物理动能和动能定理经典试题(含答案)
- 格式:doc
- 大小:187.00 KB
- 文档页数:7
高考物理动能与动能定理题20套(带答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。
质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。
已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求:(1)剪断细绳前弹簧的弹性势能E p(2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E(3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。
【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】(1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有:0=m 1v 1-m 2v 2解得v 1=10m/s剪断细绳前弹簧的弹性势能为:2211221122p E m v m v =+ 解得E p =19.5J(2)设m 2向右减速运动的最大距离为x ,由动能定理得:-μm 2gx =0-12m 2v 22 解得x =3m <L =4m则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。
设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。
取向左为正方向。
根据动量定理得:μm 2gt =m 2v 0-(-m 2v 2)解得:t =3s该过程皮带运动的距离为:x 带=v 0t =4.5m故为了维持传送带匀速运动,电动机需对传送带多提供的电能为:E =μm 2gx 带解得:E =6.75J(3)设竖直光滑轨道AC 的半径为R 时小物体m 1平抛的水平位移最大为x 。
动能和动能定理经典试题【1】例 1 一架喷气式飞机,质量m=5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02),求飞机受到的牵引力。
例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为()A .Δv=0 B. Δv=12m/s C. W=0 D. W=10.8J 例4 在h 高处,以初速度v0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( )A. gh v 20+B. gh v 20-C. gh v 220+D. gh v 220-例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。
小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mglcosθB. mgl(1-cosθ)C. FlcosθD. Flsinθ 例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.例7如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。
高考物理动能与动能定理试题(有答案和解析)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB是在竖直平面内的14圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力.【答案】(1)圆弧轨道的半径是5m.(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.【解析】(1)小球由B到D做平抛运动,有:h=12gt2x=v B t解得:10410/220.8Bgv x m sh==⨯=⨯A到B过程,由动能定理得:mgR=12mv B2-0解得轨道半径R=5m(2)在B点,由向心力公式得:2Bv N mg mR -=解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A点,自然状态时其右端位于B 点。
水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=1.0m的圆环剪去了左上角120°的圆弧,MN为其竖直直径,P点到桌面的竖直距离是h=2.4m。
用质量为m=0.2kg的物块将弹簧由B点缓慢压缩至C点后由静止释放,弹簧在C点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。
已知物块与桌面间的动摩擦因数μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶(1)物块通过P 点的速度大小;(2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离;【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】(1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则22y v gh =osin 60y v v=整理可得,物块通过P 点的速度8m/s v =(2)从P 到M 点的过程中,机械能守恒2211=(1cos60)+22o M mv mgR mv + 在最高点时根据牛顿第二定律2MN mv F mg R+= 整理得4.8N N F =根据牛顿第三定律可知,物块对轨道的压力大小为4.8N (3)从D 到P 物块做平抛运动,因此o cos 604m/s D v v ==从C 到D 的过程中,根据能量守恒定律212p D E mgx mv μ=+C 、D 两点间的距离2m x =3.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的32m/s B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故32m/s C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o 有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =4.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s(2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ①选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s(3)由动能定理得W f =mv 2-mv 22,解得:W f =-360J 故克服摩擦力做功为360J . 考点:动能定理的应用5.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。
1.关于做功和物体动能变化的关系,不正确的是().A.只有动力对物体做功时,物体的动能增加B.只有物体克服阻力做功时,它的功能减少C.外力对物体做功的代数和等于物体的末动能和初动能之差D.动力和阻力都对物体做功,物体的动能一定变化2.下列关于运动物体所受的合外力、合外力做功和动能变化的关系正确的是().A.如果物体所受的合外力为零,那么合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下作变速运动,动能一定变化D.物体的动能不变,所受的合外力必定为零3.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是().A.乙大B.甲大C.一样大D.无法比较4.一个物体沿着高低不平的自由面做匀速率运动,在下面几种说法中,正确的是().A.动力做的功为零B.动力做的功不为零C.动力做功与阻力做功的代数和为零D.合力做的功为零5.放在水平面上的物体在一对水平方向的平衡力作用下做匀速直线运动,当撤去一个力后,下列说法中错误的是().A.物体的动能可能减少B.物体的动能可能增加C.没有撤去的这个力一定不再做功D.没有撤去的这个力一定还做功平面上做匀速圆周运动,拉力为某个值F时,转动半径为B,当拉力逐渐减小到了F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功大小是().A、FR/4B、3FR/4C、5FR/2D、零7. 一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。
从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为()A. 0B. 8JC. 16JD. 32J8.质量为5×105kg的机车,以恒定的功率沿平直轨道行驶,在3minl内行驶了1450m,其速度从10m/s增加到最大速度15m/s.若阻力保持不变,求机车的功率和所受阻力的数值.9. 一小球从高出地面Hm 处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对球的平均阻力是其重力的多少倍。
高考物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
2024全国高考真题物理汇编动能和动能定理一、单选题 1.(2024江西高考真题)两个质量相同的卫星绕月球做匀速圆周运动,半径分别为1r 、2r ,则动能和周期的比值为( )A.k121k212,E r T E r T ==B.k111k222,E r T E r T ==C.k121k212,E r T E r T ==D.k111k222E r T E r T ==,2.(2024北京高考真题)水平传送带匀速运动,将一物体无初速度地放置在传送带上,最终物体随传送带一起匀速运动。
下列说法正确的是( ) A .刚开始物体相对传送带向前运动 B .物体匀速运动过程中,受到静摩擦力 C .物体加速运动过程中,摩擦力对物体做负功 D .传送带运动速度越大,物体加速运动的时间越长3.(2024安徽高考真题)某同学参加户外拓展活动,遵照安全规范,坐在滑板上,从高为h 的粗糙斜坡顶端由静止下滑,至底端时速度为v .已知人与滑板的总质量为m ,可视为质点.重力加速度大小为g ,不计空气阻力.则此过程中人与滑板克服摩擦力做的功为( ) A .mghB .212mvC .212mgh mv +D .212mgh mv -4.(2024测试,测试时配重小车被弹射器从甲板上水平弹出后,落到海面上。
调整弹射装置,使小车水平离开甲板时的动能变为调整前的4倍。
忽略空气阻力,则小车在海面上的落点与其离开甲板处的水平距离为调整前的( ) A .0.25倍B .0.5倍C .2倍D .4倍5.(2024福建高考真题)先后两次从高为 1.4m OH =高处斜向上抛出质量为0.2kg m =同一物体落于12Q Q 、,测得128.4m,9.8m OQ OQ ==,两轨迹交于P 点,两条轨迹最高点等高且距水平地面高为3.2m ,下列说法正确的是( )A4 B .第一次过P 点比第二次机械能少1.3J C .落地瞬间,第一次,第二次动能之比为72:85D .第二次抛出时速度方向与落地瞬间速度方向夹角比第一次大二、解答题 6.(2024全国高考真题)将重物从高层楼房的窗外运到地面时,为安全起见,要求下降过程中重物与楼墙保持一定的距离。
【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。
水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。
可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。
【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。
从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。
【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。
完整版)高中物理动能定理典型练习题(含答案)1.正确答案是D。
对于一个物体来说,只有在速度大小(速率)发生变化时,它的动能才会改变。
速度的变化是一个矢量,它可以完全由于速度方向的变化而引起,例如匀速圆周运动。
速度变化的快慢是指加速度,加速度大小与速度大小之间没有必然的联系。
2.一个物体从高度为H的地方自由落体,落到高度为h的沙坑中停止。
假设物体的质量为m,重力加速度为g,根据动能定理,当物体速度为v时,mgH = 1/2mv^2,因此v =sqrt(2gH)。
在沙坑中,重力做正功,阻力做负功,根据动能定理,1/2mv^2 - Fh = mgh,其中F为物体在沙坑中受到的平均阻力。
解方程得到F = (H + h)mg / (gh)。
3.一个物体沿一曲面从A点无初速度滑下,滑至曲面的最低点B时,下滑高度为5m,物体质量为1kg,速度为6m/s。
假设物体在滑行过程中克服了摩擦力,设摩擦力为F,根据动能定理,mgh - W = 1/2mv^2,其中W为物体克服阻力所做的功。
解方程得到W = 32J。
课后创新演练:1.滑块的质量为1kg,初速度为4m/s,水平力方向向左,大小未知。
在一段时间内,水平力方向变为向右,大小不变为未知。
根据动能定理,水平力所做的功等于滑块动能的变化量,即1/2mv^2 - 1/2mu^2,其中v和u分别为滑块在水平力作用下的末速度和初速度。
根据题意,v = u = 4m/s,解方程得到水平力所做的功为16J。
2.两个物体的质量之比为1:3,高度之比也为1:3.根据动能定理,物体的动能等于1/2mv^2,其中v为物体的速度。
假设两个物体在落地时的速度分别为v1和v2,则v1 : v2 =sqrt(h1) : sqrt(h2),其中h1和h2分别为两个物体的高度。
因此,v1^2 : v2^2 = h1 : h2 = 1 : 9,即它们落地时的动能之比为1:9.3.物体沿长为L的光滑斜面下滑,速度达到末速度的一半时,物体沿斜面下滑的距离为L。
高一物理限时训练25(动能和动能定理)审定:高一物理组1.一质量为2kg 的滑块,以4m/s 的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( )A.0B.8JC.16JD.32J2.如下图所示,物体由静止开始分别沿不同斜面由顶端A 滑至底端B ,两次下滑的路径分别为图中的Ⅰ和Ⅱ,两次物体与斜面间动摩擦因数相同,且不计路径Ⅱ中转折处的能量损失,则到达B 点时的动能( )A.第一次小B.第二次小C.两次一样大D.无法确定3.物体在水平恒力作用下,在水平面上由静止开始运动,当位移为S 时撤去F ,物体继续前进3S 后停止运动,若路面情况相同,则物体的摩擦力和最大动能是( ) A. Fs E F f k 4,3== B. Fs E F f k ==,3 C. 3,4Fs E F f k == D. Fs E F f k 43,4== 4.如图所示,一物体由A 点以初速度v 0下滑到底端B ,它与挡板B 做无动能损失的碰撞后又滑回到A 点,其速度正好为零,设A 、B 两点高度差为h ,则它与挡板碰撞前的速度大小为( )A . 4220v gh +B . gh 2C . 2220v gh +D . 202v gh +5. 静止在光滑水平面上的物体,在水平恒力F 作用下,经过时间t ,获得动能为k E .若作用力的大小改为2F ,而获得的动能仍为E k ,则力2F 作用时间应为( ) A.4t B.22t C.2t D. 2t6.质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( )A.质量大的物体滑行距离小B.它们滑行的距离一样大C.质量大的物体滑行时间短D.它们克服摩擦力所做的功一样多7.一子弹原来的速度是v 0 ,打穿一木块后的速度是40v ,设木块对子弹的阻力是恒定的,则:①那么子弹射入木块的一半深度时,它的速度是多少?②要打穿两块这样的木块子弹至少应具有多大的速度?8.答案【①01827v v =;②02430v v =】。
动能和动能定理经典试题例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。
例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s 2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv=0 B. Δv =12m/s C. W=0 D. W=10.8J例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220-例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。
小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件2-7-3 θ F O PQ l h H 2-7-2轻轻地放在传送带底端,由传送带传送至h =2m 的高处。
物理动能与动能定理题20套(带答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.某小型设备工厂采用如图所示的传送带传送工件。
高中物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==3.如图所示,斜面高为h ,水平面上D 、C 两点距离为L 。
高中动能定理试题及答案一、选择题1. 一个物体从静止开始,沿着光滑的斜面下滑,下滑过程中受到的力只有重力,下列说法正确的是()。
A. 物体的动能增加,重力势能减少B. 物体的动能增加,重力势能增加C. 物体的动能减少,重力势能减少D. 物体的动能减少,重力势能增加答案:A解析:物体从静止开始下滑,重力做正功,物体的动能增加;同时物体的高度降低,重力势能减少。
2. 一个物体从一定高度自由落下,不计空气阻力,下列说法正确的是()。
A. 物体的动能增加,重力势能减少B. 物体的动能减少,重力势能增加C. 物体的动能和重力势能都增加D. 物体的动能和重力势能都减少答案:A解析:物体自由落下,重力做正功,物体的动能增加;同时物体的高度降低,重力势能减少。
二、填空题3. 一个质量为m的物体从高度为h的平台上自由落下,不计空气阻力,物体落地时的动能为____。
答案:mgh解析:根据动能定理,物体落地时的动能等于重力势能的减少量,即Ek = mgh。
角为θ,下滑过程中物体的动能增加量为____。
答案:mgv0sinθ解析:物体下滑过程中,重力沿斜面方向的分力做功,根据动能定理,动能增加量等于重力分力做功,即ΔEk = mgv0sinθ。
三、计算题5. 一个质量为2kg的物体从高度为10m的平台上自由落下,不计空气阻力,求物体落地时的速度。
答案:v = 14.1m/s解析:根据动能定理,物体落地时的动能等于重力势能的减少量,即Ek = mgh。
代入数据,解得v = √(2gh) = √(2×9.8×10) = 14.1m/s。
面倾角为30°,求物体滑到斜面底端时的速度。
答案:v = 20m/s解析:物体下滑过程中,重力沿斜面方向的分力做功,根据动能定理,动能增加量等于重力分力做功,即ΔEk = mgv0sinθ。
代入数据,解得v = √(v0^2 + 2gh) = √(10^2 + 2×9.8×5×sin30°) =20m/s。
高考物理动能与动能定理题20套(带答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量为m=1kg的滑块,在水平力F作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v0=3m/s,长为L=1.4m,今将水平力撤去,当滑块滑到传送带右端C时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s2.求(1)水平作用力F的大小;(2)滑块开始下滑的高度h;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s,求滑块在传送带上滑行的整个过程中产生的热量Q.【答案】(1)(2)0.1 m或0.8 m (3)0.5 J【解析】【分析】【详解】解:(1)滑块受到水平推力F、重力mg和支持力F N处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移:s =v 0t 由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩ 相对滑动生成的热量⑪⑫2.如图所示,固定的粗糙弧形轨道下端B 点水平,上端A 与B 点的高度差为h 1=0.3 m ,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C 点到B 点的高度差为h 2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m =1 kg 的滑块(可看作质点)从轨道的A 点由静止滑下,然后从B 点抛出,恰好以平行于传送带的速度从C 点落到传送带上,传送带逆时针传动,速度大小为v =0.5 m/s ,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g =10 m/s 2,试求:(1).滑块运动至C 点时的速度v C 大小;(2).滑块由A 到B 运动过程中克服摩擦力做的功W f ; (3).滑块在传送带上运动时与传送带摩擦产生的热量Q . 【答案】(1)2.5 m/s (2)1 J (3)32 J【解析】本题考查运动的合成与分解、动能定理及传送带上物体的运动规律等知识。
动能和动能定理经典试题例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的倍(k =),求飞机受到的牵引力。
例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s 2)例3 一质量为㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv=0 B. Δv=12m/s C. W=0 D. W= >例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( )A. gh v 20+B. gh v 20-C.gh v 220+ D.gh v 220-例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。
小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。
已知工件与传送带间的动摩擦因数23=μ,g 取10m/s 2。
(1) 试通过计算分析工件在传送带上做怎样的运动 》(2) 工件从传送带底端运动至h =2m 高处的过程中摩擦力对工件做了多少功. 2-7-3θFOP 【l2-7-4hH:例8如图4所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。
求物体在轨道AB段所受的阻力对物体做的功。
例9电动机通过一条绳子吊起质量为8kg的物体。
绳的拉力不能超过120N,电动机的功率不能超过1 200W,要将此物体由静止起,用最快的方式将物体吊高90m(已知物体在被吊高90m以前已开始以最大速度匀速上升),所需时间为多少(g取10 m/s2)`例10一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数相同.求动摩擦因数μ.,2-7-6例11从离地面H高处落下一只小球,小球在运动过程中所受的空气阻力是它重力的k(k<1)倍,而小球与地面相碰后,能以相同大小的速率反弹,求:(1)小球第一次与地面碰撞后,能够反弹起的最大高度是多少(2)小球从释放开始,直至停止弹跳为止,所通过的总路程是多少^例12某同学从高为h处水平地投出一个质量为m的铅球,测得成绩为s,求该同学投球时所做的功.例13 如图所示,一根长为l 的细线,一端固定于O 点,另一端拴一质量为m 的小球,当小球处于最低平衡位置时,给小球一定得初速度0v ,要小球能在竖直平面内作圆周运动并通过最高点P ,0v 至少应多大)例14 新疆达坂城风口的风速约为v=20m/s ,设该地空气的密度为ρ=1.4kg/m 3,若把通过横截面积S=20m 2的风能的50%转化为电能,利用上述已知量推导计算电功率的公式,并求出发电机电功率的大小。
#例15 质量为M 、长度为d 的木块,放在光滑的水平面上,在木块右边有一个销钉把木块挡住,使木块不能向右滑动。
质量为m 的子弹以水平速度V 0射入木块,刚好能将木块射穿。
现在拔去销钉,使木块能在水平面上自由滑动,而子弹仍以水平速度V 0射入静止的木块。
设子弹在木块中受阻力恒定。
求:(1)子弹射入木块的深度(2)从子弹开始进入木块到与木块相对静止的过程中,木块的位移是多大>例16 如图2-7-19所示的装置中,轻绳将A 、B 相连,B 置于光滑水平面上,拉力F 使B 以1m /s 匀速的由P 运动到Q,P 、Q 处绳与竖直方向的夹角分别为α1=37°,α2=60°.滑轮离光滑水平面高度h=2m ,已知m A =10kg ,m B =20kg ,不计滑轮质量和摩擦,求在此过程中拉力F 做的功(取sin37°=,g 取10m /s 2)l S $ dV 0】参考答案:1、解答:取飞机为研究对象,对起飞过程研究。
飞机受到重力G 、支持力N 、牵引力F 和阻力f 作用,如图2-7-1所示2-7-1各力做的功分别为W G =0,W N =0,W F =Fs ,W f =-kmgs.起飞过程的初动能为0,末动能为221mv据动能定理得:代入数据得:2、石头在空中只受重力作用;在泥潭中受重力和泥的阻力。
…对石头在整个运动阶段应用动能定理,有00)(-=-+h F h H mg 。
所以,泥对石头的平均阻力10205.005.02⨯⨯+=⋅+=mg h h H F N=820N 。
3、解答 由于碰撞前后速度大小相等方向相反,所以Δv=v t -(-v 0)=12m/s,根据动能定理答案:BC4、解答 小球下落为曲线运动,在小球下落的整个过程中,对小球应用动能定理,有!2022121mv mv mgh-=, 解得小球着地时速度的大小为 =v gh v 220+。
正确选项为C 。
5、解答 将小球从位置P 很缓慢地拉到位置Q 的过程中,球在任一位置均可看作处于平衡状态。
由平衡条件可得F=mg tan θ,可见,随着θ角的增大,F 也在增大。
而变力的功是不能用W= Fl cos θ求解的,应从功和能关系的角度来求解。
NGf`F0212-=-mv kmgs Fs Nsv m kmg F 42108.12⨯=+=02121ΔE 202K =-==mv mv W t做功mgl (1-cos θ)。
小球很缓慢移动时可认为动能始终为0,由动能定理可得 W -mgl (1-cos θ)=0,W = mgl (1-cos θ)。
正确选项为B 。
6、32FR 7、解答 (1) 工件刚放上皮带时受滑动摩擦力?θμcos mg F=,工件开始做匀加速直线运动,由牛顿运动定律ma mg F =-θsin可得 )30sin 30cos 23(10)sin cos (sin 00-⨯=-=-=θθμθg g m F am/s 2=2.5m/s 2。
设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得 5.2222220⨯==a v x m=0.8m <4m 。
故工件先以2.5m/s 2的加速度做匀加速直线运动,运动0.8m 与传送带达到共同速度2m/s 后做匀速直线运动。
(2) 在工件从传送带底端运动至h =2m 高处的过程中,设摩擦力对工件做功W f ,由动能定理2021mv mgh W f =-, 可得 210102120⨯⨯=+=mv mgh W f J 221021⨯⨯+J=220J 。
8、解答:物体在从A 滑到C 的过程中,有重力、AB 段的阻力、BC 段的摩擦力共三个力做功,W G =mgR ,f BC =umg ,由于物体在AB 段受的阻力是变力,做的功不能直接求。
根据动能定理可知:W 外=0,】所以mgR-umgS-W AB =0即W AB =mgR-umgS=1×10××10×3/15=6(J)9、解答 起吊最快的方式是:开始时以最大拉力起吊,达到最大功率后维持最大功率起吊。
在匀加速运动过程中,加速度为8108120⨯-=-=m mg F a m m/s 2=5 m/s 2,末速度 1202001==m m tF P v m/s=10m/s ,上升时间5101==a v t t s=2s , 上升高度52102221⨯==a v h t m=10m 。
在功率恒定的过程中,最后匀速运动的速度为1082001⨯==mg P vmmm/s=15m/s , 《由动能定理有 22122121)(t m m mv mv h h mg t P -=--, 解得上升时间2001)1015(821)1090(108)(21)(222212-⨯⨯+-⨯⨯=-+-=m t m P v v m h h mg t s=。
所以,要将此物体由静止起,用最快的方式将物体吊高90m ,所需时间为 t=t 1+t 2=2s+=。
10、解答 设该斜面倾角为α,斜坡长为l ,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为:?物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S 2,则对物体在全过程中应用动能定理:ΣW=ΔEk .mglsinα-μmglcosα-μmgS 2=0得 h -μS 1-μS 2=0. 式中S1为斜面底端与物体初位置间的水平距离.故,11、解答:(1) 设小球第一次与地面碰撞后,能够反弹起的最大高度是h ,则由动能定理得:mg(H-h)-kmg(H+h)=0解得H k kh +-=11 (2)、设球从释放开始,直至停止弹跳为止,所通过的总路程是S ,对全过程由动能定理得mgH-kmgS=0解得kH S =12、解答 同学对铅球做的功等于铅球离手时获得的动能,即212-=mv W铅球在空中运动的时间为gh t 2=铅球时离手时的速度αμcos 1mgl W f -=mgh mgl W G ==αsint s v =1314、解答 首先建立风的“柱体模型”,如图2-7-7所示,设经过时间t 通过截面S 的空气的质量为m ,则有m =ρV=ρSl=ρSvt 。
这部分空气的动能为 t Sv v Svt mv E 322212121ρρ=⋅⋅==∆。
因为风的动能只有50%转化为电能,所以其电功率的表达式为3341%5021%50Sv t tSv t E P ρρ=⨯=⨯∆=。
代入数据得 320204.141⨯⨯⨯=P W=×104W 。
15. (1) X = Md/(M +m ) (2) S 2=2)(m M Mmd +16.2-7-7。