周期极化晶体倍频
- 格式:ppt
- 大小:502.00 KB
- 文档页数:15
专利名称:基于周期性极化铌酸锂的倍频的增强方法专利类型:发明专利
发明人:陈玉萍,李广珍,唐喻斌,张晋平,蒋淏苇,陈险峰申请号:CN201310597494.1
申请日:20131122
公开号:CN103605248A
公开日:
20140226
专利内容由知识产权出版社提供
摘要:一种光信息处理技术领域的基于周期性极化铌酸锂的倍频的增强方法,首先对铌酸锂晶体进行室温电场极化,在晶体的+Z面上负畴区域改变电畴极化方向,在晶体的Y向两侧进行真空镀膜溅射电极;然后对晶体进行寻常光照射的同时用高压源给铌酸锂晶体的Y向两侧加电压,通过产生的慢光效应实现寻常光倍频的增强。
本发明首创将准相位匹配的技术(QPM)和慢光效应所引起的有效光功率的增大结合起来。
申请人:上海交通大学
地址:200240 上海市闵行区东川路800号
国籍:CN
代理机构:上海交达专利事务所
更多信息请下载全文后查看。
(a)Co)图I-I几种周期极化铁电体的特性比较。
(a)为四种晶体的有效非线性系数与波长的关系曲线;(”为三种晶体的光损伤阈值的比较。
它们各有优缺点,都有一定的发展潜力。
其中周期化KTP晶体以其优良的综合特性引起人们的极大兴趣,它是本论文研究的重点内容。
磷酸氧钛钾(KTiOP仉,简称KTP)晶体属ram2点群,透光范围为350-4500nm,在1064nm处的吸收损耗小于0.Ot/cm,光损伤阈值为300~500MW/cm2,是LiNb03晶体的10倍,二阶非线性极化系数d。
=13.7×10-l‰∥V,约是LiNb0。
晶体(d。
=27x1012m/V)的1/2,但是KTP晶体极化反转时的矫顽场电压为2.1KV/mm,是LiNbO。
晶体的1/lO,因此较容易极化反转厚度较大的晶体,而且室温下光折变效应不明显,与铌酸锂晶体相比具有更大的优势,虽然价格约是铌酸锂晶体的十倍,但材料本身的价格只占器件价格的很小比例。
加以军事上的需求,国外许多研究人员将周期极化KTP晶体(PPKTP)应用于光参量振荡器(oPo)中,以获得近红外可调谐激光输出”1‘“…,在未来战争的激光红外对抗中具有战略意义。
1.4课题来源与论文的主要工作本课题来源于国家自然科学基金资助项目KTP晶体的周期极化特性研究”(批准号:60377018)。
本文的主要工作是利用外加电场法对KTP晶体进行周期极化反转,实现基于准相位匹配技术的】064nm基频光的倍频转换。
全文可以分为6个主要部分。
第二章简单介绍了非线性现象,然后从麦克斯韦方程组和介质物质方程出发,推导了介质中光波之间相互作_}}j的耦合波方程,并且在小信号近似情况下得出倍频转换效率的计算公式。
天津大学硕士学位论文第四章KTP晶体的主要性质第四章K1"P晶体的主要性质KTP晶体在1890年被L.OuvardI”第一次发表,但是直到1976年才被利用为非线性光学材料12】。
从此,KTP晶体广泛应用于利用二类相位匹配的Nd:YAG--1064nm激光的倍频【3】。
倍频晶体原理嘿,朋友们!今天咱来聊聊倍频晶体原理这个神奇的玩意儿。
你说这倍频晶体啊,就像是一个魔法盒子。
咱平时看到的光,就好比是一群小伙伴,它们有着自己特定的节奏在奔跑。
而倍频晶体呢,就像是一个厉害的指挥家,能让这些小伙伴改变节奏,重新列队!这是不是很神奇呀?想象一下,本来那些光小伙伴们按照自己的步伐前进,突然遇到了倍频晶体这个指挥家,它大手一挥,嘿,光小伙伴们就乖乖听话,变成了频率翻倍的新队伍啦!这可不得了,这一变化就让光有了新的特性和用途。
咱生活中的好多高科技玩意儿可都离不开倍频晶体呢!就好像没有它,有些魔术就变不出来一样。
它能让我们看到更清晰、更亮丽的图像,也能让一些仪器变得更加精准和厉害。
比如说在激光领域,倍频晶体就像是一个超级助力器。
没有它,那些激光可能就没那么酷炫,没那么强大啦!它能把激光的能量提升一个档次,让其发挥出更大的作用。
就好像一个大力士,给原本就厉害的拳头又加了一把劲。
那倍频晶体是怎么做到这一切的呢?其实啊,这就像是一场奇妙的舞蹈。
光进入倍频晶体后,就像是舞者踏上了舞台,在晶体的特殊结构和性质的引导下,开始跳出全新的舞步,从而实现频率的改变。
而且啊,不同的倍频晶体还有着不同的特点和本领呢!就跟人一样,各有各的性格和专长。
有些倍频晶体擅长处理某种特定的光,有些则在其他方面表现出色。
这可真是丰富多彩,让人惊叹不已!咱再想想,如果没有倍频晶体,那我们的科技发展得少了多少乐趣和突破呀!那些漂亮的激光表演可能就没那么精彩了,医疗领域的一些先进设备可能也没那么好用了。
所以说呀,倍频晶体原理可真是个宝贝!它就像隐藏在科技世界里的魔法,让一切变得更加奇妙和不可思议。
咱得好好感谢那些发现和研究倍频晶体的科学家们,是他们让这个魔法盒子为我们所用,给我们的生活带来了这么多的改变和惊喜。
总之,倍频晶体原理就是这么牛,就是这么让人佩服!它是科技世界里不可或缺的一部分,是推动我们不断前进的强大力量。
大家说是不是呀!原创不易,请尊重原创,谢谢!。
倍频晶体的倍频原理倍频晶体是一种不可或缺的元件,它可以将输入信号的频率提高到输入信号频率的整数倍。
它具有广泛的应用领域,包括无线电通信、光学通信和高科技数字电子设备中的数码信号处理等。
倍频原理倍频晶体的工作原理基于二阶非线性光学效应,即二次谐波发生器。
在这种情况下,信号的频率被倍增。
简单来说,倍频器最重要的参数是能够许多倍增加信号的显性非线性性质。
假设我们有一个信号的频率为 f0,并将其输入到一个二次谐波发生器中。
这个二次谐波发生器包含一块非线性晶体材料。
当输入信号经过晶体时,它将被分裂为两条具有相等频率的信号,分别为2f0和f0。
为了更好地理解这个过程,可以将这个二阶非线性现象与线性效应进行比较。
线性效应中,输入信号只会产生与输入信号频率相同的单一输出信号。
但是在二阶非线性效应中,输出信号的频率是输入信号频率的倍数。
倍频器的结构倍频晶体通常由硼酸锂 (BBO) 和 phasematching 浏阳铁线石 (PPMgLN) 晶体材料制成。
它们可以被制成具有大小不同的结构,以满足不同的应用需求。
相位匹配是倍数器工作的一个关键因素,它确保二次谐波与输入信号的相对相位为零。
在一个典型的倍数器中,输入信号会进入输入端口,并通过内部的光学透镜系统,在晶体中进行相位匹配。
当二次谐波产生后,它会经过衰减器和光学滤波器,以消除其他频率和参数噪声。
应用领域倍频器的应用非常广泛,包括光通信、无线电通讯、数码信号处理和高科技数字电子设备中。
其中,光通信中的倍频晶体尤其重要,它可以将激光器产生的光信号频率倍增,使其可以传输更高速的数据。
在无线电通讯领域中,倍频晶体也扮演着重要的角色。
它可以将射频信号的频率提高到更高的频率范围,以便通过带宽更宽的信道进行传输。
此外,倍频晶体还可以用于汽车雷达和无线电识别等应用。
在数码信号处理方面,倍频晶体可以用于数字音频处理和视频处理等领域。
由于它的高可靠性和低失真,倍频器已成为数字音频和视频处理中不可或缺的元件。
第50卷第3期2021年3月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.50㊀No.3March,2021封面图片光学超晶格晶体 实现激光频率转换的无限可能1962年,诺贝尔奖获得者Bloembergen 等提出了准相位匹配(quasi phase matching,QPM)理论,通过对光学晶体的二阶非线性极化率的周期性调制来补偿光频率变换过程中因色散引起的基波和谐波之间的相位失配,从而获得非线性光学效应的有效增强㊂20世纪70年代末,南京大学闵乃本等用晶体生长条纹技术生长出具有周期畴的铌酸锂晶体(后被称为光学超晶格),完成了首次准相位匹配的实验验证㊂20世纪80年代末,他们又提出了多重准相位匹配理论,将准周期(人工准晶)引入光学超晶格㊂到了20世纪90年代初,日本SONY 公司㊁美国斯坦福大学㊁日本大阪大学㊁日本东北大学和中国南京大学等发展出图案极化技术,在铌酸锂(LN)㊁钽酸锂(LT)等不同铁电晶体中实现了铁电畴的周期极化反转,成功实现了倍频输出㊂后来南京大学研究组还将光学超晶格的研究从一维拓展到二维㊁三维,从经典光拓展到非经典光,极大地推动了光学超晶格晶体的应用研究㊂图1㊀光学超晶格晶体晶圆图2㊀光学超晶格晶体芯片㊀㊀光学超晶格光频率转换具有转换效率高㊁设计自由㊁体积小㊁成本低等优点㊂常见的光学超晶格极化晶体材料有PPLN㊁PPLT 和PPKTP,还有PPKTA㊁PPRTP㊁PPRTA㊁PPCTA㊁PPLBGO㊁QPMGaAs 和QPMGaP 等,不同光学超晶格晶体之间优势互补,性能各异,共同构建起一个庞大的应用市场㊂灵活设计和制造光学超晶格晶体,通过频率变换可以得到晶体透光范围内任何波长的激光或纠缠光输出,如高效蓝绿激光㊁中远红外激光㊁医疗用激光㊁太赫兹波等,在激光显示㊁光电对抗㊁量子科技㊁光通信㊁大气探测㊁生物检测和医疗以及太赫兹无损检测等领域有着广阔的应用前景㊂目前光学超晶格晶体正朝着深紫外㊁远红外㊁薄膜化㊁超大尺寸㊁大口径㊁高转换效率波导结构㊁高抗损伤阈值器件等方向发展㊂图3㊀光学超晶格芯片的畴周期结构(a)均匀周期结构;(b)级联周期结构;(c)阵列周期结构;(d)啁啾周期结构;(e)扇形周期结构国际上能提供光学超晶格晶体的公司主要有美国CTI㊁加拿大C2C Link㊁英国Covesion㊁以色列Raicol㊁日本Oxide㊁中国台湾龙彩科技(HCP)和福建中科晶创光电科技有限公司(CTL Photonics,简称中科晶创)等㊂境外的光学超晶格晶体芯片价格十分昂贵,如一片10mm 长的光学超晶格晶体芯片价格在3000~5000美元之间,并且某些光学超晶格晶体对中国禁运㊂中科晶创经过多年发展也具备产业化能力,所开发的多品种光学超晶格晶体已能满足国内外不同用户的需求㊂588㊀封面图片人工晶体学报㊀㊀㊀㊀㊀㊀第50卷本期封面是光学超晶格晶体芯片的结构和工作原理示意图,芯片畴周期结构可以是单个均匀周期结构㊁多周期结构㊁级联周期结构㊁啁啾周期结构和扇形周期结构等㊂两束入射激光经过不同周期结构的光学超晶格晶体芯片的频率转换,如差频㊁和频㊁倍频㊁三倍频和光学参量振荡等,得到晶体透光范围内任何波长的激光或纠缠光输出㊂图4㊀通过不同周期结构的频率变换可以得到晶体透光范围内任何波长的激光或纠缠光输出(中国科学院福建物质结构研究所梁万国供稿)。
第28卷第1期光学学报Vol. 28, No. 12008年1月J anuary , 2008文章编号:025322239(2008 0120146205周期性极化铌酸锂晶体中半非共线型宽带光学参变放大理论研究胡B 远梁晓燕赵宝真李儒新徐至展(中国科学院上海光机所强场光学激光国家重点实验室, 上海201800摘要基于周期性极化铌酸锂晶体(PPL N 的准相位匹配光参变放大过程, 通过倾斜周期极化铌酸锂晶体中极化域(极化光栅一定角度, , 并以该匹配方式下的各光矢量几何关系得出相位匹配曲线, 的周期极化长度。
并研究其极化倾斜角度与温度特性, , 532nm 抽运光抽运的信号光在800nm 和1064nm 关键词非线性光学; 准相位匹配; 光学参变放大中图分类号O436. 3收稿日期:2007204204; 收到修改稿日期:2007207215作者简介:胡B 远(1980- , 男, 博士研究生, 主要从事超强超短激光技术方面的研究。
E 2mail :humingyuan @mail.siom. ac. cn导师简介:梁晓燕(1967- , 女, 研究员, 主要从事超强超短激光技术方面的研究。
E 2mail :liangxy @mail.siom. ac. cnTheo I ga t n o n B r oa d B a n d S e mi 2N o ncolli nea r Op t ical P a r a A lif ica t i o n i n Pe ri odicall y P oled L i t hi u m Ni oba t eHu Minyuan Liang Xiaoyan Zhao Baozhen Li Ruxin Xu Zhizhan(S t ate K ey L abor a tor y of High Fiel d L aser Physics , S ha nghai I nstit ute of Op tics a n d Fi ne Mecha nics ,Chi nese Aca dem y of Scie nces , S ha nghai 201800, Chi n aAbs t r act Based on noncollinear optical paramet ric amplification in periodically poled lithium niobate (PPLN which is realized by quasi 2p hase matching (QPM technology , we consider the possibility of semi 2noncollinear p hase matching method between collinear and noncollinear geomet ry. With t his configuration and geomet ry of all vectors in periodically poled lithium niobate , p hase matching curves can be obtained.A sure grating period can always be found to satisf y the broad bandwidth optical paramet ric amplification (OPA at fixed wavelengt hs of pump and signal f rom the phase matching curves. By tilting periodically poled lithium niobate 2crystal ’s parallel grating a sure angle and keeping a sure temperature , numerical simulation with p roper parameter shows broad bandwidth OPA at signal wavelengths of 800nm and 1064nm can be achieved.Key wor ds nonlinear optics ; optical paramet ric amplification ; quasi 2p hase matching1引言超短脉冲的频率转换可以应用到很多重要的实际应用中去, 比如通信、信号处理和光谱学等。