开机或设备停机很长时间循环泵选择方式为手动方式,在控制柜上操作“循环泵启动"按钮,启动循环泵。

3.1.2.2整流柜手动启动

整流柜“手动/自动”选择方式置为“手动",给定电位器旋钮旋至零位,将“稳压一稳流"转换开关先置于“稳压方式’’,待开机后点击“触发启动’’按钮,相应指示灯亮后,旋转手动给定电位器,注视电压表,直至电压输出至l 0 0 V,电流将随槽温的升高自动增加。待槽温升到6 5℃后,旋转整流柜上手动给定电位器至最小,将“稳压一稳流"转换开关置于“稳流方式”,旋转给定电位器同时注视电流表直至电流升到所需值。

3.1.2.2整流柜自动启动

如果整流柜“手动/自动”选择方式为“自动”,则必须将整流柜电压/电流转换开关先置于稳流方式,旋转手动给定电位器至最小,在上位机上设定电压和电流,在上位机上设定系统压力为0.5 MP a。确认不存在影响系统开车的报警连锁点,点击设备启动按钮(上位机、控制柜按钮),启动设备,同时监控液位是否平衡。设备升压至0.5 M P a且运行稳定后,逐渐升高压力设定值至额定。随着氢、氧侧槽温的升高,直流电流也逐渐升高。系统将自动提升电压和电流,自动升压至额定。当制氢设备运行压力达到额定1.5 MP a,操作人员需投入氢中氧(A E 1 0 0 2)分析仪、氧中氢(AE 1 0 0 1)分析仪(氧中氢分析仪气体流量在2 5 0ml/m i n;氢中氧分析仪流量在5 0 0m l/m i n)投入。分析仪刚投入运行或槽温较低时,氢气、氧气纯度有可能较差,如氢气纯度低于氢气纯度联锁下限时,设备(气动球阀Q S 1 0 3 0)将自动切换为放空状态;如果氧气纯度低于氧气纯度联锁下限时,设备将联锁停车,故操作人员在设备启动后可以取消氧气纯度联锁功能,此时即使气体纯度低于联锁设定值,也仅起到报警作用,不会联锁停车。待分析仪运行稳定后,恢复联锁功能。设备压力、槽温均运行至额定、且分析纯度合格后,氢气可进入氢气纯化设备。

3.2.停机

3.2.1手动停机

如果整流柜工作方式为手动,需将整流柜上电流给定旋至最小,待电流降至0后在上位机上点击停机或按控制柜上“停机’’按钮,气动球阀Q S 1 0 30自动切换为放空状态,纯化设备自动停机,制氢设备槽温低于50度后停循环泵。

3.2.2自动停机

如果整流柜工作方式为自动,需将上位机上电流设定更改至0,待电流降至0后在上位机上点击停机按钮或按控制柜上“停机’’按钮,气动球阀QS1 0 3 0自动切换为放空状态,纯化设备自动停机,制氢设备压力调节阀P V 1 00 1开度5 0%自动卸压,冷却水调节阀T V 1 0 0 1开度1 00%降温,氢侧调节阀LV 1 0 0 1自动调节维持液位平衡。

制氢设备槽温低于5 0度后冷却水调节阀T V 1 0 0 1自动关闭(如果循环泵处于自动

位置,槽温低于5 0度且停运后循环泵继续运行1 0分钟后自动停止循环泵;如果循环泵处于手动位置,则应在配电柜上手动点击按钮停止循环泵。停车过程结束。

3.2.3现场巡视时,如发现危急情况(如火灾、碱液泄漏等),可按动现场设置的

“紧急停机”按钮,完成装置的停机(此按钮为危急情况设置,正常状态下禁止使用)。3.2.4关闭电源、压缩空气、冷却水供应。

3.3故障停机

由于设备某些故障引起报警或停机时,应先确定故障的原因,可点击监控画面“报警察看"按钮进入报警察看画面,观察画面中的报警信息,判断是何原因导致报警或联锁,排除故障后,按正常开机步骤重新启动设备(报警时无需重启设备)。消除报警铃声可通过点击监控画面“消音"按钮或按动控制柜面板上的“消音"按钮。

第五章装置的日常检查和维护及注意事项

1日常检查

1.1在正常运行状态下,操作人员经常观察运行情况,正确操作,及时记录各参数及异常情况,一般每1~2小时记录一次,遇到异常情况应及时停机处理。

1.2经常观察分析仪一次仪表的气体流量和干燥剂是否变色,及时调节流量和调换干燥剂及硼酸片(详见分析仪说明书)。

1.3经常观察水箱内有无去离子水以及冷却水流量是否正常。

1.4经常观察碱液流量是否正常,若流量持续下降,应及时切换管道过滤器。清洗堵塞管道过滤器。

1.5注意碱液循环量不能过大或过小,通过手动球阀Q 1 0 7 2调节循环量,过大会导致氢气纯度下降,过小会使电解槽温度过高而降低隔膜的使用寿命。在正常情况下,不进行调整。

1.6定期校验氢中氧分析仪及氧中氢分析仪。

1.7定期测量电解槽的小室电压,观察是否有个别小室电压超常,监测电解槽运行是否正常。

2设备维护

2.1工艺维护:每三个月测一次碱液比重,如氢氧化钾浓度低于2 6%,则应向系统补碱;每天一次分析去离子水的电阻率,确保原料水满足使用要求;经常清洗过滤器。一般首次开机时每星期清洗一次。一个月后每l~2个月清洗一次。当氢、氧气分离器温度差大于7 ℃,或槽温与分离温度差3 0~4 0℃,应清洗过滤器;每年应对全套装置检修一次(不拆电解槽)。包括变送器、压力开关的调校及报警软硬联锁的试验。此项检修用户可依据实际情况确定时间,但不得少于每年一次。

2.2控制仪表维护

应注意日常巡检,定期对仪表进行校验。

2.2.1控制部分日常巡检:设备运行压力、工作温度是否正常;各仪表、变送器输出值是否与实际值相符;整流柜运行是否正常;冷却水压力、氮气压力、·仪表气源压力主要控制阀门的开关位置指示与显示是否一致;各分析仪流量是否适当。

2.2.2控制部分季度巡检:控制柜内显示仪表是否正常;控制柜内电磁阀工作是否正常;继电器、接触器触点是否可靠。

2.2.3控制部分半年巡检:氢、氧分析仪校验;连接电缆、接线牢靠检查;调节阀、气动球阀工作是否正常。

2.2.4控制部分年度巡检:压力表、温度表、变送器、铂电阻校验;分析仪校验。

3 注意事项.

3.1制氢装置如闲置时间过长,超过半年以上,开机前应详细检查设备状态;各设备、仪

表应有良好的接地;

3.2制氢间应通风良好,并采取相应的防爆措施,如防爆灯和安装报警器等;

3.3凡是与氧、氢气接触的管道、阀门均应经过除油清洗处理;

3.4装置运行时不得进行任何修理工作,若进行设备维修、维护时必须先停车、氢气泄放完并用氮气置换后进行,分析制氢间的氢气浓度是否低于爆炸极限,同时必须通氮气以排除装置和管道中的氢和氧气,分析合格方能焊。置换方法:每次充压至0.2~0.3MP a,然后泻放到常压,反复操作2~3次。设备维修、维护完毕,开车前必须做气密性试验,气密性试验合格后,用氮气置换系统到氧气含量≤0.5%;

3.5制氢间严禁明火、吸烟、穿钉子鞋,操作人员不宜穿合成纤维、毛料工作服。严禁金属铁器等物相互撞击,以免产生火花;禁止在制氢站内使用手机。

3.6制氢间应设有消防器材,按数量、要求就位;制氢间应备有0.2%的硼酸溶液,操作人员应配置防护眼镜;

3.7严禁氢气、氧气由压力设备及管道内急剧放出,以免造成爆炸或火灾;

3.8氢气系统运行时,不准敲击,不准带压修理,严禁负压;

3.9动植物、矿物油脂和油类不得落在与氧气接触的设备上。在操作和维修时,手和衣物不得沾有油脂;

3.1 0保持电解槽表面清洁,严防任何金属导体或其它杂物掉到电解槽上,以免造成短路,严禁碱液掉到极板间或者极板与拉紧螺栓间;

3.11万一出现事故或设备大量漏碱或漏气体时,应立即切断电源并进行通风,分析原因,尽快排除故障;

3.1 2用肥皂水或气体防爆检测仪检查氢、氧系统、管道、阀门是否渗漏,严禁使用明火检查;

3.1 3制氢间不得存放易燃、易爆物品,禁止无关人员入内;

3.1 4维修使用扳手等工具应为铜材质或其他不会因为碰撞而产生火花的工具;

3.1 5减压阀手柄不可旋得过紧,以防减压膜片破裂;

3.1 6如果长期停车,应考虑微量氧分析仪与空气隔离。

第六章故障排除

1紧急情况处理:

1.1如现场发生如喷碱、起火等异常状况时,应点击控制柜上的“停机”按钮,之后将气液处理器上的氢侧及氧侧手动放空阀Q 1 0 3 0和Q 1 0 3 3打开一定开度,及时将气液处理器内的氢气、氧气排净,同时应保持氢、氧气分离器的液位平衡。

1.2如突然停电,氢氧侧调节阀P V 1 0 0 1和L V 1 0 0 1均处于关闭状态,应立即将气液处理器上的氢侧及氧侧手动放空阀Q 1 0 3 0和Q 1 0 3 3打开一定开度,及时将气液处理器内的氢气、氧气排净,同时应保持氢、氧气分离器的液位平衡。

注意事项:两阀不能全开,否则由于氢气和氧气流量不同,会导致一侧管道喷碱。

2故障处理

电解水制氢到底有啥优势

电解水制氢到底有啥优势 尊敬的各位领导,各位专家,各位朋友,大家上午好。非常荣幸能够被邀请来参加2019年氢能发展与技术大会。我下面给大家粗略的介绍一下关于氢能发展,把主要的方面放在电解水方面,氢能可能是我们人类终极的能源,这个观点也被普遍的认可。我今天的报告是“氢能发展及电解水制氢”,主要是集中在目前的现状,我们的挑战以及前景。 第一部分氢能发展的必要性 我们首先讲氢能的发展的必要性。我们知道尤其我们现在的运输、汽车、船舶,我们烧的就是汽油和柴油,烧汽油和柴油,那就排放出了二氧化碳、一氧化碳、氧化氮、氧化硫等等污染物到我们的大气中,造成了污染,对我们人类的可持续发展造成了威胁。我们看看针对这种情况,目前世界各个国家都在发展新能源,我们知道人类未来的能源就是太阳能、风能、水电能、生物能、地热能等等。刚才任秘书长说,我们目前的石油,就是我们说的化石能源,我专门有一个报告关于化石能源的现状,就是说这个化石能源按照目前的燃烧速度的话,包括天然气、石油、碳以及核电,最多能够烧200-300年。所以发展新能源,利用太阳能、风能、电解能、生物能等等产生电能,将是我们未来的终极能源,以氢气或者是液态的氢气、气态的氢气为主要能源的载体是氢能经济的可持续发展的必然。 我们知道这个里边氢气作为一个载体,就要牵扯到电化学能源的存储和储存的技术,它在氢能利用中发挥中心的作用,核心的作用。从太阳能、风能以及水电能,发电以后产生的电能,通过电化学的方法制氢,产生氢气把它储存起来,因为太阳能、风能,这些能都是我们的气候影响的。比如说太阳能,今天没有太阳,产生的电能就少,它这个能源是一种随着气候的波动而变化的能源,所以说这种能源在以前就把它叫做垃圾能源,但是现在由于我们有储能技术,随着技术的发展要充分的利用起来。最重要的一个方法就是把它储起来,储起来我们可以通过电化学的方法,把它产生的电能变成氢气,然后用氢气通过燃料电池产生电,再驱动我们的汽车运输,这种电我们叫是一种可携带的电,而不是可携带的电。比如墙上插头用的电,这叫做有有线电,我们用的叫做没有线的电能,这是非常重要的。 当然我们也可以通过电池和超级电容器把它储存起来,转变成我们的家用。比如说我们手机里边的锂电池等等这些,也可以。但是作为一个能源的最大的未来的储存,还是要制氢。我们看看为什么氢能利用是未来发展的必然趋势? 首先目前世界各个国家都在力图发展氢能来解决能源的安全问题,掌握国际能源领域的制高点,我们可以看到,目前世界各个发达国家,包括发展中国家都在做这个事情。国际能

制氢技术比较及分析报告

制氢技术综述&制氢技术路线选择 一、工业制氢技术综述 1.工业制氢方案 工业制氢方案很多,主要有以下几类: (1)化石燃料制氢:天然气制氢、煤炭制氢等。 (2)富氢气体制氢:合成氨生产尾气制氢、炼油厂回收富氢气体制氢、氯碱厂回收副产氢制氢、焦炉煤气中氢的回收利用等。 (3)甲醇制氢:甲醇分解制氢、甲醇水蒸汽重整制氢、甲醇部分氧化制氢、甲醇转化制氢。 (4)水解制氢:电解水、碱性电解、聚合电解质薄膜电解、高温电解、光电 解、生物光解、热化学水解。 (5)生物质制氢。 (6)生物制氢。 2.工业制氢方案对比选择 (1)煤炭制氢制取过程比天然气制氢复杂,得到的氢气成本也高。 (2)由于生物制氢、生物质制氢和富氢气体制氢等方法制取的氢气杂质含量高、纯度较低,不能达到GT等技术提供商的氢气纯度要求。 (3)国内多晶硅绝大多数都采用的是水电解制氢,只有中能用的是天然气制氢,而国外应用的更多是甲醇制氢,因此,我们重点选择以下三类方案进行对比: (A)天然气制氢 (B)甲醇制氢 (C)水电解制氢 3. 天然气制氢

(1)天然气部分氧化制氢因需要大量纯氧增加了昂贵的空分装置投资和制氧成本。 (2)天然气自热重整制氢由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器,这就使得天然气自热重整反应过程具有装置投资高,生产能力低的特点。 (3)天然气绝热转化制氢大部分原料反应本质为部分氧化反应。 (4)天然气高温裂解制氢其关键问题是,所产生的碳能够具有特定的重要

用途和广阔的市场前景。否则,若大量氢所副产的碳不能得到很好应用,必将限制其规模的扩大。 (5)天然气水蒸汽重整制氢,该工艺连续运行, 设备紧凑, 单系列能力较大, 原料费用较低。 因此选用天然气水蒸汽重整制氢进行方案对比。 4.甲醇制氢 (1)甲醇分解制氢,该反应是合成气制甲醇的逆反应,在低温时会产生少量的二甲醚。 (2)甲醇水蒸汽重整制氢,是甲醇制氢法中氢含量最高的反应。这种装置已经广泛使用于航空航天、精细化工、制药、小型石化、特种玻璃、特种钢铁等

水电解制氢的最新进展与应用

水电解制氢的最新进展与应用 一、绿色能源氢能及其电解水制氢技术进展 摘要:随着环境污染日益严重,越来越多的研究关注于绿色无污染能源,其中氢能清洁无污染、高效、可再生,是未来最有潜力的能源载体。利用电解水技术制氢是目前最有潜力的技术,也是一种经济有效的技术。绍了氢能的研究现状和水电制氢技术,着重介绍了碱性电解槽、子交换膜电解技术以及固体氧化物水电解技术,对现有技术进行了总结。 1.氢能的研究现状 美国: 1990年,美国能源部(DOE)启动了一系列氢能研究项目。 2001年以来,美国政府制订了《自有车协作计划》、《美国氢能路线图》。 2004年2月,美国能源部出台的“氢态势计划”,并提出2040年美国将实现向氢经济的过渡。 美国能源部、国防部、交通部、国家科学基金、美国宇航局和商务部以及8个国家实验室、2所大学和19 个公司签署了研发合同。 欧盟: 2001 年11 月启动的“清洁能源伙伴计划”,欧盟拨款1850万欧元支持汉堡、伦敦等10个城市的燃料汽车示范项目。 2008年11 月初欧盟、欧洲工业委员会和欧洲研究社团联合制订了2020年氢能与燃料电池发展计划。 日本: 1993年就制订了“新阳光计划”,预计到2020年投资30亿美元用于氢能关键技术的研发。并计划在2020年实现燃料电池汽车500 万辆,建成燃料电池发电系统10000MW。 我国: 2003年11月我国加入了“氢能经济国际合作伙伴(IPHE)”,成为IPH首批成员国之一。《国家中长期科学和技术发展规划纲要(2006-2020年)》和《国家“十一五”科学技术发展规划》中都列入了发展氢能和燃料电池的相关内容。 相对而言,我国在氢能和燃料电池汽车领域的技术研发工作开始得较晚,这方面的标准体系尚未形成,然而通过国内研究单位的协作努力,在材料、基础设施、燃料电池堆、整车集成等方面都已取得阶段性进展,目前已有多家企业与联合国发展计划署和全球环境基金合作,开展燃料电池客车的公交线路试运行。 2 水电解氢能的制备技术进展 发展到现在,已有三种不同种类的电解槽,分别为碱性电解槽#聚合物薄膜电解槽和固体氧化物电解槽。 ①碱性电解槽 碱性电解槽是发展时间最长、技术最为成熟的电解槽,具有操作简单、#成本低的优点,其缺点是效率最低,槽体示意图如图1 所示。国外知名的碱性电解水制 氢公司有挪威留坎公司、格洛菲奥德公司和冰岛雷克雅维克公司等。电解槽一般采 用压滤式复极结构或箱式单极结构,每对电解槽压在1.8~2.0V,循环方式一般采用 混合碱液循环方式。

电解水制氢的原理

电解水制氢的原理

————————————————————————————————作者:————————————————————————————————日期:

电解水制氢的原理 字体大小:大- 中- 小SBEPL发表于09-06-03 06:37 阅读(1274) 评论(0) 日志 复制网址隐藏签名档大字体 第二节电解水制氢的原理一、氢气的工业制法 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶 液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 二、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程:

电解水制氢工艺描述说课讲解

电解水制氢工艺描述 电解水生产氢气氧气是一个比较成熟的工艺。其主要组成部分有:电解槽、气水分离罐、加碱罐、洗涤罐、脱水罐、缓冲罐、冷却水箱等,电气、仪表及配套的设备元器件主要有:直流电解电源(简称电解电源)、电源冷却循环泵(简称电源冷却泵或电源泵)、电解液循环泵(简称循环泵)、电解系统冷却循环泵(简称电解冷却泵或冷却泵)、补水泵、电磁阀、压力变送器、温度变送器、差压变送器、流量计、压力表、减压阀、回火防止器、纯净水生产装置等。 电解水制氢工艺流程示意图见图1。 电解水制氢工艺流程示意图1 图 压力的单位为Mpa,小数点后面保留3位。差压的单位为kPa,小数点后面保留2位,流3/h,小数点后面保留2位。温度的单位为°C,小数点后面保留1位量单位为m,累计流量的3,小数点后面保留1位,累计工作时间的单位为h m,小数点后面保留1位。单位为所有的电磁阀均为电开阀,通电开启,断电关闭。 一、电解电源DDY、电源冷却泵DLB、循环泵XHB及冷却泵LQB控制

1、氢气压力P由压力变送器PT101变送为4~20mA直流信号,根据氢气压力P 控制电HH解电源DDY(电解电源DDY由一个开关量信号控制运行与停止)、电源冷却泵DLB和循环泵XHB(电源冷却泵DLB和循环泵XHB与电解电源DDY同步受氢气压力P控制)的通断,氢气压H力可以在触摸屏上设置: 氢气压力上限设定值○(简称压力设定上限)P的设置范围0~3.00Mpa(参考值0.40Mpa);1HH氢气压力下限设定值○(简称压力设定下限)P的设置范围 0~3.00MPa(参考值0.35Mpa)。2HL参考值就是第一次开机设置时(或者长时间断电数据丢失时)推荐使用的数值。 当氢气压力P高于压力设定上限P,P>P,DO1输出为OFF,电解电源DDY、电源泵○3HHHHHH DLB和循环泵XHB停止运行; 氢气压力P低于压力设定下限P,○P<P, DO1输出为ON,电解电源DDY、电源泵DLB4HLHHLH和循环泵XHB通电运行。 2、当电解系统温度(实际为电解系统电解液的温度,简称电解温度)T由温度变送器TT101E变送为4~20mA直流信号,根据电解温度T控制电解电源DDY的通断,电解温控温度可在触E摸屏上设置: 电解系统温度上限设定值○(简称电解温控上限)T设置范围55~95°C(参考值90°C);1EH电解系统温度下限设定值○(简称电解温控下限)T设置范围50~90°C(参考值85°C)。2EL当电解系统温度T超过电解温控上限T,T>T,发出报警信号,DO9输出为ON,同○3EHEHEE时DO1输出为OFF,电解电源DDY、电源泵DLB 和循环泵XHB停止运行,但这时其他系统继续正常工作。. 当电解系统温度T低于电解温控下限T,T<T,解除报警, DO9为OFF,电解系统○4ELEELE恢复正常工作。 3、根据电解温度T控制冷却泵LQB的通断,冷却温控温度上下限可在触摸屏上设置:E电解冷却温度上限设定值○(简称冷却温控上限)T设置范围30~90°C (参考值90°C);1CH电解冷却温度下限设定值○(简称冷却温控下限)T设置范围30~90°C(参考值85°C)。2CL当电解温度T超过冷却温控上限T,T>T,DO2输出为OFF,冷却泵LQB停止运行。○3CHECHE当电解温度T低于冷却温控下限T,T<T,解除报警, DO9为OFF,电解系统恢复○4CLCLEE正常工作。 电解与冷却控制流程框图如下: PT101) 氢气AI1HH TT101) >TT OR 电解温度AI2(电解停止OFF,DO10为EHE DO9 )产生报警(共8个报警 力PPT101) <P 氢气压AI1( HLH TT101) T T<AND

电解水制氢

水电解制氢 水电解制氢是一种较为方便的制取氢气的方法。在充满电解液的电解槽中通入直流电, 水分子在电极上发生电化学反应,分解成氢气和氧气。 中文名水电解制氢 运用试剂碱性电解液或纯水 法拉第定律 其化学反应式如下: ①、碱性条件: 阴极:4H2O+4e-=2H2f +40H 阳极:4OH--4e =2H2O+O 2f 总反应式:2H 2O=2H 2? + O t ②、酸性条件: 阳极:2H2O-4e-=O2t +4h t 阴极:4H++4e-=2H2t 反应遵循法拉第定律,气体产量与电流和通电时间成正比。 固体聚合物电解质,SPE电解水,最初用于向宇宙飞船或潜水艇供氧,或在实验室作 为氢气发生器(可用于气体色谱)。核电大规模发展以后,人们利用SPE技术在用电低谷电 解水产生氢,在供电高峰以SPE氢-氧燃料电池向外供电,使之成为能量贮存转换装置通过直接电解纯水产生高纯氢气(不加碱),电解池只电解纯水即可产氢。通电后, 电解池阴极产氢气,阳极产氧气,氢气进入氢/水分离器。氧气排入大气。氢/水分离器将氢 气和水分离。氢气进入干燥器除湿后,经稳压阀、调节阀调整到额定压力(0.02?0.45Mpa 可调)由出口输出。电解池的产氢压力由传感器控制在0.45Mpa左右,当压力达到设定值 时,电解池电源供应切断;压力下降,低于设定值时电源恢复供电。 3 在氯碱工业中副产多量较纯氢气,除供合成盐酸外还有剩余,也可经提纯生产普氢或 纯氢。像化工二厂用的氢气就是电解盐水的副产 电解水 水(H2O)被直流电电解生成氢气和氧气的过程被称为电解水。电流通过水(H2O)时,在 阴极通过还原水形成氢气(H2),在阳极则通过氧化水形成氧气(O2)。氢气生成量大约是氧气的两倍。电解水是取代蒸汽重整制氢的下一代制备氢燃料方法。 中文名

水电解制氢设备系列说明书

水电解制氢设备 操 作 使 用 手 册 \ 苏州竞立制氢设备有限公司

1、简述 1.1、氢气的性质和用途: 氢是自然界分布最广的元素之一,它在地球上主要以化合状态存在于化合物中。在大气层中的含量却很低,仅有约1ppm(体积比)。氢是最轻的气体,它的粘度最小,导热系数很高,化学活性、渗透性和扩散性强(扩散系数为0.63cm2/s,约为甲烷的三倍),它是一种强的还原剂,可同许多物质进行不同程度的化学反应,生成各种类型的氢化物。 氢的着火、燃烧、爆炸性能是它的特性。氢含量范围在4-75%(空气环境)、4.65-93.9%(氧气环境)时形成可爆燃气体,遇到明火或温度在585℃以上时可引起燃爆。 压力水电解制出的氢气具有压力高(1.6或3.2MPa)便于输送,纯度高(99.8%以上)可直接用于一般场合,还可以通过纯化(纯度提高到99.999%)和干燥(露点提高到-40~-90℃)的后续加工,可以作为燃料、载气、还原或保护气、冷却介质,广泛应用于国民经济的各行各业。 1.2、水电解制氢原理: 利用电能使某电解质溶液分解为其他物质的单元装置称为电解池。 任何物质在电解过程中,在数量上的变化服从法拉第定律。法拉第定律指出:电解时,在电极上析出物质的数量,与通过溶液的电流强度和通电时间成正比;用相同的电量通过不同的电解质溶液时,各种溶液在两极上析出物质量与它的电化当量成正比,而析出1克当量的任何物质都需要1法拉第单位96500库仑(26.8安培小时)的电量。水电解制氢符合法拉第电解定律,即在标准状态下,阴极析出1克分子的氢气,所需电量为53.6A/h。经过换算,生产1m3氢气(副产品0.5m3氧气)所需电量约2393Ah,原料水消耗0.9kg。 将水电解为氢气和氧气的过程,其电极反应为: 阴极: 2H 2O + 2e →H 2 ↑+ 2OH- 阳极: 2OH-- 2e →H 2O + 1/2O 2 ↑ 总反应: 2H 2O →2H 2 ↑+ O 2 ↑ 由浸没在电解液中的一对电极,中间隔以防止气体渗透的隔膜而构成水电解池,通以一定电压(达到水的分解电压1.23V和热平衡电压1.47V以上)的直流电,水就发生电解。根据用户产量需求,使用多组水电解池组合,减小体积和增加产量,就形成水电解槽的压滤型组合结构。 本公司生产的压力型水电解槽采用左右槽并联型结构,中间极板接直流电源正极,两端极板接直流电源负极,并采用双极性极板和隔膜垫片组成多个电解池,并在槽内下部形成共用的进液口和排污口,上部形成各自的氢碱和氧碱的气液体通道。由电解槽纵向看,A、B系列的氧气出口设计在中心线靠直流铜排一侧(氧铜侧),C、D、E、F系列的氢气出口设计在中心线靠直流铜排一侧(氢铜侧)。 我公司生产的压力型水电解槽,目前标准产品操作压力为1.6MPa和3.2MPa两种。具有结构紧凑,运行安全,使用寿命长的特点,电解液采用强制循环,电解消耗的原料水由柱塞泵自动补充,相关参数实现自动监测和控制。。正常生产时采用30%KOH水溶液作为电解液,槽温控制在85-90℃左右,兼顾隔膜垫片的使用寿命和降低能耗的要求。 水电解制氢的电解需要低电压、大电流的可调直流电源。工业上采用带平衡电抗器的

电解水制氢的原理

第二节电解水制氢得原理一、氢气得工业制法 在工业上通常采用如下几种方法制取氢气:一就是将水蒸气通过灼热得焦炭(称为碳还原法),得到纯度为75%左右得氢气;二就是将水蒸气通过灼热得铁,得到纯度在97%以下得氢气;三就是由水煤气中提取氢气,得到得氢气纯度也较低;第四种方法就就是电解水法,制得得氢气纯度可高达99%以上,这就是工业上制备氢气得一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶液制造氢氧化钠时,也可得到氢气。?对用于冷却发电机得氢气得纯度要求较高,因此,都就是采用电解 水得方法制得。?二、电解水制氢原理 所谓电解就就是借助直流电得作用,将溶解在水中得电解质分解成新物质得过程。?1、电解水原理?在一些电解质水溶液中通入直流电时,分解出得物质与原来得电解质完全没有关系,被分解得就是作为溶剂得水,原来得电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。?在电解水时,由于纯水得电离度很小,导电能力低,属于典型得弱电解质,所以需要加入前述电解质,以增加溶液得导电能力, 使水能够顺利地电解成为氢气与氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾就是强电解质,溶于水后即发生如下电离过程:? 于就是,水溶液中就产生了大量得K+与OH—。?(2)金属离子在水溶液中得活泼性不同,可按活泼性大小 顺序排列如下: K〉Na〉Mg>Al>Mn>Zn>Fe>Ni〉Sn>Pb〉H〉Cu〉Hg>Ag>Au?在上面得排列中,前面得金属

比后面得活泼。 (3)在金属活泼性顺序中,越活泼得金属越容易失去电子,否则反之。从电化学理论上瞧,容易得到电子得金属离子得电极电位高,而排在活泼性大小顺序前得金属离子,由于其电极电位低而难以得到电子变成原子。H+得电极电位=—1、71V,而K+得电极电位=—2、66V,所以,在水溶液中同时存在H+与K+时,H+将在阴极上首先得到电子而变成氢气,而K+则仍将留在溶液中。?(4)水就是一种弱电解质,难以电离.而当水中溶有KOH时,在电离得K+周围则围绕着极性得水分子而成为水合钾离子,而且因K+得作用使水分子有了极性方向。在直流电作用下,K+带着有极性方向得水分子一同迁向阴极,这时H+就会首先得到电子而成 为氢气。?2、水得电解方程 在直流电作用于氢氧化钾水溶液时,在阴极与阳极上分别发生下列放电反应,见图8—3. ?图8—3 碱性水溶液得电解(1)阴极反应。电解液中得H+(水电离后产生得)受阴极得吸引而移向阴极,接受电子而析出氢气,其放电 反应为: ?(2)阳极反应。电解液中得OH-受阳极得吸引而移向阳极,最后放出电子而成为水与氧气, 其放电反应为: ?阴阳极合起来得总反应式为:?电解? 所以,在以KOH为电解质得电解过程中,实际上就是水被电解,产生氢气与氧气,而KOH只起运载电荷得作用。?三、电解电压?在电解水时,加在电解池上得直流电压必须大于水得理论分解电压,以便能克服电解池中得各种电阻电压降与电极极化电动势.电极极化电动势就是阴极氢析出时得超电位与阳极氧极出时

电解水制氢的原理

电解水制氢的原理 一、氢气的工业制法 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 二、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程: 于是,水溶液中就产生了大量的K+和OH-。 (2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下: K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au 在上面的排列中,前面的金属比后面的活泼。 (3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前

电解水制氢的原理

日志 复制网址隐藏签名档大字体 第二节电解水制氢的原理一、氢气的工业制法 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶 液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 二、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程:

于是,水溶液中就产生了大量的K+和OH-。 (2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下: K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au 在上面的排列中,前面的金属比后面的活泼。 (3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前的金属离子,由于其电极电位低而难以得到电子变成原子。H+的电极电位=-1.71V,而K+的电极电位=-2.66V,所以,在水溶液中同时存在H+和K+时,H+将在阴极上首先得到电子而变成氢气,而K+则仍将留在溶液中。 (4)水是一种弱电解质,难以电离。而当水中溶有KOH时,在电离的K+周围则围绕着极性的水分子而成为水合钾离子,而且因K+的作用使水分子有了极性方向。在直流电作用下,K+带着有极性方向的水分子一同迁向阴极,这时H+就会首先得到电子而成为氢气。 2、水的电解方程 在直流电作用于氢氧化钾水溶液时,在阴极和阳极上分别发生下列放电反应,见图8-3。 图8-3 碱性水溶液的电解 (1)阴极反应。电解液中的H+(水电离后产生的)受阴极的吸引而移向阴极,接受电子而析出氢气,其 放电反应为:

水电解制氢装置工作原理结构及工艺流程

水电解制氢装置 工作原理结构及工艺流程 1.水电解制氢装置工作原理 水电解制氢的原理是由浸没在电解液中的一对电极中 间隔以防止气体渗透的隔膜而构成的水电解池 ,当通以一定 的直流电时,水就发生分解,在阴极析出氢气 ,阳极析出氧气。 其反应式如下: 阴 极: 2H 2O +2e →H 2↑+2OH - 阳 极: 2OH - -2e →H 2O +1/2O 2↑ 直流额定电压(V ) 28 56 总反应: 2H 2O →2H 2↑+O 2↑ 产生的氢气进入干燥部分,由干燥剂吸附氢气携带的水 分,达到用户对氢气湿度的要求。 本装置干燥部分采用原料氢气再生,在一干燥塔再生的 同时,另一干燥塔继续进行工作。 2.水电解制氢装置的用途与技术参数

纯水耗量(kg/h) 5 10 主电源动力电源容量40 75 (KVA) 原料水水质要电导率≤5μs/cm 氯离子含量<2mg/l 悬浮求物<1mg/l 3 冷却水用量(m/h) 3 整流柜冷却水出口背压<0.1Mpa 电解槽直流电耗≤4.8KWh/m3H2 碱液浓度26~30%KOH 自控气源压力0.5~0.7Mpa 气源耗量 3.5m3/h 主电源动力电电压N380V50HzC相~220V50Hz 整流柜电源0.5KV380 三相四线50Hz 控制柜电源AC220V50Hz 冷却水温度≤32℃ 冷却水压力0.4~0.6MPa

冷却水水质≤6德国度 氢气出口温度≤40℃ 干燥温控温度250℃~350℃ 干燥加热终止温度180℃ 干燥器再生周期24h 环境温度0~45℃ 表1 制氢装置主要技术参数表 2.1设备的用途 CNDQ系列水电解制氢干燥装置是中国船舶重工集团 公司第七一八研究所新研制 成功并独家生产的全自动操作的制氢干燥设备,其主要技术指标达到或超过九十年代末世界先进水平,适用于化工、冶金、电子、航天等对氢气质量要求高的部门,是目前国内最先进的并可替代进口的制氢设备。 2.2主要技术参数 CNDQ5~10/3.2型水电解制氢干燥装置的主要技术参数 如表1

电解水制氢工艺描述

电解水制氢工艺描述电解水生产氢气氧气就是一个比较成熟得工艺、其主要组成部分有:电解槽、气水分离罐、加碱罐、洗涤罐、脱水罐、缓冲罐、冷却水箱等,电气、仪表及配套得设备元器件主要有:直流电解电源(简称电解电源)、电源冷却循环泵(简称电源冷却泵或电源泵)、电解液循环泵(简称循环泵)、电解系统冷却循环泵(简称电解冷却泵或冷却泵)、补水泵、电磁阀、压力变送器、温度变送器、差压变送器、流量计、压力表、减压阀、回火防止器、纯净水生产装置等。 电解水制氢工艺流程示意图见图1。 图1 电解水制氢工艺流程示意图

压力得单位为Mpa,小数点后面保留3位。差压得单位为kPa,小数点后面保留2位,流量单位为m3/h,小数点后面保留2位。温度得单位为°C,小数点后面保留1位,累计流量得单位为m3,小数点后面保留1位,累计工作时间得单位为h,小数点后面保留1位。 所有得电磁阀均为电开阀,通电开启,断电关闭。 一、电解电源DDY、电源冷却泵DLB、循环泵XHB及冷却泵LQB控制 表1电解系统与冷却系统对应输入输出关系表 1、氢气压力P H 由压力变送器PT101变送为4~20mA直流信号,根据氢气压力P H 控制 电解电源DDY(电解电源DDY由一个开关量信号控制运行与停止)、电源冷却泵DLB与循环泵 XHB(电源冷却泵DLB与循环泵XHB与电解电源DDY同步受氢气压力P H 控制)得通断,氢气压力可以在触摸屏上设置: 错误!氢气压力上限设定值(简称压力设定上限)P HH 得设置范围0~3.00Mpa(参考值0.40Mpa); \o\ac(○,2)氢气压力下限设定值(简称压力设定下限)P HL 得设置范围0~3、00 MPa(参考值0、35Mpa)、 参考值就就是第一次开机设置时(或者长时间断电数据丢失时)推荐使用得数值、 \o\ac(○,3)当氢气压力P H 高于压力设定上限P HH ,P H >P HH ,DO1输出为OFF,电解电 源DDY、电源泵DLB与循环泵XHB停止运行; 错误!氢气压力P H低于压力设定下限P HL ,P H <P HL , DO1输出为ON,电解电源DDY、电 源泵DLB与循环泵XHB通电运行、 2、当电解系统温度(实际为电解系统电解液得温度,简称电解温度)T E 由温度变送器TT1 01变送为4~20mA直流信号,根据电解温度T E 控制电解电源DDY得通断,电解温控温度可在触摸屏上设置: 错误!电解系统温度上限设定值(简称电解温控上限)T EH 设置范围55~95°C(参考值90°C);

水电解制氢作业指导书

水电解制氢作业指导书ZDQ-120/1.5 编制:生产技术部 审批: 编号:DMZG/JL-52 河北东明中硅科技有限公司 2011年2月30日

第一章概述 1 设备的用途 ZQD系列水电解制氢装置是中国船舶重工集团公司第七一八研究所研制成功的自动化操作的制氢设备,其主要技术指标达到或超过世界先进水平,适用于化工、冶金、电子、航天等各种用氢量大、对氢气质量要求高的部门。 2 工作原理 水电解制氢的工作原理是由浸没在电解液中的一对电极,中间隔以防止气体渗透的隔膜而构成的电解池,当通以一定的直流电时,水发生分解,在阴极折出氢气,阳极析出氧气。其反应式如下: 阴极:2H2O+2e→H2↑+2OHˉ 阳极:2OHˉ-2e→H2O+1/2O2↑ 总体反应:2H2O→2H2↑+O2↑ 3 装置构成 水电解制氢装置由电解槽(1001)、气液处理器(1000)、水碱箱系统(1300)、整流系统、控制系统及其它辅助系统等组成。 注:供货范围根据用户具体的合同要求而定。 3.1电解槽(1001) 电解槽为压滤式双极性结构,是制氢装置中的主体设备。电解槽由若干个电解小室组成,每个电解小室由阴极、阳极、隔膜、绝缘垫片及电解液构成。端极板上部设有氢、氧气液出口管,用于导出氢、氧气体,下部设有碱液进口,用于补充电解液;中间正极框为正极,两端极板为负极。整流系统向电解槽提供直流电,水分子在电极上发生电化学反应,分解成氢气和氧气。KOH(或NaOH)在水中的作用在于增加水的电导,本身不参加反应,理论上是不消耗的。 3.2气液处理器(1000) 气液处理器由氢气分离器1002、氧气分离器1003、氢气洗涤器1001、氧气洗涤器1005、氢侧换热器1006、氧侧换热器1007、碱液过滤器1009、碱液循环泵1M11及各类阀门、一次仪表、管路等组成,主要用来分离来自电解槽的氢气与碱液的混合物及氧气与碱液的混合物,经过冷却、分离、洗涤、除雾获取纯净的氢气和氧气。装置除在控制室设有集中显示的仪表外,还装有压力、液位、温度等现场仪表,用来显示设备运行的各主要参数,保证设备安全运行。 3.3水碱箱系统(1300) 水碱箱系统由水箱1301、碱箱1311、加水泵1M21及阀门等组成。水箱用来存储原料水,碱箱用来配制储存碱液。装置运行中,通过加水泵向系统中注入原料水,有时也通过加水泵向系统中适当补充碱液。 3.4 整流系统 整流系统由整流变压器1024和整流柜1022组成。整流变压器用来将高压电转变为适合于可控硅工作的电压,初级绕组接高压电、次级绕组接整流柜。整流柜用来将交流电转变为直流电,通过铜排为电解槽提供直流电。 3.5 控制系统 控制系统包括控制柜1020和上位机。 控制柜由PLC、二次仪表、安全栅、声光报警器及操作按钮、开关等构成。可实现对装置各种参数的自动检测、调节、故障报警与联锁、自动开机与停机等功能。

水电解制氢装置培训讲义(氢气纯化装置)

水电解制氢装置培训讲义 (纯化工艺部分) ?制氢工程部 2015-6-161 培训内容 概述 纯化流程 常见故障及排除方法 2015-6-162

概述 2015-6-163 1、催化脱氧 氢气中含有的氧杂质通常可采用催化转化的方法来去除。 脱氧催化剂大多是由具有高脱氧活性的金属(如钯脱氧的工作原理 脱氧催化剂大多是由具有高脱氧活性的金属(如钯、装置中使用的催化剂为钯金属--2015-6-164 装置中使用的催化剂为钯金属半导体体系,具有脱氧活性高、脱氧深度深、气体处理量大、强度高等特性,常温下即可催化反应发生,而且无需预处理(活化)和再生。脱氧深度可达生。脱氧深度可达1ppm 1ppm及以下。及以下。

2、脱氧器的结构 ?内筒:电加热元件 电缆接入口 a 口(气体入口) ?保温层 进入经电加热元 2015-6-165原料氢气从原料氢气从a a 口进入,经电加热元件加热后进入催化剂床层,氢气和氧气 在催化剂的作用下发生化合反应生成水, 水以气态的形式随氢气从水以气态的形式随氢气从b b 口流出脱氧 器。 3、温度控制 在催化剂床层的上部和下部各装有一个铂电阻。分别用来检测催化剂床层上部和下部的温度。 下部铂电阻检测温度达到设定温度时,会暂停电加热元2015-6-166 如果电加热元件已开启而没有通气,那么电加热元件产生的热量就无法散发出去,并且没有气流的传导,测温元件也不能及时将电加热元件的真实温度传至控制系统停止加热,造成电加热元件自身过热,直至烧断。

干燥器的工作原理 1、变温吸附干燥 变温吸附干燥技术在气体制取工业应用广泛。它是利解吸出来(即吸附剂的再生)。从而达到循环工作的目的。2015-6-167 解来即附剂从到循作 2、分子筛的吸附原理 分子筛是一类具有均匀微孔的硅铝酸盐化合物,其孔般 径相当于一般分子大小,由于微孔表面的分子或原子存在子的氢则不易被吸附而顺利通过微孔从而达到消除水分2015-6-168 子的氢则不易被吸附而顺利通过微孔,从而达到消除水分的目的。 分子筛的吸附作用属物理吸附,过程可逆。

电解水制氢实用工艺描述

电解水制氢工艺描述电解水生产氢气氧气是一个比较成熟的工艺。其主要组成部分有:电解槽、气水分离罐、加碱罐、洗涤罐、脱水罐、缓冲罐、冷却水箱等,电气、仪表及配套的设备元器件主要有:直流电解电源(简称电解电源)、电源冷却循环泵(简称电源冷却泵或电源泵)、电解液循环泵(简称循环泵)、电解系统冷却循环泵(简称电解冷却泵或冷却泵)、补水泵、电磁阀、压力变送器、温度变送器、差压变送器、流量计、压力表、减压阀、回火防止器、纯净水生产装置等。 电解水制氢工艺流程示意图见图1。 图1 电解水制氢工艺流程示意图

压力的单位为Mpa,小数点后面保留3位。差压的单位为kPa,小数点后面保留2位,流量单位为m3/h,小数点后面保留2位。温度的单位为°C,小数点后面保留1位,累计流量的单位为m3,小数点后面保留1位,累计工作时间的单位为h,小数点后面保留1位。 所有的电磁阀均为电开阀,通电开启,断电关闭。 一、电解电源DDY、电源冷却泵DLB、循环泵XHB及冷却泵LQB控制 表1 电解系统与冷却系统对应输入输出关系表 1、氢气压力P H 由压力变送器PT101变送为4~20mA直流信号,根据氢气压力P H 控制电 解电源DDY(电解电源DDY由一个开关量信号控制运行与停止)、电源冷却泵DLB和循环泵 XHB(电源冷却泵DLB和循环泵XHB与电解电源DDY同步受氢气压力P H 控制)的通断,氢气压力可以在触摸屏上设置: ○1氢气压力上限设定值(简称压力设定上限)P HH 的设置范围0~3.00Mpa(参考值0.40Mpa); ○2氢气压力下限设定值(简称压力设定下限)P HL 的设置范围0~3.00MPa(参考值0.35Mpa)。 参考值就是第一次开机设置时(或者长时间断电数据丢失时)推荐使用的数值。 ○3当氢气压力P H 高于压力设定上限P HH ,P H >P HH ,DO1输出为OFF,电解电源DDY、电源泵 DLB和循环泵XHB停止运行; ○4氢气压力P H 低于压力设定下限P HL ,P H <P HL , DO1输出为ON,电解电源DDY、电源泵DLB 和循环泵XHB通电运行。 2、当电解系统温度(实际为电解系统电解液的温度,简称电解温度)T E 由温度变送器TT101 变送为4~20mA直流信号,根据电解温度T E 控制电解电源DDY的通断,电解温控温度可在触摸屏上设置: ○1电解系统温度上限设定值(简称电解温控上限)T EH 设置范围55~95°C(参考值90°C); ○2电解系统温度下限设定值(简称电解温控下限)T EL 设置范围50~90°C(参考值85°C)。 ○3当电解系统温度T E 超过电解温控上限T EH ,T E >T EH ,发出报警信号,DO9输出为ON,同 时DO1输出为OFF,电解电源DDY、电源泵DLB和循环泵XHB停止运行,但这时其他系统继续正常工作。

电解水制氢的原理

第二节电解水制氢的原理一、氢气的工业制法 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶 液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 二、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程: 于是,水溶液中就产生了大量的K+和OH-。

(2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下: K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au 在上面的排列中,前面的金属比后面的活泼。 (3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前的金属离子,由于其电极电位低而难以得到电子变成原子。H+的电极电位=,而K+的电极电位=,所以,在水溶液中同时存在H+和K+时,H+将在阴极上首先 得到电子而变成氢气,而K+则仍将留在溶液中。 (4)水是一种弱电解质,难以电离。而当水中溶有KOH时,在电离的K+周围则围绕着极性的水分子而成为水合钾离子,而且因K+的作用使水分子有了极性方向。在直流电作用下,K+带着有极性方向的水分子一同迁向阴极,这时H+就会首先得到电子而成为氢气。 2、水的电解方程 在直流电作用于氢氧化钾水溶液时,在阴极和阳极上分别发生下列放电反应,见图8-3。 图8-3 碱性水溶液的电解 (1)阴极反应。电解液中的H+(水电离后产生的)受阴极的吸引而移向阴极,接受电子而析出氢气,其 放电反应为: (2)阳极反应。电解液中的OH-受阳极的吸引而移向阳极,最后放出电子而成为水和氧气,其放电反应为: 阴阳极合起来的总反应式为: 电解 所以,在以KOH为电解质的电解过程中,实际上是水被电解,产生氢气和氧气,而KOH只起运载电荷的 作用。

电解水制氢的原理

-SBEP发表 09-06-03 06:37 阅(1274) 评(0字体大小 - 日 复制网址隐藏签名档大字 第二节电解水制氢的原理一、氢气的工业制法 在工业上通常采用如下几种方法制取氢气:一是将水蒸气通过灼热的焦炭(称为碳还原法),得到纯度为75%左右的氢气;二是将水蒸气通过灼热的铁,得到纯度在97%以下的氢气;三是由水煤气中提取氢气,得到的氢气纯度也较低;第四种方法就是电解水法,制得的氢气纯度可高达99%以上,这是工业上制备氢气的一种重要方法。在电解氢氧化钠(钾)溶液时,阳极上放出氧气,阴极上放出氢气。电解氯化钠水溶液制造氢氧化钠时,也可得到氢气。 对用于冷却发电机的氢气的纯度要求较高,因此,都是采用电解水的方法制得。 二、电解水制氢原理 所谓电解就是借助直流电的作用,将溶解在水中的电解质分解成新物质的过程。 1、电解水原理 在一些电解质水溶液中通入直流电时,分解出的物质与原来的电解质完全没有关系,被分解的是作为溶剂的水,原来的电解质仍然留在水中。例如硫酸、氢氧化钠、氢氧化钾等均属于这类电解质。 在电解水时,由于纯水的电离度很小,导电能力低,属于典型的弱电解质,所以需要加入前述电解质,以增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气。 氢氧化钾等电解质不会被电解,现以氢氧化钾为例说明: (1)氢氧化钾是强电解质,溶于水后即发生如下电离过程: 。OH-和K+于是,水溶液中就产生了大量的. (2)金属离子在水溶液中的活泼性不同,可按活泼性大小顺序排列如下: K>Na>Mg>Al>Mn>Zn>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au 在上面的排列中,前面的金属比后面的活泼。 (3)在金属活泼性顺序中,越活泼的金属越容易失去电子,否则反之。从电化学理论上看,容易得到电子的金属离子的电极电位高,而排在活泼性大小顺序前的金属离子,由于其电极电位低而难以得到电子变成原子。H+的电极电位=,而K+的电极电位=,所以,在水溶液中同时存在H+和K+时,H+将在阴极上首先得到电子而变成氢气,而K+则仍将留在溶液中。 (4)水是一种弱电解质,难以电离。而当水中溶有KOH时,在电离的K+周围则围绕着极性的水分子而成为水合钾离子,而且因K+的作用使水分子有了极性方向。在直流电作用下,K+带着有极性方向的水分子一同迁向阴极,这时H+就会首先得到电子而成为氢气。 2、水的电解方程 在直流电作用于氢氧化钾水溶液时,在阴极和阳极上分别发生下列放电反应,见图8-3。 图8-3 碱性水溶液的电解 (1)阴极反应。电解液中的H+(水电离后产生的)受阴极的吸引而移向阴极,接受电子而析出氢气,其放电反应为:(2)阳极反应。电解液中的OH-受阳极的吸引而移向阳极,最后放出电子而成为水和氧气,其放电反应为: 阴阳极合起来的总反应式为: 电解

相关主题
文本预览
相关文档 最新文档