电气工程概论
- 格式:pdf
- 大小:5.38 MB
- 文档页数:255
电气工程概论教学大纲第一部分:课程介绍电气工程概论是电气工程专业的基础课程,旨在为学生提供电气工程领域的基本概念、原理和实践技能。
本课程包括电气工程的历史背景、发展趋势、现代应用以及相关的基础知识。
通过本课程的学习,学生将能够全面了解电气工程领域的重要性和广泛应用,为进一步的学习和研究奠定基础。
第二部分:课程目标1. 了解电气工程的基本概念和核心原理;2. 掌握电气工程领域的基本知识和技能;3. 培养学生的实践能力和问题解决能力;4. 培养学生的科学研究意识和创新思维。
第三部分:教学内容1. 电气工程的历史发展和应用领域;2. 电路分析与设计;3. 电磁场理论与应用;4. 电力系统与电力传输;5. 电子电气设备与控制技术;6. 电气工程中的安全与可靠性。
第四部分:教学方法1. 授课:通过讲解理论知识和实例,引导学生理解和掌握电气工程的基本概念和原理;2. 实验:组织电路实验和模拟实验,培养学生的实践动手能力和实验数据分析能力;3. 讨论:组织学生讨论并解决实际电气工程案例,锻炼学生的问题解决能力和团队合作能力;4. 研究项目:要求学生进行小型电气工程研究项目,培养学生的科学研究意识和创新能力。
第五部分:教学评价1. 平时成绩:包括课堂表现、实验报告和小组讨论等;2. 期中考试:测试学生对于电气工程基本概念和原理的理解程度;3. 期末考试:全面测试学生对于课程内容的掌握和应用能力。
第六部分:参考教材1. 《电路分析基础》;2. 《电磁场与电磁波导论》;3. 《电力系统工程》;4. 《电子电工材料与元器件》;5. 《电气工程安全与可靠性》。
第七部分:备注本教学大纲仅供参考,教师有权根据具体情况进行适当调整和修改,并会及时告知学生。
电气工程概论范文电气工程是一门研究电力的造福人类的学科,它涵盖了广泛的领域,包括发电、输电、配电、电力系统的控制和保护等。
电气工程的发展与人类社会的进步和经济的发展密切相关,它对于现代社会的正常运转和经济的可持续发展起到了至关重要的作用。
电气工程的发展历史可以追溯到公元前600年左右,当时古希腊人发现了静电现象,这也是人们第一次对电的特性进行了探索。
随着科技的不断进步,人们开始研究电流、电压和电阻等基本电学理论,并且发现了许多重要的电学现象,如电荷、电场、磁场等。
这些研究为电气工程的发展奠定了基础。
19世纪末20世纪初,电气工程进入了一个全新的时代。
托马斯·爱迪生发明了直流电的发电机和配电系统,这标志着电力传输进入了实用化的阶段。
约翰·吉伦特·坎特尔在19世纪末发明了交流电发电机,使得电力传输更加高效和可靠。
此后,人们开始建设大规模的电力系统,实现了蒸汽发电、水力发电、核能发电等不同形式的发电。
发电是电气工程的核心部分之一,它涉及到各种类型的发电设备和技术。
蒸汽发电是最早的一种发电方式,通过燃烧煤炭或石油等燃料,产生蒸汽驱动发电机转动并产生电能。
水力发电则利用水的高位能转化为电能,通过大坝、水轮机和发电机等设备实现。
核能发电是以核裂变或核聚变的方式产生高温和高压蒸汽,然后驱动发电机产生电能。
此外,风力发电、太阳能发电等也是电气工程中涉及的重要部分。
输电和配电是电气工程的另一个重要组成部分。
输电是把发电厂产生的电能输送到各个地方的过程,一般采用高压输电线路。
电力系统通过变电站将高压电能转换为适用于家庭、工厂和其他建筑的低压电能,然后分配到每个用户。
同时,为了确保电力系统的安全和稳定运行,需要对电力系统进行管理和保护。
电气工程的另一个重要领域是电力系统的控制和保护。
电力系统应对不断变化的负荷需求和故障情况,需要实时对系统进行监控和调节。
此外,电力系统还需要保护装置来检测和隔离故障,以确保系统的安全运行。
电气工程概论论文电气工程是一门研究电力的传输和控制的工程学科。
它涵盖了从电力发电到电力使用的全过程,包括电力的产生、传输、分配和利用。
电气工程的发展与电力工业的发展密切相关,随着电力工业的不断进步,电气工程的发展也在不断推动电力工业的进步。
首先,电气工程研究的核心是电力的产生和利用。
电力是现代社会不可或缺的能源,它被广泛应用于工业、农业、交通、通信等各个领域。
电气工程通过研究和开发新的发电技术,如燃煤发电、核能发电、风能发电和太阳能发电等,提高电力的产生效率,并且减少对环境的影响。
同时,电气工程也致力于提高电力的利用率,通过研发节能设备和优化供电系统,减少电力的浪费。
其次,电气工程的研究重点是电力的传输和分配。
在电力产生后,它需要通过输电线路进行传输,然后经过变电站进行电压、电流的调整,最后分配给终端用户。
电气工程通过研究电力传输线路的设计、变电站的运行和电力分配系统的优化,保证电力的可靠供应。
特别是近年来,随着电动汽车的普及和新能源的发展,电气工程对电力传输和分配系统的研究变得更加重要。
最后,电气工程也涉及电力的控制和保护。
电力系统是一个复杂的系统,涉及很多设备,如发电机、变压器、开关等,它们需要通过控制和保护系统来确保安全运行。
电气工程通过研究电力系统的控制和保护技术,设计和开发自动化控制系统和安全保护装置,提高电力系统的运行效率和安全性。
总之,电气工程作为一门研究电力的传输和控制的工程学科,对现代社会的发展起着重要的作用。
它通过研究和开发新的发电技术、优化电力传输和分配系统以及改进电力控制和保护技术,促进了电力工业的发展,同时也推动了社会经济的进步。
在未来,随着科技的不断创新和发展,电气工程将继续发挥重要的作用,为人类创造更加美好的生活。
电气工程概论课程总结电气工程概论是电气工程专业的入门课程,通过该课程的学习,我对电气工程的基本概念、原理和应用有了初步的了解。
本文将以四个方面进行总结:课程内容回顾、学习收获、实践应用和未来发展。
1. 课程内容回顾电气工程概论课程内容主要包括以下几个方面:(1) 电路基本理论:包括电流、电压、电阻、电容等基本概念,以及欧姆定律、基尔霍夫定律和电路分析方法等。
(2) 电气元件与电路:介绍了电阻、电容、电感、二极管和晶体管等电气元件的基本原理和应用。
(3) 电力系统:涵盖了电力的发电、输送和配电等基本知识,以及电能质量和电网安全等问题。
(4) 控制系统:讲解了控制系统的基本原理、闭环控制和开环控制等内容。
(5) 电气设备与机械设备:介绍了电机、变压器、发电机等电气设备的工作原理和应用场景,以及选型和维护等问题。
2. 学习收获通过学习电气工程概论课程,我获得了以下几方面的收获:(1) 基础理论知识:通过掌握电路基本理论和电气元件的原理,我对电路的搭建和分析有了更深入的理解。
(2) 系统思维能力:学习电力系统和控制系统相关知识,培养了我分析和解决实际问题的能力。
(3) 实践应用能力:通过实验和课程设计,我学会了使用电子设备和仪器,掌握了如何进行电路调试和故障排除。
(4) 团队合作能力:在课程项目中,我与同学合作完成了多个小组任务,培养了与他人合作解决问题的能力。
3. 实践应用电气工程概论课程的学习为我今后的实践应用奠定了基础:(1) 工程实践:我可以运用所学知识进行实际的工程设计和电路调试,提高工作效率和准确性。
(2) 电器维修:在日常生活中,我可以运用所学知识进行电器故障排除和维修,提高家庭电器的使用寿命。
(3) 新能源领域:随着新能源技术的快速发展,电气工程师在太阳能、风能等领域将有更多的应用机会。
4. 未来发展电气工程概论课程只是电气工程专业学习的开端,未来还有更多深入的专业课程等待学习:(1) 信号与系统:学习信号与系统等专业课程,深化对电气工程中信号传输和处理的理解。
电气工程概论
电气工程是一门研究电子、电路、控制、通信等学科的重要学科。
电气工程的学科特点是理论与实践密切结合,既包含基础理论又包含
实际应用,因此在现代科技领域中有着重要的作用。
电气工程的基础理论包括电磁场理论、电路理论、信号处理等。
这些理论为电气工程领域的应用提供了强有力的支持。
同时,电气工
程也是一个高技术的领域,其中有很多利用电气技术来解决实际问题
的应用。
例如,能源系统、通信系统、控制系统等。
电气工程的应用领域非常广泛。
电能系统是电气工程中的重要领
域之一,包括发电、输电、配电和用电等方面的应用。
在现代工业中,电气工程在控制系统方面也占据很大的一部分,从传统的工业控制领
域到现代的自动化控制系统都有着广泛的应用。
在信息技术领域,电
气工程也逐渐渗透进去,如通信系统、计算机网络等,几乎所有的现
代科技领域都需要电气工程的支持。
因此,电气工程在现代科技领域中担任着非常重要的角色,为人
类生产和生活提供了极大的帮助。
近几年来,越来越多的人选择学习
电气工程,它已成为世界上最受欢迎的专业之一。
总之,电气工程不仅是一个理论完备的学科,而且是一个富有创
新性和应用性的学科。
电气工程的应用范围广泛,因此可以为工业、
商业、医药、医疗、环保、军事等领域提供重要的支持。
在未来的科
技创新中,电气工程必将继续发挥着非常重要的作用。
电气工程概论教学大纲1. 前言电气工程是一门关于电力传输、电子科技和自动化控制系统的学科,涉及广泛的领域。
电气工程概论作为电气工程专业的入门课程,旨在向学生介绍电气工程的基本概念、理论框架和应用范围,为学生打下扎实的知识基础,为后续深入学习奠定基础。
2. 教学目标本课程的教学目标主要包括以下几个方面:2.1 掌握电气工程的基本概念和术语;2.2 理解电气工程的核心理论,如电路分析、信号与系统、电力系统等;2.3 熟悉电气工程的应用领域和行业发展动态;2.4 培养学生的创新思维和解决问题的能力;2.5 培养学生的团队合作和沟通能力。
3. 教学内容本课程的教学内容主要包括以下几个部分:3.1 电气工程基础知识3.1.1 电气工程的起源与发展3.1.2 电气工程的基本概念和术语3.1.3 电气工程的基本原理和定律3.2 电路分析3.2.1 直流电路分析3.2.2 交流电路分析3.2.3 电路元件的特性与参数3.3 信号与系统3.3.1 连续时间信号与系统3.3.2 离散时间信号与系统3.3.3 信号与系统的频域分析3.4 电力系统3.4.1 电力系统的结构和运行3.4.2 电力系统的稳态分析3.4.3 电力系统的暂态分析3.5 电气工程的应用领域3.5.1 电力供应与配电系统3.5.2 电气设备与控制系统3.5.3 电力电子与调速技术3.6 电气工程的行业发展动态3.6.1 新能源与可持续发展3.6.2 智能电网与能源互联网3.6.3 电气工程的创新与前沿技术4. 教学方法本课程将采用多种教学方法,如课堂讲授、案例分析、实验演示、小组讨论等,以提高学生的学习兴趣和思维能力。
同时,鼓励学生积极参与学科竞赛、实践项目和科研活动,深入了解电气工程的实际应用和发展趋势。
5. 教学评价本课程的教学评价将采用多种方式,包括平时表现评估、作业报告、小组项目和期末考试等,全面评估学生的学习情况和能力水平。
同时,还将注重学生的实际操作能力和团队合作精神的评价。
电气工程概论重点第一章绪论电能(de)基本要求:1.安全 2.可靠 3.优质 4.经济能量(de)形式:机械能,热能,化学能,辐射能,电能和核能能量(de)转换:形态,空间(输送),时间(储存)电力系统(de)基本概念:由发电机、电力网内(de)变压器和电力线路以及用户(de)各种用电设备,按照一定(de)规律连接而组成(de)统一整体,称为电力系统.电力系统(de)特点:1.电能不能大量存储 2.暂态过程十分短暂 3.地区性特点较强 4.与国民经济各部门有着极为密切(de)关系.对电力系统(de)要求:1.为用户提供充足(de)电力 2.保证供电(de)安全可靠 3.保证良好(de)电能质量4.提高电力系统运行经济性大型电力系统(de)优势:1提高供电(de)可靠性,2减少系统装机量,3减少系统备用容量,4采用高效率大容量发电机组,5合理利用能源,充分发挥水电在系统中(de)作用电能质量(de)主要指标有电压、频率和波形.为什么要规定电力系统额定电压为了使电力系统和电气设备制造厂(de)生产标准化、系列化和统一化,电力系统(de)电压等级应有统一(de)标准.发电机,变压器和电力线路(de)额定电压与电力系统(de)额定电压(de)关系:发电机(de)容量一般比电力系统高5%,升压变压器(de)一次绕组(de)额定电压比电力系统高5%,二次高10%,降压器一次与电力系统相同,二次绕组高10%,电力线路和电力系统额定电压相同电力系统电压等级特点: 1.发电机(de)额定电压较电力系统(de)额定电压高出5%.2.电力变压器(de)一次绕组是接受电能(de),相当于受电设备,其一次绕组(de)额定电压应等于电力系统(de)额定电压,对于直接和发电机连接(de)升压变压器(de)一次绕组额定电压应等于发电机(de)额定电压,使之相互配合.3.电力变压器(de)二次绕组是提供电能(de),相当于供电设备,其二次绕组(de)额定电压较电力系统额定电压高出10%.但在3、6、10kV电压时,如短路阻抗小于%(de)配电变压器,则其二次绕组(de)额定电压比同级电网(de)额定电压高出5%.第二章电气设备(de)原理与功能变压器:利用电磁感应原理吧一种电压等级(de)交流电转换成相同频率(de)另一电压等级(de)交流电能. 采用高压输电能减少线路损耗变压器分类:油浸式,干式以及水冷式变压器额定值:1额定容量,2额定电压3额定电流4阻抗电压5短路损耗6空载损耗7空载电流百分值8链接组号变压器(de)过负荷能力:指在较短(de)时间累所能输出(de)功率,在一定条件下,可以超出变压器(de)额定容量发电站和变电站(de)主要作用:生产,输送和分配电能;根据电力系统要求投切线路;见识主要设备(de)工作状态;队主要设备进行定期(de)检修和维护;迅速消除故障,尽量减小故障(de)影同步发电机(de)非正常状态:过负荷运行,异步运行,不对称运行发电机励磁系统(de)基本要求:1有足够(de)强励顶值电压,2具有足够(de)励磁电压上升速度3有足够(de)调节容量,4应运行稳定,工作可靠,相应快速,调节平滑,具有足够(de)电压调节精度转差率:转差率为转子转速n 与同步转速0n 之差(0n -n )对同步转速0n (de)比值,以s 表示,则s=(0n -n )/0n异步电机三种运行状态:1. 电动机状态 当0<n<0n 即0<s<1时2. 发电机状态 n>0n ,s<03. 电磁制动状态 n<0,s>14. 最大转矩Tm=k ’U^2/2X 20三相异步电动机(de)启动方式:全压启动,降压启动,绕线型电机(de)启动 断路器(de)基本技术数据(断路器是开关电器)1. 额定电压N U . 额定电压是指断路器长期工作(de)标准电压(线电压).它决定着断路器(de)绝缘尺寸,也决定断路器(de)熄弧条件.断路器可以在~倍(de)系统额定电压下正常工作.2. 额定电流N I 额定电流是指断路器长时间允许通过(de)最大工作电流.额定电流决定着断路器(de)导电回路(de)几何尺寸.3. 额定开断电流Nbr I 额定开断电流是指断路器在额定电压下能保证正常开断(de)最大短路电流.该电流是断路器开断能力(de)一个重要参数.开断电流和电压有关,在低于额定电压时,断路器开断电流可以提高,但由于灭弧装置机械强度(de)限制,开断电流有一极限值,该极限值称为极限开断电流.4. 短路关合电流NCl I 在额定电压下,能可靠关合、开断(de)最大短路电流称为额定关合电流,它是表征断路器灭弧能力、触头和操动机构性能(de)重要参数之一.断路器合闸于有潜伏性故障(de)线路时,就要经历一个先合后跳(de)操作循环,此时只有断路器(de)额定关合电流大于冲击电流,才能可靠地开断. 5. 热稳定电流th I 表示断路器承受短路电流热效应(de)能力.我国规定4s 内所能承受(de)热稳定电流为额定热稳定电流.通常断路器(de)热稳定电流等于它(de)额定开断电流.6. 动稳定电流es i 动稳定电流亦称为极限通过电流,是指断路器承受短路电流电动力效应(de)能力.即指断路器处在合闸位置时,允许通过(de)短路电流最大峰值.动稳定电流决定于导电部分及支持绝缘子部分(de)机械强度,并决定于触头(de)结构形式.7. 全开断(分闸)时间ab t 全开断时间是指断路器从接到分闸命令瞬间到电弧完全熄灭为止(de)时间间隔.全开断时间是用来表征断路器开断过程快慢(de)一种参数.该参数是断路器固有分闸时间与燃弧时间之和.8. 合闸时间on t 合闸时间是指断路器从接到合闸命令瞬间到各相(de)触点均接触为止(de)时间间隔.9. 额定断流容量Nbr S 断流容量综合反映断路器(de)开断能力,与额定电压和额定开断电流两个因素有关,Nbr S =3N U Nbr I互感器 互感器(de)主要作用是:把高电压和大电流按比例地换成低电压(100V 或100/3V )和小电流(5A 或1A ),以便提供测量和继电保护所需(de)信号,并使测量仪表和继电保护装置标准化、小型化;把高电压(一次)部分与低电压(二次)部分相互隔离,且互感器二次侧均接地,以保证运行人员和设备(de)安全. 互感器(de)分类及作用是什么互感器二次侧为何必须接地互感器分为电压互感器,电流互感器和新型互感器,(作用同上)互感器二次侧均接地,以保证运行人员和设备(de)安全.电流互感器在运行中,为什么二次绕组不允许开路当电流互感器二次绕组开路时,2•I =0,则二次侧磁动势2•F =0,而使一次侧磁动势1•F 全部用来励磁,即0•F =1•F ,从而使铁心中(de)合成磁动势较正常情况下增大很多倍,并使铁心严重饱和.铁心中磁通(de)变化d φ/dt 成正比,因此,二次绕组将在磁通过零时,感应产生很高(de)尖顶波电动势,其值可达数千甚至上万伏,这对工作人员及仪表、继电器等都是极其危险(de).同时由于磁感应强度剧增,铁心损耗大大增加,铁心会产生严重过热,损坏线圈(de)边缘.此外铁心中还会有剩磁,使互感器误差增大.因此,电流互感器在运行中,二次回路是不允许开路(de).若需断开某个仪表和继电器,必须先将该仪表或继电器绕组短路后,才能断开仪表和继电器.第三章电气设备(de)分类与系统一次设备:生产,输送,分配和使用电能(de)设备二次设备:一次设备和系统(de)运行状态进行测量,控制,监视和保护(de)设备 电力系统分为:发电系统,输变电系统,配电系统,用电系统2、火电厂(de)生产流程及特点火电厂(de)种类虽很多,但从能量转换(de)观点分析,其生产过程却是基本相同(de),概括地说是把燃料(煤)中含有(de)化学能转变为电能(de)过程.整个生产过程可分为三个阶段:① 燃料(de)化学能在锅炉中转变为热能,加热锅炉中(de)水使之变为蒸汽,称为燃烧系统;② 锅炉产生(de)蒸汽进入汽轮机,推动汽轮机旋转,将热能转变为机械能,称为汽水系统;③由汽轮机旋转(de)机械能带动发电机发电,把机械能变为电能,称为电气系统.分类标准:按燃料,按原动机,按供出能源,按发电厂总装机容量,按蒸汽压力和温度,按供电范围特点:1布局灵活.2一次性投建设资少3耗煤量大4动力设备繁多5大型发电机组有停机到开机并带满负荷时间久6各种排放物污染大3水力发电:生产过程,从河流高处火水库内引水,利用水(de)压力或流速冲动水轮机旋转,将水能转变成机械能,然后由水轮机带动发电机旋转,将机械能转变成电能.特点:能量转换过程中损耗小,发电效率高分类:堤坝式水电厂,引水式发电厂和混合式水电厂特点:1水能是再生能源2可综合利用3发电成本低,效率高4运行灵活5可储蓄可调节6建设和生产受自然环境影响7建设投资大,工期长4抽水蓄能电厂工作原理抽水蓄电厂是以一定水量作为能量载体,通过能量转换向电力系统提供电能.为此,其上、下游均需有水库以容蓄能量转换所需要(de)水量.在抽水蓄能电厂中,必须兼备抽水和发电两类设施.在电力负荷低谷时(或丰水时期),利用电力系统(de)富余电能(或季节性电能),将下游水库中(de)水抽到上游水库,以位能形式储存起来;待到电力系统负荷高峰时(或枯水时期),再将上游水库中(de)水放下,驱动水轮发电机组发电,并送往电力系统,这时,用以发电(de)水又回到下游水库.显而易见,抽水蓄能电厂既是一个吸收低谷电能(de)电力用户(抽水工况),又是一个提供峰荷电力(de)发电厂在电力系统中作用:调峰,填谷,备用,调频,调相,黑启动,蓄能第二节输变电系统输变电系统组成:变换电压(de)设备,接通和开断电路(de)开关电器,防御过电压,限制故障电流(de)电器,无功补偿设备,载流导体,接地装置功能:将发电厂生产(de)电能经过输变电系统配给给配电系统和用户电气主接线形式:有汇流母线和无汇流母线,有汇流母线(de)形式有单母线,单母线分段,单母线分段带旁路母线,双母线,双母线分段,双母线带旁路母线和一台半断路器接线.无汇流母线形式有单元接线,桥式接线和角形接线.双母线带旁路断路器(de)电器主接线形式检修某一出线时,不中断回路步骤:w2,w1正常供电,接通旁路断路器QF2旁边(de)母线隔离开关和和旁路母线隔离开关,再闭合QF2,是旁路母线W3带点,若W3故障则由几点保护装置断开QF2,若W3正常,闭合QS4,断开QF4,再断开QF4两端隔离开关,此时即可不中断回路供电检修高压直流输电系统就是将送端系统(de)高压交流电,经换流变压器变压,由换流器将高压交流转换成高压直流,通过直流输电线路输送到另一端换流站,再由换流器将高压直流转换成高压交流,然后经过换流变压器与受端交流电网相连,将电能送至受端系统.通常将交流转换成直流称为整流,实现整流功能(de)装置称为整流器;将直流转换成交流称为逆变,实现逆变功能(de)装置称为逆变器.整流器和逆变器统称为换流器.配电系统组成及作用:配电系统处于电力系统末端,把发电系统或输变电系统与用户连接起来,向用户分配电能和供给电能(de)重要环节,组成包括配电变电站,高低压配电线路和接户线在内(de)整个配电网和设备常用(de)几个重要指标1.供电可靠率 供电可靠率=1—(统计期间总时间用户平均停电时间)×100% 2.网损率 网损率=总供电量电力网电能损耗量×100% 3.电压合格率 电压合格率是指电力系统某点电压在统计时间内电压合格(de)时间占总时间(de)百分比.电压合格率有日电压合格率、月电压合格率和年电压合格率之分.电压系统负荷 按供电(de)可靠性划分一类负荷(亦称一级负荷)二类负荷(亦称二级负荷)三类负荷(亦称三级负荷)负荷曲线:描述某一段时间内用电负荷(de)大小随时间变化规律(de)曲线 日负荷曲线是描述一天24h 负荷变化情况(de)曲线,分为日有功负荷曲线和日无功负荷曲线.日负荷曲线对电力系统(de)规划设计和运行十分有用,它是安排日发电计划、确定各发电厂发电任务和系统运行方式以及计算用户日用电量等(de)重要依据.年负荷曲线是描述一年内每月(或每日)最大有功负荷随时间变化情况(de)曲线,分为年最大负荷曲线和年持续负荷曲线.年最大负荷曲线是描述一年内每月(或每日)最大有功负荷随时间变化情况(de)曲线.年持续负荷曲线是按一年内系统负荷数值(de)大小及其持续小时数依次由大到小排列绘制而成(de)曲线.这种曲线可用来安排发电计划及进行可靠性估计.如果用户始终保持最大负荷P m ax 运行,经过T m ax 时间后所消耗(de)电能恰好等于全年(de)实际耗电量,则称T m ax 为年最大负荷利用小时数,即T m ax =m ax P A =m ax 1P 87600Pdt 年最大负荷利用小时数(de)大小,在一定程度上反映了实际负荷在一年内(de)变化程度.消弧线圈(de)作用及其使用范围:当发生单相接地故障时,接地故障与消弧线圈构成另一个回路,接地故障相接地电流中增加了一个感性电流,和装设消弧线圈前(de)容性电流方向相反,相互补偿较少了接地故障点(de)故障电流,使电弧易于自行熄灭,从而避免引起各种危害,提高了供电可靠性,范围:3-6kv 电力网30A,10kv 电力网20A,35-60kv 电力网10A消弧线圈一般运行在过补偿状态原因:在过补偿方式下,即使电力网运行方式改变,也不会发展成为全补偿方式,致使电力网发生谐振,同事,由于消弧线圈有一定(de)裕度,今后电力网发展线路增多,对地电容增加后,原有消弧线圈还可以继续使用.第四章 设备工作接地与保护接地第一节 概述工作接地 为了保证电气设备在正常或发生故障情况下可靠工作而采取(de)接地.工作接地一般都是通过电气设备(de)中性点来实现(de),所以又称为电力系统中性点接地.保护接地为了保证工作人员接触时(de)人身安全,将一切正常工作时不带电而在绝缘损坏时可能带电(de)金属部分接地,称为保护接地.保护接零在中性点直接接地(de)低压电力网中,把电气设备(de)外壳与接地中性线(也称零线)直接连接,以实现对人身安全(de)保护作用,称为保护接零(或简称接零).防雷接地为了防止雷击和过电压对电气设备及人身造成危害,必须将强大(de)雷电流安全导入大地,以此为目(de)(de)接地称为防雷接地,也称过电压保护接地.防静电接地为消除生产过程中产生(de)静电积累引起触电或爆炸而设置(de)接地称为防静电接地.第二节工作接地(中性点接地)我国电力系统(de)中性点接地方式主要有四种,即中性点不接地(中性点绝缘)、经消弧线圈接地、中性点直接接地和经电阻接地.根据电力系统中发生单相接地故障时接地故障电流(de)大小,可将中性点接地(de)方式分为两类:一类是小电流接地系统,包括中性点不接地和经消弧线圈接地;另一类为大电流接地系统,包括中性点直接接地和经电阻接地.电力系统中性点经消弧线圈接地时,有三种补偿方式,即全补偿方式、欠补偿方式和过补偿方式.①若选择消弧线圈(de)电感时,使得I L=I C,则接地电容电流将全部被补偿,接地故障点电流为零,此即全补偿方式.采用全补偿方式使接地电流为零似乎很理想,但实际上此时容抗等级感抗,系统会发生串联谐振,产生很大(de)谐振电流,并在消弧线圈(de)阻抗上形成很高(de)电压降,使中性点(de)对地电位大为升高,可能会损坏设备(de)绝缘.②若I L<I C,则接地故障点有未被补偿(de)电容电流流过,这种补偿方式称为欠补偿方式.采用欠补偿方式时,当电力网运行方式改变而切除部分线路时,整个电力网对地电容抗将减小,有可能发展为全补偿方式,导致电力网发生谐振,危及系统安全运行;此外,欠补偿方式容易引起铁磁谐振过电压等其他问题,所以很少被采用.③若I L>I C,则接地故障点有剩余(de)电感电流流过,这种补偿方式称为过补偿方式.在过补偿方式下,即使电力网运行方式改变而切除部分线路时,也不会发展成为全补偿方式,致使电力网发送谐振.同时,由于消弧线圈有一点(de)裕度,今后电力网发展,线路增多、对地电容增加后,原有消弧线圈还可以继续使用.因此,实际上大多采用过补偿方式.保护接地与接零方式混用(de)危害及中性线重复接地(de)必要性如果同时采用了接地和接零两种保护方式,若实行保护接地(de)设备发生故障,则中性线(de)对地低呀压将会升高到电源相电压(de)一半或更高.这时,实行保护接零(de)所有设备上,便会带有统样(de)高电位,使设备外壳等金属部分将呈现较高(de)对地电压,从而危及操作人员(de)安全.所以同一低压配电系统内,保护接地与保护接零这两种不同(de)方式一定不能混用.在中性点直接接地(de)低压配电系统中,为确保接零保护方式(de)安全可靠,防止中性线断线所造成(de)危害,系统中除了工作接地外,还必须在整个中性线(de)其他部位再行接地,称之为重复接地.当中性点直接接地(de)低压配电系统实行重复接地后,可保证在万一出现中性线断线(de)情况下,配电系统(de)保护方式可以从保护接零(de)TN方式转化为保护接地(de)TT方式,从而减轻触点(de)危险程度.保护接地方式及其作用:1 IT接地,通过降低接地电阻Re以及限制设备外壳接地电压Ue(de)值 2 TT接地通过接地电流使回路(de)过电流装置动作而切断故障电路3TN 接地一般情况下使熔断器熔断或自动开关跳闸,从而切断电源保障人生安全.一台半断路器接线单元接线双母线带旁路母线接线 QF2—专用旁路断路器;QS1、QS2—旁路隔离开关;W3—旁路母线第五章 电压、功率及电能损耗(de)计算工程上常用(de)几个计算量1. 电压降落 指网络元件首、末端电压(de)相量差(1•U —2•U )2. 电压损耗 指网络元件首、末端电压(de)数值差(1U —2U ) 电压损耗=N U U U 21-×100% 3. 电压偏移 指网络中某点(de)实际电压值与网络额定电压(de)数值差(N U U -)电压偏移常以百分比值表示,即 电压偏移=NN U U U -×100% 4. 输电效率 指线路末端输出(de)有功功率2P 与线路首端输入(de)有功功率1P (de)比值,常以百分值表示,即 输电效率=%10012⨯P P 中枢点是指那些反映系统电压水平(de)主要发电厂或枢纽变电站(de)母线,系统中大部分负荷由这些节点供电.1. 逆调压 高峰负荷时升高电压(N U )、低谷负荷时降低电压(N U )(de)中枢点电压调整方式,称为逆调压.这种方式适用于中枢点供电线路长,负荷变化范围较大(de)场合.2. 顺调压 高峰负荷时允许中枢点电压略低(N U )、低谷负荷时允许中枢点电压略高(U).N3.常调压在任何负荷下都保持中枢点电压为基本不变(de)数值,取(~)UN第六章短路故障分析与计算短路所谓“短路”就是电力系统中一切不正常(de)相与相之间或相与地之间发生通路(de)情况.短路(de)四种类型三相短路、两相短路、单相接地短路、两相接地短路有名值(任意单位)标幺值标幺值=位)基准值(与有名值同单序阻抗:元件三相参数对称时,元件两端某一序(de)电压降与通过该元件同一序电流(de)比值.。
电气工程概论教学大纲一、课程简介电气工程概论是电气工程专业的入门课程,旨在为学生提供电气工程领域的基础知识和学科概貌。
本课程旨在引导学生建立对电气工程的整体认识,了解电气工程的发展历史、基本原理和应用领域,培养学生对电气工程的兴趣和探索精神。
二、课程内容1. 电气工程概述2. 电路基础3. 电气元件与电路4. 电力系统5. 电力电子技术6. 控制理论与应用7. 电气工程实践三、教学目标1. 掌握电气工程的基本概念和术语;2. 熟悉电路分析的基本方法和技巧;3. 理解电气元件的工作原理和特性;4. 了解电力系统的结构和运行原理;5. 掌握电力电子技术在电气工程中的应用;6. 熟悉控制理论的基本知识和方法;7. 提高实践能力,培养解决问题的能力。
四、教学方式本课程采用理论讲授与实践结合的教学方法,其中理论课程通过课堂教学、讲解、讨论等方式进行;实践课程通过实验操作、案例分析、课外实践等方式进行。
学生在课程学习中将积极参与讨论,探究问题,提高实践操作能力。
五、教学评价学生的评价主要包括课堂表现、作业成绩、实验报告和期末考核,其中期末考核所占比重最大。
学生需主动参与课堂互动、认真完成作业、合理安排实践时间、独立撰写实验报告,以期末考核最终评价为主要依据,综合考察学生对电气工程概论及相关知识的掌握情况和学习态度。
六、参考教材1. 《电气工程概论》魏广元著2. 《电气工程基础》肖川著3. 《电力系统分析》张四平著七、教学进度安排第1-2周电气工程概述第3-4周电路基础第5-6周电气元件与电路第7-8周电力系统第9-10周电力电子技术第11-12周控制理论与应用第13-14周电气工程实践八、教学辅助手段1. 课件资料:PPT演示、实验指导2. 实验设备:万用表、示波器、电源等3. 实践场地:电工实验室、模拟实训中心等以上为本课程的教学大纲,希望通过本课程的学习,学生能够对电气工程有一个全面的认识,为日后深入学习和科研打下坚实基础。
电气工程概论第三版pdf全文共四篇示例,供您参考第一篇示例:电气工程概论是电气工程专业的基础课程,涵盖了电路、电力系统、电机、控制系统等多个领域。
而《电气工程概论第三版PDF》则是这门课程的教材之一,是学习电气工程的重要参考资料之一。
在本文中,我们将深入探讨《电气工程概论第三版PDF》所涵盖的内容,以及其在电气工程教学和实践中的作用。
《电气工程概论第三版PDF》这本教材以其系统、全面和权威的内容享誉业内。
它首先介绍了电气工程的基本概念和原理,包括电路理论、电磁场理论等内容。
随后,该教材对电气系统的基本组成、原理和设计方法进行了详细的阐述,使得学生能够系统地了解电力系统、电力电子技术、电机与变压器技术等方面的知识。
该教材涵盖了电气工程中的新技术和新发展,特别是在清洁能源、智能电网、数字化电力系统等方面的内容,使得学生能够了解到电气工程领域的最新动态。
在电气工程教学中,《电气工程概论第三版PDF》具有重要的作用。
它作为一本全面系统的教材,为学生提供了系统地学习电气工程知识的机会。
学生可以通过该教材逐步深入了解电气工程的各个领域,从而建立起扎实的理论基础。
该教材还涵盖了电气工程中的新技术和新发展,使得学生能够了解到电气工程领域的最新进展,从而增强了他们的综合素质和竞争力。
教师可以根据该教材进行系统的教学,帮助学生全面掌握电气工程的基本理论和实践技能,为他们未来的专业发展打下坚实的基础。
在电气工程实践中,《电气工程概论第三版PDF》同样具有重要的作用。
对于电气工程领域的从业人员来说,该教材是一本不可或缺的参考书。
他们可以通过该教材查找需要的电气工程知识,解决实际工作中遇到的问题。
该教材涵盖了电气工程中的新技术和新发展,对于从业人员来说,这些内容能够帮助他们了解到电气工程领域的最新动态,从而不断提升自己的专业水平。
对于电气工程领域的研究人员来说,《电气工程概论第三版PDF》为他们提供了一个系统的学习和研究电气工程知识的平台,有助于他们深入研究电气工程领域的前沿问题,推动学科的发展。
电气工程的概论电气工程是一门研究电力的产生、传输、分配和应用的学科。
它是电子工程的一个分支,主要关注电力系统的设计、建设和维护。
电气工程在现代社会中起着至关重要的作用,涉及到各个领域的电力需求,如工业、交通、通信、家庭等。
电气工程的起源可以追溯到19世纪初。
当时,人们开始意识到电力的巨大潜力,并开始研究电力的产生和应用。
随着科学技术的发展,电气工程逐渐成为一个独立的学科,并在工业革命中发挥了重要作用。
电气工程的发展与电力系统的建设密切相关,通过电力的传输和分配,人们可以在各个领域得到所需的电力。
电气工程涵盖了多个子领域,包括电力系统、电机与驱动、电力电子、自动控制等。
电力系统是电气工程的核心领域,它涉及到电力的生成、传输和分配。
电力系统由发电厂、输电线路和配电网组成,它们共同构成了一个庞大的电力网络。
电机与驱动是另一个重要的子领域,它研究电动机的设计和控制,用于驱动各种设备和机械。
电力电子则关注电力的转换和控制,它在电力系统中起着重要作用。
自动控制是电气工程中的一个交叉学科,它研究如何利用电气设备和技术来实现自动化控制。
电气工程的发展对社会产生了深远的影响。
首先,它为工业生产提供了可靠的电力供应。
现代工业对电力的需求非常大,电气工程帮助建立了强大的电力系统,确保工业生产的正常运行。
其次,电气工程对能源的利用和环境保护起着重要作用。
通过电力的有效利用和可再生能源的开发,电气工程有助于减少对传统能源的依赖,降低能源消耗和环境污染。
此外,电气工程也为交通、通信和家庭提供了便利和舒适。
电气工程的应用使得交通运输更加高效和安全,通信更加便捷和快速,家庭生活更加舒适和便利。
电气工程是一个不断发展的学科。
随着科学技术的不断进步,新的电气设备和技术不断涌现,推动着电气工程的发展。
例如,智能电网、电动汽车和可再生能源等新技术正在改变电力系统的面貌,为电气工程提供了新的发展机遇。
同时,电气工程也面临着一些挑战,如电力供应的可靠性、能源的可持续性和电力系统的安全性等。