倍频激光原理
- 格式:doc
- 大小:32.50 KB
- 文档页数:4
倍频激光器的原理激光激光是受激辐射光的简称,其原理是:当原子系统受到外来光子作用下,且外来光子能量刚好是原子系统某两个高低能级的能量差,即hv21=E2-E1时,则处于高能级E2的粒子可能会在这个光子的诱发下,而跃迁到低能级E1并发射一个与原外来光一模一样的光子,这种过程称之为光的受激辐射。
受激辐射产生的光就叫做激光。
激光器要使受激辐射起主要作用而产生激光,必须满足三个前提条件:1.有提供放大作用的增益介质作为激光工作物质,(Y AG激光器采用掺钕离子的钇铝石榴石制成的晶体棒)。
2.有外界激励能源,使介质上下能级产生粒子数反转分布。
(YAG激光器,采用氪灯或氙灯或半导体激光二极管泵浦,即用光轰击YAG晶体使其中的Nd3+产生粒子数反转分布,聚光腔起辅助作用,目的是使灯发出的光尽可能多的反射或散射到Y AG晶体上)。
3.有激光谐振腔,使受激辐射光在谐振腔中产生震荡,(最简单常见的是由一块半反镜,一块全反镜构成,激光由半反镜输出)。
谐振腔相当于激光器的正反馈,没有谐振腔即是一个光放大器,引进谐振腔而使放大光产生振荡形成激光振荡器,成为激光器。
因此,一个完整的激光器应包括:工作物质、外界激励能源、谐振腔。
YAG激光器YAG激光器是固体激光器的一种,它的工作物质是掺钕钇铝石榴石晶体(Y AG),即简称YAG激光器。
泵浦源泵浦源是为工作物质提供能量,使工作物质内原子产生受激辐射从而产生激光。
YAG激光器的泵浦源一般采用椭圆柱腔,氪灯和激光棒分别置于椭圆柱腔的两个焦点轴上,因椭圆的一个焦点(如氪灯)发出的光经一次反射或直射可达另一个焦点上(激光棒),所以,这种结构可以将氪灯发出的光尽可能多的汇聚在激光棒上。
不同的激光有不同的泵浦源。
倍频绿激光YAG激光器产生的激光的波长为1064nm,其波长比红色光的波长还要长,位于可见光范围外,属于红外线区域,因此,这种光可以称之为红外激光。
如果我们通过特定的方法,将1064 nm的红外激光的波长缩短为原来的一半(也就是频率增大为原来的一倍),那么,将产生一种波长为532nm的激光,它的波长正好处于可见光的绿光部分,因此,这种光我们称之为“绿激光”,而将Y AG激光的频率增大一倍的技术,我们称之为“倍频”。
实验十八 激光倍频技术及其特性分析【实验目的】1、掌握倍频的基本原理和调试技能;2、了解影响倍频效率的主要因素;3、测量二倍频激光转换效率。
【实验原理】利用某些晶体在强光作用下的非线性效应,使频率为ω的激光通过晶体后,变成频率为2ω或3ω的倍频光,即为倍频技术。
它可用以扩展激光波段。
例如,可将1.06m μ的红外激光二倍频为0.53m μ的可见绿光,这对水下通讯,彩色电视等都很有实用价值的。
1、 物质极化的非线性效应物质由原子组成,原子由带正电的原子核及带负电的电子组成,一般呈中性。
但当光与物质相互作用时,原子的内能并不发生变化,只引起外层电子的位移,产生了电偶极矩,m er m =是偶极矩。
e 是负电中心的电荷量,r 是负电中心相对于正电中心的距离。
单位体积内偶极矩的总和为极化强度p Nm =,N 是单位体积内的原子数。
极化强度的大小和方向随外电场的变化而变化,形成了极化波,这种极化场的变化会产生电磁辐射。
一般情况下(就是入射光的场强与原子内的场强相比十分微弱时),极化强度P 与入射光的电场E 成线性关系P xE =。
因此极化场产生的辐射与入射光场有相同的频率。
在强光照射下,物质的极化则表现为非线性的特性,极化强度与入射光场的关系的标量形式为23123P ......x E x E x E =+++ (18-1)式中的1x 、2x 、3x ……分别是线性、二次非线性,三次非线性等的极化系数,并且1x >>2x >>3x ,故在弱电场作用下,只能呈现出线性效应,只有对强电场才能显示出非线性效应。
在激光出现前,这种非线性现象不可能观察到,只有高强度的激光出现后,才观察到了非线性现象。
我们忽略三次以上的非线性效应,现在分两种情况来分析光波场通过非线性晶体时的二次非线性效应。
第一种情况:一列行波通过非线性晶体时的二次非线性效应距波源o 为z 处的任一点s 在t 时刻光波场的振辐可表示为0(,)cos()E z t E t kz ω=- (18-2)式中0E 为光源光波场的振辐,2/,k n πλλ=为波长,n 为晶体折射率。
激光倍频技术-光学频率之舞什么是倍频激光倍频激光是一种激光器输出的光束经过一个非线性光学晶体或非线性光学材料后,产生的光束频率翻倍的现象。
这个过程叫做倍频(Second Harmonic Generation,SHG),也被称为频率加倍。
在倍频激光中,通常使用非线性光学晶体或材料来实现频率翻倍。
这些材料对于不同频率的光有不同的折射率,因此当原始激光光束通过这些材料时,会发生频率加倍的现象。
具体来说,倍频过程中,两个光子被合并成一个光子,其频率是原始光的两倍。
如将激光倍频是指激光经过倍频晶体(LBO、BBO)生成波长减小一半,频率加倍的激光,晶体对1064nm强光倍频后为532的绿光。
倍频的条件晶体可以找到一个方向,使频率f1的基频激光,和2*f1频率的倍频光,折射率能够相同(光子动量守恒),这样晶体中就可以存在理想的增益特征长度。
能量能够持续地从f1的基频激光转换到2*f1的倍频光中。
倍频技术的核心原理非线性光学原理在这些过程中是核心,非线性材料或晶体被用来将原始激光的频率改变。
以下是一些常见的倍频技术:二次谐波生成(SHG):这是最常见的倍频过程之一,其中原始激光的频率翻倍,产生两倍频率的光。
SHG广泛用于激光光源和医学成像。
和频生成(SFG):两个不同频率的光波通过非线性晶体相互作用,产生一个新的频率,其频率是两个原始频率的和。
SFG在界面科学和光谱学中有重要应用。
差频生成(DFG):两个不同频率的光波相互作用,产生一个新的频率,其频率是两个原始频率的差。
DFG也用于光谱学和激光源。
光学参量振荡(OPO):这种特殊的倍频过程中,一个非线性晶体中的激光光子分裂成两个较低频率的光子,同时满足能量守恒。
这通常用于产生可调谐的激光光源激光倍频的好处激光的波长越短,频率越高,光的粒子性越强,穿透力越强,传送完整电磁波的周期越短,激光脉冲的最短时间越短。
脉冲越短,所需要的电磁波的周期越短,频率越高。
这就是为什么皮秒或飞秒激光器的电磁波的频率越高的原因。
光倍频产生的原理光倍频是一种通过非线性光学效应将输入光的频率提高为倍频的技术。
它是一种重要的实验技术和光学器件,广泛应用于光学通信、激光器、光谱分析和光学传感等领域。
光倍频的原理基于非线性光学效应,其中最主要的是其非线性极化效应。
非线性光学效应是指光在介质中传播时,与介质产生相互作用,使光在介质中的行为不再服从线性的Maxwell方程,出现非线性现象。
具体而言,在非线性介质中,光与介质分子之间的相互作用导致介质分子的极化现象,从而改变了光的传播行为。
介质的极化性质决定了光与介质分子之间的相互作用。
对于线性介质,极化强度与电场强度成正比,其极化率是一个常数。
而对于非线性介质,极化强度与电场强度不再成线性关系,而是成倍数关系,即P=aE+bE^2+cE^3+...(其中P为极化强度,E为电场强度)。
在非线性光学效应中,光与介质分子之间的相互作用导致分子的极化现象,并且极化强度与光强度的高次幂关系有关。
而当输入光的强度较小时,高次幂项可以忽略不计,从而可以得到较低阶的极化强度。
而光倍频就是利用非线性光学效应中的二阶非线性效应,将输入光的频率提高一倍的过程。
在光倍频器件中,输入光经过非线性介质后,会通过二阶非线性的极化作用产生新的频率成分,即倍频的光。
这主要通过二次谐波产生来实现。
二次谐波产生是指将输入光的频率提高为其二倍,即将一个光子转变为两个光子。
在光倍频过程中,需要选择合适的非线性光学材料,常见的非线性光学材料有二氧化硅、二硫化碳、氮化硼等。
这些材料具有较高的非线性极化率,可以有效地产生倍频效应。
光倍频的过程可以通过耦合模理论进行描述。
耦合模理论认为,输入光与介质之间的相互作用可以视为一系列耦合的光波模式之间的相互作用。
在光倍频过程中,输入光首先进入非线性介质,其频率与第二倍频的频率匹配。
介质中的非线性效应导致光子之间的行为发生变化,从而产生第二倍频的光子。
实际上,光倍频并不是一个单独的过程,它还与其他非线性过程相互影响。
倍频激光器的原理激光激光是受激辐射光的简称,其原理是:当原子系统受到外来光子作用下,且外来光子能量刚好是原子系统某两个高低能级的能量差,即hv21=E2-E1时,则处于高能级E2的粒子可能会在这个光子的诱发下,而跃迁到低能级 E1并发射一个与原外来光一模一样的光子,这种过程称之为光的受激辐射。
受激辐射产生的光就叫做激光。
激光器要使受激辐射起主要作用而产生激光,必须满足三个前提条件:1.有提供放大作用的增益介质作为激光工作物质,(YAG激光器采用掺钕离子的钇铝石榴石制成的晶体棒)。
2.有外界激励能源,使介质上下能级产生粒子数反转分布。
(YAG激光器,采用氪灯或氙灯或半导体激光二极管泵浦,即用光轰击YAG晶体使其中的Nd3+产生粒子数反转分布,聚光腔起辅助作用,目的是使灯发出的光尽可能多的反射或散射到YAG晶体上)。
3.有激光谐振腔,使受激辐射光在谐振腔中产生震荡,(最简单常见的是由一块半反镜,一块全反镜构成,激光由半反镜输出)。
谐振腔相当于激光器的正反馈,没有谐振腔即是一个光放大器,引进谐振腔而使放大光产生振荡形成激光振荡器,成为激光器。
因此,一个完整的激光器应包括:工作物质、外界激励能源、谐振腔。
YAG激光器YAG激光器是固体激光器的一种,它的工作物质是掺钕钇铝石榴石晶体(YAG),即简称YAG激光器。
泵浦源泵浦源是为工作物质提供能量,使工作物质内原子产生受激辐射从而产生激光。
YAG激光器的泵浦源一般采用椭圆柱腔,氪灯和激光棒分别置于椭圆柱腔的两个焦点轴上,因椭圆的一个焦点(如氪灯)发出的光经一次反射或直射可达另一个焦点上(激光棒),所以,这种结构可以将氪灯发出的光尽可能多的汇聚在激光棒上。
不同的激光有不同的泵浦源。
倍频绿激光YAG激光器产生的激光的波长为1064nm,其波长比红色光的波长还要长,位于可见光范围外,属于红外线区域,因此,这种光可以称之为红外激光。
如果我们通过特定的方法,将1064 nm的红外激光的波长缩短为原来的一半(也就是频率增大为原来的一倍),那么,将产生一种波长为532nm的激光,它的波长正好处于可见光的绿光部分,因此,这种光我们称之为“绿激光”,而将YAG激光的频率增大一倍的技术,我们称之为“倍频”。
激光倍频晶体原理激光倍频晶体原理是指在激光产生过程中,通过非线性光学效应,将激光的频率倍频或多倍频,从而获得更高频率的激光光束。
激光倍频晶体原理的关键在于非线性光学效应。
在介质中,光的电场与介质中的电子相互作用,导致介质中的电子和光场之间存在一个非线性的关系。
当激光通过一个非线性光学介质时,光的能量可以转移到介质中的电子上,产生新的频率成分,这就是倍频效应的基本原理。
非线性光学晶体是激光倍频中最常用的介质。
这些晶体具有特殊的非线性光学性质,能够在激光通过时发生倍频效应。
最常用的非线性光学晶体有二极管晶体、锂离子晶体和硫化镉晶体等。
激光倍频晶体的使用通常需要遵循一定的条件。
首先,激光的频率必须在晶体的非线性响应范围内。
其次,选择合适的晶体材料和长度,以匹配激光的频率和倍频效应。
此外,还需要适当调整激光的功率和角度,以最大限度地提高倍频效果。
在激光倍频晶体中,最常用的倍频效应是二次倍频效应,即将激光的频率提高一倍。
当激光通过晶体时,晶体中的电子受到激光的电场作用,从而发生弯曲运动。
如果激光的频率在晶体的非线性响应范围内,晶体中的电子可以通过非线性效应,将激光的能量转移到倍频光束上,使其频率加倍。
激光倍频晶体的倍频效果受到多种因素的影响。
首先是非线性光学晶体的性质,包括晶体的非线性系数、透射率和吸收率等。
其次是激光的特性,包括功率、波长、脉冲宽度和重复频率等。
此外,晶体的长度、温度和入射角度等参数也会对倍频效果产生影响。
激光倍频晶体在科学研究和应用领域有着广泛的应用。
例如,在激光器中,倍频效应可以将激光的频率提高到更高的能量级,从而获得更短的脉冲宽度和更高的峰值功率。
这在激光加工、医学和光学通信等领域中都有很大的应用潜力。
此外,在激光光谱分析中,倍频效应也可以用于获得更高分辨率的光谱信息。
总之,激光倍频晶体原理是通过非线性光学效应,将激光的频率倍频或多倍频,从而获得更高频率的激光光束。
这一原理在科学研究和应用中有着广泛的应用前景,并且可以通过调整各种参数来优化倍频效果。
倍频激光器的原理
激光
激光是受激辐射光的简称,其原理是:
当原子系统受到外来光子作用下,且外来光子能量刚好是原子系统某两个高低能级的能量差,即hv21=E2-E1时,则处于高能级E2的粒子可能会在这个光子的诱发下,而跃迁到低能级 E1并发射一个与原外来光一模一样的光子,这种过程称之为光的受激辐射。
受激辐射产生的光就叫做激光。
激光器
要使受激辐射起主要作用而产生激光,必须满足三个前提条件:
1.有提供放大作用的增益介质作为激光工作物质,(YAG激光器采用掺钕离子的钇铝石榴石
制成的晶体棒)。
2.有外界激励能源,使介质上下能级产生粒子数反转分布。
(YAG激光器,采用氪灯或氙灯
或半导体激光二极管泵浦,即用光轰击YAG晶体使其中的Nd3+产生粒子数反转分布,聚光腔起辅助作用,目的是使灯发出的光尽可能多的反射或散射到YAG晶体上)。
3.有激光谐振腔,使受激辐射光在谐振腔中产生震荡,(最简单常见的是由一块半反镜,
一块全反镜构成,激光由半反镜输出)。
谐振腔相当于激光器的正反馈,没有谐振腔即是一个光放大器,引进谐振腔而使放大光产生振荡形成激光振荡器,成为激光器。
因此,一个完整的激光器应包括:工作物质、外界激励能源、谐振腔。
YAG激光器
YAG激光器是固体激光器的一种,它的工作物质是掺钕钇铝石榴石晶体(YAG),即简称YAG激光器。
泵浦源
泵浦源是为工作物质提供能量,使工作物质内原子产生受激辐射从而产生激光。
YAG激光器的泵浦源一般采用椭圆柱腔,氪灯和激光棒分别置于椭圆柱腔的两个焦点轴上,因椭圆的一个焦点(如氪灯)发出的光经一次反射或直射可达另一个焦点上(激光棒),所以,这种结构可以将氪灯发出的光尽可能多的汇聚在激光棒上。
不同的激光有不同的泵浦源。
倍频绿激光
YAG激光器产生的激光的波长为1064nm,其波长比红色光的波长还要长,位于可见光范
围外,属于红外线区域,因此,这种光可以称之为红外激光。
如果我们通过特定的方法,将1064 nm的红外激光的波长缩短为原来的一半(也就是频率增大为原来的一倍),那么,将产生一种波长为532nm的激光,它的波长正好处于可见光的绿光部分,因此,这种光我们称之为“绿激光”,而将YAG激光的频率增大一倍的技术,我们称之为“倍频”。
紫外激光
将调Q后的1064nm激光首先部分倍频为532nm的绿光,532nm绿光与剩余的1064nm红外光再次聚焦后进入三倍频晶体中,即可实现355nm波长的激光输出,而355nm正好处于紫外区域,因此我们把这种激光成为紫外激光。
CO2激光
二氧化碳激光器是一种气体激光器,它的工作物质是二氧化碳,其产生的原理和固体激光器类似,只是具体形式的不同。
二氧化碳激光的波长是10.6um。
1.有关声光的一些知识:
声光效应:声波在介质中传播时,会引起介质密度(折射率)周期性的变化,可将此声波视为一种条纹光栅,当光波入射于声光栅时,即发生光的衍射。
所以利用这种效应来控制激光的锁放光及强弱。
声光器件是基于声光效应的原理来工作的,它由声光介质(石英或钼酸铅等晶体)和换能器(超声波发生器)两部分组成。
其中换能器是利用压电晶体使电压信号变为超声波,并向声光介质中发射的一种能量变换器。
声光器件分为声光调制器和声光偏转器两类。
我们采用的声光器件为声光调制器,一般称之为声光Q头。
当Q驱输出一定载波频率驱动Q头时,换能器即产生同一频率的超声波并传入在石英晶体,使石英晶体的密度产生周期性的变化,光束通过石英时即发生相互作用而改变光的传播方向即产生衍射。
2.Q驱动的一些知识:
Q驱功能有两个(1)提高激光峰值输出功率。
(2)控制激光器的锁光。
工作过程是根据DAT给的信号,输出特定的射频信号去驱动Q头锁放光。
其功率为25W-50W。
方框图如
下:
对于Q系统而言,其主要技术指标是相对于Q驱及Q头的关联所提出来的,有三个: (1)Q驱的输出功率P(FSW)
50W≥P(FSW)≥25W
它反映的是Q驱输输出到Q头的信号的功率。
(2)驻波比SWR
SWR=(1+√P(REF)/P(FSW))/( 1-√P(REF)/P(FSW) )≤1.5 它反映的是Q驱与Q头的匹配情况,正如光从一种介质进入另一种介质会产生反射一样,高频信号F(Q)由特性阻抗为Z1的介质进入特性阻抗为Z2的介质也会产生反射。
SWR就是描述这反射的大小的。
反射大,SWR大,反射小,SWR小,理想无反射时,SWR=1。
3)反射功率P(REF)
P(REF)≤2W
它反映的是P(FSW)经Q头反射回来的功率。
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。